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Abstract. The dual conservation laws of elasticity are systematically re-examined by using both

Noether’s variational approach and Coleman–Noll–Gurtin’s thermodynamics approach. These dual

conservation laws can be interpreted as the dual configurational force, and therefore they provide

the dual energy–momentum tensor. Some previously unknown and yet interesting results in

elasticity theory have been discovered. As an example, we note the following duality condition

between the configuration force (energy–momentum tensor) P and the dual configuration force

(dual energy–momentum tensor) L,

P � L ¼ ðP : FÞ1�rðP � xÞ:
This and other results derived in this paper may lead to a better understanding of configurational

mechanics and therefore of mechanics of defects.
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1. Introduction

Since Eshelby’s pioneer work [3, 4] on the energy–momentum tensor, the subject

of configurational force has been at the center of attention of continuum

mechanics and material science. The configurational forces are associated with

the relative change in the energy with respect to various configurational

rearrangements. Such rearrangements can occur within a lattice as a motion of

a dislocation or due to propagation of a crack. For an overview of the various

applications of configurational forces, the reader is referred to the texts by

Maugin [18], Gurtin [10], and Kienzler and Herrmann [11] and a review paper by

Maugin [19]. There has been a considerable amount of research regarding the

presence and applicability of Eshelby’s energy–momentum tensor, but there is a

scarcity of results regarding its thermodynamical dual. This work is aimed at a

systematic study of obtaining dual configurational forces.

Eshelby [4] had already anticipated the existence of a complementary energy–

momentum tensor (referred to as the dual energy–momentum tensor in this
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paper), but it was Bui [1], who first derived a complementary path-independent

integral, and provided some physical interpretations. Bui’s I-integral has been

interpreted as the dual of the Rice’s J-integral [29]. Sun [30] and Li [16] used

Noether’s theorem [22] to obtain different sets of dual conservation laws in linear

elastostatics. Soon afterwards, Moran and Shih [20, 21] studied these dual path-

independent integrals under a thermodynamical setting. In finite deformation, a

counterpart of Bui’s path-independent integral was derived by Trimarco and

Maugin [31]. More recently, Li [14] derived another set of dual conservation

laws of planar elasticity via stress function formalism. A class of conservation

laws expressed purely in terms of the stress tensor for the case of 3D linear and

isotropic elasticity has been obtained by Li et al. [15].

Overall in the past 50 years, the research on dual path-independent integrals is

scarce. One reason for this may be due to a general perception that the dual path-

independent integrals do not provide any new physical content. As Moran and

Shih [21] commented in their 1987 paper,

B� � � � Bui has shown that the energy and complementary energy release rates

are equal. We establish in a direct manner that Bui’s observation is valid for

quite general material response and for all dual crack tip integrals under

discussion. The implication is that no new information can be extracted from

complementary integrals which is not already provided by their counterparts.

However, in certain circumstances, the pair of integrals, referred to as dual

integrals, may be employed to obtained a bound for the crack tip parameter.

� � � �’’

Despite the validity of this statement, ambiguity remains in the subject. We

show that under the infinitesimal deformation, Bui’s I-integral does not belong to

the variational symmetry of the pure complementary strain energy principle, but

rather is an outcome of the translational invariance of a mixed variational

principle – the Hellinger–Reissner principle. Moreover, in finite deformation, the

existence of purely stress based complementary variational principles has been a

well-known debate existing for over several decades (see [5, 6, 23]). There are

several complementary variational principles in finite elasticity, but their

variational symmetries have never been carefully studied.

In this paper, a systematic effort is made to re-examine the dual invariant

integrals in elasticity. We apply Noether’s theorem [22] to examine the invariant

conditions for various complementary energy functionals in elasticity. We first

examine the invariant integrals resulting from the Hellinger–Reissner principle in

linear elasticity, and we then study the translational invariance of complementary

energy principles in finite elasticity, which include the Hellinger–Reissner

principle, the Levinson principle, the Fraeijs de Veubeke principle, and the most

recent principle introduced by Gao [6, 7].

In the end, as an alternative approach, we follow the procedure initiated by

Gurtin [9], but use the Gibbs free energy instead of the Helmhotz free energy,
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and as a result we obtain the expression for the dual configurational force without

using any variational principle.

2. Linear Elastostatics

We start with the variational symmetry approach, which can be summarized by

stating an appropriate version of the Noether’s first theorem without proof (see

[25–27]) below,

THEOREM 2.1. If the fundamental integral, �ðui; �ij; �ij;kÞ, involving the

Lagrangian L� is invariant under the r-parameter transformations, then the

following conservation laws hold

d

dxk

h�
L��k‘ � �ij;‘

@L�

@�ij;k

�
’‘� þ

@L�

@�ij;k
�ij�

i
¼ 0; � ¼ 1; 2; � � � ; r: ð1Þ

where, xi denotes the coordinate variable, ui represents the displacement field

and �ij denotes the symmetric Cauchy stress tensor. �kl represents the usual

Kronecker delta operator. The Einstein summation rule for repeated indices is

used. We denote ’i�, �ij� and �i� as the infinitesimal generators (see below for

their definition) corresponding to the coordinate variable, the stress tensor and

the displacement vector, respectively.

We now apply the above theorem to the following two field Hellinger–

Reissner functional [28, 33],

�ðui; �ij; �ij;kÞ ¼ �
Z

�

1

2
�ijDijk‘�k‘ þ �ji;jui

� �
dV

þ
Z

�u

ti~uuidS þ
Z

�t

ðti �~ttiÞuidS: ð2Þ

Where the fourth order tensor Dijkl is the elastic compliance tensor, such that

"ij ¼ Dijkl�kl, where "kl is the symmetrical strain tensor. The vector ti denotes the

traction field, and the vectors ~uui and ~tti are the prescribed displacement and

traction. For the purpose of our discussion, we only consider two symmetries

corresponding to the rigid body translation and rotation:

2.1. COORDINATE TRANSLATION

Let

�xxi ¼ xi þ �i; ð3Þ
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���ij ¼ �ij; ð4Þ

�uui ¼ ui; ð5Þ

where ��� is a small parameter. The corresponding generators of infinitesimal

transformations are

’i� ¼
@�xxi

@��

���
���¼0
¼ �i�; i; � ¼ 1; 2; 3; ð6Þ

�ij� ¼
@���ij

@��

���
���¼0
¼ 0; ð7Þ

�i� ¼
@�uui

@��

���
���¼0
¼ 0: ð8Þ

Therefore we have the following conservation law,

dEc
k�

dxk

¼ 0; � ¼ 1; 2; 3; ð9Þ

where

Ec
k� ¼ �

� 1

2
�ijDijmn�mn þ �ji;jui

�
�k� þ �ik;�ui: ð10Þ

REMARK 2.1. Suppose �ij is statically admissible, i.e., �ji;j ¼ 0. Choose � ¼ 1.

One can then obtain the following invariant integral:

I ¼
I

�

�
�W cn1 þ ui�ik;1nk

�
dS; ð11Þ

which is the Bui’s I-integral. W c ¼ 1
2
�ijDijmn�mn is the complementary energy

density for a linear elastic material.

REMARK 2.2 The fundamental integrals given by Sun [30] or by Li [16] have

no clear physical meanings. An obvious motive in construction of those integrals

is to match Bui’s I integral. As shown above, the correct way to derive Bui’s I-

integral and the dual Eshelby energy-momentum tensor should be based on the

Hellinger–Reissner two field principle.

REMARK 2.3. Define Ec
k� as the dual Eshelby energy-momentum tensor.

Combining Ec
k� with the Eshelby’s energy-momentum tensor (e.g., Knowles and

Sternberg [12]),

Ek� ¼ W�k� � �ikui;�; ð12Þ
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where W is the energy density for a linear elastic material, we have

Ek� � Ec
k� ¼ ðW þW cÞ�k� �

d

dx�
�ikuið Þ

¼ �ij�ij�k� �
d

dx�
�ikuið Þ: ð13Þ

This suggests that the tensor Ek� and tensor Ec
k� form a conjugate pair of the

above differential transformation, which is different from the scalar form of the

Legendre transformation.

2.2. COORDINATE ROTATION

Let

�xxi ¼ Qjið���Þxj; ð14Þ

���ij ¼ Qkið���Þ�k‘Q‘jð���Þ; ð15Þ

�uui ¼ Qjið���Þuj; ð16Þ

where the rotation matrix may be written as Qijð���Þ ¼ �ij þ "ijk�k þ oð���Þ, and "ijk is

the permutation symbol.

The corresponding infinitesimal generators are then given as following:

’i� ¼
@�xxi

@��

���
���¼0
¼ "ji�xj; � ¼ 1; 2; 3; ð17Þ

�ij� ¼
@���ij

@��

���
���¼0
¼ "li��lj þ "lj��li; ð18Þ

�i� ¼
@�uui

@��

���
���¼0
¼ "ji�uj: ð19Þ

The corresponding conserved quantities are then given as:

Rc
k� ¼ �W c"jk�xj þ �kj;luj"ml�xm � ujð"lk��lj þ "lj��lkÞ: ð20Þ

It can be verified (by taking a divergence) that the above quantity is conserved

only in the case of isotropy, i.e., when stress and strain tensors are coaxial. We

also recall here the corresponding conservation law obtained via the usual

variational principle [12],

Rk� ¼ W"jk�xj � �kjuj;l"ml�xm þ uj"ji��ik : ð21Þ
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We finally note that the following relation holds between these two quantities:

Rk� � Rc
k� ¼ ðW c þWÞ"jk�xj � ð�kjuj"m‘�xmÞ;‘ þ uj�‘jð"mk�xmÞ;‘: ð22Þ

3. Finite Elasticity

Based on mathematical principles, the dual configuration force should be related

to the translational invariance of a complementary energy variational principle.

As mentioned above, the complementary strain energy principle in finite

elasticity has been a controversial topic for many years (see [5, 8] for historical

notes). Although there were quite a few complementary energy principles in

finite elasticity, until recent contribution by Gao [6], none of these complemen-

tary principles was regarded as a pure complementary variational principle (for

the reasons that will be explained later in the paper). This may have had a

definite setback on the study of dual conservation laws in finite elasticity as well.

The only documented literature that we were able to find is by Trimarco and

Maugin [31]. In this section, we derive the dual configuration force from several

complementary variational principles in finite elasticity.

Consider a typical particle point with position X in a three dimensional

reference configuration �, which under deformation ��� is transformed to a

position x in the current configuration,

x ¼ ���ðXÞ ¼ Xþ uðXÞ; X 2 �; ð23Þ

where u is the displacement vector. The gradient of the deformation FðXÞ is

defined by d��� ¼ FdX. Thus,

FðXÞ ¼ grad���ðXÞ ¼ Fiaei � ea; Fia ¼
@�i

@Xa

; i; a 2 f1; 2; 3g: ð24Þ

The right and left Cauchy–Green tensors are defined as C ¼ FT F and b ¼ FFT ,

respectively, where the superscript T represents the transpose. The inverse of the

right Cauchy–Green tensor, referred as the Piola deformation tensor, is denoted

by B ¼ C�1 ¼ F�1F�T . We define the Green–Lagrange strain tensor as

E ¼ 1

2
ðC� 1Þ ¼ 1

2
½ruþruT þruruT �: ð25Þ

The deformation gradient admits a unique polar decomposition: F ¼ RU, where

R 2 SOð3Þ and U is the (right) stretch tensor. Hence, C ¼ FT F ¼ U2. Next we

introduce various stress measures. We denote P as the first Piola–Kirchhoff stress

tensor, S as the second Piola–Kirchhoff stress tensor, ��� as the Cauchy stress

tensor, ��� as the Kirchhoff tensor, and T as the Biot stress tensor (also known as

Jaumann stress tensor). The Cauchy stress can be physically interpreted as well
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as derived from the traction force t on the deformed configuration with the

normal n, i.e., ���n ¼ t. These stress tensors are related to each other as,

P ¼ FS; ð26Þ

��� ¼ J�1FSFT ; ð27Þ

��� ¼ FSFT ; ð28Þ

T ¼ 1

2
ðSUþ USÞ ¼ 1

2
ðPT R þ RT PÞ; ð29Þ

where J ¼ detF.

We assume the material under consideration to be hyperelastic. Therefore the

material possesses a stored-energy function � (per unit volume in the reference

configuration), which may be regarded as a function of any strain measure, for

example E;U; etc. Stress measures are taken as conjugates to various strain

measures. We then have

SðEÞ ¼ @�

@E
; ð30Þ

PðFÞ ¼ @�

@F
; ð31Þ

TðUÞ ¼ @�

@U
: ð32Þ

Thus, various complementary energy density functions can be defined [8]:

�cðSÞ ¼ S : EðSÞ � �ðEðSÞÞ; ð33Þ

~��cðPÞ ¼ P : FðPÞ � �ðFðPÞÞ; ð34Þ

~��cðTÞ ¼ T : UðTÞ � �ðUðTÞÞ; ð35Þ

where an appropriate invertibility is needed in all the relations (see [24] for

details regarding invertibility of various conjugate pairs). We would like to

elaborate on (34). Under an unique decomposition, F determines strain (and

therefore stress) uniquely. But a stress state may correspond to the same strain

state under different rotations and therefore invertibility of PðFÞ is not always
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guaranteed. Equation (34) is valid under the assumption that PðFÞ is invertible,

which implies that

FðPÞ ¼ @�c

@P
: ð36Þ

If PðFÞ is not invertible we can rewrite (35) using (29) as

~��cðTðP;RÞÞ ¼ P : ½R �UðTÞ� � �ðUðTÞÞ: ð37Þ

Note that both P and R are simultaneously regarded as independent variables.

The invertibility of the relation (32) can be argued in a much broader space than

that of the relation (31) (See Chapter 6 of [24] for details).

We now examine the translational symmetry of some main complementary

variational principles of finite elasticity.

3.1. THE HELLINGER–REISSNER PRINCIPLE

The Hellinger–Reissner principle involves the following functional [28]:

���c
HRðu;SÞ ¼ �

Z
�

f�cðSÞ þ 1

2
½ðruÞTðruÞ� : Sþ u � ½r � ðFSÞ�gdV

þ
Z

�u

ûu � ðFS � NÞdAþ
Z

�t

u � ðFS � N� t̂tN ÞdA; ð38Þ

where the vectors with a^are imposed quantities. Here the Lagrangian is given

by

Lðu; S;ru;rS;rruÞ ¼ ��cðSÞ � 1

2
½ðruÞT ðruÞ� : S� u � ½r � ðFSÞ�; ð39Þ

where F ¼ 1þru. We now consider the following r-parameter family of

invertible transformations:

�XX a ¼ �XX aðX;u;S; ���Þ; ð40Þ

�uui ¼ �uuiðX;u;S; ���Þ; ð41Þ

�SSab ¼ �SSabðX;u;S; ���Þ; ð42Þ

where ��� ¼ ð�1; �2; . . . ; �rÞ, such that �XXj��� ¼ 0 ¼ X, �uuj��� ¼ 0 ¼ u and �SSj��� ¼ 0 ¼ S.

The boundary terms are assumed to remain invariant under these transformations.

We can expand the transformed coordinates (40)–(42) using Taylor’s theorem,

�XX a ¼ Xa þ ’apðX;u;SÞ�p þ oð���Þ; ð43Þ
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�uui ¼ ui þ 	ipðX;u;SÞ�p þ oð���Þ; ð44Þ
�SSab ¼ Sab þ �abpðX;u;SÞ�p þ oð���Þ; ð45Þ

where

’apðX; u; SÞ ¼
@ �XX a

@�p

���
���¼0

; ð46Þ

	ipðX;u;SÞ ¼
@�uui

@�p

���
���¼0

; ð47Þ

�abpðX;u;SÞ ¼
@�SSab

@�p

���
���¼0

: ð48Þ

We can obtain the following relation, which should be satisfied by the

infinitesimal generators for the functional to remain infinitesimally invariant (See

[17] for details).

@L

@Xi

’ip þ
@L

@ui

	ip þ
@L

@Sab

�abp þ
@L

@ui;a

� d	ip

dXa

� ui;b
d’bp

dXa

�

þ @L

@Sab;d

� d�abp

dXd

� Sab;c
d’cp

dXd

�
þ @L

@ui;ab

� d

dXb

d	ip

dXa

� ui;c
d

dXb

d’cp

dXa

�
n

ui;cb

d’cp

dXa

þ ui;ca

d’cp

dXb

o�
þ L

d’ap

dXa

¼ 0; ð49Þ

where i; a; b; c; d 2 f1; 2; 3g and p 2 f1; 2; . . . ; rg. Furthermore we can obtain

various conservation laws associated with corresponding invariant transforma-

tions as,

d

dXa

nh
L�ab � ui;b

@L

@ui;a
� Scd;b

@L

@Scd;a
� ui;bc

@L

@ui;ac

þ ui;b
d

dXc

� @L

@ui;ac

�i
’bp þ

h @L

@ui;a
� d

dXb

� @L

@ui;ab

�i
	ip þ

@L

@Scd;a
�cdp

þ @L

@ui;ab

d	ip

dXb

� ui;c
@L

@ui;ab

d’cp

dXb

o
¼ 0: ð50Þ

We now consider a rigid body translation (with respect to the reference coor-

dinate): �XX a ¼ Xa þ �a, �uui ¼ ui and �SSab ¼ Sab. The only non-trivial infinitesimal

generator is ’ab ¼ �ab. The condition (49) is satisfied trivially for such a

transformation. Therefore we can use (50) to obtain an energy momentum tensor

from Hellinger–Reissner’s variational principle,

LHR ¼ �~��cðSÞ1�
n 1

2
½ðruÞT ðruÞ� : S

o
1þ u � ½rðFSÞ � ðruÞðrSÞ�;

ð51Þ
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where we have made use of the equilibrium condition r� FS ¼ 0, which arises

as a one of the Euler equations from Hellinger–Reissner’s variational principle.

REMARK 3.1. The above conservation law reduces to that of Bui’s dual

conservation law for linear elasticity. This can be seen by retaining only leading

order terms from (51) and by replacing S by the Cauchy stress ���.

3.2. THE LEVINSON PRINCIPLE

Assuming that PðFÞ is invertible, consider the following functional [13]:

��c
LðP; xÞ¼ �

Z
�

½~��cðPÞ þ x � ðr �PÞ�dV þ
Z

�u

PN � x̂xdAþ
Z

�t

ðPN� t̂tN Þ � xdA

ð52Þ
and the following r-parameter family of invertible transformations,

�XX a ¼ �XX aðX; x;P; ���Þ; ð53Þ

�xxi ¼ �xxiðX; x;P; ���Þ; ð54Þ

�PPia ¼ �PPiaðX; x;P; ���Þ; ð55Þ

where ��� ¼ ð�1; �2; . . . ; �rÞ, such that �XXj���¼0 ¼ X, �xxj���¼0 ¼ x and �PPj���¼0 ¼ P. The

boundary terms are assumed to remain invariant under these transformations. We

can expand the transformed coordinates (53)–(55) using Taylor’s theorem,

�XX a ¼ Xa þ ’apðX; x;PÞ�p þ oð���Þ; ð56Þ

�xxi ¼ xi þ 	ipðX; x;PÞ�p þ oð���Þ; ð57Þ

�PPia ¼ Pia þ �iapðX; x;PÞ�p þ oð���Þ; ð58Þ

where

’apðX; x;PÞ ¼
@ �XX a

@�p

���
���¼0

; ð59Þ

	ipðX; x;PÞ ¼
@�xxi

@�p

���
���¼0

; ð60Þ

�iapðX; x;PÞ ¼
@�PPia

@�p

���
���¼0

: ð61Þ
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We can obtain the following relation, which should be satisfied by the

infinitesimal generators for the functional to remain infinitesimally invariant [17].

Consider a class of Lagrangians denoted by L ¼ Lðx;P;rPÞ. We then have

@L

@Xi

’ip þ
@L

@xi

	ip þ
@L

@Pia

�iap þ
@L

@Pia;b

d�iap

dXb

� Pia;c
d’cp

dXb

� �
þ L

d’ap

dXa

¼ 0;

ð62Þ

where i; a; b; c 2 f1; 2; 3g and p 2 f1; 2; :::; rg. Further we can obtain the various

conservation laws associated with invariant transformations as

d

dXa

h�
L�ab � Pic;b

@L

@Pic;a

�
’bp þ

@L

@Pic;a
�icp

i
¼ 0: ð63Þ

In the case of Levinson’s principle, L � �½~��cðPÞ þ x � ðr � PÞ�. Under rigid

body translations, �XX a ¼ Xa þ �a, �xxi ¼ xi and �PPia ¼ Pia, the only non-trivial

infinitesimal generator is ’ab ¼ �ab (therefore (62) is satisfied). Substituting it in

(63) we obtain a dual energy momentum tensor from the Levinson’s variational

principle

LL ¼ �~��cðPÞ1þ x �rP; ð64Þ
where we have made use of equilibrium condition r� P ¼ 0, which arises as a

one of the Euler equations of the Levinson’s variation principle. In the rest of the

paper, we simply denote LL as L.

Another approach is to introduce a stress function �� such that Pia ¼ "abc

�ic;b. Due to such a substitution, the equilibrium condition is satisfied identically.

We then have an alternative variational principle,

~����cðr��Þ¼ �
Z

�

~��cðPðr��ÞÞdV þ
Z

�u

Pðr��ÞN � x̂xdA: ð65Þ

Therefore the Lagrangian under consideration is L ¼ Lðr��Þ. To obtain con-

servation laws for such a Lagrangian we consider the following r-parameter

transformations:

�XX a ¼ �XX aðX;��; ���Þ; ð66Þ

���ia ¼ ���iaðX;��; ���Þ; ð67Þ
and the corresponding infinitesimal generators

’apðX;��Þ ¼
@ �XX a

@�p

���
���¼0

; ð68Þ


iapðX;��Þ ¼
@ ���ia

@�p

���
���¼0

: ð69Þ

ON DUAL CONFIGURATIONAL FORCES



The invariant conditions for the Lagrangian Lðrr�Þ can be derived as [17]

@L

@Xi

’ip þ
@L

@�ia


iap þ
@L

@�ia;b

� d
iap

dXb

��ia;c
d’cp

dXb

�
þ L

d’ap

dXa

¼ 0: ð70Þ

The conservation laws are given as

d

dXa

h�
L�ab ��ic;b

@L

@�ic;a

�
’bp þ

@L

@�ic;a

icp

i
¼ 0: ð71Þ

Let �XX a ¼ Xa þ �a and ���ia ¼ �ia (condition (70) is satisfied). We then obtain a

dual energy momentum tensor,

~LL ¼ �~��cðPÞ�ap þ�ic;pðFib"bacÞ: ð72Þ

With some further algebraic manipulation, it can be shown that (72) differs from

(64) by a divergent free quantity ½ð�ic;pxi"abcÞ;b�.

REMARK 3.2 The Eshelby’s energy momentum tensor is given as [12]

P ¼ �ðFÞ1� FT P: ð73Þ
Subtracting (64) and (73), and on using the relation (34) we observe that

P � L ¼ ðP : FÞ1�rðP � xÞ: ð74Þ

REMARK 3.3 Some further relations can be obtained from (64) and (73). We

note that

trL ¼ �3~��cðPÞ;

trP ¼ 2�ðFÞ � ~��cðPÞ;
ð75Þ

where tr represents the usual trace operator. The above observation can be

helpful in understanding the physical nature of configurational forces and their

relation to the energy densities. The above equations also imply that the energy

densities can be in turn expressed as linear combinations of the Eshelby’s energy

momentum tensor and its dual counterpart.

REMARK 3.4. We can also express the functional (52) as a function of

displacement u instead of the spatial coordinate x. For such a case the

Lagrangian is written as L � �½~��cðPÞ � trPþ U � ðr � PÞ� and we obtain the

following conservation law (corresponding to translational invariance):

L̂L ¼ �~��cðPÞ1þ ðtrPÞ1þ U �rP: ð76Þ
The above conservation law reduces to Bui’s dual conservation law for the case

of linear elastostatics. To see this, we first note that for the linear case ~��cð���Þ ¼
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��� : ru� �ðruÞ and P can be replaced by ���. We can now rewrite (76) using

F ¼ 1þru and (34) as

L̂ ¼ �~��cð���Þ1þ u � r���; ð77Þ

which matches the corresponding expression in the infinitesimal case.

REMARK 3.5. The integral given by (65) is invariant if we add an arbitrary

constant tensor to �ia. If we consider such a transformations with ’ap ¼ 0, then

the resulting conservation law gives us the integrability condition r� F ¼ 0 in

�.

3.3. THE FRAEIJS DE VEUBEKE PRINCIPLE

To use Levinson’s variational principle, invertibility of PðFÞ was assumed a

priori. In case of lacking such a property, we can use complementary strain

energy density defined by (37) and a stress function �� such that Pia ¼ "abc�ic;b

to write the following functional [32]:

�����c
Fðr���;RÞ ¼ �

Z
�

~��c½Tðr��;RÞ�dV þ
Z

�u

Pðr��ÞN � ûu dA: ð78Þ

Therefore the Lagrangian under consideration is L ¼ Lðr��;RÞ. To obtain

conservation laws for such a Lagrangian we consider following r-parameter

transformations:

�XX a ¼ �XX aðX;��;R; ���Þ; ð79Þ

���ia ¼ ���iaðX;��;R; ���Þ; ð80Þ

�RRia ¼ �RRiaðX;��;R; ���Þ; ð81Þ

and their corresponding infinitesimal generators

’apðX;��;RÞ ¼
@ �XX a

@�p

���
���¼0

; ð82Þ


iapðX;��;RÞ ¼
@ ���ia

@�p

���
���¼0

; ð83Þ

�iapðX;��;RÞ ¼
@�RRia

@�p

���
���¼0

: ð84Þ
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The invariant conditions for the Lagrangian Lðrr�Þ are ([17])

@L

@Xi

’ip þ
@L

@�ia


iap þ
@L

@Ria

�iap þ
@L

@�ia;b
ðd
iap

dXb

��ia;c
d’cp

dXb

Þg þ L
d’ap

dXa

¼ 0:

ð85Þ

The conserved quantities are then given as

d

dXa

h�
L�ab ��ic;b

@L

@�ic;a

�
’bp þ

@L

@�ic;a

icp

i
¼ 0: ð86Þ

Consider the admissible transformations �XX a ¼ Xa þ �a, ���ia ¼ �ia and �RRia ¼ Ria,

i.e., the transformation satisfying (85). We obtain a dual energy-momentum

tensor as

LF ¼ �~��cðTÞ�ap þ�ic;pFib"bac; ð87Þ

which is similar to what we had obtained using Levinson’s variational principle.

REMARK 3.6. All the remarks made at the end of previous section are valid

here, except for the fact that the complementary energy density is now expressed

as a function of the Biot tensor T.

3.4. THE GAO PRINCIPLE

If the strain energy function �ðFÞ is non-convex, Levinson’s principle becomes

invalid. The Legendre–Fenchel transformation has to be then used in defining the

complementary energy. Moreover, as pointed out by Gao [6, 7], there may exist

duality gaps between the potential energy and the complementary potential

energy for all three complementary variational principles (i.e., the Hellinger–

Reissner, the Levinson, and the Fraeijs de Veubeke). For Levinson’s principle

this duality gap is due to the fact that

inf
u2U�

�ðuÞ 6¼ sup
P2T �

�c
LðPÞ; ð88Þ

where Ua ¼ fu 2 Ujdetð1þruðXÞÞ > 0 8X 2 �;uðXÞ ¼ 0 8X 2 �ug and U
is the general admissible displacement field set. Also if M denotes the linear

space of all real valued second-order tensors, then T � ¼ fP 2Mjr �PT ¼ 0

8X 2 �; P �N ¼ t̂tN 8X 2 �tg.
Both the Hellinger–Reissner principle and the Fraeijs de Veubeke principle

are not Fthe pure complementary variational principles_ because the Hellinger–

Reissner principle involves the displacement field and the Fraeijs de Veubeke

principle involves the rotation tensor, R. Therefore, they are not genuine

complementary variational principles in the sense that they involve variables

other than the stress tensor.
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Gao [6] proposed a pure complementary energy variational principle, which

only involved the stress fields,

�c
GðSÞ ¼ �

Z
�

f�cðSÞ þ 1

2
tr½P �S�1 �PT � 2Pþ S�gdV ; ð89Þ

where the complementary energy density is defined by the following Legendre–

Fenchel transformation:

�cðSÞ ¼ sup
E2M
fS : E� �ðEÞg; ð90Þ

where S belongs to a space of symmetric second order tensors with non-zero

determinant, which is the range of the constitutive mapping D�ðEÞ: We denote

Sa ¼ fS 2 S
�� detS 6¼ 0; 8x 2 �g.

Gao [6] showed that if ð�UU; �SSÞ is a critical point of -,

-ðu; SÞ ¼
Z

�

�
S : EðuÞ � �cðSÞ

�
dV �

Z
�

b̂b �udV �
Z

�t

t̂t � udA; ð91Þ

then �c
GðSÞ satisfies the complementary condition

�ð�uuÞ ¼ �c
Gð�SSÞ; ð92Þ

where

�ðuÞ ¼
Z

�

�ðFðuÞÞdV �
Z

�

b̂b � udV �
Z

�t

t̂t �udA: ð93Þ

465In other words, there is no duality gap between the potential energy and the

complementary potential energy at the critical point.

The Euler equation of the Gao principle is: ��c
Gð�SS; �SÞ ¼ 0 8�S 2 Sa,

�SSð2D�cð�SSÞ þ 1Þ�SS ¼ PT P; ð94Þ

where D�cðSÞ ¼ @�c=@S stands for the Gâteaux derivative of �c with respect to

S and �SS is the solution the dual variational problem.

It should be noted that the only variational field in the functional in (89) is the

second Piola–Kirchhoff stress tensor, S.

Under coordinate translation, the divergence equation obtained as a result of

the Noether’s theorem takes the form

d

dXa

h�
LG�ab � Sdc;b

@LG

@Sdc;a

�
�bp

i
¼ @LG

@Xa

; ð95Þ
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where the Lagrangian LG is the integrand in the functional (89).The term on the

right hand side of the above equality is due to the presence of PðXÞ in LG, and

therefore it can be expanded as (using the identities P ¼ FS and r� P ¼ 0)

@LG

@Xa

¼ @LG

@Pic

Pic;a

¼ ð�S�1
ab Pja�ij�bc þ �ia�acÞPic;a

¼ ð�ic � FicÞPic;a

¼ �ui;cPic;a: ð96Þ

Since r� P ¼ 0 we can rewrite ui;cPic;a ¼ ðuiPic;aÞ;c. Note that @LG=@Sdc;a ¼
0, hence (95) can be simplified as the following:

d

dXa

�
LG�ap

�
¼ �ðuiPia;pÞ;a; ð97Þ

or

d

dXa

�
LG�ap þ uiPia;p

�
¼ 0: ð98Þ

This indicates that the source term in the right-hand side of (95) can be expressed

as a divergence, which leads to a Bessel–Hagen type symmetry or a Bessel–

Hagen type translational invariance. Therefore we obtain a conserved quantity as

follows:

LG ¼ LG�abea � eb þ uiPia;bea � eb: ð99Þ

or

LG ¼ LG1þ u �rP; ð100Þ

which is the same as (76) up to a divergent free term.

REMARK 3.7. It should be noted that we have not discussed all the symmetries

that a variational principle can afford. Therefore there will be other conservation

laws corresponding to these other symmetries. In this paper, our main objective

was to study the dual energy-momentum tensor and therefore we restricted our

attention to translational symmetry only.

REMARK 3.8. Another way to derive the expression for configuration forces is

via thermodynamical considerations (see for e.g., Coleman and Noll [2], Gurtin

[9, 10]). In the following we follow Gurtin [10] to briefly outline the process to

obtain a dual configurational force. The details will be provided in a separate
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paper. We start by writing an appropriate form of the second law of

thermodynamics using the Gibbs free energy 	 (the dual of the Helmhotz free

energy) as

d

dt

Z
R

	dv �
Z
@R

½�ð _PmPmÞ � x� ð _LmLmÞ �X�da; ð101Þ

where ð _ Þ represents the total time derivative and m is the unit normal to the

boundary @RðtÞ of the referential control volume RðtÞ. We have neglected body

forces in the above relation. The working WðRðtÞÞ can therefore be written as

WðRÞ ¼
Z
@R

½�ð _PmPmÞ � x� ð _LmLmÞ �X�da: ð102Þ

We can expand the first term in the working as

ð _PmPmÞ � x ¼ ð _PPÞexplm � xþ ðx �rPÞm � v; ð103Þ

where ð _ Þexpl represents the explicit time derivative and v ¼ @X=@t. We have

assumed _mm ¼ 0. Considering (103) and

_ðLmÞðLmÞ �X ¼ ðLm_�XÞ � Lm � v; ð104Þ

we can rewrite (102)

WðRÞ ¼
Z
@R

½�ð _PPÞexplm � x� ðLm_�XÞ þ f�ðx �rPÞ þ Lgm � v�da:

ð105Þ
Consider a change in the velocity field v such that its normal component remains

unaltered. The invariance of the working under such a change (see [10] for

details) and the arbitrariness of the normal component of the velocity field can be

then used to obtain the following relation for the dual configurational force:

L ¼ 	1þ x �rP: ð106Þ
The equivalence between the above relation and the one given in (64) can be

argued by noticing that 	 ¼ �~��c.

4. Closure

In this paper, we present a systematic approach for deriving dual configuration

forces in elasticity. Some previously unknown expressions of dual configuration

forces have been discovered for the first time. These relations may prove

valuable in the mathematical theory of elasticity, and they could be useful in
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theoretical developments of defect mechanics, for instance, obtaining bounds for

the crack tip parameter, forces on dislocations, etc.
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