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Abstract— Geolocation using received signal strength (RSS) has
large errors due to multipath fading, since fading results in high
variations in RSS. We show how and when spatial diversity
combined with channel knowledge at the receiver can be used to
combat fading effects to increase accuracy in location estimate. We
then propose a simple scheme for distance estimation, characterize
the channels for which improvement in distance estimates can
be thus obtained and prove that mean square error of distance
estimate converges to zero with increasing diversity order. It
is observed that the improvement can always be obtained for
Rayleigh channel, and for Nakagami-m channel if the parameter
m remains the same regardless of the distance.

I. INTRODUCTION AND MOTIVATION

Accurate geolocation is an important and emerging field of
interest for commercial, public safety and military applications.
Of the popular methods like Angle of Arrival (AOA), Time of
Arrival (TOA), Phase of Arrival (POA), and Received Signal
Strength (RSS), RSS is the easiest and least expensive, but
gives poor performance. The main reason is large variation
in power estimates in fading channels. In [1], the authors
use simulated data for received power and model received
signal power using linear, compensated linear and multiple
regression methods to investigate indoor geolocation. In [2],
the authors obtain the PDF of propagation distance and use
it to obtain location estimates when there is only shadowing
and no multipath fading, which is not a very good assumption
for wireless channels. In [3], the author proposes to look for
structures and patterns in the received signal strength and then
uses pattern matching to find location estimates, which can be
computationally very expensive for large geographical areas.

In this paper, we take a different approach and explore the
use of RSS using spatial diversity (i.e., Multiple Input Multiple
Output (MIMO) systems) to give a better estimate of the
distance between a transmitter and receiver. Given that MIMO
systems are making their way in many of the currently proposed
wireless standards, this approach has potential of important
applications.

The path loss equation represents path loss (signal atten-
uation) as a function of distance between receiver (Rx) and
transmitter (Tx). Using the empirically obtained fairly general
model, the average power as a function of distance from the
transmitter is given as [6]

E[Pr] =
E[Pr0 ]r

ν
0

rν
(1)

where Pr is the received power at distance r, Pr0 is the
received power at some reference distance r0, and ν is the
path loss exponent. Typically, ν ≥ 4, and varies depending
on environment. Throughout our analysis we assume that we
have a calibrated channel and ν and E[Pr0 ] are known at the
receiver. So macroscopic fading/shadowing is already taken
care of and our scheme mitigates microscopic fading/multipath
for a narrowband system. The distance r is bounded by the
range of transmission – henceforth denoted by L, and we
assume that the receiver always remains within this range.

As mentioned before, multipath fading makes it difficult to
estimate r using Pr because the variance of Pr is large, which
makes a single measurement of Pr a bad estimate for E[Pr].

It is well known that use of spatial diversity eliminates deep
fades ([4], pages 100-103). The criteria proposed in [4] is the
coefficient of variation defined as the ratio of standard deviation
of power to its mean. It is known that as the diversity order
approaches infinity, for many channels, the coefficient of varia-
tion approaches 0. In [5] it was shown for Rayleigh and Rician
channels. We show this for the case of Nakagami-m channels
(see appendix). Thus one would expect that increase in diversity
order should lead to increase in accuracy in geolocation. In this
paper, we show that this intuition need not hold for all channels,
and characterize the channels for which it does. The decay
of fourth moment (with distance) of fade coefficients should
satisfy a condition for the intuition to hold. A necessary and
sufficient condition for this is obtained in the appendix, and
a simple yet widely applicable sufficient condition is stated
in Result 1. For example, it is shown that the condition
always holds for Rayleigh channel (the most common model
for fading wireless channels). We also give a simple method
for estimating distance using a single measurement of power
when the condition is satisfied. For these channels we formally
prove that this estimate converges to the actual distance if
the coefficient of variation approaches zero with increasing
diversity order. In the analysis, we assume linear processing
at the receiver and high SNR, since the main objective is
to demonstrate the applicability of diversity techniques for
increasing accuracy in geolocation.

In Section II we discuss the proposed technique and prove
its usefulness. Simulation results are presented in Section III.
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II. THE PROPOSED SCHEME

The scheme is applicable to MISO, SIMO or MIMO systems.
If the channel is known to the transmitter, it does eigen-mode
transmission with water-filling on the modes (which is known to
achieve capacity). The receiver in this case does a simple linear
processing on the signal which is also ML optimal. In case the
channel is not known to the transmitter, it uses orthogonal-space
time block codes and again linear processing at the receiver
gives the ML optimal performance. When there is independent
fading for each path, the receiver output in either case is given
by [4]

yi =
√

Es

MT

MR∑
n=1

MT∑
m=1

|αimn|2 si + ni (2)

where Es is the transmit energy per symbol, αimn is the
fade coefficient, MR is the number of Rx-antennas, MT is
the number of Tx-antennas, si is the symbol transmitted at
ith instant, and ni is the associated noise. From here on,
N = MTMR will denote the diversity order1 of the transmit-
receive system and for simplicity of notation, the summation
will be performed over the index n only.

Assuming that PSK-constellations with unit symbol energy
are used for transmission (|si| = 1 ∀ i, and Es = 1), and for
simplification, neglecting noise in the analysis (hence results
are applicable only for high SNR values), the receiver output
yi is given by

yi =
1√
MT

(
N∑

n=1

|αin|2
)
si (3)

Thus we get the expression of receiver output power at
distance r as

P (N)
r = |yi|2 =

1
MT

(
N∑

n=1

|αin|2)2 (4)

where the superscript (N) is used to indicate the diversity order.

A. Estimation of the distance r

For estimation of r, a single observation of power is made
at the receiver, and after appropriate modification to (1) for the
multiple antenna case (as shown below), the modified equation
is used to estimate distance. We denote the estimate thus
obtained by r̂(N). As before, we denote the maximum value
of r by L. Note that if power level at any distance is observed
to be lower than the average power level at distance L, r̂(N) is
taken to be equal to L. Thus, r̂(N) ≤ L.

The following results give the method for estimating r and
establish the improvement in accuracy with increasing N . The
first result gives the modification required in (1) for geolocation
in a multiple antenna system. Let αr denote the fade coefficient
at distance r. We also assume that ν, P (N)

r0 and P (N)
L are known

at the receiver.

1For our case we assume that diversity order is simply the product of number
of Tx-antennas and number of Rx-antennas. For a more rigorous definition one
may refer to [4].

Result 1: Under the condition that E[|αr|4] = E[|αr0 |4] r2ν
0

r2ν ,
the power loss equation (1) is modified as E[P (N)

r ] =
E[P (N)

r0 ] r2ν
0

r2ν

Proof: If we do not use diversity, we know that power decay
profile is E[Pr] = E[Pr0 ] rν

0
rν (1). This can be rewritten as

E[|αr|2] = E[|αr0 |2] rν
0

rν . For the multiple antenna case,
assuming αn’s are i.i.d. random variables distributed as αr,
we get (dropping the time index i in (4))

E[P (N)
r ] =

1
MT

E[(
N∑

n=1

|αn|2)2]

=
NE[|αr|4] +N(N − 1)(E[|αr|2])2

MT
(5)

If the condition stated in Result 1 holds, then it follows that

E[P (N)
r ] =

(N E[|αr0 |4] +N(N − 1)E2[|αr0 |2])r2ν
0

r2ν MT

= E[P (N)
r0

]
r2ν
0

r2ν
(6)

If the |αn|’s are distributed as i.i.d. Nakagami-m random
variables, the condition is simplified to m being a constant
regardless of the distance between the transmitter and receiver2.

Since the Nakagami-m distribution spans via the m pa-
rameter the widest range of fading among all the multipath
distributions used in practice (m = 1/2 - one-sided Gaussian
distribution, m = 1 - Rayleigh distribution and m = (1+K)2

1+2K
- Rician distribution where K is the Rician K factor [6]), this
analysis is fairly general. The detection of which model (value
of m) is to be used at the time of geolocation is a hypothesis
testing problem discussed abundantly in literature.

Thus, for channels for which the condition in Result 1 holds,
in order to find r̂(N), a measurement of P (N)

r is performed at
the receiver, and r̂(N) is calculated as below:

r̂(N) =

 r0

(
E[P (N)

r0
]

P
(N)
r

) 1
2ν

if P
(N)
r > E[P (N)

L ]

L if P
(N)
r ≤ E[P (N)

L ]
(7)

It is worth noting here that r̂(N) is a continuous and bounded
function of P (N)

r (continuity is to be checked only at P (N)
r =

E[P (N)
L , which can be verified from (6)).

For further results, we take the condition in Result 1 to
hold because of its wide applicability and simplicity. However,
note that this is not a necessary condition for deriving a decay
relationship. A necessary and sufficient condition has been
derived in Appendix I.

In what follows, we prove the increase in accuracy by this
method of estimation of r for channels for which the condition
in Result 1 is true.
Result 2:

P
(N)
r

E[P (N)
r ]

p→ 1 as N → ∞

2The statement is proved towards the end of Appendix I.
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where p is used to denote convergence in probability.

Proof: Note that E
[

P (N)
r

E[P
(N)
r ]

]
= 1. Thus, by Chebyshev’s

inequality,

Pr

(∣∣∣∣∣ P
(N)
r

E[P (N)
r ]

− 1

∣∣∣∣∣ > ε

)
<
V ar

(
P (N)

r

E[P
(N)
r ]

)
ε2

(8)

Now,

V ar

(
P

(N)
r

E[P (N)
r ]

)
=
V ar(P (N)

r )

E2[P (N)
r ]

which is square of the parameter coefficient of variation [4].
For many channels (in [5] it was proved for Rayleigh and
Rician channels, and in appendix, we prove it for Nakagami-m
channels), coefficient of variation → 0, as N → ∞. And thus
V ar

(
P (N)

r

E[P
(N)
r ]

)
→ 0, whence P (N)

r

E[P
(N)
r ]

p→ 1 as N → ∞.

Result 3: r̂(N) p→ r as N → ∞
Proof: Define XN = P (N)

r

E[P
(N)
r ]

. Then from Result 1 it follows

that

r̂(N) � r0

[
E[P (N)

r0 ]

P
(N)
r

] 1
2ν

=

 r
[

E[P (N)
r ]

P
(N)
r

] 1
2ν

if P (N)
r

E[P
(N)
r ]

≥ E[P
(N)
L ]

E[P
(N)
r ]

L if P (N)
r

E[P
(N)
r ]

<
E[P

(N)
L ]

E[P
(N)
r ]

(9)

We note that r̂(N) is a continuous function of XN = P (N)
r

E[P
(N)
r ]

,

for fixed r. It is of the form f(x) = r

x
1
2ν

for x ≥ E[P
(N)
L ]

E[P
(N)
r ]

and f(x) = L otherwise. For verifying the continuity of

f(x) at the boundary i.e. at x = E[P
(N)
L ]

E[P
(N)
r ]

, notice that when

P
(N)
r = E[P (N)

L ], then r̂(N) = L. We know that if a sequence
of random variables {Xn} converges in probability to a random
variable X , then for any continuous function f(.), the sequence
{f(Xn)} converges in probability to f(X) [7]. Since XN

p→ 1
(by Result 2), f(XN )

p→ f(1) = r. That is, r̂(N) p→ r.
Corollary: From Result 3 we have r̂(N) p→ r. Also, |r̂(N)| ≤
L, where L is a constant. That is, r̂(N) is dominated by a
constant, L. Therefore, by dominated convergence result [7],

r̂(N) Lp

→ r ∀ p > 1, where Lp denotes convergence in Lp

norm. In particular, the case p = 2 implies E[|r̂(N)−r|2] → 0,
i.e., the mean square error in distance estimation converges to
zero as N → ∞.
Remark: In addition, we also see that E[r̂(N)] > r. Proof

goes as follows. Since r̂(N) = r0

(
E[P (N)

r0
]

P
(N)
r

)2ν

, E[r̂(N)] =

r0E
[(E[P (N)

r0
]

P
(N)
r

)2ν]
. Now g(x) = 1

xp , is a strictly convex
function ∀ p > 0. It follows from the Jensen’s Inequality that

E[g(X)] ≥ 1
(E[X])p . Noting that r = r0

(E[P (N)
r0

]

E[P
(N)
r ]

)2ν
, and since

E[P (N)
r0 ] and r0 are constants, the inequality E[r̂(N)] > r

follows. Thus r̂(N) is a biased estimator of r. As we see in
the simulations, this bias decreases with increasing N , and, in

fact, the corollary to Result 3 shows that the estimator r̂(N) is
asymptotically unbiased.

III. SIMULATION RESULTS

From Result 3, we can infer that the error in geolocation
approaches zero as N → ∞. For finding out how E[(r̂(N)−r)2]
decreases with N , we resort to simulations. Simulations have
been done for Rayleigh fading (i.e. m = 1), r = 4, ν = 4,
r0 = 1 and E[|α0|2] = 1. Fig. 1 shows E[r̂(N)] calculated over
5000 iterations. We note that for small values of N , E[r̂(N)] >
r.

Fig. 2 shows E[(r̂(N) − r)2], again, calculated by averaging
over 5000 iterations for each N . We observe that there is a
sharp decrease in E[(r̂(N) − r)2] with increase in N , which
corroborates the derived theoretical results (viz Result 3 and
its corrollary).
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Fig. 1. E[r̂(N)] Vs N for r = 4, ν = 4, r0 = 1 and E[|α0|2] = 1
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Fig. 2. E[(r̂(N) − r)2] Vs N for r = 4, ν = 4, r0 = 1 and E[|α0|2] = 1
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APPENDIX I
COEFFICIENT OF VARIATION FOR NAKAGAMI-M FADING

CHANNEL

The Nakagami-m distribution has PDF given by [6]

p(|α|) =
2mm|α|2m−1

ΩmΓ(m)
exp
(−m|α|2

Ω
)

(10)

where α is the fade coefficient, and Ω = E[|α|2] is the average
power.
In this case, MGF of instantaneous power (|α|2) is given by:

φ(t) = E[et|α|2 ] =
(

1 − Ω × t

m

)−m

(11)

From the MGF of |α|2, we calculate MGF of
∑N

n=1 |αn|2 to
be

ψ(t) =
(
1 − Ω × t

m

)−mN
(12)

assuming that αn’s, n = 1, . . . , N are i.i.d. fade coefficients of
a Nakagami-m channel. Calculating second and fourth moments
of
∑N

n=1 |αn|2 using ψ, we can calculate the first and second
moments of P (N)

r = 1
MT

(
∑N

i=1 |αi|2)2. So we can calculate

the variance of P (N)
r , which is

V ar[P (N)
r ] = E[(P (N)

r )2] − E2[P (N)
r ]

=
2N(mN + 1)(2mN + 3)Ω4

m3 ×M2
T

(13)

and E[P (N)
r ] = N(mN+1)Ω2

m×MT
. Hence the expression for coeffi-

cient of variation (in this case, its square) is

V ar[P (N)
r ]

E2[P (N)
r ]

=
2(2mN + 3)
mN(mN + 1)

→ 0 as N → ∞ (14)

Now we show that for Nakagami-m channel, (6) is valid if
the parameter m is the same regardless of the distance between
the transmitter and receiver.

If |αn| has a Nakagami-m distribution then γ = |αn|2 has a
Gamma distribution [6] given as

pγ(γ) =
mmγm−1

γ̄mΓ(m)
e−

mγ
γ̄ ; γ ≥ 0 (15)

Hence E[|αr0 |4] =
γ̄2

r0
mr0

+ γ̄2
r0

and E[|αr|4] = γ̄2
r

mr
+ γ̄2

r . Now

E[|αr|2] = E[|αr0 |2] rν
0

rν or equivalently γ̄2
r = γ̄2

r0

r2ν
0

r2ν . Hence
if mr0 = mr, (6) follows.

APPENDIX II
NECESSARY AND SUFFICIENT CONDITION ON DECAY OF

E[|αr|4]
Result 4: Let the decay of E[|αr|4] be denoted by w(r), that

is E[|αr|4] = w(r)×E[|αr0 |4]. Necessary and sufficient condi-
tion for estimating r using (7) by a single power measurement
after linear processing at the receiver is that the equation:

γw(r) + δ
r2ν
0

r2ν
= P (N)

r (16)

has a unique solution in [0, L] for all P (N)
r > E[P (N)

L ], where,

γ =
N

MT
E[|αr0 |4]

and

δ =
N(N − 1)

MT
E2[|αr0 |2]

are constants.
Proof: If we do not use diversity, we know that power

decay profile is E[Pr] = E[Pr0 ] rν
0

rν (1). This can be rewritten
as E[|αr|2] = E[|αr0 |2] rν

0
rν . For the multiple antenna case,

assuming αn’s are i.i.d. random variables distributed as αr, we
get

E[P (N)
r ] =

1
MT

E[(
N∑

n=1

|αn|2)2]

=
NE[|αr|4] +N(N − 1)E2[|αr|2]

MT

= γw(r) + δ
r2ν
0

r2ν
(17)

Since we want to estimate r from Pr, we replace E[Pr] by
Pr in (17). If the condition stated in Result 4 is true, then r can
be estimated using (17) uniquely (after replacing E[Pr] by Pr)
for all P (N)

r > E[P (N)
L ]. For P (N)

r ≤ E[P (N)
L ], we estimate r

as r̂(N) = L.
If the condition is not true, then we will not get a unique

estimate of r, and the method for estimation would fail. Thus
the condition in Result 4 is a necessary condition.

REFERENCES

[1] Y. Chen and H. Kobayashi, “Signal strength based indoor geolocation”,
ICC 2002, Vol. 1, pp. 436-439, May 2002.

[2] R. Yamamoto, H. Matsutani, H. Matsuki, T. Oono and H. Ohtsuka,
“Position location technologies using signal strength in cellular systems”,
VTC 2001 Spring, Vol. 4, pp. 2570-2574, May 2001.

[3] K. D. Wong, “Geo-location in urban areas using signal strength repeata-
bility”, IEEE Communications Letters, Vol. 5, No. 10, pp. 411-413, Oct.
2001.

[4] Paulraj, Nabar and Gore, Introduction to Space-Time Wireless Communi-
cation, Cambridge University Press, 2003

[5] Rohit U Nabar, Signaling for general MIMO channels, PhD Thesis,
Stanford University, Feb 2003.

[6] MK Simon and M-S Alouini, Digital Communication Over Fading
Channels, John Wiley and Sons, Inc, 2000.

[7] Robert B Ash, Catherine A Doleans-Dade, Probability and Measure
Theory, Harcourt/Academic Press; 2nd Edition, December 1999.

Globecom 2004 3684 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       


