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Abstract—K-best detection is known to be a useful breadth
first tree search detection technique for multiple input multiple
output (MIMO) systems. In the process of the tree search a
number of possible transmitted symbols are searched and the
error performance of the K-best detection depends on this
number. More the number of visited symbols, better the error
performance. However this relationship is not straightforward
and needs to be analyzed. In this paper, a tight upper bound on
the error performance of K-best detection for MIMO systems
with linear modulation scheme has been derived. In particular
upper bounds for M -ary pulse amplitude modulation (M-PAM)
and for 4-ary quadrature amplitude modulation (4-QAM) with
Rayleigh fading channel have been established. This upper bound
requires the K-best error performance for single-input single-
output (SISO) systems. Hence we first derive an exact expression
for M-PAM as well as for 4-QAM with K-best detection for
SISO systems and use this to establish the upper bound. Finally
we compare the derived upper bound with the simulations. It
is found that the upper bound is close to the results obtained
through simulations.

I. INTRODUCTION

Nowadays MIMO systems have become an essential part

of various wireless standards such as 4G, WiMax, 802.11n,

HSPA+. The popularity of MIMO systems is due to its

ability to provide high data rate reliable communication. This

reliability of communication or the error performance depends

on the choice of detection technique. Maximum likelihood

(ML) detection [1] has best error performance but its computa-

tional complexity increases exponentially with the number of

transmit antennas and the constellation size. In the literature,

K-best detection [2] has been seen as a potential alternative to

achieve near ML error performance at the cost of polynomial

type complexity. The advantage of K-best is not limited to this

only but it can be also used as high throughput detector [3]

and can be combined with other low complexity techniques to

further reduce the complexity [4].

K-best detection primarily belongs to the family of breadth

first tree search (BFTS) [5] algorithms. The principle of this

technique lies in searching for K minimum Euclidean cost

symbols starting from a particular antenna and forming a

tree. This is done repeatedly until we are finished with all

the antennas and at last we select the minimum over these

K possibilities. It is evident from the principle itself that
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the error performance of K-best detection depends on the

choice of K and this dependency of error performance over

K needs to be analyzed. In this paper an upper bound on

the symbol error rate (SER) of K-best detection for MIMO

systems with linear modulation has been derived. This upper

bound is found to be a function of SER performance of K-

best detection for SISO systems. Though K-best detection is

meaningless for SISO systems but to establish the upper bound

it is necessary to find its error performance. Therefore we first

derive an exact expression for one dimensional constellation

i.e. M-PAM with K-best detection for SISO systems over

AWGN as well as Rayleigh channel and use it to establish

the upper bound. We have also analyzed the two dimensional

constellation geometries for different values of K . Particularly

for 4-QAM, we first derive the expressions for different values

of K and then use these expressions to derive the upper bound.

The trend of SER performances for different values of K has

been investigated and it shows that the derived upper bound

is close to the simulation results.

The rest of this paper is structured as follows: Section II

describes the system model and Section III first describes the

K-best detection and then a general upper bound on the error

performance of K-best is established. To derive the upper

bound for specific cases such as M-PAM and 4-QAM the

exact expressions for K-best detection with SISO systems have

been established in Section IV and V respectively. Section VI

compares the theoretical results with simulations and finally

Section VII concludes the paper.

II. SYSTEM MODEL

A MIMO system uses Nt number of transmit antennas

for transmission and Nr number of receive antennas for

reception (Nt ≤ Nr) [1]. The input-output relationship can

be mathematically modeled as

Y = HX +N (1)

where Y = (y1, y2, · · · , yNr
)T is (Nr×1) received signal

vector and yi represents data received at ith receive antenna.

X = (x1, x2, · · · , xNt
)T is (Nt×1) transmitted signal vector

and each xi ∈ Ω represents data transmitted through ith trans-

mit antenna and Ω a set of constellation symbols such as M-

PAM, M-QAM. H denotes (Nr×Nt) channel matrix with each
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coefficient hij ∼ CN (0, 1) and N = (n1, n2, · · · , nNr
)T rep-

resents (Nr×1) i.i.d. additive white gaussian noise (AWGN)

vector with each ni ∼ CN (0,σ2).

Utilizing QR decomposition the channel matrix can be

decomposed as a product of two matrices Q and R, where

Q is (Nr×Nt) orthogonal matrix and R is (Nt×Nt) upper

triangular matrix. Hence using the properties of orthogonal

matrices the system model (1) can be rewritten as

Z = RX + �N (2)

where Z = QHY is equivalent received vector of order

(Nt×1) and �N = QHN is equivalent noise vector with same

distribution and order as (Nt×1).

III. AN UPPER BOUND ON K-BEST ERROR PERFORMANCE

In this section, we first briefly discuss the K-best detection

[2] and then propose an approach for an upper bound on its

error performance.

A. K-best Detection

This is a kind of sequential detection technique where

symbols are detected through bottom to top antenna. Here, we

denote each antenna by its position that means the top most

antenna has given number 1 and the bottom most has number

Nt. At first ML detection is performed on N th
t antenna and K

closest symbols are selected. We formed a tree by connecting

these K symbols to a virtual root node and then keeping track

of these K closest symbols expand the tree with all M possible

constellation symbol. Now, ML detection is performed only

on these MK symbols at (Nt − 1)th antenna and again K
closest symbols are retained and prune rest part of the tree.

This is done repeatedly until we reach at the 1st antenna and

the minimum Euclidean cost vector among these K paths is

declared as final solution. The Euclidean cost for a particular

vector X is given by

cost(X) =

Nt�

j=1

(zj −
Nt�

k=1

rj,kxk)
2 (3)

B. Upper Bound on K-best error performance

To establish a theoretical upper bound on SER, we have

constructed the following sets, defined as follows

B = {X̂ : X̂ = argminK
X∈ΩNt

�Z − RX�2} (4)

Bi = {x̂i : x̂i = argminK
xi∈Ω

|z̈i − riixi|2}; i = 1 · · ·Nt (5)

where z̈i = (zi −
�Nt

j=i+1 rijxj) ∀xj ∈ Bj . The argminK(·)
returns first K solutions which minimizes the function in

ascending order according to their cost. Explicitly, B is a set

containing K nearest possible transmit vectors to the received

vector, while Bi contains the K closest symbols transmitted

from ith transmit antenna. Let X = (x1, x2, · · · , xNt
)T be

a transmit vector then the probability of event when the

transmitted signal vector lie inside the set B can be expressed

as

P (X ∈ B) = P (xNt
∈ BNt

)P (xNt−1 ∈ BNt−1|xNt
∈ BNt

)

· · ·P (x1 ∈ B1|(x2 ∈ B2, x3 ∈ B3, · · ·xNt
∈ BNt

)) (6)

Hence probability of event when transmitted signal vector does

not lie inside the K best solution set is given by

P (X /∈ B) = 1− P (X ∈ B)
= 1− [P (xNt

∈ BNt
)P (xNt−1 ∈ BNt−1|xNt

∈ BNt
)

· · ·P (x1 ∈ B1|(x2 ∈ B2, x3 ∈ B3, · · ·xNt
∈ BNt

))]

≤ 1− [P (xNt
∈ BNt

)P (xNt−1 ∈ BNt−1)P (x1 ∈ B1)]
(7)

Statistically, P (xi ∈ Bi) is same for all i ∈ 1, 2, · · ·Nt.

Let α denotes the probability of error for K-best detection in

SISO systems i.e. the probability of event that the transmitted

symbol lie outside the set Bi. Mathematically, P (xi /∈ Bi) = α
or in other words P (xNt

∈ BNt
) = P (xNt−1 ∈ BNt−1) · · · =

P (x1 ∈ B1) = 1 − α. Hence (7) can be written as P (X /∈
B) ≤ 1− (1− α)Nt . Now, we are looking for the probability

of error in MIMO with K-best detection. There are two cases:

first case is when the transmitted vector belongs to the set B
yields same performance as ML and the second case is when

the transmitted vector does not belong to the set B then there

is definitely a loss in performance as compared to ML. Thus,

the error probability for K-best is given by

Pe,K−best = P (X /∈ B) + P (X ∈ B)Pe,ML

= P (X /∈ B) + (1− P (X /∈ B))Pe,ML

= Pe,ML + P (X /∈ B)(1− Pe,ML)

≤ Pe,ML + (1 − (1− α)Nt)(1− Pe,ML) (8)

Since this upper bound does not consider the modulation

scheme or the nature of wireless channel, the (8) can be

consider as general upper bound on the SER of K-best

detection for MIMO systems. The value of α depends on the

choice of modulation scheme, signal power and the value of

K . The detailed derivation for M-PAM is provided in Section

IV and derivation for 4-QAM is provided in Section V. Here

we do not provide the expression for Pe,ML, the expression

for error probability for different cases in MIMO systems can

be found in [6]–[8].

Let us examine the upper bound for α = 0. Equation (8)

becomes Pe,K−best ≤ Pe,ML but the error rate can not be less

than the ML error rate which implies Pe,K−best = Pe,ML. We

can observe that as the value of α approaches zero the K-best

error performance approaches ML performance and for very

small values of α it can achieve near ML performance.

IV. K-BEST DETECTION FOR SISO WITH M-PAM

This section first considers K-best Detection for SISO sys-

tems with M-PAM for AWGN channel, then extends the results

to Rayleigh fading channel. Let us consider the set constructed

in (5), BNt
⊆ Ω taking rNtNt

= 1. This can be viewed as the

case that it contains all the K symbols whose Euclidean cost



Fig. 1. The M-PAM Constelation.

is less than the other symbols in SISO systems with AWGN

channel. For M-PAM, Ω = {± d
2 ,± 3d

2 , · · · ± (M−1)d
2 } is a

set of M different symbols and each symbol is separated by

a distance d. The geometrical interpretation for M-PAM is

well known and shown in Fig. 1. Our objective is to find the

probability of event that the actual transmitted symbol does not

lie in the set BNt
i.e. P (x /∈ BNt

). For a particular symbol

(say s) it is easy to visualize from the figure that the decision

boundaries depend on the value of K . For a particular value of

K , on the basis of these decision boundaries we can categorize

the symbols into the following three categories:

1) Symbols bounded by the right: There are K number of

symbols from left which are bounded by right side only. These

points are outside the set BNt
only when the noise n is greater

than or equal to Kd/2. This can be given by

P (s /∈ BNt
) = P

�
n ≥ Kd

2

�
(9)

2) Symbols bounded by the left: In this scenario, K number

of symbols are bounded by left side only. Using the symmetric

properties of noise, the error probability can be expressed as

P (s /∈ BNt
) = P

�
n ≤ Kd

2

�
= P

�
n ≥ Kd

2

�
(10)

3) Symbols bounded by both side: There are M − 2K
number of symbols which are bounded by both side and these

point lies within the set BNt
when the absolute value of noise

is bounded by Kd/2. Hence using the properties of noise the

error probability can be expressed as

P (s /∈ BNt
) = P

�
n ≤ Kd

2

�
+ P

�
n ≥ Kd

2

�

= 2P

�
n ≥ Kd

2

�
(11)

Following the probability of symbol error in these three

categories one can see that there are 2K number of symbols

in the corners with equal probability and (M−2K) number of

symbols in the middle. Assuming all M symbols are equally

likely (i.e. Psi = 1/M ∀ i = 1 · · ·M ) and noise has zero

mean Gaussian distribution with variance σ2 = N0/2. The

probability of the event x /∈ BNt
can be found as follows

P (x /∈ BNt
) =

1

M

M�

i=1

Pe|si

=

�
2K

M
P

�
n ≥ Kd

2

�
+

2(M − 2K)

M
P

�
n ≥ Kd

2

��

=
2(M −K)

M
P

�
n ≥ Kd

2

�
=

2(M −K)

M
Q

�
Kd√
2N0

�

(12)

where Q(x) = 1
2π

�∞

0 exp− t2

2 dt. The relationship between

average symbol energy of the constellation Es and d for M-

PAM can be found in [9] as d =
�

12Es

M2−1 . Using this (12) can

be written as

P (x /∈ BNt
) =

2(M −K)

M
Q

�
K

�
6Es

(M2 − 1)N0

�
(13)

Equation (13) describes the symbol error probability of K-best

for SISO with M-PAM over AWGN channel. The above result

could be generalize for Rayleigh fading channel considering

rNtNt
∼ CN (0, 1). This will give instantaneous value of α as

αinst =
2(M −K)

M
Q

�
K

�
6γs

(M2 − 1)

�
(14)

where γs = |rNtNt
|2 Es

N0

is instantaneous SNR. To compute

the α this instantaneous error probability must be integrated

with respect to the distribution as follows

α =

� ∞

0

2(M −K)

M
Q

�
K

�
6γs

(M2 − 1)

�
Pγs

(γs)dγs (15)

where Pγs
(γs) = 1

γ̄s

exp
�
− γs

γ̄s

�
for Rayleigh distribution.

The (15) can be solved for Rayleigh distribution using the

result from [10], stated as

� ∞

0

Q(a
√
γs)Pγs

(γs)dγ =
1

2

�
1−

�
a2γ̄s/2

1 + a2γ̄s/2

�
(16)

where γ̄s = Es

N0

. Using (16), the above integral (15) can be

solved and expressed as

α =
M −K

M

�
1−

�
3K2γ̄s

(M2 − 1) + 3K2γ̄s

�
(17)

where, γ̄s = Es

N0

. One can notice that for K = 1 the results

obtained in (13) and (17) are matched with SER expressions

for M-PAM in SISO for AWGN and Rayleigh fading channel

respectively [10].

V. K-BEST DETECTION FOR SISO WITH 4-QAM

The results derived in Section IV can be extended for

two dimensional constellations. This is not straightforward,

because the decision boundaries for two dimensional constel-

lation depend on the constellation size and the chosen value

of K . Therefore, we have considered 4-QAM and derived the

value of α using the geometry of constellation and decision

boundaries for different values of K . For 4-QAM modulation,

we can have four values of K i.e. K = 1, 2, 3 and 4. The

corresponding decision boundaries are shown in Fig. 2. The

all 4 cases are as follows:

1) K = 1: This can be seen as conventional symbol error

probability for 4-QAM. The detail derivation can be found in

[10] and expressed as

α =

�
1−

�
γ̄s

2 + γ̄s

�
−1

4

�
1−

�
γ̄s

2 + γ̄s

�
4

π
tan−1

�
2 + γ̄s
γ̄s

��

(18)
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Fig. 2. Decision boundaries for 4-QAM when s3 has been transmitted for
different value of K: (a) K = 1, (b) K = 2, (c) K = 3 and (d) K = 4.

2) K = 2: We first consider the BNt
for rNtNt

= 1 and

using the geometry of Fig. 2(b) the probability of symbol error

for s3 is given by

P (s3 /∈ BNt
) = P (Re{n}+ Im{n} ≥ d) (19)

As we know the fact: if two independent gaussian random

variables θ1 ∼ N (0, N0/2) and θ2 ∼ N (0, N0/2) then θ1 +
θ2 ∼ N (0, N0). Now using the symmetry of distribution it can

be seen that P (si /∈ BNt
) for i = 1, 2 and 4 is same as above.

Assuming all 4 symbols are equally likely, the probability of

event x /∈ BNt
can be given by

P (x /∈ BNt
) =

1

4

4�

i=1

Pe|si = Q

�
d√
N0

�
(20)

The relationship between average symbol energy Es and the

minimum distance between the symbols d for M-QAM can

be found in [9] as d =
�

6Es

M−1 . Using this, above can be

expressed for 4-QAM as Q
��

6Es

2N0

�
. This can be generalize

for Rayleigh fading channel i.e. rNtNt
∼ CN (0, 1). Following

the similar steps as (14), (15) and using the integral in (16)

the value of α for K = 2 can be expressed as

α =
1

2

�
1−

�
γs

1 + γ̄s

�
(21)

3) K = 3: Considering the BNt
with rNtNt

= 1 and

using the geometry of Fig. 2(c) the event s3 /∈ BNt
occurs

when the real and imaginary part of the noise is greater

than d/2. Mathematically, P (s3 /∈ BNt
) = P (Re{n} ≥

d/2)P (Im{n} ≥ d/2). Using the symmetry of problem it

turns out that this probability is same for all 4 symbols. As-

suming all the symbols have equal probability of occurrence,

the probability of event x /∈ BNt
can be expressed as

P (x /∈ BNt
) = Q2

�
d√
2N0

�
= Q2

��
Es

N0

�
(22)
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Fig. 3. SER comparison for analytical result with simulations for different
value of K and M in M-PAM modulation for SISO systems with AWGN.

Generalizing this for Rayleigh fading channel taking rNtNt
∼

CN (0, 1) and averaging with respect to Rayleigh distribution

we get α as
�∞

0
Q2 (

√
γ̄s)Pγs

(γs)dγs. The solution for the

integral for Pγs
(γs) = 1

γ̄s

exp
�
− γs

γ̄s

�
can be found in [10].

Using this, we can find α for this case as

α =
1

4

�
1−

�
γ̄s

2 + γ̄s

�
4

π
tan−1

�
2 + γ̄s
γ̄s

��
(23)

4) K = 4: There is no decision boundary in this case

because no matter how much noise is added the set have

always all the four symbols. Thus the probability of event

x /∈ BNt
is 0 which implies α = 0.

Keeping in mind the value of K and the geometry of

constellation, this procedure can be extended for any other

two dimensional constellation.

VI. SIMULATION RESULTS

This section compares the derived analytical results with the

simulated results for different values of K and M for M-PAM

and M-QAM modulations. In Fig. 3, (13) has been plotted for

8-PAM and 16-PAM with AWGN channel for different values

of K and compared with their respective simulated curves.

From the figure one can observe that the analytical results

exactly match with the simulated results. Fig. 4 compares (17)

with the simulations for 8-PAM and 16-PAM with Rayleigh

fading channel for different values of K and the results are

found to be exactly matching with the simulations.

Further, the upper bound derived for MIMO K-best de-

tection in (8) has been plotted and compared for 2 × 2 and

4 × 4 MIMO systems for M-PAM modulation with Rayleigh

fading channel. In Fig. 5, 8-PAM and 16-PAM is compared

for K = 4, while in Fig. 6, 8-PAM and 16-PAM have been

compared for different values of K . Fig. 7 compares (8) for 4-

QAM modulation with the simulated results for 2×2 and 3×3
MIMO systems with Rayleigh fading. One can observe from

these three figures that the analytical upper bound is close to

the simulated results.



0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 (dB)

S
ym

b
o

l e
rr

o
r 

ra
te

 

 

8 PAM (K=3) Simulation

8 PAM (K=3) Theoretical

8 PAM (K=4) Simulation

8 PAM (K=4) Theoretical

8 PAM (K=6) Simulation

8 PAM (K=6) Theoretical

16 PAM (K=1) Simulation

16 PAM (K=1) Theoretical

16 PAM (K=2) Simulation

16 PAM (K=2) Theoretical

16 PAM (K=4) Simulation

16 PAM (K=4) Theoretical

Fig. 4. SER comparison for analytical result with simulations for different
value of K and M in M-PAM modulation for SISO systems with Rayleigh
fading.
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Fig. 5. SER comparison for analytical result with simulations for different
value of M in M-PAM modulation for 2× 2 MIMO systems with Rayleigh
fading.

VII. CONCLUSION

This paper establishes an upper bound on the SER per-

formance of K-best detection for MIMO systems. The es-

tablished result is general in nature and is applicable for

linear modulation schemes. In particular, the paper derives an

upper bound for M-PAM and 4-QAM modulation for Rayleigh

fading channel. Derivation of the upper bound requires the

performance of K-best detection for SISO systems. Therefore,

we also derive an exact expression for K-best detection for

SISO systems for AWGN as well as Rayleigh fading channel.

Finally, the upper bound has been plotted and has been found

to be close to the simulation results.
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