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Abstrucr - Recently, there has been work in use of 
LDPC codes over channels with memory, in particular, 
over Gilbert-Elliott (GE) channels. In this paper, we derive 
expressions for upper bounds on rate of LDPC codes for 
reliable communication over a large class (non-oscillatory 
and non-inverting) of GE channels using the methods for 
memoryless channels. 

I. INTRODUCTION 

We say a sequence of codes can be used for reliable communi- 
cation over a given channel if the Maximum Likelihood (ML) 
decoding error probability of the sequence of codes converges 
to zero as block length approaches infinity. In [3], Gallager 
derived an upper bound on rate of regular LDPC codes for use 
over Binary Symmetric Channel (BSC) for reliable communi- 
cation. The bound was found to be R < 1 - $$$, where q 
is the crossover probability of the BSC, IC is row weight of the 
parity check matrix, Pk = w, and H ( . )  is the binary 
entropy function. The bound was generalised by Burshtein 
et al in [I]  for Memoryless Binary Input Output Symmetric 
(MBIOS) channels and irregular LDPC codes. 

We generalize these bounds to  a large c l a s  of GE channels 
(see [ 5 ] ) ,  which have memory. For decoding of LDPC codes 
used over GE channel, and the associatcd density evolution 
technique, we refer the reader to 121. 

As a side result, we also extend the results obtained by Sa- 
son and Urbanke [7] on density of parity check matrices for 
MBIOS channels to the setting of GE channels. In V, we show 
that similar lower bounds (as derived in [7] on density of parity 
check matrices) for GE channels hold here. 

11. NOTATION AND KNOWN RESULTS 

For the GE channel, we denote the “good  (“bad”) state by G 
(B) ,  transition probability from G to B ( B  to G) by h (9). the 
corresponding probability of error in the state G (B)  by qc 
(qB), where qc < 75. If qc < q5 < 0.5, the channel is said 
to be non-inverling, and if g + h < 1, the channel is said to 
be non-oscillatory. Throughout this paper, we assume the GE 
channel to be non-inverting and non-oscillatory, and this is the 
class of GE channels on which our results are valid. 

Capacity of GE channel was found in 151 to be: 

GGE = 1 - lim E[H(qn)] (1) 
n-00 

where qn = Pr[z,  = 1 1 ~ , - ~ ]  and z ~ - ~  denotes the set 
{zn-,, ~ ~ - 2 , .  . . , z ~ } .  Note that qn is a function of z,-1 and 
hence a random variable. 
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111. UPPER BOUND ON RATE 

Consider a code of blocklength n. If the input alphabet (which 
we take to be same as output alphabet) x is of size AI, and the 
input and output are denoted by X = { X l , X 2 , .  . . ,Xn} and 
Y = {Yl,  f i , .  . . , Y,} where Xi, Y,  E x, then the following 
result holds ([4], Thm. 4.3.2, pp 79) 

1 
(Pe) lodM - 1) + H ( ( P e ) )  2 ;H(XIY) (2) 

where (Pe)  is the average probability of error for each symbol. 
For binary case, hI  = 2 so the equation reduces to H (  (Pe))  2 
A H ( X / Y ) .  Thus, if A H ( X I Y )  is strictly positive, then so is 
(Pe) ,  the average bit error rate. 

It follows that for reliable communication, ;H(XIY) -+ 

0. In what follows, we prove that for use of a sequence C,, of 
LDPC codes of blocklength n over a GE channel, i H ( X I Y )  
is lower bounded by a positive constant for a rate exceeding a 
certain bound. Hence for a fixed sequence of LDPC codes, we 
give an upper bound on rate for reliable communication. 

Regular Codes 

For ease of exposition, we first derive the bound for regular 
codes. 

Theorem 1: Consider a binary linear code with parity check 
matrix H and rate R over a GE channel with parameters as 
defined above. Suppose all rows of H have a constant weight 
T .  Then a necessary condition for reliable communication is: 

lim E[H(q,)l 

H(%) 
R 5 1 - n-m (3) 

where 

and qn is as defined in equation 1. 
proof: We know that: 

- I ( X ; Y )  1 = -H(X) 1 - -H(XIY)  1 

= - H ( Y )  1 - -H(YIX) 1 

n n n 

n n 

Thus, 

1 1 1 1 
n n -H(XIY)  = ,H(X)  - -H(Y) + ;H(YIX) ( 5 )  
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For any code, X is the encoded data which is in 1-1 mapping 
with the information symbols prior to encoding. The 
information symbols are uniformly distributed over the Z n R  
values. Thus, X takes any value from the 2'lR cudewords 
with uniform probability distribution. Thus H ( X )  = nR. 
Also, II(Y1X) = H(Y + XIX), where '+' is the binary 
bit-by-bit modulo two addition. But Y + X = Z, where Z is 
the error vector, and errors are independent of input to the 
channel (because of symmetry). Channel errors are 
dependcnt only on channel state sequence. Thus 

H(YIX) = H(Z). By chain rule, H ( Z )  = 

where ai represents the vector { r l , .  . . zi}. As shown in [5],  

" 
ff(iklZk-1). 

k=l 

H(&k-l) = E[H(qk)l  (6) 

where qh  = PT(ZI, = I l ~ k - ~ ) ,  Also, it is shown in 
Proposition 3 of [51 that the sequence {E[H(qh)]};P=, is 
monotonically decreasing in k and therefore, 

: H ( Z )  = 5 E[H(qk)] 2 lzm E[H(qn)]. Thus, (5 )  

becomes: 
"-=e k l  

Since we want to lower bound kH(XIY), we now find an 
upper bound on kH(Y). As shown in [3] and [l], the 
information content of Y is same as information content of 
Y1, which are the reccived bits at some nR linearly 
independent lucations in the code, and P, which are the 
results of the parity check equations (This follows since given 
Y1 and P, we can find Y, and vice vena)'. Therefore, 

Bounding entropy of individual parity checks 
Lets consider a single parity check equation, which is a row 
of the parity check matrix H. Let the places at which 1's 
occur in the equation bc denoted by n1, ng, . . . nv, and thc 
corresponding output random variables be denoted by 

Y,, , Y,,, . . . , Y,?. Let C = CYn., where addition is over 

GF(2).  The entropy of a single parity check is given by 

Since the input codeword to the channel X satisfies the parity 
check equations, for the received word Y a particular panty 
check equation will be satisfied as long as there are even 
number of errors in the symbols occurring in the parity check. 
Hence, we want to find 

i=l 

W C ) .  

P(C = 0) = P evennumberoferrors in(Ynt}z=l) (9) ( 
Since the state space has Markov distribution, determining 
exact probability is not possible without knowing the exact 
positions of 1's. So we try to obtain a bound on the 
probability P(5 = 0). 

Definition: (gap) In a row of H, for any two 1's separated by 
a string of 0's. we define 1+ the number of 0's between the 
two 1's as the gup between the 1's. 

In Appendix B, we prove that for the GE channels 
considered, P(C = 0) decreases with increase in gap between 
any two 1's (keeping the gap between other 1's constant). 
Also, in an expression of P(C = 0) in Appendix A, it can be 
seen that for non-inverling GE channels, P(< = 0) > 0.5, 
and hence, the entropy H(5) increases with decrease in 

, ,., 
(51 assumes stationary probabilities at each time instant. Thus, 

the entropy H(C) can be upper bounded by H(&,,less). 
where Cmemless is the random variable representing result of 
a parity check equation for a memory1ess channel with error 
probability the average error probability for the channel with 

where the last inequality follows from the fact that 
conditioning reduces entropy. Now Y1 = X1 + Z1, where 
X1 and Z1 are the vcctors corresponding to characters at 
independent locations in the transmitted ,-odeword and the 
error vector resnectivdv Sinrp X, is the vector ..... __.r .... -.,. ______..I .. -.. ..... 

corresponding to n R independent positions in the transmitted 
word, it specifies a codeword uniquely. and hence distribution 
of X1 is uniform over all its possible ZnR values. Hence, 
HIX, 1 = H(X) = nR. 

under consideration. 
Thus. H ( 6 )  5 H ( d e m l e s s )  = H (  -1, where 
q = T G ~ G  + Ysqs is the average probability of errur in 
steady state of the Markov chain. This analysis obtains 

\ -, \ /  

Since X1 has uniform distribution over all its possible 2"R 
values, and Z1 is independent of X1, Y1 = X1 + Z1 also 
has a uniform distribution over all its possible ZnR values. 
Thus H(Yl) = nR. Now its sufficient to upper bound 
H(P), the entropy of the parity check vector. In general, the 
parity check values are not independent of each other. Thus, 
H(P) 5 Cy::-"' H@<)  where pc are the probabilities of 
individual parity checks being satisfied. The problem now 
reduces to bounding entropy of individual parity checks. 

'Given Y ,  Yx and P can obviously be ohtined. Given YI md P, hnd- 
ing Y is s m e  w finding values ofY on local ion^ other than locations 0fY1. 
The problem reduces CO solving a system of n(l - R) linear cquations with 
n(l  - R) Mnahles, which has a unique solution by assumption of full rank 
of parity cheek mvmr 

slightly looser bound since we do not exploit correlations 
between different errors for calculation of bound on entropy. 

Bound on rate for regular codes 
Note that H(P) 5 Cy::-"' H(p , ) .  Thus, (8) becomes: 

1 (10) 
1 + (1 - 2q)' 

2 
H(Y) 5 nR + n(1- R ) N (  

Let 

1 
-H(XlY) 2 R - R - (1 - R ) H ( E )  + lim E[H(qn)] 

= ltm E[H(qn)l - (1 - R)H(%) 

2 v. Hence, (7) becomes: 

n "-- 
n-m 
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lim E[H(q,)I-e lim EIH(q,)I > 1 - "-- 
H(G) ' Now suppose R = 1 - ' ' - sHcK)  

then it is easy to see that: 

1 
n - H ( X I Y )  2 t ( 1 1 )  

which completes the proof of Theorem 1 

Bound on rate for irregular codes 

Theorem 2: Under same notation a.. in Theorem 1, suppose 
that the irregular code has wr fraction of rows of weight r.  
Then the bound on rate for reliable communication is: 

proof: The proof follows from the observation that under the 
given conditions, the expression of upper hound on H(P) 
changes to: 

H(P) 5 n(1- R) Cwr~(a) (13) 

_Remark: Notice that the bounds reduce to the known hounds 
for BSC [31 if we put TC = qB = 17. Since, in that case, 
qn = Pr(& = 1) = 9 and g = P,, where P, = w. 

7- 

Iv. TIGHTENING THE BOUND 

In this section, we tighten the upper hound on entropy of a 
parity check, which can be used to tighten the bounds in (3) 
and (12). 
Suppose in a row of a p ~ t y  check matrix, the marimum gap 
between any two 1's is U .  that is, any two variables in that 
parity check equation are separated by a gap of no more than 
v. Since entropy of the parity check increases as gap between 
1's is increased (as concluded in the Appendices), the entropy 
of the given parity check will be lesser than the entropy of a 
parity check for which the gap between 1's is uniformly U .  In 
the latter case, the Markov chain relating Y,,'s is 
homogeneous, albeit the transition probdbilities have 
changed. 
It was proved by Pedler [61 that for a homogeneous two state 
Markov chain, probability of visiting a particular state (say 
C )  k times in n transitions is given by: 

For0 < k < n 
P ( N c = k ) = ( l  -b)'(1 -g)n-'FF[-n+k,-k;l;A] 
-ncd(l - b)'(l ~ g)n-"-LF[-n + k + 1, -k; I; A] 
- ~ ~ d ( l  -b)'-'(l-g)"-'FF[-n+k,-lc+l;l;X] 
and 
P(Nc = 0) = (neb+ T B ( ~  - g))( l  - g)n-l 
P ( i V ~ = n ) = ( n ~ ( l - b ) + ? r g g ) ( l - b ) " - l  

where NG is the random variable denoting number of times 
state G is visited, F is the hypergeometric function, TG and 
T~ are the steady state probabilities of G and B respectively, 
X =  cl-d;tl-b),andd= (1-g)(l-b)-gb.Now,asshown 

0.634 

e 
a 4 0.632 

~~ 

0.952 # * # .  # .  # .  # * # .  
w 
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Figure I :  P(( = 0) and H(C)  versus v for n = 10, qG = 0.01, 
q s  = 0.1, g = 0.2. b = 0.3 

in Appendix A, the entropy of a parity check is given by 

YA,s is homogeneous Markov, and hence Pedler's result is 
applicable. Using v-step transition probabilities, associated 
entropy can he calculated for different values of U, and Fig. 1 
shows how this variation takes place with U for typical values 
of T, q ~ ,  qg, g and b. As U increases, we see that the 
probability converges to the independent case, as expected. 
Hence if v is known for each parity check, a tighter hound on 
entropy H(C = 0) can be obtained, and thus the bounds (3) 
and (12) can he tightened. 

V. LOWER BOUNDS ON PARITY-CHECK DENSITY 

Notice that (12) can be written as: 

which is same as expression of upper bound on rate derived 
in [l], with the capacity of general MBIOS channel replaced 
by CGE. In [7], lower bounds on parity check density of 
LDPC codes were derived for MBIOS channels using the 
same upper bound. Thus, similar lower hounds (as in [7]) on 
density continue to hold here, with capacity of MBIOS 
channel replaced by CGE. Again, these bounds can be 
tightened using results of section IV. 
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APPENDIX B .  BOUND O N  PROBABILITY OF EVEN NUMBER OF 
ERRORS IN A PARITY CHECK EQUATION 

A. PROBABILITY OF A PARITY CHECK EQUATION BEING First we prove that 
SATISFIED r P 

Suppose we have some sequence [Xn,}$21 as input to a two 
state channel which behaves as a BSC in each state. Let 

P ( x Y , .  = OIs,? = G )  > P ( x Y n ,  = 0 1 . ~ ~ ~  = B )  (16) 
.=1 %=I 

{ Y,,}i~l he the received sequence, and we want to calculate 
P(cy=o Y,+ = 0). where the addition is modulo two. Note 
that here we do not assume Markov modeling of the state 
space. (In Appendix B, we have a non-homogeneous Markov 
chain, and we use this result).We prove the following result: 

The proof is by induction on r .  The result is trivially me for 
r = 1 (since 1 - qc > 1 - qB). 
Now, we prove the result (16) for r = k assuming result is 
true for r = k - 1. Lett = nk - nk-l denote the gap 
between the kth and Ik - l\th 1's. 
Using t-step transition probability matrix for a two state 

T 1 l 7  Markov chain, define bt and gt as: 
p ( x  y,. = 0) = 2+2 C(1-2sc)k( l -2s , ) r -kP(Ne = k )  

where P(lVc = k )  is the probability of making k visits to the 
state G in the given r time instants. 

id k=O g+b(l-g-b)' b-b(l-g-b)' [ g+b g+b ] =: ! l - b t  bt ] 
g-g(1-g-b)' b + g ( l - g - b ) '  st 1 - 91 

(15) pt  = 

g+b g+b 
(17) . .  

Remarks: Where P i s  the single step transition probability matrix. 
Notice that given 8,,, Y,, is independent of Y,. (fori # k). 
Thus, Note that in equation (15), the probability is greater 

than 0.5 as long as qc and 78 are less than 0.5 
(ensuring that the second term remains positive). We 
have used this fact frequently in the paper. 

k 

P ( x Y n i  = Ols,, = G) 
i = l  

= P ( C Y n ,  = Ols,,_, = G)(1 - bt )  ! k-l  

in the proof below, we use the fact from [3] that 
probability of even errors in r channel uses of a BSC is 
given by 7 ,  where e is the crossover "-1 

l+(l-?a)' 

probability ofthe BSC. k-1 

+ P ( c Y n .  = O/sn,_, = W t ]  (1 - V G )  
Proof: 2=1 

the noise added due to the channel, they may he some errors. 
A parity check equation is satisfied as long as the number of 
errors in the check variables are even. 

X,,, are such that they satisfy the parity check equation. With ~ k--1 

P(c:=O Y,, = (I)  = P(even number of errors in { Y ~ < } ; = ~ )  
= CL=, P(even number of errors in { k  good states and 
r - k bad states}/"J = k )  x P(Nc = k) 
= C;,,[P(even number of errors in k good states;even 
number of errors in r - k had states)+ 
P(odd number of errors in IC g o d  states:odd number of 
errors in T - k bad states)] x P ( N c  = I ; )  

2 ) ]  x P(NG = k) ( ( l - ( l -2vc ) - -h  

2 (3 + (1-2rir;)*(1-2nn I*-&) P ( N c  = k )  = 

; + f: ( 1 - 2 q < > ) ~ ( l - 2 n t 3 ) - - ~  

2 

Which on simplification gives: 

k = l  

x P ( N c  = k ) ,  as claimed 2 
k = l  

If the states .sz are i.i.d., the distribution of Ne is binomial, 
and simple manipulations show that the above expression 
reduccs to + q, where q = ycqc + yeqe is the 
average probability of error. 

+h(cY,, = 1( .~ ,~_ ,  = G)(1 - bt)+ 

P ( c Y n .  = llsnh-l = B ) b t ] i c  

t=1 
k-1 

(18) 
2=1 

where, we note that the first term in square brackets is the 

conditional probability of the event 

,snL = 6. Similarly, for conditioning on B we get: 

k-1 

2=1 
Y,, = 0 given 
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Now observe the first terms in square brackets in (18) and 

(19). Both the terms are of the form f ( a )  = P( Y,. = 

increases (which suffices, as P(c2 = 0) is independent of d). 
k-1  

P(C1 = 0IC2 = 0 )  i= l  
k - 1  

i=l 
O(s,,-, = G)a + P( C Y,, = Ols,,_, = B)(1 - a), where 

a = 1 - bt in (18) and a = gt in (19). Now, 
k - I  k-1 

i=1 i=l 
f ( a )  = a(P( C Y,, = O/s,,_, = C)  - P( C Y,, = 

Ols,,-, = E ) )  + (1 - P( 
an increasing function of U, since 

k-1 k-1  

P( Yn, = Ols,,_, = C)  > P( 
i=l i=l 

We want to conclude that term under consideration is greater 
in (18). From (17). it can easily be derived that 
1 - gt - bt > 0 for any non-oscillatory GE channel, and 
therefore, term a is greater in (18) and hence the first term in 
square brackets (which is under consideration here) is also 
greater in (18). Also it can be seen that in both (18) and ( W ) ,  
this term is greater than 0.5 (This follows since the channel is 
non-inverling, see Appendix A). 

Now, the probability expressions in (18) and (19) can be 
written as h(x, y) = xy + (1 - z ) (1  - y), where, x takes the 
value of first term in the square brackets in each expression. 
Now, h(x, y) = x(2y  - 1) - y + 1, which is an increasing 
function of x if y > 0.5 and increasing function of y if 
x > 0.5. In our case, both z > 0.5 and y > 0.5, thus h(x, y) 
is an increasing function of both x and y. It can also he seen 
that bath x and y are larger in ( I @ ,  hence 

P(CYn .=0(s ,~=G)>P(CY, ,=Ol . sn~=B) .  

Increase in number of 0's between 1's increases entmpy 

Let C = 

Cz = 

corresponding entropy H(C) also increases. To prove this, it 
is sufficient to prove that P(<I + Cz = 0) decreases as d 
increases (since P(c1 + c2 = 0) > 0.5). 

IC-1 

i=l 
Yni = Ols,,-, = E ) ) ,  which is 

Y,, = 0ls,,_, = E ) .  

7 

<=I i=l 

1_ 7 ,  

i=l ,=I 
Yni = cl + cz, where (I = 

Y,,,. We prove that if d = n,,+l - n,, increases, 

Y,.and 
T 

%=?*+I 

% l +  t = 0 )  = P(<1 = 0; Cz = 0 )  + p(c1 = 1; cz = 
(20) 

Note that 

Since the terms P(G = I )  and P(Cl = 0) are independent of 
d, to prove P(5 = 0) decreases as d increases, it is sufficient 
to prove (from (20) and (21)) that P(Cl = 0; 5 2  = 0) 
decreases as d increases. 

We now prove that P(Cl = 0/C2 = 0) decreases as d 

P(G = 0lsnF1 = G) x g + b(l - g - b)d 
g + b  

b -  b( l  - g  - b)d 
g + b  1 +P(S, = ols"r, = B )  x 

(1 - g - b)d 
g + b  

=c+ 

= G I 5 2  = 0) - gP(s,++, = 8152 = 011 

where C is a constant independent of d. It is easy to see that 
the two terms in product with k%& p+b are positive, and 
since channel is non-oscillatory, (1 - g - b) > 0, so 
P(<I = O/C2 = 0) decreases with increase in d. (To see that 
the second term in product with is positive, notice 

that ~( ,s ,~ ,+~ = G ~ C ~  = 0)  = 
a similar expression holds for P ( S , , ~ + ,  = GIG = 0). Now 
use (16)) Hence P(5 = 0) decreases with increase in d. Since 
P(C = 0) > 0.5, the entropy H(C) increases as d increases. 
To find an upper hound on entropy, we can thus consider 
lim H(C),  in which the two variables Cl and Cz become 
independent. Continuing the process inductively, maximum 
entropy will be obtained when all {Yn,} are distributed 
independently. 

p("="'s+ 
P(t='oO) h, and 

d-m 
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