
PARALLEL RECURSIVE LEAST SQUARES ALGORITHMS
FOR ADAPTIVE VOLTERRk FILTERS

Ajit K. Chaturvedi and Govind Sharma

Department of Electrical Engineering
Indian Institute of Technology

Kanpur - 208016 INDIA

AOS?'RAC?' - The paper presents a parallel but
approximate krersion of the exact recursive least squares
dgorithm. This algorithm, which we call the Parallel
&cursive Least Sqcares (PRLS) algorithm has been
applied to adaptive Volterra filters. I t has advantages of
reduced cost per iteration and substantial reduction in
waputational time per iteration if more than one
processor is used. The algorithm has the potential of
providing a flexible trade off in terms of rate of
cunvergence a i d computational cost.

INTRODUCTION

The optimam filter in any given situation is generally
nonlinear. The Volterra filter, due to its ability to
rcprcsent a large subset of the nonlinearities possible, has
immense potential in the realization of nonlinear filters.
Adaptive &Crete Volterra filters are useful in areas like
nonlinear system modeling and identification,channel
equalization, adaptive echo and noise cancellation etc. .
Previous contributions for e.g. [l -3) have succeeded in
enhancing our understanding of adaptive Volterra filters.
However i t appears that we still have to cover some
distance before these adaptive filters can become tools of
cmnmon use.
In [a] we have derived a Recursive Least Squares (RLS)
algorithm and its fast version (FRLS) both of which are
applicable to Volterra filters of any degree.and have rapid
convergence compared to LMS algorithms.
In this paper the approach we have followed in [4] is
carried forward. However [4] is not a prerequisite to
understand this paper The m a n contribution of this paper
lies in giving a parallel version of the RLS algorithm for
Vdter i2 filters of any de ree. The Parallel RLS algorithm
(PRLS) provides a high cfegree of parallelism,due to which
t h e time per iteration can be reduced drastically and it
becomes possible to operate Volterra filters in real time, i f
we are allowed to have more than one processor. The time
per iteration and the degree of parallelism possible depend
upon the filter structure under consideration. The
coirqitatiunal cost per iteration of the fast version of PRLS
i.e. FPIZLS 1s less than that of the FRLS algorithm derived
27: [i.,. independent of whether we ezploit the parallelism or
not I ! C S I ~ P S , unlike FKLS there is no need to invert any
matrix or create rescue devices in the PRLS. Simulations
have shown that the rate of convergence of PR.LS is much
hetier than t.he LMS although not as good as that of RLS
or FRIS of [-I].
Another usefu! virtu!: of PRLS comes out when we apply i t

to linear filters. Apart from providin us with an
algorithm, the cost of which is the least orall the available
algorithms of the RLS family, i t provides us with a sort of
'bridge' valid for the nonlinear case also which connects

later) has practical utility and gives an insight which
improues our current understanding of the relationship
between the LMS and the RLS family of algorithms. In the
sequel lower case letters have been used for scdars, uppcr
case letters for vectors and bold upper case for matrices

the 1.M L to the RLS algorithm. This dridge' (ezplained

THE PRLS ALGORITHM
The Volterra filter is defined as :

d(n) = h + E a(j)x(n-j) + .z b(j,k)x(n-j)x(n-k) +... ,. \ 0 j x 0 J > k=O

where d(n) is the desired output sequence and
input sequence. h a(j), b(j,k) etc. are the

(1) can be written as d n) =

T X (E) = [I, x(n) ,...., x(n-p), x'(n) ,...., x(n-q)x(n-r) ,......]
W = [h , a(0) ,..., a(p), b(0,O) ,...., b(q,r) ,.....]

In X(n) above p is the order of the first degree , (q,r) is the
order of the second degree and so on. Within any
particdar degree, terms which are permutations of each
other are clubbed together. To find the coefficient vector
W we follow the usual approach of minimising the sum of
squared errors given by

t (n) =.E A " - ' e'(i)

0 '
which have to be determined.

coefficient vector and 1 (U) is
N is the order of the filter.

T

n .
[Here e(i) = d(i) - y(i)]

1 = 0

Here d(i) is the desired sequence and A is the forgetting
factor to account for nonstationarity. The optimum value
of W(n) is given by the normal equation:

R(n)W(n) = P1(n) (2)

where R(n) = I R(n-i) + X nfX"'(n)
P,(n) = A Pl(n-l) + 6 (n)X(n)

Win) s l k l d approach W as n increases (fGr a usefxl
algoiithm)

W t first partitisn X(n) into difierent kincis c-f
~ ~ ~ ~ d i w a r i t i e s . Two nonlinear terms arc? defined to be of

1247

0-7803-0593-0/92 $3.00 1992 IEEE

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on September 30, 2009 at 03:39 from IEEE Xplore. Restrictions apply.

lhe same kind if they differ only by some delay. Since
x'(n) and x(n)x n-1) are not time delayed versions of each
other wc treat t h exii a different kind of noillinearities even
thongh both are of the second de ree.
Now assume d(n) = d (n) + dJn7 + d (n) + + dr(n)
where r is the total number of different kinds of
nonlinearities in the filter structure under consideration.
d$n) represents that fraction of the desired signal d(n)
that comes from the i th kind of nonlinearity. In a given
situation we are given only d(n) and we do not know the
different di(n). Assume for the time being that we know
the different di(n). Then we can implement the noidinear
filtzr as r parallel filters each operating independent of all
:he others It will be equivalent to sayin that we have
broken an Nth order filter into r smalfer filters each
aperating on the same input sequence but using different
desired sequences. Each will have its own error sequence

CUII::~O~ the filters will operate independent of each other.
In ?his way not only tho filters can be operated in parallel
but the overall computational cost will also come down as
now we will be operating on smaller order filters compared
to a single filter of higher order. I t is worthwhile to note
that the use of di(n) Bes in computing ei(n) [the error of
the ith filter],which in turn is used to update the weght
vectors of the ith filter. If in place of di(n) we are given
ei(nj i t will as well serve our purpose.
'To circumvent the problem of not knowing d.(n) or e.(.)
we do the following:
Treat all the r filters as separate entities. The output of
the overall filter is computed by summing the outputs of
all the individual filters. Subtract this from d(n) to
compute e(n). Now update all the r filters using this e(n)
and their respective input and weight vectors. Instead of
running the filters with their e.(.) we are running all of
them with e(.). We have to make this approximation due
to our ignxance of both the d.(n)s and the e,(n)s.
In effect this implies that each filter assumes all the other
filters (rxcept itself) t o have converged to their true
values.
Mathemarically, this approximation implies that the
following equality hoids :

3

mi{ _- <;eight vectors. Because only the input sequence is

1 1

1

1 1

r T
d.(n) = d(n) - .E W . (n)X.(n) 1 5 i 5 r

1 = I J J
j # i

' lhe above equality is true ONLY when W,(n) [weight
vei.,ti)r of the jth filter) for all j (except i) ha i e converged
to their true values. Thus for each of the r filters the
approximation made is different although essentially it is
of the same nature
It appears paradoxlcal that when we are updating the ith
b::er dt time n we are assuming that d l the other filtezs
have converged to their true values at time (n-1) and
when we are updating the jth filter (j#i) we are assuming
all Elters (exc1:iding j) including the ith filter have
ccinverged to their tiue values at time (n-1). However? a
litt!e reflection shows that i t is nothing more than a
cciiiverient and useful approxi mation.
The error due tG the approximaticn can bc modeled as

corleiated wise which is addcd to each e.(n) 1 t o produce
ejn) and hence instead uf e,(.) we are using e(.).
.'mother way t o look at this approximation is that since we
uue igiioring the couplings between the parallel filters by
treating then; as separate entities, we are sort of
cclinpensatin i t by using e(n) which not only depends on
the output of all the filters but also on d(n), the sequence
which the overall filter IS trying to produce.
As a simple example let there be a Volterra filter defined
by the fdlowing relation :

I

d(n) = b(0,0)x2(n) + b(l,l)x2(n-1) + b(O,l)x(n)x(n-1) + b(1.2\x(n-l)x(n-2\
\ I , \ r

Accoiding to our definition, this consists o! twd kinds of
noniinearities. So we will operate two filters in parallel.
The output of the PRLS filter is the sum of the outputs of
the l ~ o filters. The PRLS for the case when p 5lters are
opeiaiing in arallel is as follows.
Initia!ize W,[n) and Pi(.) for i=l ,p

.(n) = d(n) - J = I W?(n)Xj(n) J
Do fcr ~ = l , p
ki(n) = A--'Pi(n--l)Xi(n) [1+ A-'XT(n)Pi(n-l)Xi(n)]-l
W,(n) = Wi(n-l) t lci(n)a(n)
Pi(n) = X-lFi(n-i) - X-'ki(n)Xi T (n)Pi(n-1)

wherz a denotes the a priori error while W,P,X,k and J.
have the usual meaning.
Exploiting the serial shifting of data, inherent in each of
the filters because of the way they are defined, by using
the Fast RLS algorithm derived for linear filters in [5] we
have derived the fast version of PRLS i.e. FPRLS. I t is
quite straightforward and we are not giving the algorithm
here.
The cost of FPRLS is O(N) while that of FRLS is O(rNj
where I is the number of nonlinearities and the cost of

operating in parallel and a is the time taken for one
operation.
We have rlin PRLS and FPRLS for a large variety of
Vclterra filters. In all of the near!y fifty examples done
they converged.
The rate of convergence and the point around which the
algorithm walks after it has stabilised are functions of the
filter structure. As an example we have given the
log [e2(nj] vs. the no. of iterations of PR.LS in Fig. 1 for
the case when
qz) =

10

hjO,l)x(n)x(n-l) + b(1,2)x(n-l)x(n-2) +
b(2:3)x(n-2)x(n-3) + d(0,0,0,0)~~(11) +
d j i ,i.171)x4(n-1' + d(2,2,2,2)~*(11-2)

[b and G' denote the coefficients]
HovFever no examp e of PICLS should be treated as
rep::tsl?iitative since the convergence and steady state error
art' dependent on the filter structure.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on September 30, 2009 at 03:39 from IEEE Xplore. Restrictions apply.

LINEAR FILTERS
Apart from the advantages of parallelism, reduced time
per iteration and the lowest computational cost amongst
the family of recursive algorithms for linear filters when
PRLS is used for linear filters); a useful feature of 6RLS
can be explained using the linear filters as an example. If
we have a linear filter of order N then, following the
method explained above we can operate it as N parallel
Wters each of length 1. We can as well allow the filters to
be of length 2. In that case we will have only N/2 parallel
filters. Thus depending on the value of N we have a
number of different possibilities in which in which the
filter can be configured.
In terms of cost and convergence there is a steep difference
between LMS and RLS. However PRLS provides with a
contin-Jous gradation from one end to the other. If the
filter order is 4, PRLS gives rise to 15 possible
configilrations. If we use 4 filters in parallel the behaviour
of the dgorithm is nearer to LMS (it can be shown using
the update equations) while if we use only 1 filter PRLS is
the same as RLS. In between as the number of parallel
fiters come down the cost rises while the convergence
improves. Thus there is a step by step increase in the cost
and improvement in the performance as we go from one
end to the other. This is why it can be said to have
provided a 'bridge' from the LMS to RLS. Depending on
the requirement and the affordable cost one can chose the
appropriate configuration of PRLS. If LMS is not suitable
there is no need to jump to RLS directly. When chosin a
confi uration of PRLS one should take care to cfub
toget%er those terms, in a particular branch of the filter,
which have significant correlation amongst themselves.
This will help in optimising the cost and convergence
together. In fact if vie do not chose the terms in a branch

according to this criterion we may get a situation in which
the performance of a confi urstion s i t h higher cost is
inferior to that of a configuration- with lower cost.
Obviously this is undesirable.

CONCLUSION

Even though the fraction of the desired signal that is
coming from a particular branch of a Volterra filter is not
known but by making an approximation in the error signal
we have been able to simplify considerably the adaptation
of an adaptive Volterra filter. This has provided significant
advantages in cost with a little sacrifice in performance.

REFERENCES

11 Koh T. and Powers E. J.,"Second Order Volterra
kiltering and its Application to Nonlinear System
Identification", IEEE Trans. ASSP -33 No.6 Dec.'85 pp.

C. E. e t al,"A Second Order Adaptive Volterra
Rapid Convergence", IEEE Trans. ASSP -Ss

no.9 Sept.'87 pp. 1259-63.
[3] Duvaut P.,"A Unifying and General Approach To
Adaptive Linear -Quadratic Discrete Time Volterra
Filtering", Proc. IEEE ICASSP 1989 pp. 1166-70.
4 Chaturvedi Ajit K. and Sharma Govind ,"RLS and kh ST RLS Algorithms for Adaptive Nonlinear Volterra

Filters of any Degree", Proc. International Cmference on
Information and Systems, held at HANGZHOU,
CHINA during Oct. 9 - 11 ,1991.
[5) Ljung L., Morf M. and Falconer D.,"Fast Calculation
o Gain Matrices for Recursive Estimation Schemes", Int
J . Control, Vol. 27,No. 1, Jan.'78 pp. 1-19.

I ' 1

1249

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on September 30, 2009 at 03:39 from IEEE Xplore. Restrictions apply.

