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Abstract: The phenomenological theory of elastic–plastic response is reconsidered in the light of recent
opinion regarding the constitutive character of the constituent elastic and plastic deformations. The primary
role of dissipation in the physics of plastic evolution is emphasized and shown to lead to the clarification
of a number of open questions. Particular attention is given to the invariance properties of the elastic and
plastic deformations, to the kinematics of discontinuities, and to the role of material symmetry in restricting
constitutive equations for elastic response, yield and plastic evolution.
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1. INTRODUCTION

The modern literature on the phenomenological theory of metal plasticity emphasizes a mul-
tiplicative decomposition of the deformation gradient into elastic and plastic factors in which
the former measures distortion relative to some unstressed or relaxed configuration of a lo-
cal neighborhood of a material point. The definition of the elastic deformation in terms of
information about the stress immediately implies that the former is inherently both consti-
tutive and kinematic in nature. This contrasts with conventional ideas in continuum theory
according to which kinematical and dynamical variables are viewed as being conceptually in-
dependent of a constitutive framework. The constitutive/geometric nature of the constituent
elastic and plastic deformations affords considerable latitude in resolving ambiguities about
their properties that are unavoidable in a purely geometric interpretation. The purpose of the
present work is to extract definitive statements about these variables from specific constitu-
tive hypotheses and thus to clarify the structure of initial-boundary-value problems for the
motion of a continuum in the presence of plasticity. Our views combine three major lines of
thought in the recent literature on plasticity. These are (i) the recognition of the constitutive
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2 A. GUPTA ET AL.

character of elastic and plastic deformations [1], (ii) the central roles played by incompati-
bility and Eshelby’s energy–momentum tensor [2, 3], and (iii) the recognition of the primary
role of dissipation in plastic evolution [4, 5]. We concentrate on the purely mechanical theory
as this is sufficient to highlight the issues of main concern.

The following notation is adopted in which V is the translation (vector) space of a real
three-dimensional Euclidean point space E :

Lin the linear space of linear transformations (tensors) from V to V �
InvLin the group of invertible tensors.
Sym � �A �Lin: A � At , the transpose of A�� the linear space of symmetric tensors�
also, the linear operation of symmetrization on Lin.
Skw � �A �Lin: At � �A�� the linear space of skew tensors� also, the linear operation
of skew-symmetrization on Lin.
Orth� � �A �InvLin: At � A�1� the inverse of A�with JA � 1�� the group of rotations.

The determinant and cofactor of A are denoted by JA and A�, respectively, and A� �
JAA�t if A � InvLin� It follows easily that �AB�� � A�B�� Further, Lin is equipped with the
Euclidean inner product and norm defined by A 	B � tr�ABt� and 
A
2 � A 	A� respectively,
where tr�	� is the trace�We make frequent use of relations like A	BC � ACt 	B � Ct 	At B and
AB 	CD � ABDt 	C� etc., which follow easily from trA � tr�At� and tr�AB� � tr�BA�� It is
well known that Lin � Sym�Skw� the direct sum of Sym and Skw�where 2SymA � A�At

and 2SkwA � A�At � The tensor product a�b of vectors is defined by �a�b�v � �b	v�a for
all v in V�where b	v is the standard inner product of vectors. The gradient of a differentiable
function G: Lin 
 � is the tensor GA defined by

G�A � B� � G�A�� GA 	 B � o�
B
�� (1)

A similar formula applies to differentiable vector-valued functions defined on E . Following
standard practice we reserve the notation � for the associated gradient.

We assume the conventional balances of linear momentum and moment of momentum
to apply to arbitrary parts of the body B. Thus,

di�T � � t b � � t a� T � Sym (2)

at points in the configuration � t occupied by the body at time t , where x is the position therein
of a material point p � B, � t�x� t� is the associated mass density, di� is the divergence
operator based on x� a is the material acceleration and T�x� t� is the Cauchy stress. In practice
the referential form

Di�P � �r b � �r �x� where P � TF� (3)

is the Piola stress, is often most useful, where Di� is the divergence with respect to X� the
position of p in a fixed reference placement �r with mass density �r � � t JF �where JF�� 0�
is the local ratio of volume in � t to that in �r � and where F � ���X� t� is the gradient at p
of the map x � ��X� t� from �r to � t � We also assume the mass to be conserved, this being
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expressed simply by ��r � 0� Here and elsewhere superposed dots stand for material time
derivatives (	
	t at fixed X�.

We are interested in applications of the theory to shock physics and thus append the jump
relations [6]

U [�r ] � 0� [P]N � U 2�r [�x] � 0� (4)

where N is the local unit normal to a surface S of discontinuity in �r with speed U in the
direction of N� and [	] is the discontinuity on S�

The basis of the idea of a local stress-free state, and an associated manifold of intermedi-
ate configurations, is examined in Section 2. This is grounded in the notion of an equilibrium
unloading process together with appropriate constitutive hypotheses on the elastic response.
In Section 3 the constituent elastic and plastic deformations are discussed. Stokes’ theorem
is used to describe the notion of incompatibility and associated dislocation densities. This is
adapted, in Section 4, to describe surface dislocation in terms of discontinuous elastic and
plastic deformation fields. Surface dislocation contributes to the net Burgers vector asso-
ciated with a surface that intersects the discontinuity surface, and furnishes the extension
of Hadamard’s lemma for coherent interfaces to the non-coherent case. The extension ef-
fectively removes the severe rank-one constraint on the discontinuity imposed at a coherent
interface, and thereby confers an additional degree of freedom on the kinematics of deforma-
tion. The basic constitutive framework is discussed in Section 5, where the elasticity of the
body is described and the dissipation associated with plastic evolution is expressed in terms
of Eshelby’s tensor. Of central importance is the assumption introduced there of strong
dissipation, according to which plastic evolution is inherently dissipative. This imposes a
constraint on the kinds of evolution that qualify as plasticity, constituting, in effect, part of
the definition of plastic flow. It is used, in Section 6, to derive unambiguous transformation
rules for the elastic and plastic deformations under superposed rigid-body motions. Material
symmetry restrictions on the elastic response and on constitutive equations for yield and plas-
tic flow are discussed in Sections 7 and 8, following ideas put forth in [1] and [7]. Finally,
in Section 8, the latitude afforded by the constitutive character of the plastic deformation is
used to dispose of a long-standing controversy surrounding plastic spin.

2. UNLOADING ELASTIC BODIES TO ZERO STRESS

A central tenet of the considered model is the idea that stress is purely elastic in origin, the
associated deformation being measured from a stress-free local configuration. It is therefore
of no small importance to justify this assumption. To explore this issue we appeal to the
mean-stress theorem, according to which the mean Cauchy stress in a body B is zero if it is
in equilibrium and subjected to vanishing surface tractions and body forces [8]. Thus, the
mean stress

�T�t� � [vol�� t�]
�1

�
� t

T�x� t�d� (5)
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vanishes, where T is the Cauchy stress and vol�� t� is the volume of � t � This theorem is valid
for stress fields that are differentiable and hence continuous in � t � The mean-value theorem
is then applicable and guarantees the existence of �x � � t such that T��x� t� � �T�� 0�� Let

d�� t� � sup
x�y�� t


x � y
 (6)

be the diameter of � t . For d 
 0 we have 
x � �x
 
 0 for all x in � t and the continuity of
T�x� t� furnishes T�x� t�
 T��x� t� � 0� Thus, if the hypotheses of the mean-stress theorem
are satisfied, then the local stress can be brought arbitrarily close to zero by making the
diameter of the body correspondingly small against any length scale at hand. This result is
of course independent of material constitution and furnishes theoretical justification for the
measurement of residual stress by cutting out a small part of a body and observing its change
in shape.

For elastic bodies the Cauchy stress is given in terms of the deformation from a reference
configuration �r of B by the well-known formula [9]

JF T � WFFt � (7)

where W �F� is the strain energy per unit volume of �r � The function W �F� satisfies the
requirement of frame invariance, in the sense that W �F� � W �QF� for any rotation Q� if
and only if it is determined by the right Cauchy–Green deformation tensor C � Ft F� thus,
W �F� � �W �C� and the well-known relation WF � 2F�Sym �WC� furnishes

JFT � 2F
�

Sym �WC

�
Ft � (8)

The Cauchy stress vanishes if and only if �W is stationary. Let �r be stress free, so that �W
is stationary at C � I. We assume that C � I is the unique stationary point. This is assured
by adopting the constitutive assumption that the strain energy is a strictly convex function of
C with a minimum at C � I. Thus, we assume that

�W �C2� � �W �C1� � Sym �WC�C1� 	 �C2 � C1�� C2 �� C1�

with �W �I� � 0 and Sym �WC�I� � 0� (9)

This in turn guarantees that stress relaxation is energetically optimal and reflects the phe-
nomenology typical of metals in the elastic range provided that


C � I
 � �� (10)

where � depends on the material at hand.
To elaborate, imagine cutting � t into an arbitrarily large number of sub-bodies of arbi-

trarily small diameter and relaxing the loads thereon. The mean-stress theorem together with
our constitutive hypotheses imply that equilibrium states of these sub-bodies are stress-free,
minimum-energy configurations in a Euclidean point space E provided, as we assume here,
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that no energy is needed to generate the new surfaces created by this process. If these re-
laxed configurations cannot be made congruent in the absence of strain, then they do not fit
together to form a connected whole in Euclidean space. The material is said to be dislocated.
For a given sub-body, consider two relaxed configurations �r1 and �r2 in E related by the
map X2 � 
�X1�� Then dX2 � AdX1 where A, with JA � 0� is the gradient of 
. Let F1

and F2� respectively, be the gradients of the maps of these configurations to � t at the material
point p� Thus, dx � F1dX1 � F2dX2 � F2AdX1� and therefore

F1 � F2A� (11)

We wish to characterize any non-uniqueness in the local unloading process and so require
that F1 and F2 generate the same Cauchy stress in � t :

�W1�F1�F
�
1�

�1 � T � �W2�F2�F
�
2�

�1� (12)

where W1�F1� and W2�F2�� respectively, are the strain-energy functions based on �r1 and �r2 �
These are related, modulo a constant, by

W1�F1� � JAW2�F2�� (13)

To see this consider a parametrized path of deformations and let a superposed dot denote the
derivative with respect to the parameter. Using �W � WF 	 �F � TF� 	 �F with A fixed, we then
obtain

�W1�F1� � TF�
1 	 �F1 � TF�

2A� 	 �F2A � TF�
2A�At 	 �F2 � JA �W2�F2�� (14)

and hence (13).
The Cauchy stress vanishes at p if and only if

Sym

�� �W1

�
C1

�
� 0 and Sym

�� �W2

�
C2

�
� 0� (15)

where

�W1�C1� � JA �W2�C2� and C1 � At C2A� (16)

Our constitutive hypotheses, applied to both strain-energy functions, then imply that C1 �
C2 � I and hence that At A � I� Thus,

A � Orth�� (17)

Since this holds identically in the given sub-body, the fact that A is the gradient of a map 

implies that A is uniform [10� pp. 49, 50]. The unloading process then determines a local re-
laxed configuration in E modulo orientation and translation. This degree of freedom is seen
to follow directly from our constitutive hypotheses and the consequent interplay between
deformation and stress in the definition of unloading.
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We identify an arbitrarily small open ball surrounding a material point p � B with a
tangent space to a global differentiable manifold �. Let F map the tangent space T��p� of
� at p to V at x in � t �We stipulate that Ft F be the strain at p required to make the collection
of stress-free sub-bodies in E fit together in � t . The non-existence of a global differentiable
map from � t to the disjoint relaxed sub-bodies in E implies that points p in the unstressed
manifold � cannot be associated with a position field and thus that � is not Euclidean.
The field F does not then satisfy the usual compatibility condition which follows from the
existence of such a map. The incompatibility is typically identified with a distribution of
Burgers vectors via an analogy with the geometry of defective crystal lattices. This idea
is the basis of the elegant differential-geometric theory of self-stressed bodies containing
continuously distributed dislocations [11–19].

Our assumption of a unique energy well in the domain of �W excludes certain models
of crystal elasticity proposed by Ericksen [20] and Hill [21]. These models are motivated
by the observation that there exist unimodular non-orthogonal transformations of a regular
cubic lattice, say, which generate lattices that are geometric copies of each other. If W1�F�
and W2�F� are the strain-energy functions for two lattices related in this manner, then it is
natural to assume that they respond identically to a given deformation and thus that they
satisfy the symmetry condition

W1�F� � W2�F�� (18)

Our view (see also [22]) is that symmetries of this kind do not fit naturally in the framework
of Noll’s simple elastic solid [23]. For, if G is an element of the symmetry set of the first
lattice, then by Noll’s rule KGK�1 belongs to the symmetry set of the second, where K is
the gradient of the deformation that carries the first lattice to the second. We then have

W1�F� � W1�FG� and W2�F� � W2

�
FKGK�1

�
� (19)

which imply that G � K and G � K�1 are symmetry transformations for both (hence all)
lattices so related. Thus,

W �F� � W �FK� � W
�
FK�1

�
� (20)

where W stands for W1 or W2� Let ei , i � 1� 2� 3� be the axes of the first cubic lattice,
normalized by the (uniform) lattice spacing and aligned with the edges of a typical cube.
Then a transformation of the required type is furnished by the simple shear K � I�� e1�e2�
where � is an integral multiple (positive or negative) of the lattice spacing. The inverse of K
is a simple shear of amount �� and also furnishes a map of the lattice to itself. The presence
of such K and its inverse in the symmetry set is thus to be expected on physical grounds. In
turn, this implies that Kt CK belongs to the domain of the strain-energy function �W whenever
C does, for any amount of shear equal to an integral multiple (positive or negative) of the
lattice spacing. Elastic response of this kind may be understood by regarding the bonds
between atoms at the corners of a lattice cell as nonlinear springs. This analogy suggests that
Noll’s simple elastic material does not furnish an acceptable model of the physics at hand
as arbitrarily large spring extensions would have to be admitted, whereas interatomic bonds
presumably fail to persist when extended beyond finite limits.
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Here, we discard the elastic interpretation and instead adopt the mechanism of plastic-
ity to account for the underlying phenomenon. Thus, we re-interpret (18) as a statement to
the effect that the elastic response of the lattice to a deformation F is unaffected by plastic
slip K (or K�1�. We retain Noll’s view insofar as a superposed elastic distortion F is con-
cerned. Variations in F at fixed K generate variations in stress in accordance with the elastic
properties of the crystal, provided that such variations engender non-zero strains belong-
ing to the domain of the elastic constitutive function. Thus, we introduce an elastic energy
and confine symmetry transformations to subgroups of the orthogonal group, in accordance
with Noll’s original distinction between simple solids and simple fluids [23]. Such trans-
formations preserve inequality (10) and the energy-minimizing value, I� of C� To model the
invariance embodied in (18), it is then necessary to extend the constitutive structure beyond
Noll’s simple elastic solid to encompass the evolution of K� This of course is precisely the
aim of Plasticity Theory. The shortcomings of Noll’s simple materials as models of plasticity
are discussed further in [4, 24].

The connection between (20) and plasticity seems to be what Ball and James [25] have
in mind in their discussion of lattice symmetry. Specifically, their view is that the domain of
the strain-energy function should be limited in accordance with a restriction like (10) above
so as to exclude from the symmetry group of the elastic response function the possibly large
lattice shears typically associated with plasticity. The adjustment means that if C belongs to
the domain of �W then Kt CK does not, if the amount of shear is sufficiently large. Instead,
the latter would necessarily be associated with inelastic behavior. The restriction advocated
by Ball and James excludes such shears from the theory of the elastic response of crystals.
To effect such exclusion it is sufficient to assume (10) and to restrict the symmetry set to a
subset of the orthogonal group.

3. DEFORMATION AND INCOMPATIBILITY

The foregoing considerations lead us to introduce a local stress-free intermediate configu-
ration � i of a material point p and to identify this with the tangent space T��p� at p to
a differentiable manifold � having a generally non-Euclidean structure. The properties
of this manifold may be inferred from our discussion but are not needed explicitly in this
work. We reserve the labels �r and � t for global reference and current configurations of B,
respectively. These are regions in the Euclidean point space E . The positions of a point
p � B in �r and � t are denoted by X and x� respectively, and we assume the existence
of an invertible differentiable map ��r such that x � ��r �X� t�� The subscript is suppressed
unless it is needed for clarity and we typically write x � ��X� t�� Let F be the gradient of the
deformation from �r to � t :

F � ���X� t�� (21)

where � is the gradient with respect to X� Let H be the local map from the tangent space � i

to V at x � � t , and let K be the map from � i to V at X � �r � We assume that JH and JK

are positive. Thus, H and K�1 are the elastic and plastic deformations, respectively. Unlike
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F, they are not, in general, gradients of position fields. This issue is associated with the fact
that position fields do not exist in� due to its non-Euclidean character. We have [2]

H � FK� (22)

An adaptation of Stokes’ theorem [14, 26, 27] furnishes

�
	S

FdX �
�

S
�CurlF�t NdA� (23)

where S� with boundary 	S� is an oriented surface in a simply-connected region of �r with
local unit-normal field N�X� for X � S� and Curl is the referential curl operator. This
theorem holds if F is a differentiable function of X. The curl is defined in terms of the usual
curl operation on vector fields by [26, 27]

�CurlA�c � Curl
�
At c
� � c fixed, (24)

which furnishes (23) as an immediate consequence of Stokes’ theorem for vector fields.
From (21) we have that FdX � d� and the left-hand side of (23) vanishes. The arbitrariness
of S and thus of its local orientation N then implies that CurlF � 0 in �r � This also follows
directly from the differentiability of ��� Conversely, if CurlF � 0 in a simply-connected
part of �r containing S then the right-hand side of (23) vanishes. This implies that the line
integral

�
�

FdX is independent of the path � in such a region and thus, following a classical
argument [28, Section 59], that F is the gradient of a (vector) potential which we identify
with the deformation �� It follows that the vanishing of CurlF is necessary and sufficient for
compatibility of F in a simply-connected region� i.e., for the existence of a position field
��X� t� such that ��� F�

The properties of the manifold � imply that CurlK�1 need not vanish. In this case we
define

B�S� t� ��
�
	S

K�1dX �
�

S

�
CurlK�1

�t
NdA� (25)

where the right-most equality follows if the field K�1 is smooth. This is referred to as the
Burgers vector associated with S in recognition of its interpretation in dislocation theory.
Thus, the existence of a non-zero Burgers vector is due to the incompatibility of the plastic
deformation or, equivalently, to the non-existence of a position field in� with (referential)
gradient K�1. Using the (smooth) elastic deformation instead, we define

b�s� t� ��
�
	s

H�1dx �
�

s

�
curlH�1

�t
nda� (26)

where s is the image in � t of S � �r with unit-normal field n�x� t� and curl is the spatial curl
operator based on x� It follows from (22) and Nanson’s formula nda � F�NdA that b�s� t� �
B�S� t� [26]. Then H�1�x� t� is incompatible if and only if K�1�X� t� is incompatible. The
tensors
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�r � CurlK�1 and �t � curlH�1 (27)

thus provide measures of the incompatibility per unit area of a material surface in �r and
� t � respectively. Accordingly, we refer to these as the referential and spatial dislocation
densities.

In [26] an associated tensor � called the true dislocation density is introduced. This
satisfies

JK K�1CurlK�1 � � � JH H�1curlH�1� (28)

wherein the outer equality may be shown to follow from (22). The name is justified by the re-
markable fact that � is invariant under arbitrary differentiable variations of the configurations
�r and � t � To see this we consider a variation of �r from �r1 to �r2 defined by the one-to-one
map X2 � ��X1� with invertible gradient R � �1�� where �1 is the gradient with respect to
X1� Using obvious notation we have K�1

1 dX1 � K�1
2 dX2 and therefore

�
S2

�Curl2K�1
2 �

t N2dA2 �
�
	S2

K�1
2 dX2 �

�
	S1

K�1
1 dX1 �

�
S1

�
Curl1K�1

1

�t
N1dA1� (29)

where S2 � ��S1�� provided that

K2 � RK1� (30)

Nanson’s formula in the form N2dA2 � R�N1dA1 and the arbitrariness of S1 then combine
to give [26]

JRCurl2K�1
2 � RCurl1K�1

1 � (31)

which yields the invariance of � by virtue of (28)1 and JK1 JR � JK2 � Further, (30) and (31)
may be used with an obvious adjustment in notation to establish the outer equation in (28)
directly. The same reasoning based on the second equality of (28) proves the invariance of
� under arbitrary one-to-one differentiable variations of � t � In effect � furnishes a measure
of dislocation in the body per se in the sense that it is insensitive to the placement of the
body in any configuration in E � It is thus no coincidence that � is associated with an intrinsic
property of the material manifold �, namely the torsion of the affine connection induced
by K�1 and its (referential) gradient (or H�1 and its spatial gradient) [15, 16].

4. INTERFACES

We have seen that if K�1 is a smooth function of X in a simply connected region of �r � then
there exists a dislocation density �r defined on �r such that

B�S�� t� �
�

S�
�t

r N�dA� (32)
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where �r � CurlK�1 and S� is any orientable open surface in said region with local orien-
tation field N�. If �r does not vanish identically then the body is dislocated in this region.
Consider a surface S � �r of discontinuity of the plastic deformation K�1 and suppose
S� cuts S orthogonally. Let � � S � S� be the curve of intersection. If K�1 is differ-
entiable in the regions on either side of S� then Stokes’ theorem, and hence (32), may be
applied to the individual parts S�

� of S� separated by S� Adding the two expressions and
using � � 	S�

� � 	S�
� � we then have

�
S�

�t
r N�dA �

�
S���S��

�
CurlK�1

�t
N�dA �

�
	S�

K�1dX �
�
�

	
K�1



dX� (33)

where [K�1] � �K�1��� �K�1��. We use the superscripts � to denote the limits of functions
defined on �r as S is approached from the regions into which N and �N are directed, respec-
tively, where N is the unit-normal field on S. We also use square brackets, as indicated, to
denote the ordered difference between these limits. Let t � N� 
� , so that dX � N � tdu in
the final integral, where u measures arclength on �� We define a tensor field �r on S—the
(referential) surface dislocation density—such that

	
K�1



�t � N� � � t

r t on S� for all unit t � TS�X�� (34)

the tangent plane to S at X� The net Burgers vector associated with S� is then given by

B�S�� t� �
�

S�
�t

r N�dA �
�
�

� t
r tdu� (35)

Let t1� t2 � TS�X� be such that �t1� t2�N� is a positively-oriented orthonormal basis. Writ-
ing

	
K�1


 � 	K�1



I with I � N � N � t� � t� leads to

	
K�1


 � k � N � � t
r��N�� (36)

where k is an arbitrary 3-vector and

��N� � t1 � t2 � t2 � t1 (37)

is the two-dimensional permutation tensor density on TS�X�� This satisfies ��N� � R��N�Rt

for all two-dimensional orthogonal transformations R that preserve the orientation of TS�X��
Therefore any pair of vectors in TS�X� which with N form a positive orthonormal basis may
be used in the definition of ��N��

We may solve (36) using �2
�N� � �1�N�� where 1�N� � I�N� N is the identity for TS�X��

to obtain

� t
r 1�N� �

	
K�1



��N�� (38)

This determines the action of � t
r on TS�X�� The action of � t

r on N is indeterminate and may
be set to zero without loss of generality. The formula (38) is equivalent to a result stated by
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Bilby [29] and used extensively in the subsequent literature on crystal interfaces and grain
boundaries [30, 31]. Bilby’s result is not consistent with his definition of surface dislocation
density as stated in the text of [29]. He defines the latter to be the finite limit obtained
by invoking Stokes’ theorem, collapsing S� onto �� and requiring the dislocation density
�r to become unbounded. However, the indicated limit vanishes under conditions in which
Stokes’ theorem is valid. More recently, surface dislocation density has been defined in
terms of discontinuities of crystal lattice vectors across S using a formula equivalent to (33)
[32].

If K�1 is the gradient of a continuous and piecewise twice differentiable deformation,
then the second and third integrals in (33) vanish. The arbitrariness of � then implies that	
K�1



�t � N� � 0 for all t � TS�X�� yielding Hadamard’s formula

	
K�1


 � k � N for a
coherent interface [33]. Equations (36) and (38) extend Hadamard’s result to general non-
coherent (i.e., dislocated) interfaces.

Proceeding from (26) and (27)2 instead, we derive

	
H�1


 � h � n � � t
t��n� and � t

t 1�n� �
	
H�1



��n�� (39)

where h is an arbitrary 3-vector, n is the orientation of a surface s � � t of discontinuity
of H�1�x� t� and � t is the spatial surface dislocation density. This emerges from an ob-
vious adjustment to (33), and reduces in the coherent case to Hadamard’s rank-one form	
H�1


 � h � n. Evidently the generalization to non-coherent interfaces yields a full-rank
expression which relaxes the constraint on the limits �H�1�� associated with a coherent in-
terface. Accordingly, surface dislocation is an additional interfacial degree of freedom which
is available to minimize the elastic energy in the adjoining material. In general, this implies
that non-coherent interfaces are energetically optimal, which presumably accounts for the
stress relaxation typically attributed to the mechanism of surface dislocation. For example,
our constitutive hypotheses imply that adjoining crystal grains are in their minimum-energy
states if Ht H � I therein. By the polar decomposition theorem, H�1 then reduces to a rota-
tion in each grain, and (39)2 furnishes the required surface dislocation density in terms of the
rotation discontinuity. The so-called tilt and twist boundaries furnish illustrative examples
[14, Section 3.9].

The referential and spatial surface dislocation densities are not independent. For, if s is
the image of S under the overall deformation, i.e. if s � ��S� t�� then the existence of a
continuous inverse deformation ��1�x� t�mapping � t to �r implies that any jump in F�1 is of
Hadamard’s form

	
F�1

 � a � n. Using this in the inverse of (22) together with

	
H�1


 � �K�1
� 	

F�1

� 	K�1


 �
F�1
�
� (40)

where �	� is the average of the limits of the enclosed function on either side of the interface,
we derive

h � n � � t
t��n� �

�
K�1

�
a � n � k � �F�t

�
N � � t

r��N�
�
F�1
�
� (41)

Nanson’s formula ensures that
�
F�t
�

N is parallel to n. Multiplication on the right by ��n�
thus furnishes � t

t in terms of � t
r :
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� t
t 1�n� � �� t

r��N�
�
F�1
�
��n�� (42)

and the normal component of (41) yields a relationship among the vectors a�k and h:

h � �K�1
�

a � �n 	 �F�t
�

N�k � � t
r��N�

�
F�1
�

n� (43)

There is no requirement that S � �r be a material surface. If it is not, then

U [F] � [�x] � N � 0� (44)

provided that the deformation is continuous, where U is the velocity of S in the direction of
N [6]. Using this with

[F]
�
F�1
�� �F� 	F�1


 � 0� (45)

we derive

[�x] � �F�t
�

N � U �F� a � n� (46)

5. STORED ENERGY AND DISSIPATION

The elastic response is assumed to be described by a strain-energy function W �H� per unit
volume of a reference configuration. This function describes the response of the material to
distortion induced by the map from � i to V at x � � t � Mainly for illustrative purposes, we
confine attention here to functions W �H� that do not vary from one material point to another.
This restriction defines materially uniform bodies [7, 15, 16]. Let � be the strain energy per
unit volume of �r � Then, from (22), � may be regarded as a function of F and K defined
by

��F�K� � J�1
K W �FK�� (47)

The strain energy at fixed K is given by �K �F�X� � ��F�K�X�� and depends explicitly on
X only if the distribution of plastic deformation is not uniform.

We assume the stress to be purely elastic in origin and thus impose (7) with F replaced
by H:

JH T � WHHt � (48)

Using P � TF� with F�K� � H�� we then derive

WH � PK�� (49)

This furnishes
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�W � PK� 	 �H � JK P 	 �HK�1� (50)

yielding

P 	 �F � �� if �K � 0� (51)

In the general case, we use

�� � J�1
K [ �W � � �JK
JK �W ] (52)

with

�JK
JK � K�t 	 �K� (53)

�W � WH 	 �H � WHKt 	 �F � Ft WH 	 �K� (54)

and (49), to obtain

�� � P 	 �F � �Ft P � J�1
K W I

�
K�t 	 �K� (55)

which may be recast as

P 	 �F � �� � D� (56)

where

D � � 	 �KK�1 (57)

and where

� � �I � Ft P (58)

is Eshelby’s energy-momentum tensor [34]. These results, due to Epstein and Maugin [2],
have been reproduced in several forms in the subsequent literature [3, 5, 35–37].

Using (47) and (49), Eshelby’s tensor may be written in the form

� � J�1
K K�t� �Kt � (59)

where

� � � W I � Ht WH (60)

is purely elastic in origin. This in turn yields

JK D � � � 	 K�1 �K� (61)
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Equation (56) furnishes a decomposition of the stress power per unit volume of �r into
an energetic part and a part arising from the evolution of plastic deformation. Following
conventional ideas we assume the part not accounted for by the energy to be dissipated, i.e.

D � 0 for all �K� (62)

It is obvious that D vanishes if �K vanishes. It is natural to expect that the converse is also
true� i.e., that D vanishes only if �K vanishes. This is tantamount to the assumption that
the evolution of plasticity is inherently dissipative. In effect, this restriction def ines plastic
evolution in part through a constitutive assumption. Thus, we adopt the hypothesis:

� 	 �KK�1 � 0 if and only if �K �� 0� (63)

A jump condition restricting the evolution of discontinuities may be obtained by spe-
cializing the Clausius–Duhem inequality. The relevant analysis is summarized in [6] and
yields

UN 	 �[�] � 1

2
�rU

2
	
Ft F



�N � 0� (64)

6. SUPERPOSED RIGID MOTIONS

Granted the symmetry of the Cauchy stress, (48) implies that

WH 	 �H � 0 (65)

for any fixed � � Skw� Consider a parametrized path H�u� defined by �H�u� � �H with
H�0� � H0� The unique solution [10] is H�u� � Q�u�H0� where Q is a rotation with Q�0� �
I and �QQt � �� This means that �W � 0 on the path in question� i.e., that W �QH0� � W �H0�
for any rotation Q� Standard arguments based on Cauchy’s theorem for hemitropic functions
[9] or on the polar decomposition theorem then furnish (with the subscript 0 suppressed)

W �H� � �W �CH�� where CH � Ht H� (66)

and thus

JH T � HS�CH�Ht � (67)

as in (8), where

S�CH� � 2Sym �WCH � (68)

Henceforth we assume that all constitutive hypotheses introduced in Section 2 apply to the
function �W �CH��
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Note that in the course of deriving (67) we have assumed only the symmetry of the
Cauchy stress. In particular, we have not imposed the invariance of the strain-energy function
under superposed rigid-body motions. Indeed, in conventional finite elasticity theory, it is
known that invariance of the strain-energy function under superposed rigid-body motions is
equivalent to symmetry of the Cauchy stress [9].

This issue leads us to consider the transformation rules for the elastic and plastic de-
formations under superposed rigid-body motions. In a way, this question is moot if we
understand � to be a material manifold. For, � is then indifferent to the placement of its
points in E and the issue of invariance under changes of such placements does not arise [24].
The fact that K�1 maps V at X � �r to T��p� would then lead naturally to the conclusion that
K is invariant under superposed rigid-body motions. This would then dictate, via (22), the
transformation rule H 
 QH� where Q�t� is the spatially uniform rotation in the conven-
tional rule F 
 QF. This is tacitly assumed in most works concerned with the invariance
issue (e.g. [1, 26, 38–40]).

In the present work we proceed in a different manner that emphasizes the constitutive
character of the constituent elastic and plastic deformations. We know from conventional
theory that

F 
 QF (69)

in a superposed rigid-body motion, where Q�t� � Orth�. This follows from the fact that
x 
 Qx � c in such a motion, with x � ��X� t� and c a function of t alone. We also assume
that

T 
 QTQt � and therefore P 
 QP� (70)

The line of reasoning leading to (69) cannot be applied to H and K because there is no posi-
tion field in� associated with material points p� Instead, we appeal to the aforementioned
result in finite-elasticity theory and define superposed rigid-body motions by the requirement
that W �� �W � have the same value at any two H related by a superposed rigid-body motion.
Let H1�t� and H2�t� be two elastic deformations so related and define Z�t� � H2H�1

1 � We
require that �W �Ht

1Zt ZH1� � �W �Ht
1H1� for H1 � Lin with JH1 � 0. To obtain a necessary

condition we set H1 � I and derive �W �Zt Z� � �W �I�� This is permissible because I belongs
to the domain of �W �Our constitutive hypotheses imply that �W �Zt Z� � �W �I� if Zt Z �� I� The
two statements are reconciled only if Zt Z � I and it follows, since JZ � 0, that Z � Orth�,
which is also sufficient. Therefore, in a superposed rigid motion,

H 
 QH H� (71)

where QH is a rotation. Since the argument is local, this rotation may depend on x (or X�
in addition to t� It follows immediately from (71) that CH and S�CH � are invariant under
superposed rigid motions.

To obtain the transformation rule for the plastic deformation K� we assume that super-
posed rigid motions do not generate dissipation, so that the dissipations associated with any
two motions related by a superposed rigid-body motion are identical. Clearly � is invariant
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under superposed rigid motions. This can be seen from (58) and the invariance of �, which
is implied by that of W and JK � the latter following from (22), (69) and (71). Further, from
(48), (60) and (67) we have

� � � �W �CH �I � CH S�CH �� (72)

which is also invariant. Suppose K1�t� and K2�t� are two plastic flows related by a su-
perposed rigid-body motion and let Z�t� � K2K�1

1 � These generate two local intermediate
configurations � i1 and � i2 from �r at X via the maps K�1

1 and K�1
2 � respectively. We assume

the superposed rigid motion to commence at time t0 so that Z�t0� � I� If D1 � J�1
K1
� � 	K�1

1
�K1

is the dissipation associated with K1, then the dissipation D2 associated with K2 satisfies

JK2 D2 � JK1 D1 � � � 	 K�1
1 Z�1 �ZK1� (73)

Invoking the invariance of JK and the assumed invariance of the dissipation then yields

� � 	 K�1
1 Z�1 �ZK1 � 0� (74)

for any plastic flow K1�t�� To obtain a necessary condition we set K1�t� � I at the point
p� which amounts to adopting � i1 as the reference configuration for the superposed rigid
motion, this being permitted by the purely local nature of the argument. This in turn yields
� � 	 Z�1 �Z � 0 and Z � K2� ensuring that Z�t� is a plastic flow. As such it is subject to the
dissipation hypothesis (63), which is easily seen to be equivalent to the statement:

�K �� 0 if and only if � � 	 K�1 �K � 0� (75)

It follows that �Z vanishes and hence that Z�t� � Z�t0� � I� This is also sufficient for (74)
and for the invariance of the dissipation. Thus, K2 � K1 and K is invariant under superposed
rigid motions, i.e.

K 
 K� (76)

As a corollary, we then have QH � Q�t�, implying that QH is spatially uniform.
In addition to furnishing the transformation rules for the elastic and plastic deformations

under superposed rigid motions, the strong dissipation hypothesis and our constitutive hy-
potheses on the elastic response also imply that plastic evolution ceases in the absence of
elastic distortion. For, if CH � I then �W and S vanish� therefore � � and � vanish, D � 0 and
(63) yields �K � 0�

7. MATERIAL SYMMETRY

The function W �H� is subject to restrictions imposed by material symmetry. These are of
the kind one finds in conventional finite elasticity theory and are crucial to the understanding
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of elastic/plastic response. Accordingly, a brief review of the concept is appropriate before
proceeding. Thus, if two local configurations � i1 and � i2 are used to describe the stress T at
a material point in � t , then

T � �W1�H1�H
�
1�

�1 and T � �W2�H2�H
�
2�

�1� (77)

where W1�H1� and W2�H2� are the associated strain-energy functions. These equations are
identical to (12), the role played there by F now being assumed by H� Accordingly, if A is a
map from � i1 to � i2� then

H1 � H2A� (78)

and if A is fixed at the material point p� then consistency between the two expressions for T
requires that (see (13))

W1�H1� � JAW2�H2�� (79)

This formula specifies the change in the form of the strain-energy function induced by any
local time-independent change of reference at a given material point.

Suppose now that there exists a local change of reference G1� with JG1 � 1� such that
W2�H� � W1�H� with JH � 0� the two local references then respond identically to a given
deformation. Using (78), we find that

W1�H� � W1�HG1�� (80)

It is well known that the set of all such G1 is a group �1, say, the symmetry group associated
with � i1 � If the body is materially uniform, then W1�H� does not depend explicitly on p � B
(or on X � �r �� This restriction is satisfied by requiring that G1 be independent of p � B
[15, 41].

Combining (79) with (80), we have

JAW2�H� � W1�HA� � W1�HAG1� � JAW2

�
HAG1A�1

�
� (81)

In other words,

W2�H� � W2�HG2�� with G2 � AG1A�1� (82)

which is Noll’s rule �2 � A�1A�1 relating the symmetry groups of the two local references.
We have seen in Section 2 that our constitutive hypotheses determine the placements of

stress-free local equilibrium configurations in E modulo orientation and translation. Thus,
if � i1 is a local relaxed configuration, then any � i2 is also such a configuration provided that
the transformation A from � i1 to � i2 is a rotation. Further, �1 is a subgroup of the orthogonal
group if and only if the same is true of �2. Any G2 � �2 is obtained simply by rotating some
G1 � �1 by A to obtain G2 � AG1At � For example, if ei � i � 1� 2� 3 are the orthonormal axes
of a cubic lattice in � i1� then the 180 rotation G1 � 2e3 � e3 � I about e3 maps the lattice to
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itself and thus belongs to �1� The corresponding element of �2 is given by G2 � 2e�3� e�3�I�
where e�i � Aei �

This result is of the greatest importance for the practical implementation of the theory.
It implies that the symmetry group �1 for the local stress-free � i1 may be fixed once and for
all, provided that this group is a sub-group of the orthogonal group. Then, given the response
function W1�H��we generate the response function relative to any relaxed local configuration
� i2 by setting W2�H� � W1�HA�� where A is a suitable rotation. By construction, all such
configurations are equivalent insofar as the computation of the stress is concerned. The same
issue is discussed from a different viewpoint in [1].

For example, if the material in configuration � i exhibits cubic symmetry, and if the
elastic strain is sufficiently small to justify a quadratic approximation to the strain-energy
function, then [42]

�W � 1

2
C1�E11�E22�E33�

2�C2�E11 E22�E11 E33�E22 E33��C3

�
E2

12 � E2
13 � E2

23

�
� (83)

where Ci � i � 1� 2� 3 are material constants, Ei j � E 	 Sym�ei � e j�� �ei� is a basis of
orthonormalized vectors aligned with the cube axes, and

E � 1

2
�CH � I� (84)

is the elastic strain. The linear and quadratic invariants of E are common to each of the five
subclasses of cubic symmetry [42]. Accordingly, (83) applies to all kinds of cubic symmetry.
From (68) we then obtain

S � C1�trE�I � C2[�E22 � E33�e1 � e1 � �E11 � E33�e2 � e2

� �E11 � E22�e3 � e3] � C3[E12�e1 � e2 � e2 � e1�

� E13�e1 � e3 � e3 � e1�� E23�e2 � e3 � e3 � e2�]� (85)

Our requirement that �W be a convex function of CH is satisfied if and only if it is a
convex function of E� In the quadratic case this in turn is satisfied if and only if the energy
is a positive-definite function of E� To construct necessary conditions for this, we set all
Ei j � 0 except E12�� E21�� The resulting inequality can then be satisfied only if C3 � 0�
which in turn ensures that the final quadratic form in (83) is positive definite. Next, we set
all off-diagonal components Ei j to zero, along with E33�We then require

1

2
C1�E11 � E22�

2 � C2 E11 E22 � 0 (86)

for all E11� E22� For this it is necessary and sufficient that C1 � 0 and C2 � ��2C1� 0��
Necessary conditions for positive-definiteness are thus given by

C1 � 0� C3 � 0� �2C1 � C2 � 0� (87)
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To derive sufficient conditions we write (83) in the form

�W � P�E11� E22�� P�E11� E33�� P�E22� E33�� C3

�
E2

12 � E2
13 � E2

23

�
� (88)

where

P�A� B� � 1
4 C1

�
A2 � B2

�� �C1 � C2�AB� (89)

Sufficient conditions for positive-definiteness are C3 � 0 and P�A� B� � 0� which holds if
and only if C1 � 0 and C2

1 � 4�C1 � C2�
2� The latter are equivalent to C1
2 � 
C1 � C2
 �

Taken together we have

C1 � 0� C3 � 0� �3

2
C1 � C2 � �1

2
C1� (90)

From the foregoing discussion it is clear that, in the presence of convexity, the response
functions relative to any other stress-free local configuration are obtained from those given
simply by substituting e�i � Aei in place of ei � where A is a suitable rotation. Accordingly,
since these configurations are, by construction, equivalent insofar as the computation of the
stress in � t is concerned, we may fix the basis �ei�� and hence the symmetry group �� i � once
and for all. For example, we may identify ei with their values in some known configuration
of the body, which may then serve as a reference configuration �r � This is not to say that
we identify � i with �r � rather, we simply require that �� i be insensitive to plastic flow, as
suggested by the physics of crystal slip [14, 43]. Similar ideas are imposed a priori as part
of the definition of plastic deformation in [1, 38, 39].

In the isotropic case the quadratic approximation to the strain-energy function and the
associated expression for the stress are, of course, well known. Thus,

�W � 1

2
��trE�2 � 
E 	 E and S � ��trE�I � 2
E� (91)

where � and 
 are the Lamé moduli. Necessary and sufficient conditions for convexity are

that 
 � 0 and �� 2

3

 � 0�

8. FLOW AND YIELD

To complete the model we require a flow rule for the evolution of plastic deformation K� In
view of the structure of the dissipation inequality (63), it is natural to consider rules of the
form

��K� �K�H� �H���� 	��r� � 0� (92)

where � is a tensor-valued function. It is assumed, in line with our assumption of material
uniformity, that this function does not depend explicitly on p� The presence of the dislocation
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density in flow rules and yield criteria may be motivated by G. I. Taylor’s formula giving the
flow stress on a slip system as a function of the density of the relevant type of dislocation
[26, 43–45]. Thus, dislocation density is expected to play a role in yield and flow whenever
work hardening is in evidence.

8.1. Invariance Requirements

Following Epstein [7], we impose the requirement that equation (92) be invariant under com-
patible changes of the reference configuration �r . The reason for this is that the choice of ref-
erence is in principle a matter of convenience and hence irrelevant to the physical processes
under study. Precisely the same viewpoint was adopted in the derivation of (13) by invoking
the insensitivity of the Cauchy stress to the choice of reference.

To effect this program in the present context, we observe from (58) that the function of
H�K and � defined by

�� �� J�1
F F�t�Ft (93)

satisfies

�� � �I � T� (94)

where T is the Cauchy stress and � � J�1
F � is the energy per unit volume of � t � These

are insensitive to the choice of reference configuration. Accordingly, if �r1 and �r2 are two
reference configurations related by a compatible deformation, then the associated Eshelby
tensors are

�1 � JF1Ft
1��F�t

1 and �2 � JF2Ft
2��F�t

2 � (95)

respectively, where F1 � F2R and R is the gradient of the map from �r1 to �r2� this following
on use of (30) with H1 � H2� Therefore [7],

�2 � J�1
R R�t�1Rt � (96)

The assumed insensitivity of (92) to the choice of reference then implies that

� �K1� �K1�H1� �H1��1�� 	
1��r1

�
� � �K2� �K2�H2� �H2��2�� 	

2��r2

�
� � �RK1�R �K1�H1� �H1� J�1

R R�t�1Rt � J�1
R R�t� 	

1Rt � J�1
R R�r1

�
� (97)

where (27)1 and (31) have been used and we have assumed the function � to be invariant. A
necessary condition follows by setting R equal to the instantaneous local value of K�1

1 [7].
This is permissible because (92) is presumed to hold at a fixed instant and a fixed material
point. This means that the identification of R with K�1

1 in (97) imposes no relationship
between their time derivatives or their gradients. In particular, the fact that R is compatible
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and independent of t (when regarded as a function of X and t�� whereas K�1
1 is generally

incompatible and dependent on t� is irrelevant insofar as (97) is concerned. We then have

� �K� �K�H� �H� ��� 	��r

� � � �I�K�1 �K�H� �H�� �� JK Kt� 	K�t ��
�
� (98)

where (28)1 has been used and � � is defined by (59). Now, it is straightforward to show that

JK Kt� 	K�t � �� ��	 � � � �K�1 �K�t � �K�1 �K�t � � � � �tr
�
K�1 �K� � (99)

so that the functional dependence on JK Kt� 	K�t may be eliminated in favor of �� ��	 and
other arguments of � � Further, if we impose the invariance of the function � under super-
posed rigid-body motions then it is unaffected by substituting Q�t�H in place of H� Equating
Qt identically to the rotation in the polar factorization of H, we then have

� �I�K�1 �K�H� �H�� �� JK Kt� 	K�t ��
� � � �K�1 �K�CH � �CH �� �� �� ��	��

�
� (100)

for some function �� where the invariance of � under superposed rigid motions has been
used, this following from the fact that � is invariant under compatible variations of � t (Sec-
tion 3 and [26]). Its further invariance under compatible variations of �r � together with

� � � JH Ht��H�t � (101)

may then be used to show that (100) yields (97)1 for any time-independent R� so that (100)
is necessary and sufficient for the stated invariance, provided that the function � is invariant.
We note from (72) that the fourth and fifth arguments of � are determined by the second and
third and may therefore be eliminated. Imposing (92), we consider special cases of (100) of
the form

K�1 �K � � �CH � �CH ��
�
� (102)

Our constitutive hypotheses on the strain-energy function �W �CH � ensure that the relation
between CH and S � 2Sym �WCH is one-to-one. Accordingly, S and �S may replace CH and �CH

as arguments of�.

8.2. Plastic Spin

We observe from (72) that M�CH � � Sym� where

M�CH� � � �CH � (103)

To embed this fact in the model, we write the dissipation (see (61)) in the form

JK D � M 	 K�1 �KC�1
H � (104)

Hypothesis (63) is then equivalent to the statement
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�K �� 0 if and only if M 	 K�1 �KC�1
H � 0� (105)

It follows immediately that �K vanishes if K�1 �KC�1
H � Skw� In other words, the latter does

not correspond to a bona f ide evolution of plasticity. Conversely, if �K �� 0 then K�1 �KC�1
H

is not skew. This of course should not be construed to mean that that latter is symmetric.
However, it does beg the question of how the skew part of K�1 �KC�1

H should be interpreted.
This is the issue of plastic spin, which is of significant ongoing concern in the plasticity
literature (e.g. [1, 40, 46]). To address it, we exploit the latitude afforded by the constitutive
character of K and adopt the constitutive assumption

K�1 �KC�1
H � Sym� (106)

In effect, we resolve the issue simply by requiring that indeterminate variables vanish.
The flow rule (102) simplifies accordingly. We have

K�1 �KC�1
H � � �CH � �CH ��

�
� (107)

where

� �CH � �CH ��
� � � �CH � �CH ��

�
C�1

H � Sym� (108)

The plastic deformation then satisfies

�K � K� �CH � �CH ��
�

CH � (109)

with � given by (28)1.
The specialization to rate-independent response is of particular interest in applications.

In this case we require the flow rule to be insensitive to the time scale, so that � is homoge-
neous of degree one in its second argument, i.e.

� �CH � � �CH ��
� � �� �CH � �CH ��

�
for all � � �� (110)

Differentiating with respect to � and evaluating the result at � � 0 furnishes the necessary
and sufficient condition

� �CH � �CH � �
� ���CH ���

	 �CH



� (111)

where� is a fourth-order tensor.

8.3. Material Symmetry

It is obvious from its structure that the function � (or�� depends on the local configuration
� i � We are concerned with material symmetry and thus with the question of how the flow
rule transforms under variations of these configurations. The role of material symmetry
in this context is discussed in the comprehensive review by Cleja-Tigiou and Soos [1] and
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independently by Epstein [7].1 Thus, consider a map from � i1 to � i2� as in Section 7. Assume
x � ��X� t� to be given. Imposing (22) and (78) at fixed F� we have

K1 � K2A� (112)

Writing (109) for both local configurations, we are then led, using obvious notation, to the
rule

�2

�
CH2� �CH2��2

� � A�1

�
CH1� �CH1��1

�
At � (113)

where, for A fixed at p� as in Section 7,

CH1 � At CH2A and �CH1 � At �CH2A� (114)

We use (28)1 to relate �1 and �2. Thus,

�1 � JK1K
�1
1 CurlK�1

1 � JA JK2A
�1K�1

2 Curl
�
A�1K�1

2

�
� (115)

If the change of local reference is uniform, in the sense that A is independent of p (hence, of
X�� we have [26]

Curl�A�1K�1
2 � � �CurlK�1

2 �A
�t � (116)

yielding

�1 � JAA�1�2A�t � (117)

Thus, if the function �1 is known, then �2 is generated by the formula

�2

�
CH � �CH ��

� � A�1

�
At CH A�At �CH A� JAA�1�A�t

�
At � (118)

Since the local configurations � i1 and � i2 are stress-free by definition, our constitutive hy-
potheses give A � Orth�, affording the simplification

�2

�
CH � �CH ��

� � A�1

�
At CH A�At �CH A�At �A

�
At � (119)

Suppose now that the transformation is such that both local references respond identi-
cally. Let G1 be such a transformation. Then the functions �1 and �2 coincide, and (119)
furnishes

Gt
1�1

�
CH � �CH ��

�
G1 � �1

�
Gt

1CH G1�Gt
1
�CH G1�Gt

1�G1

�
� (120)

Here we identify G1 with any element of �1� the symmetry group associated with � i1 � The
restriction to uniform A (hence uniform G1� is due to our prescription for enforcing the
condition of material uniformity in Section 7.
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It is easily demonstrated that the dissipation JK D� regarded as a function of the variables
CH � �CH and �, is invariant under symmetry transformations. Further, a straightforward but
involved calculation based on (118) and (120) furnishes the analog of Noll’s Rule for plastic
flow, but we do not record this here.

In practice, given �1� (120) is solved by regarding � as a function of three symmetric
tensors and one vector [47]. This reduction is achieved by writing � as a function of Sym�
and Skw�� If a is the axial vector of Skw�� then Gt�Skw��G may be replaced by Gt a in the
statement of material symmetry, for any G � �1 � Orth�. To see this we observe that for
any vector u�

Gt a � Gt u � Gt�a � u� � Gt�Skw��u � [Gt�Skw��G]�Gt u�� (121)

so that Gt a is the axial vector of Gt�Skw��G�With this simplification, the problem of solving
(120) for the canonical form of the response function is tractable [47]. It is eased consider-
ably in the rate independent case in which the functional dependence on �CH is linear.

In the case of isotropy, CH commutes with S�CH �� so that � � � Sym� It follows from
(75) and the argument leading from (105) to (106) that if �K �� 0� then K�1 �K � Sym� and
thus from (107) that CH also commutes with ��2 This means that� � Sym�where� is now
a hemitropic function of its arguments. However, the present model, in which dislocation
density figures in the determination of the state of the material, is not appropriate in the case
of isotropy. This is due to the degree of freedom H 
 HG afforded by material symmetry.
If G belongs to a continuous group, as in the case of isotropy or transverse isotropy, then
the dislocation density is highly non-unique and is therefore not a state variable. The issue
is discussed in [15� Thm. 8] and investigated in [41]. There is no such difficulty in the case
of a discrete group, however. In the isotropic case, Riemannian curvature derived from the
plastic strain furnishes a unique measure of defectiveness of the material. The associated
theory entails significant complications vis à vis that considered here [48].

Conventionally, flow is considered to be possible only if the material is in a state of yield.
This is enforced by requiring the pertinent variables to belong to a certain manifold, assumed
here to be expressible in the form

f �K�H����r� � 0� (122)

which is preserved by compatible changes of reference configuration and by superposed
rigid-body motions. From the foregoing it is immediate that such invariance yields the re-
duced form

f � g�CH ���� (123)

which is subject to the restriction

g�CH ��� � g�Gt CH G�Gt �G� (124)

due to material symmetry, this being meaningful only if the symmetry group is discrete.
Further, we assume the response to be elastic, in the sense that �K � 0� for all CH and � such
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that g � 0� This elastic range is assumed to contain CH � I� for consistency with our earlier
finding that plastic flow vanishes in the absence of elastic distortion.

Often further constitutive hypotheses are introduced which lead to a relationship between
the yield function and flow rule. We consider these and their implications elsewhere in the
context of specific applications of the general theory.

The initial-boundary-value problem for x � ��X� t� is specified by substituting the Piola
stress (see (3)2, (48), (49), (67))

P � ����� (125)

into (3)1, where

� � J�1
K K[S�CH�]K

t � with CH � Kt����t����K� (126)

is the second Piola–Kirchhoff stress relative to �r and K is a solution to (109).

8.4. Small Elastic Strain

If the elastic strain is small, then S � O�
E
� and, from (72) and (103),

M�� � � �S � o�
E
�� (127)

so that M and � � agree to leading order. To obtain an estimate for the right-hand side of
(109), we use (84) to define

� ��E� �E��� � ��I � 2E� 2 �E���� (128)

Since �K vanishes in the absence of elastic distortion (Section 6), we have � ��0� �E��� � 0 by
virtue of (107), and if � � is a smooth function of its first argument, (109) furnishes

K�1 �K � � �E� �E���� o�
E
�� (129)

where � �E� �E��� is a symmetric-tensor-valued function linear in E� In the rate-independent
case it is also linear in �E� Writing S�E� for the linear approximation to S (see, for example,
(85) and (91)2) we then have

JK D � �S�E� 	 � �E� �E���� o
�
E
2� � (130)

A necessary condition for strict dissipation follows on dividing by 
E
2 and passing to the
limit. Thus, if �K �� 0� then

S�E� 	 � �E� �E��� � 0� (131)

Given the one-to-one relationship between S and E implied by our constitutive assumptions,
we may write
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K�1 �K � � �S� �S���� o�
S
�� (132)

in which S is non-dimensionalized by the largest modulus in the linear function S�E�� and
��S� �S��� � � [E�S�� �E�S��	��] is a symmetric-tensor-valued function linear in S (and also
in �S in the rate-independent case). It is then necessary that

S 	� �S� �S��� � 0 (133)

whenever �K �� 0� Further, since, under material symmetry, E and S transform to Gt EG
and Gt SG, respectively, the representation problems for � �E� �E��� and ��S� �S��� are the
same as that for �� except of course that the former are eased considerably by the linear
dependence on the first arguments, or by the bilinear dependence on the first two arguments
in the case of rate independence.

In the same way, if the yield function g depends smoothly on its first argument, then

g�CH ��� � h�E���� o
�
E
2� � (134)

where h contains terms linear and quadratic in E. Our constitutive hypotheses imply that this
may be written as a similar function of S� These functions are subject to material symmetry
restrictions which follow trivially from (124). Taylor’s formula for the flow stress in single
crystals involves a linear relationship between the square of stress and the operative disloca-
tion density. This suggests that a linear dependence of h on � is relevant. Yield functions of
this kind (modulo dislocation density) have recently been studied [49] and correlated with
experimental data on materials having various kinds of symmetry. These may be adapted
directly to the present framework by using S as the operative stress measure and regarding
�� i as the relevant symmetry group.

Finally, we observe that the present model, based on the idea of a stress-free manifold,
does not admit back stress as a constitutive variable. Back stress is thought to be responsible
for the Bauschinger effect [40]. Instead, back stress is regarded as residual stress arising from
a dislocation density distribution and a consequent distribution of elastic strain. In principle,
the residual stress field may be determined from the dislocation density distribution [14, 50]
and is therefore a feature of the solution to a suitably posed initial-boundary-value problem.
Its presence effectively means that the proximity of the local stress state to the yield manifold
varies over the body, and thus that yield in a loaded body is non-uniformly distributed. From
this point of view the Bauschinger effect is structural, rather than constitutive, in nature.
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NOTES

1. The role of material symmetry in a theory of polymer scission based on local intermediate configurations
is discussed in [51, 52].

2. In the case of isotropy an independent argument, relying on the connectedness of the symmetry group,
may be used to eliminate the plastic spin Skw�K�1 �K�� This is discussed in [3]. A variant of the idea is
developed independently in [53].
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