
Abstract A new variational principle for an aniso-
tropic elastic formulation in stress space is constructed,
the Euler–Lagrange equations of which are the equa-
tions of compatibility (in terms of stress), the equi-
librium equations and the traction boundary condition.
Such a principle can be used to extend recently obtained
configurational balance laws in stress space to the case
of anisotropy.

Keywords Configurational forces · Stress
formulation · Anisotropy

1 Introduction

Configurational forces (in solid mechanics) provide us
with the forces necessary for driving the dissipative
mechanisms which are responsible for the kinetics of
defect flow. In case of a thermodynamic equilibrium,
vanishing of configurational forces are additional rela-
tions required for a complete determination of the sys-
tem. Popular examples are dislocation motion, crack
propagation, delamination etc. (Eshelby 1956; Maugin
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1993; Gupta and Markenscoff 2007 and references
therein). A systematic way of obtaining expressions for
these forces follows from Noether’s theorem
(Noether 1918; Gelfand and Fomin 2000), where given
a variational principle, conserved integrals (path inde-
pendent in 2D) are obtained as necessary and sufficient
conditions for satisfying respective symmetries of the
variational principle. Configurational forces are then
interpreted as these conserved integrals which vanish
in case of a non-dissipative flow, but fail to vanish if dis-
sipative mechanisms are active (i.e. when symmetries
are broken) (Eshelby 1975).

In (Li et al. 2005), the authors use a variational prin-
ciple of Pobedrya (Pobedrja 1980; Pobedria and
Holmatov 1982) to obtain a class of conservation laws.
The Euler–Lagrange equations of this principle were
the Beltrami–Michell compatibility equations in the
domain and stress equilibrium with traction boundary
condition on the boundary. It was shown by Pobedrya
(1980) and Kucher et al. (2004) that such a boundary
value problem in terms of stress is well defined and it
is sufficient to satisfy equilibrium on the boundary to
satisfy it in the domain. The conservation laws were
obtained assuming the case of linear, homogeneous
and isotropic elasticity with vanishing body forces and
incompatibility. In a sequel paper (Markenscoff and
Gupta 2007) these were extended for non-vanishing
incompatibility and body force distribution and appli-
cability of such quantities was demonstrated using
examples from dislocation theory and heat flow in a
domain with a spherical cavity. More recently these

An anisotropic elastic formulation for configurational forces
in stress space

Anurag Gupta · Xanthippi Markenscoff

Defect and Material Mechanics. C. Dascalu, G.A. Maugin & C. Stolz (eds.),
doi: 10.1007/978-1-4020-6929-1_ , © Springer Science+Business Media B.V. 200714

157



158 A. Gupta, X. Markenscoff

conserved quantities (or configurational forces) were
interpreted as the necessary and sufficient dissipative
mechanisms so as to maintain compatibility during
the propagation of a inhomogeneity (or a defect) (Gupta
and Markenscoff 2007).

The present paper aims at formulating a variational
principle which would extend the earlier principle of
Pobedrya (1980) to the case of anisotropy. Such a var-
iational principle can then be used to obtain the con-
figurations balance laws in stress space (Li et al. 2005;
Markenscoff and Gupta 2007) for the case of aniso-
tropic elasticity. Before constructing a variational prin-
ciple in Sect. 3, we first discuss Pobedrya’s formulation
of the boundary value problem of anisotropic linear
elasticity in stress space.

2 Formulation

The classical problem of linear and homogeneous elas-
ticity in terms of stress involves equilibrium and com-
patibility equations in the bulk (bulk is denoted by
� ∈ R3) and a traction boundary condition (boundary
is denoted by ∂� ≡ �∩R3/�). Assuming absence of
body forces and inertial terms, the equilibrium equation
is given as follows,

σij,j = 0, ∀xk ∈ � (1)

with σij (xk) denoting the stress. The compatibility rela-
tions are written in terms of strain eij (xk) as,

ηij ≡ −εiklεjmneln,km = 0, ∀xk ∈ � (2)

where εikl is the alternating tensor and ηij is the
Kröner’s incompatibility tensor (Kröner 1981) (vanish-
ing of which ensures compatibility). The compatibility
relations in terms of stresses can be obtained by us-
ing an appropriate constitutive law in the framework of
linear elasticity,

eij = Dijklσkl, (3)

where Dijkl is the (constant) elastic compliance tensor.
Denote η̄ij as the incompatibility tensor thus obtained
as a function of the stress tensor. Therefore the com-
patibility relations in terms of stresses are,

η̄ij ≡ −Dlnpqεiklεjmnσpq,km = 0, ∀xk ∈ �. (4)

Equations 1 and 4 are to be supplemented by prescrib-
ing traction on the boundary,

σijnj = pi, ∀xk ∈ ∂� (5)

with pi(xk) being the prescribed traction and nj (xk),
the unit normal to ∂�. The system of Eqs. 1 and 4 is
over-determined as there are nine equations for six un-
knowns. On the boundary, there is an under-
determinacy by three conditions (Georgievskii and
Pobedrya 2004). Pobedrya (1994) has introduced a set
of equations to deal with this problem. His formulation
transfers the equilibrium Eq. 1 to the boundary and
therefore leaving only Eq. 4 to be solved in the bulk.
The resulting system of equations is well defined over
the whole domain (Pobedrja 1980; Kucher et al. 2004).
An outline of his theory for anisotropic elasticity is now
discussed.

Let a
(α)
ij be a set of tensors (α = 1, . . . , N ) con-

structed from the invariant basis tensors of the symme-
try group G. These invariant basis tensors were
originally obtained for the representation of anisotropic
tensors and there are systematic procedures for their
evaluation corresponding to the symmetry groupG (see
(Weyl 1946; Smith and Rivlin 1957; Smith 1970) for
foundations and (Markenscoff 1976) for a possible
application). The tensors a

(α)
ij are constructed such that

they are pairwise orthogonal and add up to the unit
tensor,

a
(α)
ij a

(β)
ij

a(α)a(β)

= δαβ,

N∑

α=1

a
(α)
ij = δij , (6)

where a(α) =
√

a
(α)
ij a

(α)
ij (no summation implied un-

der α). A set of linear invariants of the incompatibility
tensor can then be constructed as,

η(α) = ηij a
(α)
ij . (7)

Define a tensor Hij as,

Hij = ηij +
N∑

α=1

ξ (α)η(α)a
(α)
ij , (8)

where ξ (α) are arbitrary scalars. The condition Hij = 0
is equivalent to the compatibility condition (2), ηij = 0
if ξ (α) �= −(a(α))

−2 for all α. Indeed if ηij = 0 then by
definitions (7) and (8), Hij = 0. If Hij = 0, then by Eq.

8, Hija
(β)
ij = η(β) + ξ (β)η(β)(a(β))

2 = 0, where rela-

tions (6) and (7) have been used. If ξ (α) �= −(a(α))
−2,

then η(α) = 0 and consequently, using Hij = 0 in (8)
we obtain ηij = 0.

Define a vector valued function,

Ai = Rijσjk,k, (9)
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where Rij is a positive definite operator. Therefore,
condition Ai = 0 is equivalent to equilibrium relation
(1). Construct a tensor Aij = Ai,j + Aj,i whose lin-

ear invariants are denoted by A(α) = Aij a
(α)
ij . Another

tensor can then be defined as,

Āij = Aij +
N∑

α=1

ξ (α)A(α)a
(α)
ij . (10)

Reasoning along the lines of the paragraph following
Eq. 8, we note that Aij = 0, if and only if Āij = 0
given that ξ (α) �= −(a(α))

−2.
Form a tensor,

H̄ij = Hσ
ij + Āij , (11)

where superscript σ in Hσ
ij indicates that Hij is ex-

pressed in terms of stress rather than strain (using (6)).
Therefore Hσ

ij = η̄ij + ∑N
α=1 ξ (α)η̄(α)a

(α)
ij where η̄ij

is as given in (4) and η̄(α) = η̄ij a
(α)
ij . The formula-

tion of Pobedrya (Pobedrya 1994) involves satisfying
equation,

H̄ij = 0, ∀xk ∈ � (12)

in the bulk and conditions,

σijnj = pi, σij,j = 0, ∀xk ∈ ∂� (13)

on the boundary. The solution to Eqs. 12 and 13 satisfies
equations of equilibrium and of compatibility as given
in (1) and (4). From Eqs. 11 and 12 obtain, H̄ij a

(β)
ij =

(η̄(β) + A(β))(1 + ξ (β)(a(β))
2) = 0, and therefore if

ξ (α) �= −(a(α))
−2 is satisfied, we obtain,

η̄(β) + A(β) = 0. (14)

Differentiate Eq. 11 to get,

H̄ij,j = Hσ
ij,j + Āij,j (15)

which will now be evaluated term by term. Let η̄ de-
note the trace of η̄ij . Therefore η̄ = η̄ij δij and from
(4), η̄ = 2(Diijkσjk,pp − Dmnjkσjk,mn). It is easy to
see that η̄ij,j = 1

2 (η̄),i . Also, note that η̄ = η̄ij δij =
η̄ij

∑N
α=1 a

(α)
ij = ∑N

α=1 η̄(α), where the first relation in
(6) has been used. Using these results Hσ

ij,j can then be
evaluated as,

Hσ
ij,j =

N∑

α=1

(
1

2
δij + ξ (α)a

(α)
ij

)
η̄(α),j . (16)

For calculating Āij,j , start from (10) and note that
Aij,j = 
Ai + Aj,ji and Aj,j = 1

2 Aij δij = 1
2 Aij∑N

α=1 a
(α)
ij = 1

2

∑N
α=1 A(α) to obtain,

Āij,j = 
Ai +
N∑

α=1

(
1

2
δij + ξ (α)a

(α)
ij

)
A(α),j (17)

and thereafter combine Eqs. 16 and 17 to write,

H̄ij,j = 
Ai +
N∑

α=1

(
1

2
δij + ξ (α)a

(α)
ij

)

×(η̄(α) + A(α)),j . (18)

Substitution of relations (12) and (14) into (18) then
results into 
Ai = 0, i.e. Ai is harmonic. The vector
Ai vanishes on the boundary (by (13)2) and therefore
it vanishes inside � (since Ai is harmonic). Therefore
equilibrium relation (1) is satisfied in the bulk. As a
consequence of this result and Eqs. 11 and 12, obtain
Hσ

ij = 0. The compatibility relation (4) then follows
from this equality. This is exactly the generalization to
anisotropy of Pobedrya’s method.

3 A New Variational Principle

Consider the following functional,

�(σij , σij,k) =
∫

�

Eijkσij,kdV

−
∫

∂�

(
Eijkσij nk − 1

2
σij,j σik,k

−1

2
σijnjσiknk + piσij nj

)
dA, (19)

where

Eijk = − Dlnpqεiklεjmnσpq,m + Aiδjk + Ajδik

+
N∑

α=1

ξ (α)(−Dlnpqεrklεsmnσpq,m

+ Arδsk + Asδrk)a
(α)
rs a

(α)
ij (20)

and Ai is as given in (9). Define L� = Eijkσij,k , then
to obtain the Euler–Lagrange equations corresponding
to the above functional, evaluate ∂L�

∂σuv,w
using following

formulae,

(i)
∂(Dlnpqεiklεjmnσpq,mσij,k)

∂σuv,w

= Symuv[Dlnpqεiklεjmn(δupδvqδwmσij,k

+δuiδvj δwkσpq,m)]
= Dlnuvεiklεjwnσij,k

+Symuv(Dlnpqεuwlεvmnσpq,m)
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(ii)
∂(Dlnpqεrklεsmnσpq,mσij,k)

∂σuv,w

= Symuv[Dlnpqεrklεsmn(δupδvqδwmσij,k

+δuiδvj δwkσpq,m)]
= Dlnuvεrklεswnσij,k

+Symuv(Dlnpqεrwlεsmnδuiδvjσpq,m)

(iii)
∂(Ripδqrδjkσpq,rσij,k)

∂σuv,w

= Symuv(Riuδvwσij,j )

+Symuv(Rupδvwσpq,q)

(iv)
∂(Rrpδqt δskσpq,tσij,k)

∂σuv,w

= Symuv(Rruδvwσij,s)

+Symuv(Rrpδiuδjvδswσpq,q),

where the notation Symuv(·)uv = 1
2 [(·)uv + (·)vu] has

been employed. Also note, that for a symmetric ten-
sor σij ,

∂σij

∂σuv
= Symuv(δiuδjv). Using these relations

obtain,

∂L�

∂σuv,w

= Symuv(Euvw) − Dlnuvεiklεjwnσij,k

+2Symuv(Riuδvwσij,j )

+
N∑

α=1

ξ (α)(−Dlnuvεrklεswnσij,k

+2SymuvSymrs(Rruδvwσij,s))a
(α)
rs a

(α)
ij .

(21)

Taking a variation of the functional (19) with respect
to σuv , we evaluate,

δ� =
∫

�

−
(

d

dxw

∂L�

∂σuv,w

)
δσuvdV −

∫

∂�

(
Euvw

− ∂L�

∂σuv,w

)
δσuvnwdA +

∫

∂�

σij,j δσik,kdA

+
∫

∂�

(σiknk − pi)δσij nj dA, (22)

where the ‘frozen condition’ (Pobedrja 1980):
δEijknk = 0 on ∂� has been assumed. The frozen
condition ensures that variation δσuv does not intro-
duce a flux of incompatibility across the boundary into
the bulk. Noting expression 21, Eqs. 12 and 13 are then
recovered as the Euler–Lagrange equations if,

− Dlnuvεiklεjwnσij,k + 2(Riuδvwσij,j )

+
N∑

α=1

ξ (α)
( − Dlnuvεrklεswnσij,k

+ 2Symrs(Rruδvwσij,s)
)
a(α)
rs a

(α)
ij = 0. (23)

These equations give conditions on the arbitrary vari-
ables ξ (α) and Rij which make the variational principle
suitable. Under such conditions Eq. 22 simplifies to,

δ� = −
∫

�

Euvw,wδσuvdV +
∫

∂�

σij,j δσik,kdA

+
∫

∂�

(σiknk − pi)δσij nj dA. (24)

The equation Euvw,w = 0 is equivalent to (12). Finally,
note that Eq. 23 should be satisfied for arbitrary σij,k

and therefore we obtain necessary and sufficient con-
ditions,

−Dlnuvεiklεjwn + 2Riuδvwδjk

+
N∑

α=1

ξ (α)(−Dlnuvεrklεswna
(α)
rs

+2Symrk(Rruδvwa
(α)
rk ))a

(α)
ij = 0 (25)

which are used as restrictions on the arbitrary variables
ξ (α) and Rij .

Functional (19) can be used to derive conservation
laws using the formalism of Noether’s theorem (Noe-
ther 1918; Gelfand and Fomin 2000). Noether’s
theorem provides a systematic procedure to obtain dive-
rgence-free quantities from given symmetries of a var-
iational problem such as one formulated in (19). The
divergence-free quantities in an integral form provide
conservation laws which in the presence of singularities
and inhomogeneities will result into configurational
forces acting on these defects. An extension of Noe-
ther’s theorem to tensorial fields was already achieved
(Li et al. 2005; Markenscoff and Gupta 2007) and con-
servation laws were obtained for translation, rotation,
pre-stress and scaling symmetries, which are new and
distinct (Gupta and Markenscoff 2007). Application of
these conservation laws allowed for the determination
of the incompatibility in the interior of the domain by
surface data. The variational principle obtained in this
paper extends previous work to the case of anisotropy.
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