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Abstract—For a given blocklength we determine the number
of interleavers which have spread equal to two. Using this, we
find out the probability that a randomly chosen interleaver
has spread two. We show that as blocklength increases, this
probability increases but very quickly converges to the value
1 − e−2 ≈ 0.8647. Subsequently, we determine a lower bound
on the probability of an interleaver having spread at least s. We
show that this lower bound converges to the value e−2(s−2)2 , as
the blocklength increases.

I. INTRODUCTION

Interleavers play an important role in digital communica-
tions over fading channels. They are also a key component of
turbo codes [1][2][3]. A key characteristic of an interleaver is
its spread. The notion of spread was initially introduced in [4]
to take into account the short cycles [5][6] which occur when
two bits that are initially close to each other, remain close after
interleaving.
Spread has been redefined in [7] in the following way. Say,

π is a permutation on the set {0,1,2....,N-1}. The spread s of
an interleaver is defined as,

s
�
= min

i,j
(|i − j|N + |π(i) − (π(j)|N )

0 ≤ i, j ≤ N − 1, i �= j (1)

where
|a − b|N = min(|a − b|, N − |a − b|). (2)

It is known that the maximum possible spread for an
interleaver with blocklength N is �√2N� [4][7][8]. This paper
seeks to address the question that if we randomly pick up an
interleaver from the set of N ! possible interleavers, what is
the probability that the spread of the interleaver is s, where
2 ≤ s ≤ �√2N�. We determine this probability for s = 2
while for other values of s we determine a lower bound on the
probability that the spread is at least s. We further determine
this probability for the limiting case when the blocklength
approaches infinity. Using these results it has been possible to
determine a lower bound on the number of interleavers having
a spread at least s for a given blocklength.
The paper is organized as follows. In section II, a combi-
natorial analysis is done with the help of [9] to find out the
number of interleavers with spread two. The probability of
a random interleaver having a spread two is also derived. In
sections III and IV, a probabilistic analysis has been done to

determine a lower bound on the probability that a randomly
chosen interleaver will have spread at least s. We conclude the
paper in section V.

II. INTERLEAVERS WITH SPREAD TWO

An interleaver will have a spread of 2 if at least one pair
of consecutive positions remains neighbors after interleaving.
We will consider N-1 and 0 as consecutive integers because
according to the distance measure specified by (2), the distance
between them is 1. It is clear that the minimum spread of an
interleaver is 2.
Clockwise and counterclockwise w-sequences have been

defined in [9]. Clockwise w-sequences mean sequences such
as {0, 1, ..w−1}, {1, 2, ..w}, {N −2, N −1, 0, 1, ...w−3} etc.
while counterclockwise w-sequences mean sequences such as
{w − 1, w − 2, ..0}, {w,w − 1, ...1}, {w − 3, w − 2, ...0, N −
1, N −2} etc. The event of a permutation having spread more
than 2 can be identified with the event of a permutation without
any clockwise or counterclockwise 2-sequence. The number
of permutations without any clockwise or counterclockwise
w-sequences, M0(N,w) is also given in [9]. We can find
out the number of permutations without any clockwise or
counterclockwise 2-sequences from that:

M0(N, 2) = N ! +
N−1∑
i=1

(−1)i
i∑

a=1

2a N

N − i

.

(
i − 1
a − 1

)(
N − i

a

)
(N − i)! (3)

ThusM0(N, 2) is the number of interleavers of blocklength N
with spread more than 2. A total of N ! interleavers are there.
Say, Ks(N) is the number of interleavers of blocklength N
with spread s. So the number of interleaver with spread equal
to 2 is given by,

K2(N) = N ! − M0(N, 2) (4)

From (3), the probability that a randomly chosen interleaver



will have spread more than 2 is given by,

P (spread > 2) =
M0(N, 2)

N !

= 1 +
N−1∑
i=1

(−1)i
i∑

a=1

2a N

N − i

.

(
i − 1
a − 1

)(
N − i

a

)
.
(N − i)!

N !
(5)

Now consider the case when N → ∞ :

P (spread > 2) = 1 + lim
N→∞

N−1∑
i=1

(−1)i
i∑

a=1

2a N

N − i

.

(
i − 1
a − 1

)(
N − i

a

)
.
(N − i)!

N !

= 1 +
∞∑

i=1

(−1)i
i∑

a=1

2a

(
i − 1
a − 1

)

. lim
N→∞

[
N

N − i

(
N − i

a

)
(N − i)!

N !
]

= 1 + (−1)i
i∑

a=1

2a

a!

(
i − 1
a − 1

)

. lim
N→∞

[
N

N − i
.

(N − i)!
(N − i − a)!

.
(N − i)!

N !

]
(6)

For a < i the degree of N in each term inside the limit in
(6) is negative and these terms go to zero as N → ∞. The
term with a = i goes to 1 as N → ∞.
So, from (6) as N → ∞,

P (spread > 2) = 1 +
∞∑

i=1

(−2)i

i!
= e−2 (7)

So, as N → ∞, P (spread = 2) = 1 − e−2 = 0.8647.

Thus it is fair to state that if we randomly pick an interleaver
it is very likely that it will have spread 2. At the same time
finding an interleaver with spread more than 2 is not very hard.
In every e2 ≈ 8 random interleavers, there is likely to be one
with spread more than 2. Note that here we are considering
large blocklengths. For finite blocklengths the probability that
an interleaver will have spread more than 2 is lesser.
The plot of (6) is shown in Fig. 1 (the upper curve). It shows
that the probability, that an interleaver will have spread more
than 2 gets very close to e−2 for blocklengths as small as 100.

III. INTERLEAVERS WITH HIGHER SPREAD

Theorem: If we randomly choose an interleaver from the
set of all possible interleavers of blocklenth N then,

P (spread ≥ s) ≥
[
(N − 2s + 3)s−1.(N − 2s + 2)s−1

(N − 1)(N − 2)...(N − 2(s − 1))

]N

(8)
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Fig. 1. The upper curve shows the exact probability of finding an interleaver
with spread more than 2 as a function of blocklength. The lower curve gives
the lower bound on the same, obtained from the tightened bound.

Proof:
Let As correspond to the event that a randomly picked

interleaver has spread at least s.
Let Ais be the event that for any fixed i

|i − j|N + |π(i) − π(j)|N ≥ s

∀ 0 ≤ j ≤ N − 1, j �= i (9)

It is clear that

P (As) = P (
N−1⋂
i=0

Ais) (10)

It was proved in [8] that for finite blocklength N spread is
upper bounded by �√2N�. Let us denote the maximum value
of spread for blocklength N as smax. Now,

⋂N−1
i=0 Ais �= φ

only if s ≤ smax, otherwise P (As) = 0.
Let us take any i. π(i) will be equal to k with probability

1
N . Let us take the case where π(i) = k. Now the interleaver
π will have spread more than s if

|i − j|N + |k − π(j)|N ≥ s,

∀ 0 ≤ j ≤ N − 1, j �= i (11)

Let us call the above event Aiks. Clearly

P (Ais) = P (Ai0s)P (π(i) = 0) + P (Ai1s)P (π(i) = 1)
+P (Ai2s)P (π(i) = 2) + ...

..... + P (Ai(N−1)s)P (π(i) = N − 1)

=
1
N

N−1∑
k=0

P (Aiks) (12)

As mentioned earlier 0 and N − 1 are considered as
neighbors and hence the entire arrangement of 0,...N-1 can



0    1   2 .........................k−s+2  k−s+3.........k−s+m+1....k−1  k   k+1...........k+s−m−1.....k+s−3  k+s−2.............................................N−1

0    1   2 .........................k−s+2  k−s+3.........k−s+m+1....k−1  k   k+1...........k+s−m−1.....k+s−3  k+s−2.............................................N−1

0    1   2 .........................k−s+2  k−s+3.........k−s+m+1....k−1  k   k+1...........k+s−m−1.....k+s−3  k+s−2.............................................N−1

0    1   2 .........................k−s+2  k−s+3.........k−s+m+1....k−1  k   k+1...........k+s−m−1.....k+s−3  k+s−2.............................................N−1

0    1   2 .........................k−s+2  k−s+3.........k−s+m+1....k−1  k   k+1...........k+s−m−1.....k+s−3  k+s−2.............................................N−1

π(i ± 1) should not belong to this interval

π(i ± 2) should not belong to this interval

π(i ± m) should not belong to this interval

π(i ± (s − 2)) should not belong to this interval

π(i ± (s − 1)) should not belong to this single point

Fig. 2. This shows the conditions for which Aiks will be true. Here π(i) =
k. So the conditions should ensure |i − j|N + |k − π(j)|N ≥ s

be thought of as having a circular structure. So whatever may
be the value of i or k (even if they are near 0 or N − 1) the
event Aiks will have the same probability. For the purpose of
convenience in illustration we have taken i and k sufficiently
away from 0 or N − 1 in Fig. 2.
Fig. 2 shows the conditions for which the event Aiks will
be true. If π(i) = k then to have spread at least s, π(i ± 1)
should not belong to the integer interval from k − s + 2 to
k + s − 2, π(i ± 2) should not belong to the integer interval
from k − s + 3 to k + s − 3, and so on, as shown in Fig. 2.
Say an integer interval from p to q is written as {p, q}.

Then, as explained in Fig. 2, the event Aiks will be true if

π(i ± m) /∈ {k − s + m + 1, k + s − m − 1}
∀ 1 ≤ m ≤ s − 1 (13)

For a fixed m, let us call the event of (13) as Aiksm. It is
clear that,

P (Aiks) = P (
s−1⋂
m=1

Aiksm). (14)

Now,

P (Aiksm)
= P ([π(i + m) /∈ {k − s + m + 1, k + s − m − 1}]⋂

[π(i − m) /∈ {k − s + m + 1, k + s − m − 1}])
= P (π(i + m) /∈ {k − s + m + 1, k + s − m − 1})

.P ([π(i − m) /∈ {k − s + m + 1, k + s − m − 1}]
|[π(i + m) /∈ {k − s + m + 1, k + s − m − 1}])

=
N + 1 − 2(s − m)

N − 1
.
N + 1 − 2(s − m) − 1

N − 2
(15)

In a similar way, we can find out the conditional probability
P (Aiksm|Aiks1.Aiks2....Aiks(m−1)). It will be similar to (15),
but as 2(m − 1) points are already occupied because of
Aiks1, Aiks2....Aiks(m−1) given, 2(m−1) should be subtracted

from the numerators and denominators of both fractions of
(15), i.e.,

P (Aiksm|Aiks1.Aiks2....Aiks(m−1))

=
N + 1 − 2(s − m) − 2(m − 1)

N − (2m − 1)

.
N + 1 − 2(s − m) − 2(m − 1) − 1

N − (2m − 1) − 1

=
(N − 2s + 3)(N − 2s + 2)
(N − 2m + 1)(N − 2m)

. (16)

From (14),

P (Aiks) =
s−1∏
m=1

P (Aiksm|Aiks1.Aiks2....Aiks(m−1)) (17)

=
s−1∏
m=1

(N − 2s + 3)(N − 2s + 2)
(N − 2m + 1)(N − 2m)

from (16)

=
(N − 2s + 3)s−1.(N − 2s + 2)s−1

(N − 1)(N − 2)...(N − 2(s − 1))
. (18)

We see that the right hand sides of (14), (16) and (18) are
all independent of k, because whatever may be the value of
π(i), the probabilities are same. Now, from (12),

P (Ais)

=
1
N

N−1∑
k=0

(N − 2s + 3)s−1.(N − 2s + 2)s−1

(N − 1).(N − 2)...(N − 2(s − 1))

=
(N − 2s + 3)s−1.(N − 2s + 2)s−1

(N − 1)(N − 2)...(N − 2(s − 1))
. (19)

So, as expected P (Ais) is same for all i’s.
We can write (10) as,

P (As) =
N−1∏
i=0

P (Ais|A0s.A1s....A(i−1)s) (20)

If s > smax then at least for some
i, P (Ais|A0s.A1s....A(i−1)s) = 0. But if interleaver
with spread s exists, then it can be argued that the conditional
probability of Als, if Ais is true for i = 0, 1, ..l − 1, is larger
than or equal to the unconditional probability of Als. Hence,

P (Ais|A0s.A1s....A(i−1)s) ≥ P (Ais) for all 0 ≤ i ≤ N−1
(21)

Thus we get the following inequality from (20) and (21),
for s ≤ smax :

[P (Ais)]N ≤ P (As) (22)

or
[
(N − 2s + 3)s−1.(N − 2s + 2)s−1

(N − 1).(N − 2)...(N − 2(s − 1))

]N

≤ P (As)

(23)

This completes the proof of the theorem.



IV. TIGHTENING THE BOUND

If the event Ais is true for p − (s − 1) < i < p and p +
(s−1) > i > p, then Ais will be true for i = p as well. So to
have the event As, we need Ais to be satisfied for all i’s except
every (s − 1)th, because they will be then be automatically
satisfied. Using this observation we now tighten the bound
given in (8). Thus (20) can be written as,

P (As) =
s−2∏
i=0

P (Ais|A0s.A1s....A(i−1)s)

.

2s−2∏
i=s

P (Ais|A0s.A1s....A(s−2)sA(s)s....A(i−1)s)

.

3s−2∏
i=2s

P (Ais|A0s...A(s−2)sA(s)s..A(2s−2)sA(2s)s..A(i−1)s)

..

N−1∏
i=ks

P (Ais|A0s..A(s−2)sA(s)s..A(2s−2)sA(2s)s...

...A(i−1)s)

.P (A(s−1).s|A0s...A(s−2)sA(s)s...A(2s−2)sA(2s)s..

..A(N−1)s)

.P (A(2s−1).s|A0s.A1s.....A(2s−2)sA(2s)s....A(N−1)s)

....P (A(ks−1).s|A0s.A1s.......A(N−1)s) (24)

where k is an integer such that ks ≤ N − 1 but (k + 1)s >
N − 1. In the last � N

s−1� terms of (24) the probability of each
(s − 1)th element satisfying Ais is expressed given all other
elements satisfying Ais. Clearly each of these will be equal
to unity. So (24) is simplified to

P (As) =
s−2∏
i=0

P (Ais|A0s.A1s....A(i−1)s)

.

2s−2∏
i=s

P (Ais|A0s.A1s....A(s−2)sA(s)s....A(i−1)s)

.

3s−2∏
i=2s

P (Ais|A0s...A(s−2)sA(s)s..A(2s−2)sA(2s)s.

...A(i−1)s)

..

N−1∏
i=ks

P (Ais|A0s..A(s−2)sA(s)s..A(2s−2)sA(2s)s..

....A(i−1)s)
(25)

Using an argument similar to (21), and the fact that there
are N − � N

s−1� terms to be multiplied in (25), we get for
s ≤ smax:
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Fig. 3. Lower bounds on probability of spread at least s vs blocklength from
(26), these bounds reach constant values as blocklength increases

[P (Ais)]N−� N
s−1 � ≤ P (As)

or
[
(N − 2s + 3)s−1.(N − 2s + 2)s−1

(N − 1)(N − 2)...(N − 2(s − 1))

]N−� N
s−1 �

≤ P (As) (26)

which is tighter than (8).

If we multiply the left hand side of (26) with N ! we will
get a lower bound on the number of interleavers with spread
at least s.∑

p≥s

Kp(N) = N !P (As)

≥ N !
[
(N − 2s + 3)s−1.(N − 2s + 2)s−1

(N − 1)(N − 2)...(N − 2(s − 1))

]N−� N
s−1 �

(27)

Expanding (26) and writing it as a product of 2(s − 1)
fractions we get,

P (As) ≥
[
N − 2s + 3

N − 1
.
N − 2s + 3

N − 2
....

N − 2s + 3
N − (s − 1)

N − 2s + 2
N − s

....
N − 2s + 2

N − 2(s − 1)

]N−� N
s−1 �

= (1 − 2s − 4
N − 1

)N−� N
s−1 �...(1 − s − 2

N − s + 1
)N−� N

s−1 �

(1 − s − 2
N − s

)N−� N
s−1 �...1 (28)

To check what the bound turns out for large N , we take N →
∞. Using the result

lim
x→∞(1 − a

x
)bx = e−ab (29)
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Fig. 4. Lower bounds on probability of spread at least s is shown as a
function of s (from (26)) for different blocklength N.

we get

P (As) ≥ e−(2s−4) s−2
s−1 ....e−(s−2) s−2

s−1 .e−(s−2) s−2
s−1 ....1

= e−(s−2) s−2
s−1 .[e−[0+1+2+...+(2s−4)] s−2

s−1 ]

= e−2(s−2)2 (30)

Thus the probability of a randomly chosen interleaver
having spread more than 2 (at least 3) for large blocklengths
is lower bounded by e−2(3−2) = e−2, from (30). This bound
exactly matches the result in (7). The bound in (26) is plotted
in Fig. 1 (the lower curve) for s = 3. We can see from the
figure that the tightness of the bound in (26) for s = 3,
improves as blocklength increases. In the plot of the bound
in Fig. 1, the ripples come because of the floor function in
the expression of (26). It can be noticed that these ripples
gradually decrease as the blocklength increases.
We have plotted the probability bounds of (26) as a function

of N in Fig. 3. It can be seen that the ripples which were
prominent in the plot of the bound for s = 3 in Fig. 1,
are present in these plots also, but they are barely visible.
We observe that each curve initially rises but then very
quickly becomes almost horizontal indicating convergence to
a limiting value. Further, as expected the curves for higher
values of s are much below the curves for smaller value
of s. The extremely small values of the probabilities need
not necessarily mean that the number of interleavers with
high spread is negligibly small because a lower bound on
the number of interleavers is obtained by multiplying these
probabilities by N !.
The lower bounds of (26) are plotted in Fig. 4 as functions

of s for blocklengths 256, 1024 and 4096. We can see that the

bounds for different blocklengths are quite close to each other.
There is very little separation between the curves for N =
1024 and N = 4096. So for large blocklengths these bounds
are almost independent of blocklength. From the values in the
plots it is clear that if we randomly pick up interleavers, it is
difficult to find an interleaver with high spread as the size of
the search space needed to guarantee this is very large (search
space size has the order e2(s−2)2 ). For blocklengths larger than
1000, approximately 86.47% interleavers have spread 2. At
least 13.53% interleavers have spread more than 2, at least
0.0335% interleavers have spread more than 3 and at least
1.52x10−6% have spread more than 4. For large blocklengths,
the fraction of interleavers with spread more than s decays as
fast as e−2(s−2)2 . Thus, it is fair to state that the expected
spread of a random interleaver is a little more than 2.

V. CONCLUSION

We have addressed the problem of determining the number
of interleavers of a given blocklength N that will have spread
s. It has been possible to determine the exact expression for
this number when s is equal to two. For other values of s
lower bounds have been obtained on the number of interleavers
having spread at least s. The probability that a randomly
chosen interleaver will have spread two, converges quickly
to 1− e−2, as blocklength increases. The lower bound on the
probability that a random interleaver will have spread at least
s, converges to e−2(s−2)2 .
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