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Abstract—We propose a family of Secondary User (SU) power
allocation schemes in spectrum sharing OFDM cognitive radio
networks. The SU sum rates are maximized subject to a protec-
tion criterion for the Primary Users (PU) expressed through a
utility function. We demonstrate that a specific choice of utility
function leads to the maximization of weighted sum rate of
all users, the weight being linked to a guarantee on the PU
sum rate. Our formulation also allows trading off individual PU
guarantees for higher SU sum rates, with a recently proposed
scheme imposing individual PU Rate Loss guarantees being a
limiting case.

Index Terms—Cognitive radio, OFDM, Optimization methods,
Distributed algorithms

I. INTRODUCTION

With the proliferation of services being offered over today’s
wireless links, available spectrum is becoming increasingly
crowded [1]. Cognitive radio (CR) is one paradigm which has
been proposed to deal with this problem. The CR deployment,
in one of its typical forms (known as Spectrum Sharing [2],
[3],[4],[5]), allows the transmission of multiple unlicensed
users (Secondary Users or SU) on the same frequency bands
as licensed users (Primary Users or PU) provided that the latter
are sufficiently protected. Some of the protection criteria re-
ported in the literature are constraints on the total interference
suffered by the PU [6],[7] and on individual PU rates [8].

We explore alternative models of power allocation for SUs
in the Spectrum Sharing model, with a view to increase their
sum rates. We propose a family which maximizes SU sum
rates subject to some guarantees on PUs expressed through
the sum of utility functions. A specific member of the family
have been shown to be related to an alternative formulation
of the protection criteria for PU in terms of maximizing the
weighted sum rates of all users (both PU and SU). We further
point out a subfamily of power allocation schemes within the
proposed family which trades off individual PU rate guarantees
for higher SU sum rates. The subfamily also includes rate loss
constraint (RLC) criterion on individual PU [8] as a limiting
case.

The remaining paper is organized as follows. In Section II,
we present the system model which we have considered. In
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Fig. 1. The channel model for subcarrier i

Sections III and IV, we formulate the power allocation prob-
lem, describe solution strategies and derive some theoretical
insights. Numerical comparisons with existing schemes have
been presented in Section V.

II. SYSTEM MODEL

We consider the same system model as that in [8]. Let I =
{1, 2, . . . , N} be the set of subcarriers, J = {1, 2, . . . ,M}
be the set of PUs, Pi be the SU transmitter power in ith

subcarrier, Ci be PU transmitter power in ith subcarrier, and
Kj be the set of all subcarriers allocated to the jth PU.
We assume that each subcarrier is allocated to exactly one
PU, which implies that Kj’s are disjoint sets. Let Pj be the
vector with elements being SU transmitter powers allocated
to subcarriers of the set Kj , P being the full vector of SU
transmitter powers allocated to all subcarriers. Also let us
assume that the channel power gains between PU TxRx and
SU TxRx pair are as given in Figure 1. We define the rate
for the jth PU as rpj =

∑
i∈Kj R

p
i where Rpi is the rate

achieved by the PU in the ith subcarrier. In the spectrum
sharing scenario,

Rpi =
1

N
log2

(
1 +

gippCi

gipsPi +N0

)

The SU rate in the ith subcarrier is Rsi where

Rsi =
1

N
log2

(
1 +

gissPi
gispCi +N0

)
Note that PU transmission in ith subcarrier suffers interference
only from SU transmission in the same ith subcarrier.
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III. PROPOSED SCHEME

The focus in the existing literature is on power allocation
schemes which provide individual PU protection. With a view
to increase SU sum rates, we explore an alternative model of
ensuring protection to the PUs. We thus formulate a problem
by imposing a sum utility rate guarantee on the PUs, instead of
individual guarantees. In Section III-A we describe the basic
formulation, and in Section III-B we describe optimization
techniques to solve the problem thus formulated.

A. Formulation

We maximize the sum rate of the SU subject to a guarantee
on the PUs expressed through the utility function Uj for the
jth PU. If the utility functions are concave and increasing, we
ensure the convergence of an efficient decomposition-based
solution for the problem.

maximize
P≥0

N∑
i=1

Rsi (1a)

subject to
M∑
j=1

Uj(rpj ) ≥ δ (1b)

N∑
i=1

Pi ≤ NPa (1c)

where Pa denotes the average (per subcarrier) power for SU(s).
We are thus maximizing the sum rate of the SU(s) subject to
a constraint on the total utility being provided to the PUs.
Also, note that the formulation stays unchanged if the number
of secondary users is changed to more than one. The case of
one primary user reduces to the primary user rate constraint
framework presented in [8].

B. Solving the optimization problem

This problem is a non-convex optimization problem coupled
over N variables. We can de-couple the problem using primal
and dual decomposition techniques ([9],Appendix A). This
would lead to efficient distributed algorithms to solve the
power allocation problem. The decomposition methods require
only local channel power gains at the solvers, with only limited
information (the subgradients) being transmitted to a central
authority enforcing the scheme and hence avoids the overhead
associated with transmitting all channel power information to
a central authority.

Based on computational efficiency, we divide our problem
into two cases: one where the number of subcarriers allocated
per PU is small, and one where the number of subcarriers allo-
cated per PU is large. A precise characterisation of ‘small’ and
‘large’ would depend on the specifics of the utility function
chosen. The two conflicting issues that need to be balanced
are ease of solving high dimensional problems (problem 3)
and of maintaining time sharing property (Appendix D) .:

TABLE I
DUAL DECOMPOSITION FOR PROBLEM (2)

Initialize
(λ = 0, µ = 0)
x(∈ R2×1) = (λ, µ)T

A=
(
10 0
0 10

)
repeat
λ = x(1) (x(i) refers to the ith element of x)
µ = x(2)
if (λ, µ) lies in feasible region (i.e. λ ≥ 0 and µ ≥ 0) then

for j = 1 to M do
Pj ← argmin

Pj≥0

∑
i∈Kj −R

s
i −λUj(

∑
i∈Kj R

p
i )+µ

∑
i∈Kj Pi

(This is solvable in the most general case by an interior point
solver. If problem is one dimensional then one might use simpler
root finding techniques.)

end for
g ← −(δ −

∑M
j=1 Uj(

∑
i∈Kj R

p
i ),
∑
i∈Kj Pi −NPa)

T

else
g ← ∇h(λ, µ) where h(λ, µ) ≤ 0 is any one feasibility condition
that is violated. So h = −λ or h = −µ according to whether
−λ ≤ 0 or −µ ≤ 0 is violated.

end if
g̃ ← g

gTAg

x← x− 1
3
Ag̃

A = 4
3
(A− 2

3
Ag̃g̃TA)

until
√
gTAg < ε

return P = (PT
1 ,P

T
2 , . . . ,P

T
M)T

1) Small number of subcarriers per PU: In this case we
solve the dual of (1):

max
λ≥0,µ≥0

∑
j

hj(λ, µ) + λδ − µNPa (2)

where hj(λ, µ) is defined as

hj(λ, µ) = min
Pj≥0

−
∑
i∈Kj

Rsi − λUj

∑
i∈Kj

Rpi

+ µ
∑
i∈Kj

Pi

(3)
Problem as formulated in (2) is a two dimensional optimization
problem and can be solved using an ellipsoid method [10],
where at each iteration we solve M smaller dimensional
problems (3) (details in Table I). Here M refers to the number
of PUs.

2) Large number of subcarriers per PU: If we proceed as
in the previous case, we find that for this case (3) remains
an optimization problem in high dimensional space. So, the
direct application of dual decomposition to this case would
not achieve much decoupling. A more efficient approach is to
perform a primal decomposition before the dual decomposition
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step. We note that problem 1 is equivalent to:

maximize
t,T

M∑
j=1

φj(tj , Tj) (4a)

subject to
M∑
j=1

tj ≥ δ (4b)

M∑
j=1

Tj ≤ NPa (4c)

Tj ≥ 0 (4d)
aj ≤ tj ≤ bj ∀j ∈ {1, . . . ,M} (4e)

where φj is defined as follows:

φj(tj , Tj) = max
Pj≥0

∑
i∈Kj

Rsi (5a)

subject to rpj ≥ U
−1
j (tj) (5b)∑

i∈Kj

Pi ≤ Tj (5c)

Also note that, {aj , bj}Mj=1 are constants chosen to avoid
infeasibility of the subproblems to find φj . This is the primal
decomposition step. The problem as formulated in (4) is an op-
timization in t = (t1, t2, . . . , tM ) and T = (T1, T2, . . . , TM ).
The details of the solution algorithm have been presented
in Table II. Justifications for the concavity of φj(t,T), and
the convergence of the primal decomposition step have been
provided in Appendix D. To solve (5), we can use the dual
decomposition technique. The dual formulation of (5) is

maximize
λ≥0,µ≥0

minimize
Pj≥0

∑
i∈Kj

−Rsi + λ(−rpj + U
−1
j (tj))+

µ(
∑
i∈Kj

Pi − Tj)

Plugging in the value of rpj =
∑
i∈Kj R

p
i and re-writing it

we get the following formulation:

max
λ≥0,µ≥0

∑
i∈Kj

fi(Pi) + λU−1j (tj)− µTj (6)

fi(Pi) = min
Pi≥0

−Rsi − λR
p
i + µPi (7)

Hence the problem (6) can be solved by solving one-
dimensional optimization problems (7) for each subcarrier per
iteration. Note that the one-dimensional problem to find fi(Pi)
is a cubic polynomial root finding problem (details in appendix
B). Justification of the use of dual decomposition to solve a
primal problem in this case comes from the result in [11] that
the duality gap tends to 0 as the number of subcarriers →∞.

IV. SOME SPECIFIC CHOICES OF THE UTILITY FUNCTION

The discussion so far has assumed that Uj(x) is concave and
monotonically increasing. In this section we propose specific
utility functions (Uj(x) in Problem 1) and point out the nature
of the optimal solution we get. However, a system can use any
other utility function depending upon the application. Design

TABLE II
PRIMAL AND DUAL DECOMPOSITION FOR PROBLEM (4)

Initialize
x(∈ R2M×1) = 1

M
(δ, . . . (M − 2 times), δ,NPa, . . . (M −

2 times), NPa)

A =

(
IM (δ) 0

0 IM (NPa)

)
repeat

t = x(1 :M)
(x(i : j) refers to the sub-vector of x between ith and jth elements)
T = x(M + 1 : 2M)
if x lies in the feasible region then

for j = 1 to M do
[Pj, λj , µj ] ← argmin

Pj≥0
φj(tj , Tj)

(λj and µj are the dual variables for problem in (5))
(This has been solved by dual decomposition)

end for
g(∈ R2M×1)← ( λ1

U|
′
(r
p
1 )
, . . . , λM

UM
′
(r
p
M

)
,−µ1, . . . ,−µM )T

else
g ← ∇h(x) where h(x) ≤ 0 is any one feasibility condition that is
violated.

end if
g̃ ← g

gTAg

x← x− 1
2M+1

Ag̃

A = 4M2

4M2−1
(A− 2

2M+1
Ag̃g̃TA)

until
√
gTAg < ε

return P = (PT
1 ,P

T
2 , . . . ,P

T
M)T

of utility function for specific applications is outside the scope
of this paper.

A. Rate Loss Constraints (RLC)

In [8] a scheme was proposed to maximize the SU sum
rate subject to rate loss guarantees (equivalent to minimum
rate guarantees) to every PU.

maximize
P≥0

N∑
i=1

Rsi (8a)

subject to rpj ≥ r
p0
j ∀j ∈ J (8b)

N∑
i=1

Pi ≤ NPa (8c)

For the comparison of our scheme with RLC (8) we choose δ
in (1) equal to sum utility rate guarantee we get in the RLC
scheme :

δ =
∑
j∈J
Uj(rp0j ) (9)

For this choice of δ and for any choice of utility functions Uj
our scheme would always give SU sum rates higher than (or
equal to) those of the RLC scheme (8) since we are searching
over a larger search space. In other words, for the value of δ
given by (9), feasible region of SU power allocation defined by
RLC scheme is a subset of the feasible region of the proposed
scheme. This also implies that the proposed scheme may lead
to a violation of individual PU rate guarantees of the RLC
scheme.

Our formulation also provides a method to trade off in-
dividual PU guarantees for higher SU sum rates, and at the
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same time maintaining the net (total) utility guarantees at the
same level as in the original formulations in the literature.
Our formulation may in fact be shown to contain the RLC
formulation as a limiting case. To see this, define a subfamily
of utility functions, parametrized by α as follows:

Uαj (x) =

(
x
rp0j

)1−α

1− α
if α 6= 1 (10)

= log

(
x

rp0j

)
otherwise

By letting α→∞ in the problem as formulated in (1), we
see that the feasible region would converge towards that of
the RLC scheme (Please see Appendix C). Thus by choosing
a reasonable α one can trade off higher SU sum rates with
individual PU guarantees.

B. The maximization of the weighted sum rate

In this subsection we demonstrate how the solution to the
problem as formulated in (1) would maximize a weighted sum
of the primary and secondary user rates for a suitable choice
of utility functions. We consider following problem.

maximize
P≥0

∑
i∈I

Rsi + ωp
∑
i∈I

Rpi subject to
N∑
i=1

Pi ≤ NPa

(11a)

where ωp represents the weight given to the PU sum rate with
respect to unit weight of SU sum rate, which is same as rate
of every PU being equally weighted by ωp and unit weight
for rate of every SU.We now consider the problem dual to the
problem formulated in 1 with δ = δ0 and the utility function
chosen as Uj(x) = x. Then the dual problem is

maximize
λ≥0,µ≥0

minimize
P≥0

∑
i∈I
−Rsi + λ(−

∑
j∈J

(rpj ) + δ0)+

µ(
∑
i∈I

Pi −NPa)
(12)

Let the optimal value of this problem be achieved at some
power allocation with dual variables equal to (µ0, λ0). The
same power allocation would also solve the dual of the
following problem (using the definition of rpj ):

maximize
P≥0

∑
i∈I

Rsi +λ0
∑
i∈I

Rpi subject to
N∑
i=1

Pi ≤ NPa (13)

On comparing 11 and 13 we conclude that the weight ωp
is nothing but λ0. If we assume that duality gap is zero, then
we have shown that the proposed problem (with Uj(x) = x
and δ = δ0) also solves the weighted sum rate maximization
problem (11) with weight ωp = λ0. The assumption about the
duality gap being zero may be justified by a result, shown in
[11], that the duality gap for our problem → 0 as the number
of subcarriers → ∞. Thus by choosing an appropriate δ and

the utility function as Uj(x) = x, one can maximize weighted
sum rate for any weight. Weighted sum rate maximization
problem is relevant, for example, in determining the revenue
maximizing power allocation, given that for every ωp dollars
per unit rate the PUs pay, the SUs pay 1 dollar.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present numerical results to study the
performance of the proposed power allocation scheme (1).
We have chosen the utility functions to be members of the
subfamily Uαj as defined in (10). We consider the case in
Section III-B2 since the case in Section III-B1 would lead
to larger and possibly unrepresentative gains with respect
to existing schemes (e.g. in [8]). We thus consider a total
of 128 subcarriers (N = 128) and 2 PUs (M = 2)
with equal number of subcarries allocated to both the PUs
(K1 = {1, 2, ..., 64},K2 = {65, 66, ..., 128}). Per subcarrier
PU transmit power budget has been assumed to be 10 dB
(Ci = 10). The channel gains have been assumed to be
Rayleigh distributed, thus the g parameters (power gains)
are exponentially distributed. E(gpp) = E(gss) = 1 and
E(gps) = E(gsp) = 0.1 where E(x) refers to the expectation
of x. The noise term N0 has been taken to be 1. Every plot
has been averaged over 150 independent channel realizations.

We have also compared the proposed scheme with the RLC
scheme [8]. For RLC scheme the maximum allowable rate
losses have been chosen to be 5% for PU 1 and 25% for PU
2. This would give us value of rp0j for RLC scheme (8) as
well as value of δ (9) and Uαj (10).

Figure 2 shows the variation of SU sum rates with SU
average per subcarrier power budget. Three of the curves
correspond to proposed schemes with different values of Uαj
with α = 0, 2, 8. The fourth curve corresponds to RLC
scheme [8]. Here we note that the SU sum rates achieved with
proposed schemes are higher (Section IV-A) than those of the
RLC scheme. In general the more strict the rate constraints
on some user(s), the more pronounced will be the differences
between the rate curves from the different schemes. Thus, for
example Rate Loss guarantees of 15% to each user would
correspond to less pronounced differences in the Figure 2.

In Figure 3, we plot the rates of individual PU for the same
four schemes (as described above) as a function of SU average
per subcarrier power budget. We observe that the proposed
schemes do not provide individual PU rate guarantee provided
in the RLC scheme. Thus higher SU rates in the proposed
scheme come at the cost of individual PU guarantees of RLC
scheme (as discussed in Section IV-A). However, the sum of
utility of rates guarantee of the proposed scheme remain same
as that of the RLC scheme (as given by eqn. (9)).

Another interesting observation which can be made from
Figure 2 and Figure 3 is that the value of α can be used to
trade-off higher SU sum rates with guarantees on individual
PU rates. We observe that as α increases individual PU rate
approaches rp0j (Section IV-A) but SU sum rates decrease. In
other words, α can be used as a tuning parameter. For α = 0,
the PU guarantees are not strong, but SU sum rates are higher,
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Fig. 3. Guarantees for individual Primary Users with different utility
functions in Problem as formulated in (1)

where as for α = 8, SU sum rates are lower and individual
PU rates are closer to rp0j .

In Figure 4 we plot weighted sum rates (Section IV-B)
achieved as a function of SU Power Budget for two schemes:
one with direct maximization of weighted sum rate (11) and
the other with the proposed scheme (1) with U(x) = x.
To compare the two schemes, ωp was fixed at 1.5 and∑
i∈I R

p
i (= δ) was evaluated by using the solution to the

problem as formulated in (11). Using the obtained δ and
U(x) = x, the proposed problem (1) was solved. We note that
the curves are indistinguishable, suggesting that the duality gap
is small for the problem parameters considered. The plots thus
bear out the claims made in Section IV-B, about the relation
between the solutions of the problems as formulated in (1)
and (11).

VI. CONCLUSION

A family of power allocation schemes for spectrum sharing
OFDM cognitive radio networks has been presented. Through
numerical and analytical investigations, it has been established
that the family allows a tradeoff between higher SU sum rates
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Fig. 4. Comparison of weighted sum rates obtained from Problem as
formulated in (11) (direct maximization) with those from Problem 1

and individual PU rate loss guarantees. One recent power
allocation problem formulation (Rate Loss Constraints) has
been shown to be a limiting case of the family described
here. A specific member has also been shown to maximize
the weighted sum rate of all users.

APPENDIX

A. Primal and Dual decomposition

We use decomposition techniques in conjunction with the
ellipsoid algorithm [10]. The ellipsoid algorithm works by
localizing the solution point in an ellipsoid. Assuming a
convex objective function, the algorithm locates a hyperplane
separating the feasible region from non-feasible region, and
passing through the center of the ellipsoid. This hyperplane
can be computed by finding out the subgradient to the ob-
jective function at the center. It then finds out the minimum
volume ellipsoid containing the feasible region. The algorithm
proceeds this way until the volume of the localizing ellipsoid
reduces below a threshold.

1) Subgradient expression for primal decomposition meth-
ods: Here we document subgradients of functions like the
following

φ(a) =minimize
x

f(x)

subject to g(x) ≤ a
(14)

We claim that the subgradient is −λ where λ is the dual
variable corresponding to the optimal point. The proof, which
may be found in standard references (e.g. [9]), is omitted due
to space constraints.

2) Subgradient expressions for dual decomposition meth-
ods: Consider the dual function for the problem above

h(λ) = minimize
x

f(x) + λ(g(x)− a)

We claim that the subgradient to the negative of the function
(which is convex) is g(x1)−a, where x1 is the point where the
dual function h(λ) is minimized. The proof is again omitted
due to space constraints.
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B. One-Dimensional Problem Specification

We present here the form of the one dimensional subprob-
lem referred to in the problem as formulated in (7). This can
be rewritten as

minimize
P≥0

− log

(
1 +

gissPi
gispCi +N0

)
−λ log

(
1 +

gippCi

gipsPi +N0

)
+ µPi

(15)

Since this is a one dimensional problem the solution is either
at P = 0 or at an unconstrained extremum. The necessary first
order condition that the latter needs to satisfy is given by

giss
gispCi +N0 + gissPi

−
λgippg

i
psCi

(gipsPi +N0)2 + (gipsPi +N0)gippCi

= µN log 2
(16)

This may be rewritten as a cubic equation for which analytical
closed form solutions exist.

C. Convergence to rate loss guarantees

Consider any point R = (rp1 , r
p
2 , . . . , r

p
M ) on the boundary

of the feasible region M∑
i=1

(
rpi
rp0i

)1−α

≤ c2


Here rp0i are constants (with respect to α) for all i (and c2 ≥
1). Since all the terms in the LHS are positive, we have(

min
i

rpi
rp0i

)1−α

≤ c2

Since α > 1 we get
(
mini

rpi
rp0i

)
≥ c

2
1−α As α→∞, we get(

min
i

rpi
rp0i

)
≥ 1

But this is nothing but the RLC constraint. Here rp0i may be
interpreted as the rate guaranteed to the ith primary user.

D. Convergence guarantee for primal decomposition step

The primal decomposition step (4) used to solve problem
formulated in (1) is guaranteed to converge if φj(t,T), as
defined in (5), is concave in t,T. We show how time-sharing
property for OFDM systems together with the concavity of
the utility functions would guarantee the concavity of φ. Let
us assume that the power allocation PA gives the value of
φj(x

A, yA) and PB of φj(xB , yB). Also define Pλ as the
vector obtained by “frequency sharing [11]” λ fraction of PA

and (1 − λ) fraction of PB . If we assume that time sharing
property holds, Pλ satisfies the constraints as defined in (4)
for φj(λxA + (1− λ)xB , λyA + (1− λ)yB) :∑
i∈Kj

Pλi = λ
∑
i∈Kj

PAi + (1− λ)
∑
i∈Kj

PBi ≤ λyA + (1− λ)yB

Again using time sharing property and concavity of Uj (or
convexity of U−1j ) we get:

rpj (P
λ) = λrpj (P

A) + (1− λ)rpj (P
B)

≥ λU−1j (xA) + (1− λ)U−1j (xB)

≥ U−1j (λxA + (1− λ)xB)

Also note that

φj(λx
A + (1− λ)xB , λyA + (1− λ)yB)

≥
∑
i∈Kj

Rsi (P
λ
i )

= λ
∑
i∈Kj

Rsi (P
A
i ) + (1− λ)

∑
i∈Kj

Rsi (P
B
i )

= λφj(x
A, yA) + (1− λ)φj(xB , yB)

which gives us the required concavity:

φj(λx
A + (1− λ)xB , λyA + (1− λ)yB)

≥ λφj(xA, yA) + (1− λ)φj(xB , yB)
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