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Abstract—In this paper, we propose low complexity oppor-
tunistic methods for interference alignment in K-transmitter
MIMO interference channels by exploiting multiuser diversity.
We do not assume availability of channel state information (CSI)
at the transmitters. Receivers are required to feed back analog
values indicating the extent to which the received interference
subspaces are aligned. The proposed opportunistic interference
alignment (OIA) achieves sum-rate comparable to conventional
OIA schemes but with a significantly reduced computational
complexity.

Index Terms—Interference alignment, user selection, user pair-
ing, sum-rate, multiple-input multiple-output (MIMO), interfer-
ence channel

I. INTRODUCTION

Interference alignment (IA) is a promising interference

management technique for future wireless networks which

are interference limited, such as, MIMO interference channels

(IC), MIMO interfering broadcast channels (IFBC), etc. It was

demonstrated in [1] that IA can achieve a sum degree-of-

freedom (DoF) of K
2 in a K-user SISO interference channel.

IA utilizes multiple signaling dimensions (due to multiple an-

tennas or time/frequency extensions) to suppress the received

interference into a reduced dimensional subspace of the receive

space.

Conventional methods for interference alignment [1]–[4] de-

pend on one or more of global channel state information, chan-

nel state information at transmitters, reciprocity of downlink-

uplink channels, transmitter cooperation or iterative methods.

If these assumptions are relaxed, it is not possible to achieve

interference alignment by employing transmit precoding in

order to align the interferences received at the receivers and

thus we rely on opportunistic methods to select users for

which the interferences are naturally aligned. Note that limited

feedback methods employing channel state quantization can be

used to transfer CSI back to the transmitters but they are based

on large Grassmannian codebooks which are hard to design,

encode, and can incur large feedback delays [5].

Low overhead feed back based OIA has been proposed

in [6]–[8]. A 2 × 2 MIMO IC with 3-transmitters has been

considered in [6], while [7], [8] extend it to the case of

M×2M MIMO IC, again with 3-transmitters. In these works,

it is assumed each transmitter has a separate user group. In

each group, a single user is selected by the corresponding

transmitter for opportunistic IA. In this paper, we extend OIA

for the general case of K-transmitter MIMO IC. Further, in

order to better exploit the available user diversity, we consider

the problem of user pairing for achieving opportunistic IA.

In the user pairing framework, we allow a user to connect

to any of the K-transmitters (BS) unlike traditional cellular

systems. Such a model is relevant for the cell-edge users in

dense cellular networks who receive inter-cell interference. We

use a geometric interpretation of the signal space to define the

measure of alignment which quantifies the extent to which the

interference subspaces are aligned. Each transmitter broadcasts

a reference signal and receivers calculate their corresponding

measure of alignment and feed it back. Depending on the

received values for the measure of alignment, the transmitters

can select their user independently (user selection) or they can

be paired with the users by a central node (user pairing).

The remainder of this paper is organized as follows. In

Section II, we describe the system model. Section III describes

the proposed choice for measure of alignment. Section IV

discusses about OIA in the user selection framework while

Section V discusses OIA in the user pairing framework.

Performance comparison is presented in Section VI. Finally,

Section VII concludes the paper.

II. SYSTEM MODEL

We consider a network with K transmitters and N receivers.

Each transmitter is equipped with NT antennas and each

receiver is equipped with NR antennas. In a K-transmitter

MIMO IC, each user receives (K − 1) interfering signals and

one desired signal, each of dimension NT . We let NT = M
and NR = 2M so that M dimensions can be designated for

the desired data streams and the remaining M dimensions for

interference alignment, at each user. We consider two different

system models, namely, user selection model and user pairing

model.



Fig. 1. User Selection Model : Each transmitter selects and serves a single
user in each group

A. User Selection

In the user selection framework, we assume that there are

K cells, each with a single transmitter (base station). The

receivers (users) are arbitrarily divided into K groups of size

S = N/K, where N is the total number of users in the

network. The signal yk
n ∈ C

NR×1 received by the nth user

in the kth cell is given by :

yk
n = Hk

n,kxk
︸ ︷︷ ︸

desired signal

+
∑

l 6=k

Hk
n,lxl

︸ ︷︷ ︸

interference signals

+ wk
n (1)

where Hk
n,l ∈ C

NR×NT is the channel gain matrix between

lth base station (BS) and user n in cell k and with each entry

assumed to be independently and identically distributed (i.i.d.)

circular symmetric complex Gaussian (CSCG) random vari-

able with unit variance CN (0, 1), wk
n ∈ C

NR×1 denotes an ad-

ditive white Gaussian noise (AWGN) with wk
n ∼ CN (0, INR

)
and xl ∈ C

NT×1 is the signal vector transmitted by transmitter

l, encoded by a Gaussian codebook.

Fig. 1 depicts the user selection model. In each cell, out of a

total of S users, only one user is selected by the corresponding

BS for data transmission. This selection is carried out such that

opportunistic IA can be achieved and the exact procedure will

be discussed in Section IV.

B. User Pairing

In the user pairing framework, we assume that each of the

K BSs can connect to any user in the network. In other words,

BSs and users are not divided into distinct cells. For ease of

notation, we denote the channel gain matrix between BS k and

user n as Gn,k ∈ C
NR×NT . The received signal yn ∈ C

NR×1

Fig. 2. User Pairing Model: Each transmitter is paired with one user by the
center

at receiver n is given by

yn =

K∑

k=1

Gn,kxk +wn (2)

with each entry of Gn,k being i.i.d. CSCG random variable

CN (0, 1) and wn ∈ C
NR×1 is AWGN at user n with wn ∼

CN (0, INR
)

We define the N × K pairing matrix P with Pi,j as the

entry on its ith row and jth column which is given by :

Pi,j =

{

1, if receiver i and transmitter j form a pair

0, otherwise

where
∑

i Pi,j = 1 and
∑

j Pi,j ≤ 1 to ensure that each

BS is connected to exactly one user and that each ‘connected’

user is connected to exactly one BS. The received signal at

the nth user, yn can now be decomposed as :

yn =

K∑

k=1

Pn,kGn,kxk

︸ ︷︷ ︸

desired signal

+

K∑

k=1

(1− Pn,k)Gn,kxk

︸ ︷︷ ︸

interference signals

+wn (3)

Fig. 2 depicts the user pairing model. The pairing is enabled

by the presence of a central system connecting each BS

through backhaul links. The exact procedure for finding the

transmitter-receiver pairing configuration or equivalently P

such that opportunistic IA can be achieved, will be discussed in

Section V. After the pairing configuration is found, the center

can redirect the users’ data to their corresponding BSs.

In both the frameworks, since the transmitters do not have

channel state information, an equal power allocation among

NT data streams is assumed such that xl ∼ CN (0, P
NT

INT
),

where P is the transmit power constraint, assumed common,

at all the BSs. Note that, if transmitter l wants to convey d data



streams where d < NT it can employ an arbitrary precoding

matrix Vl ∈ C
NT×d such that VH

l Vl = Id so that the system

model remains statistically identical.

III. MEASURE OF ALIGNMENT

Recall that in a K-transmitter MIMO IC, each user will

receive (K − 1) interference signals and one desired signal,

each of dimension NT . In order to quantify the suitability of

a user for data transmission in the interference channel, we

need to define a measure of alignment which quantifies the

extent to which the received interference signals are aligned

at each user. To that end, we will briefly review Grassmann

manifold.

A. Grassmann Manifold

The Grassmann manifold GN,M (C) has been defined as

the set of all M -dimensional subspaces of complex Euclidean

N -dimensional space C
N [9]. It is a widely used geometric

concept in wireless communications and helps in the design

and analysis of different methodologies. Let A ∈ GN,M (C) be

a M -dimensional subspaces. A N ×M matrix A is defined

as generator matrix for A if its columns span the subspace

corresponding to A and forms an orthonormal bases for the

same, i.e., AHA = IM . Note that there can be infinitely many

generator matrices for a given subspace A which can be ob-

tained by the transformations A → AU where U ∈ C
M×M is

an arbitrary unitary matrix. For subspaces A,B ∈ GN,M (C),
the M ordered principal angles, θ1, θ2, . . . θM ∈ [0, π/2]
between the subspaces are obtained sequentially as

cos(θm) = max
a∈A
b∈B

|aHb| = |aHmbm|

s.t. ||a|| = ||b|| = 1

aHan = bHbn = 0 ∀ n ∈ Mm (4)

where Mm = {1, 2, . . . ,m − 1}, while {am}Mm=1 and

{bm}Mm=1 are the principal vectors for A and B, respectively.

The chordal distance between A and B is defined as

dc(A,B) =

√
√
√
√

M∑

m=1

sin2(θm) (5)

Alternatively, chordal distance between the two subspaces A
and B can be represented in terms of their generator matrices

as

dc(A,B) = dc(A,B) =
1√
2
||AAH −BBH ||F (6)

=
√

M − tr(AHBBHA) (7)

Chordal distance is known to be proportional to the degree

of orthogonality between the subspaces. Note that, the chordal

distance is invariant to the choice of generator matrices.

B. Spread of Subspaces

Let {Hl}Ll=1 be L matrices of size N × M . Thus,

each of these matrices would correspond to planes/subspaces

{Hl}Ll=1 ∈ GN,M (C) with {H̄l}Ll=1 ∈ C
N×M as their

generator matrices. In order to define the spread of these

subspaces, consider the following

F = argmin
F′ s.t. F′HF′=IM

L∑

l=1

d2c(F
′, H̄l) (8)

Let F ∈ GN,M (C) be the plane corresponding to F. Thus,

F can be considered as the mean of subspaces {Hi}Li=1. Quite

naturally, we can define the spread of these subspaces as

f = min
F′ s.t. F′HF′=IM

L∑

l=1

d2c(F
′, H̄l) (9)

The problem in (8) can be simplified as follows :

F = argmin
F′ s.t. F′HF′=IM

L∑

l=1

d2c(F
′, H̄l)

= argmin
F′ s.t. F′HF′=IM

L∑

l=1

(
M − Tr(F′HH̄lH̄

H
l F′)

)

= argmax
F′ s.t. F′HF′=IM

L∑

l=1

Tr(F′HH̄lH̄
H
l F′)

= argmax
F′ s.t. F′HF′=IM

Tr

(

F′H

(
L∑

l=1

H̄n,lH̄
H
n,l

)

F′

)

=
[
v1(B̄n) v2(B̄n) . . . vM (B̄n)

]
(10)

where B̄ =
K∑

l=1

H̄lH̄
H
l and vl(H) denotes the left singular

vector of H which corresponds to the lth largest singular value

[10]. Thus, f in (9) is given by

f =
L∑

l=1

d2c(F, H̄l)

⇒ f = LM − Tr

(

FH

(
L∑

l=1

H̄n,lH̄
H
n,l

)

F

)

⇒ f = LM −
M∑

m=1

λm

(
L∑

l=1

H̄lH̄
H
l

)

⇒ f
(i)
=

2M∑

m=M+1

λm

(
L∑

l=1

H̄lH̄
H
l

)

(11)

where λm(H) denotes the mth largest singular value of H

and (i) holds because

2M∑

m=1

λm

(
L∑

l=1

H̄lH̄
H
l

)

= Tr

(
L∑

l=1

H̄lH̄
H
l

)

=

L∑

l=1

Tr
(
H̄lH̄

H
l

)
= LM (12)



Smaller values of f imply that the interfering subspaces

are closely aligned and in the case of perfect alignment,

f = 0. In view of this, if the matrices {Hl}Ll=1 correspond

to the channels between a user and interfering base stations,

f can be defined as a measure of alignment for the user.

The computation of the mean F and measure of alignment

f involve singular value decomposition (SVD) and hence

are expensive to compute. In what follows, we will explore

approximations for the measure of alignment function f .

1) 3-Transmitter Case: In the case of 3-transmitter in-

terference channels, each user has 2 interference subspaces

and f has the form
2M∑

m=M+1

λm(H̄1H̄
H
1 + H̄2H̄

H
2 ). In the

following Lemma, we will find closed form expression for

the eigenvalues of H̄1H̄
H
1 + H̄2H̄

H
2 .

Lemma 1. If H̄1, H̄2 ∈ C
2M×M are the generator matrix of

the subspaces H1,H2 ∈ G2M,M (C), eigenvalues of H̄1H̄
H
1 +

H̄2H̄
H
2 can be represented in descending order as

1 + cos(θ1), . . . , 1 + cos(θM )
︸ ︷︷ ︸

M

, 1− cos(θM ), . . . , 1− cos(θ1)
︸ ︷︷ ︸

M

(13)

where θm is the mth smallest principal angle between H1 and

H2.

Proof. Please see page 4 of [11] for proof.

It follows from Lemma 1 that

f =

2M∑

m=M+1

λm(H̄1H̄
H
1 + H̄2H̄

H
2 ) =

M∑

m=1

1− cos(θm)

Since cos(θm) ≥ cos2(θm), we have that

M∑

m=1

1− cos(θm) ≤
M∑

m=1

1− cos2(θm)

⇒ f ≤ d2c(H̄1, H̄2)

We can redefine f such that f = d2c(H̄1, H̄2), which

is intuitive as d2c(H̄1, H̄2) is proportional to the degree of

orthogonality between the corresponding subspaces and thus

has the property that its value decreases as the interfering

subspaces get closer or more aligned.

2) General Case: Unlike the 3-transmitter case, it is diffi-

cult to obtain closed-form expressions for eigenvalues in the

general case where the network has K transmitters. In a K
transmitter network, there are (K−1) interference subspaces at

each user and thus f has the form
2M∑

m=M+1

λm

(
K−1∑

l=1

H̄lH̄
H
l

)

.

In the following Lemma, we extend the bound for the general

case of K-transmitter interference channels.

Lemma 2. For K-transmitter interference channels,

the measure of alignment f is bounded above by

min
1≤j≤K−1

K−1∑

l=1

d2c(H̄j , H̄l)

Proof. Please see page 4 of [11] for proof.

From (11), we have f =
K−1∑

l=1

d2c(F, H̄l), where F cor-

responds to the mean of the subspaces corresponding to

{H̄l}K−1
l=1 . Since computing the mean F or even f (directly)

is computationally prohibitive, we can approximate the mean

F by an element in {H̄l}K−1
l=1 which is nearest to it. Indeed

H̄ĵ where ĵ = min
1≤j≤K−1

argmin
K−1∑

l=1

d2c(H̄j , H̄l) is closest to

the mean F and we can redefine the measure of alignment as

follows

f = min
1≤j≤K−1

K−1∑

l=1

d2c(H̄j , H̄l) (14)

Note that this approximation to the actual measure of

alignment is cheaper to compute. Also, for K = 3, the above

expression reduces to the one obtained for the 3-transmitter

interference channel.

IV. OPPORTUNISTIC INTERFERENCE ALIGNMENT IN USER

SELECTION FRAMEWORK

In this section, we consider the user selection problem (refer

Section II-A) in which one user is selected in each cell such

that opportunistic IA is achieved. The nth user in cell k
calculates the measure of alignment function fkn as follows

fkn = min
1≤j≤K

j 6=k

K∑

l=1,l 6=k

d2c(H̄
k
n,j , H̄

k
n,l) (15)

where H̄k
n,l is an arbitrary generator matrix for Hk

n,l.

Following this, each user feeds the measure of alignment

fkn back to its corresponding transmitter. After receiving this

information from their users, transmitter k selects the user, n∗k,

with the minimum value of measure of alignment

n∗k = argmin
1≤n≤K

fkn (16)

The selected user n∗k in cell k employs the post-processing

matrix Uk
n∗
k

which minimizes the interference leakage [2] as

follows

Uk
n∗
k
= argmin

U

Tr



UH





K∑

l=1,l 6=k

Hk
n∗
k
,l(H

k
n∗
k
,l)

H



U





=
[

vM+1

(
Bn∗

k

)
, vM+2

(
Bn∗

k

)
, . . . , v2M

(

Bk
n∗
k

)]

(17)

where Bk
n∗
k
=

K∑

l=1,l 6=k

Hk
n∗
k
,l(H

k
n∗
k
,l)

H . The achievable sum-

rate [8] for the network is given by

Rsum =

K∑

k=1

log2

∣
∣
∣IM + P

M

K∑

l=1

UH
n∗
k
Hk

n∗
k
,l(H

k
n∗
k
,l)

HUn∗
k

∣
∣
∣

∣
∣
∣IM + P

M

K∑

l=1, l 6=k

UH
n∗
k
Hk

n∗
k
,l(H

k
n∗
k
,l)

HUn∗
k

∣
∣
∣

(18)



V. OPPORTUNISTIC INTERFERENCE ALIGNMENT IN USER

PAIRING FRAMEWORK

In this section, we consider the problem of finding

transmitter-receiver pairing configuration (refer Section II-B)

in order to achieve IA opportunistically. For OIA in the user

pairing framework, the receivers feed back the measure of

alignment to a central node, which in turn decides the pairing

configuration.

Each user receives K, M -dimensional signals among which

atmost one can be the desired signal. Unlike the OIA with

user selection case, the desired signal is not predefined and it

will depend on the channel conditions for all the users in the

network. The measure of alignment at user n when it is paired

with the kth BS can be defined as

fn,k = min
1≤j≤K

j 6=k

K∑

l=1,l 6=k

d2c(Ḡn,j , Ḡn,l) (19)

where Ḡn,l is an arbitrary generator matrix for Gn,l.

Each user thus computes K measure of alignment functions,

{fn,k}Kk=1 corresponding to each BS.

Let us define the vector of measure of alignment at user n,

fn as

fn = [fn,1, fn,2, . . . , fn,K ]T (20)

Each user feedbacks its corresponding measure of alignment

vectors {fn}Nn=1 to a central node. The center aggregates the

data from all the users and forms the N ×K feedback matrix,

F defined as

F = [f1, f2, . . . , fN ]T (21)

Each entry in the matrix F corresponds to a pair in the

original network. The smaller the value of the entry, the more

likely it is for the corresponding link to have the interferences

aligned and thus more likely to be chosen in the final user

pairing solution. Having obtained the matrix F, the center can

choose K non-conflicting pairs which constitute the minimum

sum for the measure of alignment. Therefore, the optimization

problem can be formulated as

min
P

N∑

i=1

K∑

j=1

Pi,jfi,j (22a)

subject to
∑

j

Pi,j ≤ 1 ∀ i (22b)

∑

i

Pi,j = 1 ∀ j (22c)

Pi,j ∈ {0, 1} ∀ i, j (22d)

This optimization can be solved efficiently by the rect-

angular Hungarian algorithm [12]. After the optimal pairing

configuration P∗ has been found, each user which is connected

to a BS can employ a post-processing matrix which minimizes

the interference leakage similar to (17). Let n∗k be the user

paired with BS k, i.e., P ∗
n∗
k
,k = 1. The expression for

achievable sum-rate will be similar to (18).
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VI. PERFORMANCE COMPARISON

In this section, we compare the performance in terms

of sum-rate and computational complexity of the proposed

OIA algorithm with the conventional MAX-SNR and MIN-

INR schemes [7], [8]. MAX-SNR and MIN-INR have been

proposed for the user selection framework in [7], [8]. We

extend them for the user pairing framework as done for OIA

in Section V. In what follows, US and UP will denote user

selection and user pairing, respectively.

A. Complexity Analysis

In this section, we will discuss the computational complex-

ity of the algorithms using flop counts. The complexity of an

operation is counted as total number of flops required which

is defined as a real floating point operation and we denote it



by ψ. The flop counts for some typical operations [8] for a

complex matrix A ∈ C
m×n with m ≥ n are

ψ(A+A) = 2mn (23a)

ψ(||A||F ) = 4mn (23b)

ψ(GSO(A)) = 8mn2 − 2mn (23c)

ψ(SVD(A)) = 24mn2 + 48mn2 + 54n3 (23d)

ψ(MUL(A)) = ψ(AAH) = 8mn2 − 2mn (23e)

where GSO stands for Gram-Schmidt orthogonalization, SVD

stands for singular value decomposition and MUL(A) denotes

the operation AAH .

The proposed OIA in the user selection framework requires

(K − 1) GSO operations, (K − 1) MUL operations and
(
K−1
2

)
matrix subtractions as well as ||.||F operations at each

user in every cell. At the selected user, MUL operation for

(K − 1) times, (K − 2) matrix additions and a single SVD

is required. Thus the total complexity for OIA in the user

selection framework is given by

ψOIA-US = K
(

S
(
N3

R(4K − 4) +N2
R(3K

2 − 11K + 8)
)

+
(
N3

R(124 + 2K) +N2
R(K − 3)

) )

(24)

OIA in the user pairing framework requires K GSO op-

erations, K MUL operations and
(
K

2

)
matrix subtractions as

well as ||.||F operations at each user. At the K selected users,

MUL operation for (K − 1) times, (K − 2) matrix additions

and a single SVD is required. Thus the total complexity for

OIA in the user pairing framework is given by

ψOIA-UP = N ×
(
N3

R(4K) +N2
R(3K

2 − 5K)
)
+

K ×
(
N3

R(124 + 2K) +N2
R(K − 3)

)
(25)

The complexity for MAX-SNR and MIN-INR in the user

selection framework denoted by ψMAX-SNR-US and ψMIN-INR-US,

respectively, is given in [8]. MIN-INR in the user pairing

framework requires K MUL operations, 2K matrix additions

and a single SVD at every user. The total complexity for MIN-

INR is given by

ψMIN-INR-UP = N ×
(
N3

R(128K) +N2
R(3K)

)
(26)

The MAX-SNR scheme requires K GSO operations and K
SVD at every user in the user pairing framework. Thus, the

total complexity for MAX-SNR is given by

ψMAX-SNR-UP = N ×
(
N3

R(128K)−N2
R(K)

)
(27)

Note that we have ignored the complexity of solving the

optimization problem in (22) which arises in the user pairing

framework. This is because the computation happens only

once at the center and not at the mobile users.

Fig. 4 and Fig. 6 show the plot of computational complexity

vs. total number of users N for a 3-transmitter MIMO IC

with M = 3 and a 4-transmitter MIMO IC with M = 6,

respectively. It can be observed that the complexity of OIA

is only a small fraction of the complexity of MIN-INR and

MAX-SNR schemes. Moreover, user pairing when compared
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to user selection has roughly the same complexity in case of

proposed OIA, but the same is not true for both, MIN-INR

and MAX-SNR.

B. Sum-Rate

Fig. 3 and Fig. 5 show the sum-rate vs. signal-to-noise

ratio (SNR) plot for the proposed OIA and the conventional

schemes for a 3-transmitter MIMO IC with M = 3 and

a 4-transmitter MIMO IC with M = 6, respectively. It

can be observed that the proposed OIA achieves sum-rates

close to MIN-INR but at a significantly lower computational

complexity. Moreover, with the same number of total users in

the network, user pairing outperforms user selection which is

expected because user pairing can better exploit the available

user diversity.

Fig. 7 shows the plot of sum-rate vs. the total number of

users for a 4-transmitter MIMO IC with M = 6 and SNRs

of 10 dB and 25 dB. As expected, the performance of all

the algorithms improves with the number of users. Also, user

pairing provides more than 4-fold gain over user selection in

terms of total number of users required to achieve similar sum-

rate performance. It can be observed that with respect to the

number of users, the gaps in sum-rate performance of different

algorithms is almost constant. Fig. 8 shows the plot of sum-

rate vs. the number of antennas M for a 4-transmitter MIMO

IC with N = 100 and SNRs of 10 dB and 25 dB. It can be

observed that the sum-rate increases almost linearly with the

number of transmit antennas for all the algorithms.

VII. CONCLUSION

In this paper, we have considered two different system mod-

els, namely, user selection and user pairing for K-transmitter

MIMO interference channels. By exploiting multiuser diver-

sity, we propose low complexity opportunistic interference

alignment (OIA) algorithms for both the models. The proposed

OIA algorithms are compared with conventional schemes,
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MIN-INR and MAX-SNR, and found to achieve comparable

sum-rates but at a significantly reduced computational com-

plexity.
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