
PARALLEL RECURSIVE LEAST SQUARES ALGORITHMS 
FOR ADAPTIVE VOLTERRk FILTERS 

Ajit K. Chaturvedi and Govind Sharma 

Department of Electrical Engineering 
Indian Institute of Technology 

Kanpur - 208016 INDIA 

AOS?'RAC?' - The paper presents a parallel but 
approximate krersion of the exact recursive least squares 
dgorithm. This algorithm, which we call the Parallel 
&cursive Least Sqcares (PRLS) algorithm has been 
applied to adaptive Volterra filters. I t  has advantages of 
reduced cost per iteration and substantial reduction in 
waputational time per iteration if more than one 
processor is used. The algorithm has the potential of 
providing a flexible trade off in terms of rate of 
cunvergence a i d  computational cost. 

INTRODUCTION 

The optimam filter in any given situation is generally 
nonlinear. The Volterra filter, due to  its ability to 
rcprcsent a large subset of the nonlinearities possible, has 
immense potential in the realization of nonlinear filters. 
Adaptive &Crete Volterra filters are useful in areas like 
nonlinear system modeling and identification,channel 
equalization, adaptive echo and noise cancellation etc. . 
Previous contributions for e.g. [l -3) have succeeded in 
enhancing our understanding of adaptive Volterra filters. 
However i t  appears that we still have to cover some 
distance before these adaptive filters can become tools of 
cmnmon use. 
In [a] we have derived a Recursive Least Squares (RLS) 
algorithm and its fast version (FRLS) both of which are 
applicable to Volterra filters of any degree.and have rapid 
convergence compared to LMS algorithms. 
In this paper the approach we have followed in [4] is 
carried forward. However [4] is not a prerequisite to 
understand this paper The m a n  contribution of this paper 
lies in giving a parallel version of the RLS algorithm for 
Vdter i2  filters of any de ree. The Parallel RLS algorithm 
(PRLS) provides a high cfegree of parallelism,due to which 
t h e  time per iteration can be reduced drastically and it 
becomes possible to operate Volterra filters in real time, i f  
we are allowed to have more than one processor. The time 
per iteration and the degree of parallelism possible depend 
upon the filter structure under consideration. The 
coirqitatiunal cost per iteration of the fast version of PRLS 
i.e.  FPIZLS 1s less than that of the FRLS algorithm derived 
27: [i.,. independent of whether we ezploit the parallelism or 
not I ! C S I ~ P S ,  unlike FKLS there is no need to invert any 
matrix or create rescue devices in the PRLS. Simulations 
have shown that the rate of convergence of PR.LS is much 
hetier than t.he LMS although not as good as that of RLS 
or FRIS of [-I]. 
Another usefu! virtu!: of PRLS comes out when we apply i t  

to linear filters. Apart from providin us with an  
algorithm, the cost of which is the least orall the available 
algorithms of the RLS family, i t  provides us with a sort of 
'bridge' valid for the nonlinear case also which connects 

later) has practical utility and gives an insight which 
improues our current understanding of the relationship 
between the LMS and the RLS family of algorithms. In the 
sequel lower case letters have been used for scdars, uppcr 
case letters for vectors and bold upper case for matrices 

the 1.M L to the RLS algorithm. This dridge' (ezplained 

THE PRLS ALGORITHM 
The Volterra filter is defined as : 

d(n) = h + E a(j)x(n-j) + .z b(j,k)x(n-j)x(n-k) +... ,. \ 0 j x 0  J > k=O 

where d(n) is the desired output sequence and 
input sequence. h a(j), b(j,k) etc. are the 

(1) can be written as d n) = 

T X (E) = [I, x(n) ,...., x(n-p), x'(n) ,...., x(n-q)x(n-r) ,...... ] 
W = [h , a(0) ,..., a(p), b(0,O) ,...., b(q,r) ,..... ] 

In X(n) above p is the order of the first degree , (q,r) is the 
order of the second degree and so on. Within any 
particdar degree, terms which are permutations of each 
other are clubbed together. To find the coefficient vector 
W we follow the usual approach of minimising the sum of 
squared errors given by 

t (n )  =.E A " - '  e'(i) 

0 '  
which have to be determined. 

coefficient vector and 1 (U) is 
N is the order of the filter. 

T 

n .  
[ Here e(i) = d(i) - y(i) ] 

1 = 0  

Here d(i) is the desired sequence and A is the forgetting 
factor to account for nonstationarity. The optimum value 
of W(n) is given by the normal equation: 

R(n)W(n) = P1(n) (2) 

where R(n) = I R(n-i) + X nfX"'(n) 
P,(n) = A Pl(n-l) + 6 (n)X(n) 

Win)  s l k l d  approach W as n increases (fGr a usefxl 
algoiithm) 

W t  first partitisn X(n) into difierent kincis c-f 
~ ~ ~ ~ d i w a r i t i e s .  Two nonlinear terms arc? defined to  be of 
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lhe same kind if they differ only by some delay. Since 
x'(n) and x(n)x n-1) are not time delayed versions of each 
other wc treat t h exii a different kind of noillinearities even 
thongh both are of the second de ree. 
Now assume d(n) = d (n) + dJn7 + d (n) + ..... + dr(n) 
where r is the total number of different kinds of 
nonlinearities in the filter structure under consideration. 
d$n) represents that  fraction of the desired signal d(n) 
that comes from the i th kind of nonlinearity. In a given 
situation we are given only d(n) and we do not know the 
different di(n). Assume for the time being that we know 
the different di(n). Then we can implement the noidinear 
filtzr as r parallel filters each operating independent of all 
:he others It will be equivalent to sayin that we have 
broken an Nth order filter into r smalfer filters each 
aperating on the same input sequence but using different 
desired sequences. Each will have its own error sequence 

CUII::~O~ the filters will operate independent of each other. 
In ?his way not only tho filters can be operated in parallel 
but the overall computational cost will also come down as 
now we will be operating on smaller order filters compared 
to a single filter of higher order. I t  is worthwhile to note 
that the use of di(n) Bes in computing ei(n) [the error of 
the ith filter],which in turn is used to update the weght 
vectors of the ith filter. If in place of di(n) we are given 
ei(nj i t  will as well serve our purpose. 
'To circumvent the problem of not knowing d.(n) or e.(.) 
we do the following: 
Treat all the r filters as separate entities. The output of 
the overall filter is computed by summing the outputs of 
all the individual filters. Subtract this from d(n) to 
compute e(n). Now update all the r filters using this e(n) 
and their respective input and weight vectors. Instead of 
running the filters with their e.(.) we are running all of 
them with e(.). We have to make this approximation due 
to our ignxance of both the d.(n)s and the e,(n)s. 
In effect this implies that  each filter assumes all the other 
filters (rxcept itself) t o  have converged to their true 
values. 
Mathemarically, this approximation implies that the 
following equality hoids : 

3 

mi{ _- <;eight vectors. Because only the input sequence is 

1 1 

1 

1 1 

r T  
d.(n) = d(n) - .E W .  (n)X.(n) 1 5 i 5 r 

1 = I  J J 
j # i  

' lhe above equality is true ONLY when W,(n) [weight 
vei.,ti)r of the jth filter) for all j (except i) ha i e  converged 
to their true values. Thus for each of the r filters the 
approximation made is different although essentially it is 
of the same nature 
It appears paradoxlcal that when we are updating the ith 
b::er dt time n we are assuming that d l  the other filtezs 
have converged to their true values at  time (n-1) and 
when we are updating the jth filter (j#i) we are assuming 
all Elters (exc1:iding j) including the ith filter have 
ccinverged to their tiue values at  time (n-1). However? a 
litt!e reflection shows that i t  is nothing more than a 
cciiiverient and useful approxi mation. 
The error due tG the approximaticn can bc modeled as 

corleiated wise which is addcd to each e.(n) 1 t o  produce 
ejn) and hence instead uf e,(.) we are using e(.). 
.'mother way t o  look at this approximation is that  since we 
uue igiioring the couplings between the parallel filters by 
treating then; as separate entities, we are sort of 
cclinpensatin i t  by using e(n) which not only depends on 
the output of all the filters but also on d(n), the sequence 
which the overall filter IS trying to  produce. 
As a simple example let there be a Volterra filter defined 
by the fdlowing relation : 

I 

d(n) = b(0,0)x2(n) + b(l,l)x2(n-1) + b(O,l)x(n)x(n-1) + b(1.2\x(n-l)x(n-2\ 
\ I , \  r 

Accoiding to our definition, this consists o! twd kinds of 
noniinearities. So we will operate two filters in parallel. 
The output of the PRLS filter is the sum of the outputs of 
the l ~ o  filters. The PRLS for the case when p 5lters are 
opeiaiing in arallel is as follows. 
Initia!ize W,[n) and Pi(.) for i=l ,p  

.(n) = d(n) - J = I  W?(n)Xj(n) J 
Do fcr ~ = l , p  
ki(n) = A--'Pi(n--l)Xi(n) [1+ A-'XT(n)Pi(n-l)Xi(n)]-l 
W,(n) = Wi(n-l) t lci(n)a(n) 
Pi(n) = X-lFi(n-i) - X-'ki(n)Xi T (n)Pi(n-1) 

wherz a denotes the a priori error while W,P,X,k and J. 
have the usual meaning. 
Exploiting the serial shifting of data, inherent in each of 
the filters because of the way they are defined, by using 
the Fast RLS algorithm derived for linear filters in [5] we 
have derived the fast version of PRLS i.e. FPRLS. I t  is 
quite straightforward and we are not giving the algorithm 
here. 
The cost of FPRLS is O(N) while that of FRLS is O(rNj 
where I is the number of nonlinearities and the cost of 

operating in parallel and a is the time taken for one 
operation. 
We have rlin PRLS and FPRLS for a large variety of 
Vclterra filters. In all of the near!y fifty examples done 
they converged. 
The rate of convergence and the point around which the 
algorithm walks after it has stabilised are functions of the 
filter structure. As an example we have given the 
log [e2(nj] vs. the no. of iterations of PR.LS in Fig. 1 for 
the case when 
qz) = 

10 

hjO,l)x(n)x(n-l) + b( 1,2)x(n-l)x(n-2) + 
b(2:3)x(n-2)x(n-3) + d(0,0,0,0)~~(11) + 
d j i  ,i.171)x4(n-1' + d(2,2,2,2)~*(11-2) 

[b and G' denote the coefficients] 
HovFever no examp e of PICLS should be treated as 
rep::tsl?iitative since the convergence and steady state error 
art' dependent on the filter structure. 
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LINEAR FILTERS 
Apart from the advantages of parallelism, reduced time 
per iteration and the lowest computational cost amongst 
the family of recursive algorithms for linear filters when 
PRLS is used for linear filters); a useful feature of 6RLS 
can be explained using the linear filters as an example. If 
we have a linear filter of order N then, following the 
method explained above we can operate it as N parallel 
Wters each of length 1. We can as well allow the filters to  
be of length 2. In that case we will have only N/2 parallel 
filters. Thus depending on the value of N we have a 
number of different possibilities in which in which the 
filter can be configured. 
In terms of cost and convergence there is a steep difference 
between LMS and RLS. However PRLS provides with a 
contin-Jous gradation from one end to the other. If the 
filter order is 4, PRLS gives rise to 15 possible 
configilrations. If we use 4 filters in parallel the behaviour 
of the dgorithm is nearer to LMS (it can be shown using 
the update equations) while if we use only 1 filter PRLS is 
the same as RLS. In between as the number of parallel 
fiters come down the cost rises while the convergence 
improves. Thus there is a step by step increase in the cost 
and improvement in the performance as we go from one 
end to the other. This is why it can be said to have 
provided a 'bridge' from the LMS to RLS. Depending on 
the requirement and the affordable cost one can chose the 
appropriate configuration of PRLS. If LMS is not suitable 
there is no need to jump to RLS directly. When chosin a 
confi uration of PRLS one should take care to cfub 
toget%er those terms, in a particular branch of the filter, 
which have significant correlation amongst themselves. 
This will help in optimising the cost and convergence 
together. In fact if vie do not chose the terms in a branch 

according to this criterion we may get a situation in which 
the performance of a confi urstion s i t h  higher cost is 
inferior to that of a configuration- with lower cost. 
Obviously this is undesirable. 

CONCLUSION 

Even though the fraction of the desired signal that is 
coming from a particular branch of a Volterra filter is not 
known but by making an approximation in the error signal 
we have been able to simplify considerably the adaptation 
of an adaptive Volterra filter. This has provided significant 
advantages in cost with a little sacrifice in performance. 
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