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Abstract—Neighborhood search algorithms have been pro-
posed for detection in large/massive multiple-input multiple-
output (MIMO) systems. They iteratively search for the best
vector in a fixed neighborhood. However, the ML solution may
not lie in the searched space or the search may take a large
number of intermediate vectors to converge. Instead of searching
in a fixed neighborhood, a better way will be to look for an update
which is not restricted to be in a fixed neighborhood. Motivated
by this, we formulate an optimization problem to maximize the
reduction in ML cost and use it to derive an expression for
updating the solution. We use a metric based on the channel
matrix and the error vector to determine the likelihood of a
symbol being in error. Using this likelihood and the update, we
propose a likelihood ascent search (LAS) algorithm to find an
update which is not restricted to be in a fixed neighborhood and
seeks to provide maximum reduction in ML cost. This process
continues till there is a reduction in the ML cost. Compared to
existing LAS based algorithms, it is found to provide better error
performance, that too at a lower complexity.

I. INTRODUCTION

EFFICIENT detection in a multiple-input multiple-output

(MIMO) system with a large number of antennas is

a key challenge [1], [2]. Several detection algorithms [3]–

[11] have been proposed in the literature to address this

problem. Except a few [9]–[11] all others belong to a class

of neighborhood search algorithms, primarily categorized into

likelihood ascent search (LAS) [3] and reactive tabu search

(RTS) [5] algorithms. The main idea of these algorithms

is to begin with an initial guess, generate a neighborhood

around the initial guess and replace it with the best solution

in the neighborhood (in case of LAS the initial guess is also

included). In LAS this process continues till there is no further

reduction in the ML cost while in RTS some additional polices

are used to avoid cycles and early terminations.

All of the above algorithms search in a fixed neighborhood.

However, the idea of searching in a fixed neighborhood has

limitations. Thus, the ML solution may not lie in the searched

space and even if it lies, the search process may take a

large number of intermediate vectors to converge. Instead

of searching in a fixed neighborhood of the current solution

vector, a better way will be to update it with no constraints

on the neighborhood.

Motivated by this, we propose an algorithm in which the

solution vector for the next iteration is a sum of the solution
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vector of the current iteration and an update vector. We derive

an expression for the best update for the L locations which

are in error. For determining the erroneous locations, we use

a likelihood which is based on the channel matrix and the

error vector. The likelihoods are arranged in the decreasing

order of their magnitude and the first L locations are selected.

The update for these locations can be found using the derived

expression. This is done for all the values of L. Finally

we select the update which has the minimum ML cost. The

iterations stop when there is no further reduction in the ML

cost.

We call the proposed algorithm as an unconstrained LAS

(ULAS) algorithm and expect it to perform better in terms of

both error performance and complexity. This is because ULAS

does not restrict itself to a fixed neighborhood and computes

the best update in the entire space. Therefore the problem

of early termination leading to loss in error performance or

the high number of intermediate iterations leading to high

complexity, both can be avoided. We corroborate this for large

MIMO systems using extensive simulations.

The rest of this paper is structured as follows: Section

II describes the system model and discusses the existing

neighborhood search algorithms. Based on the neighborhood

definition we formulate an optimization problem in Section

III and propose an detection algorithm in Section IV. In

Section V, we analyze its complexity. Section VI provides the

simulations results and finally Section VII concludes the paper.

In this paper bold face capital letters denotes matrices, capital

letters denotes vectors and small letters is used to denote a

scalar quantity. Bar is used to denote a complex quantity.

II. PRELIMINARIES

A MIMO system uses Nt number of transmit antennas

for transmission and Nr number of receive antennas for

reception (Nt ≤ Nr). The input-output relationship can be

mathematically modeled as

Ȳ = H̄X̄ + N̄ , (1)

where Ȳ = (ȳ1, ȳ2, · · · , ȳNr
)T in which ȳi represents data re-

ceived at the ith receive antenna and X̄ = (x̄1, x̄2, · · · , x̄Nt
)T

is the transmitted signal vector where x̄i ∈ Ω̄ represents data

transmitted through the ith transmit antenna. Here Ω̄ is a set

of M complex symbols taken from a square constellation.



The channel matrix H̄ is of dimension (Nr×Nt) with each

coefficient h̄ij ∼ CN (0, 1) and N̄ = (n̄1, n̄2, · · · , n̄Nr
)T

represents an (Nr×1) i.i.d. additive white Gaussian noise

(AWGN) vector with each n̄i ∼ CN (0, σ2). The complex

system model in (1) can be formulated as an equivalent real

system model

Y = HX +N, (2)

where Y = (ℜ{Ȳ }T ℑ{Ȳ }T )T is a (2Nr×1) real equivalent

received vector and X = (ℜ{X̄}T ℑ{X̄}T )T represents a

(2Nt×1) real equivalent transmit vector where each xi ∈ Ω.

Now, the set Ω = {±1,±3 · · · ± (
√
M − 1)} is a set of

√
M

real symbols drawn from a one dimensional constellation i.e.√
M -PAM, N = (ℜ{N̄}T ℑ{N̄}T )T is a (2Nr×1) equivalent

noise vector and H denotes the (2Nr×2Nt) equivalent channel

matrix given by

H =

[

ℜ{H̄} −ℑ{H̄}
ℑ{H̄} ℜ{H̄}

]

. (3)

We will use this equivalent real system model (2) throughout

the paper.

At the receiver our objective is to find the actual transmitted

symbol vector X among all the possible
√
M

2Nt

transmit

vectors which is nearest to the received signal vector Y for

the given channel matrix H. Mathematically, this is stated as

X̂ = argmin
X∈Ω2Nt

‖Y − HX‖2 (4)

and is well known as ML detection. Here ‖ · ‖ denotes L2

norm. We define the Euclidean cost function as

φ(X) = ‖Y − HX‖2 =
2Nr
∑

i=1

∣

∣

∣
yi −

∑2Nt

j=1 hijxj

∣

∣

∣

2

(5)

and we call it ML cost or simply cost in the rest of the paper.

The computational complexity of ML detection is exponential

in nature and cannot be applied practically even for small

number of antenna pairs.

In the literature, for MIMO systems up to hundred antenna

pairs, several neighborhood search algorithms such as [3]–

[5] have been suggested. These algorithms proceed iteratively,

initialize with an initial solution vector and then search for

the best solution in the neighborhood of the initial solution

vector. The L symbol neighborhood NL(X) of a vector X is

defined as follows: Consider a vector X̃ which differs from

X at exactly L symbols then X̃ ∈ NL(X). The set which

contains these L indices is defined as Ik. It can be seen that

for an L symbol neighborhood there will be a total of
(

2Nt

L

)

Iks. Mathematically, a neighboring vector X̃ ∈ NL(X) can

be expressed as

x̃i =







ωj , ∀ωj 6= xi, i ∈ Ik & ωj ∈ Ω

xi, i /∈ Ik,
(6)

where i = 1, 2, . . . , 2Nt, j = 1, 2, · · · ,
√
M − 1 and k =

1, 2, · · · ,
(

2Nt

L

)

. Thus, there are (
√
M − 1)L

(

2Nt

L

)

number of

vectors in NL(X). For example let us consider the set Ω =

{−3,−1, 1, 3} and a vector X = [1 3 -1] of length 3. The

1-symbol neighborhood of X can be constructed by flipping

the elements of this vector one by one with the other elements

of the set Ω. Thus corresponding to the first element of this

vector, there are three neighboring vectors: [-3 3 -1], [-1 3

-1] and [3 3 -1] in the 1-symbol neighborhood of [1 3 -1].

Similarly for the other two locations we have six more vectors.

Based on the above neighborhood definition there exist

different versions of neighborhood search algorithms such as

1-LAS algorithm [3], MLAS algorithm [4], multiple output

selection LAS [8], RTS [5], random restart reactive tabu

search [6], layered tabu search [7] etc. Except MLAS, all

of these algorithms limit the search within a one symbol

neighborhood or in other words update only one element at

each iteration. This may lead to either an early termination as

in the case of 1-LAS or require a high number of iterations as

in the case of RTS which may lead to a high computational

complexity. Motivated by this, in the next section we revisit the

neighborhood search algorithm and construct an optimization

problem for finding an unconstrained L symbol update.

III. PROBLEM FORMULATION

Let us denote the initial solution vector at the rth iteration as

X(r) and the solution vector after the rth iteration or the initial

vector for the (r+1)th iteration as the sum of X(r) and P (r)

where P (r) is an update vector i.e. X(r+1) = X(r) + P (r).

The ML cost of X(r+1) can be expressed as a function of

the cost for the previous iteration and the update vector using

Taylor series expansion as

φ(X(r+1)) = φ(X(r) + P (r))

= φ(X(r)) + φ′(X(r))P (r) + 1
2P

(r)Tφ′′(X(r))P (r).

(7)

Third and higher derivatives of the Taylor series expansion go

to zero and the non-zero terms are given as

φ′(X(r)) = −2(Y − HX(r))T H, (8)

φ′′(X(r)) = 2HT H. (9)

Using the above expressions the difference in the cost for two

consecutive iterations is given by

∆φ(P (r)) = φ(X(r+1))− φ(X(r))

= −2(Y − HX(r))T HP (r) + P (r)T HT HP (r)

= P (r)T WP (r) − 2F (r)P (r) (10)

where W , HT H and F (r) , (Y − HX(r))T H.

A. Unconstrained optimization problem

Usually, a move from the rth iteration to the (r + 1)th
iteration is permitted if and only if it reduces the ML cost

i.e. ∆φ < 0 and for a given rth iteration, the update which

minimizes ∆φ(P (r)) or maximizes the reduction in ML cost

is the optimal update P ∗. In view of this, we wish to explore

an update which is not constrained to belong to a specified

neighborhood i.e. it can be from any part of the entire space.



We refer to it as an unconstrained update which can be

mathematically expressed as

P ∗ = argmin
P (r)∈ϑ2Nt

∆φ(P (r))

= argmin
P (r)∈ϑ2Nt

P (r)T WP (r) − 2F (r)P (r) (11)

where ϑ = {ωi − ωj|∀ωi, ωj ∈ Ω}. This unconstrained

optimization problem will achieve the ML solution. It is NP-

hard and requires very high computational resources. The

elements of P (r) can take values from the set ϑ, the size of

which is 2
√
M − 1. Hence there are (2

√
M − 1)2Nt number

of possible updates. Therefore finding an optimal update is

computationally expensive.

B. Optimization problem revisited

Let us revisit the problem stated in (11) and expand the

objective function as follows

∆φ =

2Nt
∑

i=1

2Nt
∑

j=1

〈Hi, Hj〉p(r)i p
(r)
j − 2

2Nt
∑

i=1

f
(r)
i p

(r)
i (12)

where p
(r)
i denotes the ith element of P (r), Hi represents the

ith column of the channel matrix H and 〈A,B〉 denotes the

inner product of vector A and B. In the above expression any

one p
(r)
i = 0 will lead to 4Nt number of terms to zero and

the dimension of the problem reduces by one. Let us assume

that there is a need to update only L symbols. It means for

that update (which has (2Nt − L) number of zeros in P (r)),

we can express the problem in (11) as a reduced dimension

problem. For a given value of L there are
(

2Nt

L

)

Iks and each

Ik contains L indices. For a given L and Ik , we can express

(11) as

P
(r)∗

(L,Ik)
= argmin

P
(r)

(L,Ik)
∈ϑL

P
(r)T

(L,Ik)
W(L,Ik)P

(r)
(L,Ik)

−2F
(r)
(L,Ik)

P
(r)
(L,Ik)

(13)

where P
(r)
(L,Ik)

is an L × 1 update vector and W(L,Ik) is an

L×L sub matrix constructed by deleting the (2Nt−L) rows

and (2Nt − L) columns of W, the indices of which are not

part of Ik . Similarly F
(r)
(L,Ik)

is an L × 1 vector, formed by

deleting the elements from F (r) the indices of which are not

part of Ik . The update which minimizes (13) is the best update

P
(r)
L at the rth iteration for the given L and Ik and we denote

it by P
(r)∗

(L,Ik)
.

For finding P
(r)∗

(L,Ik)
we take the partial derivative approach.

However, before proceeding it is necessary to check the

convexity of the problem. It is easy to verify that the Hessian

of the objective function in (13) is positive semi-definite i.e.

∇2∆φ � 0. Taking the partial derivative and equating it to

zero, we get

∇∆φ = 2W(L,Ik)P
(r)
(L,Ik)

− 2F
(r)T

(L,Ik)
= 0. (14)

Therefore the best update for a given L and Ik will be

P
(r)∗

(L,Ik)
=

⌈

W−1
(L,Ik)

F
(r)T

(L,Ik)

⌋

, (15)

where ⌈·⌋ represents element-wise rounding on the alphabet

set ϑ. Interestingly, it may be noted that the result for the best

one symbol update in [4] is a special case of (15) for L = 1.

Let us denote the update as

P
(r)∗

(L,Ik)
= W−1

(L,Ik)
F

(r)T

(L,Ik)
+ δ

(r)
(L,Ik)

(16)

where δ
(r)
(L,Ik)

is the rounding error. Substituting the solution

in (15) into (13) we get the reduction in the cost function

i.e. ∆φ
(r)
(L,Ik)

as given in (17). The values of L and Ik for

which the reduction in the cost function is maximized or

∆φ
(r)
(L,Ik)

is minimized can be used to find the optimal update

P ∗. We express this equivalent optimization problem in (18)

and denote the optimal value of L and Ik as L∗ and I∗
k

respectively.

Based on this formulation we can divide (11) into the

following two sub problems: i) Find the optimal (L, Ik) pair

and ii) Determine the best update among all the (2
√
M − 1)L

possibilities. Here the second sub problem can be easily

computed using (15) but the first sub problem corresponds to

the optimization problem in (18). It may be noted that finding

an optimal (L∗, I∗
k) leads to a search over

∑2Nt

L=1

(

2Nt

L

)

=
22Nt−1 number of updates. Although it is less than the number

of computations in (11), still this is computationally expensive.

We address this issue in the next section.

IV. PROPOSED ALGORITHM

We propose an L∗ symbol update based LAS algorithm that

will seek to find the update at each iteration which maximizes

the reduction in ML cost. The complete algorithm is discussed

step by step in the subsequent subsections.

A. Initialization

The algorithm is initialized with a solution vector X(0).

We may start with a random guess but similar to other

neighborhood search algorithms, the error performance and

complexity of the algorithm depends on the accuracy of the

initial solution. Hence, we choose to initialize with either a

matched filter (MF), a zero forcing (ZF) or a minimum mean

square error (MMSE) solution. The expressions for these are

given below

X
(0)
MF = HHY,

X
(0)
ZF = (HHH)−1HHY,

X
(0)
MMSE = (HHH + σ2I)−1HHY, (19)

where the subscripts denote the type of the receiver. One can

begin with any one of the above initial vectors.

B. Computation of F (r) and W

We compute W and F (r) using the relationships: W = HT H

and F (r) = (Y − HX(r))T H. It may be noted that W is

independent of iterations and needs to be computed only once

while F (r) needs to be computed at each iteration.



∆φ
(r)
(L,Ik)

=
(

W−1
(L,Ik)

F
(r)T

(L,Ik)
+ δ

(r)
(L,Ik)

)T

W(L,Ik)

(

W−1
(L,Ik)

F
(r)T

(L,Ik)
+ δ

(r)
(L,Ik)

)

− 2F (r)
(

W−1
(L,Ik)

F
(r)T

(L,Ik)
+ δ

(r)
(L,Ik)

)

= −F
(r)
(L,Ik)

W−1
(L,Ik)

F
(r)T

(L,Ik)
+ δ

(r)T

(L,Ik)
W(L,Ik)δ

(r)
(L,Ik)

, (17)

L∗, I∗
k = argmin

L,Ik

{

−F
(r)
(L,Ik)

W−1
(L,Ik)

F
(r)T

(L,Ik)
+ δ

(r)T

(L,Ik)
W(L,Ik)δ

(r)
(L,Ik)

}

. (18)

C. Determining the candidate sequence T
For a given F (r) and W the optimization problem in (18)

is a function of L and Ik. We would like to determine the

L and Ik which will cause the maximum reduction in the

ML cost. We have already noted that finding an optimal L
and Ik is computationally expensive. We address this issue

by noting that for a well conditioned channel matrix H, the

noise amplification is low [12]. Using this, it can be argued

that the rounding error δ
(r)
(L,Ik)

will be small in (16). Since

the second term in (18) involves square of the rounding error

(which will be even smaller), it can be ignored for the purpose

of this subsection. W and W−1 are nearly diagonal matrices

for a well conditioned H and hence (18) can be approximated

by

argmin
L,Ik

∑

i∈Ik

− f
(r)2

i

wii

= argmax
L,Ik

∑

i∈Ik

f
(r)2

i

wii

. (20)

Based on this we propose to use
f
(r)2

i

wii
as a metric for the

likelihood of the locations (i = 1, 2, · · ·2Nt) of the erroneous

symbols. It turns out that the proposed metric is same as

derived in [13]. We sort the indices in the descending order

of the likelihood and denote this sequence by T . Using this

candidate sequence it will be easy to compute a best L and

Ik as discussed next.

D. Arranging X(r), F (r) and W

Now we use the candidate sequence T to arrange the

elements in X(r) in the same order as T . By doing this we

arrange the erroneous symbols according to their likelihood

and an update on the first L elements will give the best

neighbor in the L symbol neighborhood. The best neighbor

is in the sense that it will cause maximum reduction in ML

cost if the neighborhood size is L. Since we have arranged

X(r), we need to arrange F (r) and W in the same order as

X(r) or T . For arranging W, we can arrange the columns first

and then the rows or the otherway round.

E. Best update P
(r)∗

(L,Ik)
and rounding error δ

(r)∗

(L,Ik)

For a given value of L, we select the first L elements of

T , X(r) and F (r) and denote it as Ik, X
(r)
(L,Ik)

and F
(r)
(L,Ik)

respectively. Similarly we select the L × L matrix formed

by the intersection of the first L rows and columns of W

and denote it as W(L,Ik). Now we compute the best update

P
(r)∗

(L,Ik)
for a given (L, Ik) pair using (15). Corresponding to

this update a candidate (r + 1)th solution vector is given by

X
(r+1)
(L,Ik)

= ⌈X(r)
(L,Ik)

+ P
(r)∗

(L,Ik)
⌋ (21)

where ⌈·⌋ denotes rounding to the set Ω. This is required

because some of the elements of the (r+1)th solution vector

may lie outside the set Ω. The corresponding rounding error

δ
(r)
(L,Ik)

is given by

δ
(r)
(L,Ik)

= X
(r+1)
(L,Ik)

−X
(r)
(L,Ik)

− P
(r)
(L,Ik)

. (22)

Since L can take values from 1 to 2Nt, we get 2Nt candidates

solution vector for the (r + 1)th iteration.

F. Update for the rth iteration and terminaton

Now that we have 2Nt possible updates, we need to chose

the best for the (r + 1)th iteration. By calculating the update

for all possible value of L we are effectively computing the

best update for every possible size of the neighborhood. We

select the update P
(r)∗

(L,Ik)
for which ∆φ

(r)
(L,Ik)

(17) is minimum

and denote the corresponding (L, Ik) as (L∗, I∗
k ). Since we

have pruned the update vector in IV-E to L elements, we need

to append (2Nt −L∗) zeros in P
(r)∗

(L∗,I∗

k
) and then reorder the

elements according to T . This rearranged version of P
(r)∗

(L∗,I∗

k
)

is the best update for the rth iteration and we denote it by

P (r)∗ which is added to the unsorted X(r) (X(r) before IV-D)

and rounded off to the set Ω to arrive at the solution vector

for the (r + 1)th iteration.

We repeat the steps from IV-B to IV-F till there is a

reduction in the ML cost, else we terminate the algorithm.

V. COMPLEXITY OF THE PROPOSED ALGORITHM

One can observe that the proposed algorithm is iterative.

Therefore, it is important to examine the complexity of com-

puting the candidate sequence T , the updates P
(r)∗

L,Ik
and the

corresponding ∆φ
(r)
(L,Ik)

. Even among these, finding P
(r)∗

L,Ik
and

∆φ
(r)
(L,Ik)

are more crucial because they need to be computed

multiple times in each iteration. The complexity of finding T
depends on the computations required for determining F (r)

and the diagonal elements of W. For Nt = Nr, it is of the

order of O(N2
t ).

One can notice from (15) and (17) that for the computation

of P
(r)∗

L and ∆φ
(r)
L respectively we need to compute W−1

L

(for simplicity here we omit the second subscript Ik). The

symmetric structure of WL gives us freedom to compute

W−1
L+1 as a function of W−1

L . If a symmetric matrix WL+1

can be expressed in terms of another symmetric matrix WL

as

WL+1 =

[

WL W1:L,L+1

WL+1,1:L WL+1,L+1

]

(23)
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Fig. 1. BER Comparison of the proposed algorithm for a) 32× 32 MIMO
system with 16-QAM modulation and b) 64×64 MIMO system with 4-QAM
modulation.
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Fig. 2. Number of arithmetic operation required by the proposed algorithm
for a) 32 × 32 MIMO system with 16-QAM modulation and b) 64 × 64

MIMO system with 4-QAM modulation.

and W−1
L exists then we know that W−1

L+1 can be written in

terms of W−1
L as follows

W−1
L+1 =

[

W−1
L + 1

ρ
W−1

L bbT W−1
L − 1

ρ
W−1

L b

− 1
ρ
bT W−1

L
1
ρ

]

(24)

where ρ = WL+1,L+1 − bT W−1
L b and b = W1:L,L+1 =

WT
L+1,1:L. This has a computational complexity of the order

of O(L2). Hence the computations required for finding W−1
L

and the corresponding ∆φ
(r)
L ∀L = 1, 2 · · · , 2Nt is of the

order of O(N3
t ). Combining all of the steps, the per iteration

complexity of the proposed ULAS algorithm is of the order

of O(N3
t ).

VI. SIMULATION RESULTS

In this section, we compare the proposed ULAS algorithm

with 1-LAS and MLAS for 32 × 32 and 64 × 64 MIMO

systems for 4-QAM and 16-QAM modulations respectively.

The bit error performance is shown in Fig. 1 while the required

number of arithmetic operation (as a measure of complexity)

is shown in Fig. 2. From the figures it can be observed that

the proposed ULAS not only improves the error performance

4−QAM 16−QAM 64−QAM
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b) 64×64 at E
b
/N

0
 = 20 dB

B
it 

e
rr

o
r 

ra
te

 

 

4−QAM 16−QAM 64−QAM
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) 32×32 at E
b
/N

0
 = 20 dB

B
it 

e
rr

o
r 

ra
te

 

 

1−LAS

MLAS

ULAS

1−LAS

MLAS

ULAS

Fig. 3. BER comparison for 32 × 32 and 64 × 64 MIMO system with
different modulation schemes at Eb/N0 = 20 dB.
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Fig. 4. BER comparison with the increasing number of antennas for (a)
4-QAM modulation at Eb/N0 = 10 dB and (b) 16-QAM modulation at
Eb/N0 = 20 dB.

but also requires a lower number of arithmetic operations

compared to both the variants of LAS.

For a 32 × 32 MIMO system (16-QAM), ULAS requires

7 dB less Eb/N0 to achieve a BER of 10−3 (see Fig. 1)

compared to MLAS and nearly 8 dB less compared to 1-

LAS. From Fig. 2 we can observe that for the same system

at 20 dB the number of arithmetic operations required is 34%

less as compared to 1-LAS while compared to MLAS the

savings is more than 99%. The trend for Eb/N0 gain and

savings in complexity have been found to be similar for other

systems. Thus we can conclude that the proposed ULAS is

significantly better in terms of both error performance and

complexity, compared to 1-LAS and MLAS.

Further, we examine the relative performance of ULAS, 1-

LAS and MLAS for increasing constellation size. The results

have been shown in Fig. 3. From the figure one can observe

that for 32×32 and 64×64 MIMO systems at 20 dB the pro-

posed ULAS provides significant improvement as compared to

1-LAS as well as MLAS for 4-QAM, 16-QAM and 64-QAM

constellations. In fact, the BER gain increases with increasing

constellation size.

In addition, we have also examined the error performance as
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Fig. 5. BER comparison for 64×64 MIMO system with 64-QAM modulation
taking MMSE solution as the initial vector.
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Fig. 6. Number of arithmetic operations for 64 × 64 MIMO system with
64-QAM modulation taking MMSE solution as the initial vector.

a function of the number of antennas. The simulation results

are shown in Fig. 4 for 4-QAM at 10 dB and 16-QAM at

20 dB. From the results one can see that to achieve the same

BER, ULAS requires less number of antennas compared to 1-

LAS and MLAS. For example, for a 16-QAM system at 20 dB

ULAS can achieve a BER of 4× 10−4 using only 32 antenna

pairs while MLAS will require 96.

Now we compare the performance of the proposed ULAS

with other existing detectors, specifically with RTS, element

based lattice reduction aided MMSE (ELR-MMSE) detector

[9] and sparsity boosted iterative linear detector (SBIL) [11]

for a 64×64 MIMO system with 64-QAM modulation. The bit

error performance is shown in Fig. 5 while the total number

of arithmetic operations required is shown in Fig. 6. From

these figures we can observe that the ULAS has a better error

performance compared to all the others throughout the range

of Eb/N0. In terms of number of operations, ELR-MMSE

is comparable to ULAS while SBIL is better than ULAS.

However it may be noted that compared to ELR-MMSE and

SBIL, ULAS provides a gain of 4 dB and 6 dB respectively

at a BER of 10−2.

VII. CONCLUSION

An unconstrained update based LAS algorithm has been

presented for detection in large MIMO systems. We derived a

close form expression for finding the update at the erroneous

locations. Since we do not know the erroneous locations we

propose a metric for their likelihood. Based on the likelihood

we select the L most likely erroneous locations and then

find an update for those symbols. This is done for all the

values of L. The update which minimizes the cost function

is selected for the next iteration. The process continues till

there is an improvement in the ML cost. Simulation results

show that the proposed ULAS algorithm has much improved

error performance as well as lesser computational complexity

compared to 1-LAS and MLAS. It also compares favorably

with RTS, ELR-MMSE and SBIL algorithms.
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