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Abstract—We present two Maximum Likelihood (ML) based
estimators for Non-Data-Aided (NDA) symbol timing recovery
in MIMO systems. These estimators are based on the classical
Unconditional ML and the Stochastic ML (SML) methods. The
proposed estimators utilize information about the particular
space-time code used and give performance comparable to data
aided estimators, though for a relatively higher complexity. An
approximate version of the SML estimator which requires lower
implementation complexity is also presented. The loss in SNR
due to timing estimation error is also analyzed.

I. INTRODUCTION

Wireless communication systems employing multiple an-
tennas promise vastly increased data rates compared to single
antenna systems. However, in order to fully utilize the potential
of these Multiple input/Multiple output (MIMO) systems, esti-
mation of symbol timing is of crucial importance. Symbol tim-
ing estimation may be done either through Data Aided (DA)
or Non-Data Aided (NDA) methods. The DA methods require
training sequences to be sent from the transmit antennas, to
aid the receiver in estimating the timing error. While DA
algorithms achieve good performance, transmission of training
sequences contributes to overheads and reduces overall data
rate. Further, the receiver needs to know the starting point
of the training sequences and hence frame synchronization is
required even before symbol timing can be estimated, thus
further complicating the receiver.

NDA algorithms work by extracting the timing estimate
from the received signal without using any training sequence.
Since NDA methods usually make use of second order statis-
tics, they require longer observation lengths and are compu-
tationally intensive. However they provide several benefits,
thus data rate is not compromised and the need for frame
synchronization at the physical layer is obviated. Further, if
the receiver is resourceful (eg. a base station), NDA methods
allow us to trade-off receiver complexity with the performance
of estimator simply by changing the observation length and
without compromising data rate, unlike DA estimators. These
factors have contributed to the popularity of NDA schemes
and there has been considerable research for NDA methods in
single antenna systems [1, and references therein]. However,
in MIMO systems research effort is mainly focused on DA
methods as in [2], [3], which rely upon orthogonal training
sequences. The NDA problem is more difficult because the
received signals are not orthogonal.

An NDA timing estimator for MIMO systems was first
proposed in [4]. It employed a Conditional ML based method

and was developed for a general case assuming no prior
information about the space time code used. In this paper,
we show that for a class of space time codes known as the
Linear Dispersive Codes, it is possible to separate out the
code matrix from the unknown parameters and hence obtain
better performance. Since popular Orthogonal Space Time
Block Codes (OSTBC) and Vertical Bell Labs Space-Time
(V-BLAST), among many others, are simply special cases
of LDC codes, the proposed schemes are applicable to a
variety of scenarios. These schemes are based on the classical
Unconditional Maximum Likelihood (UML) and Stochastic
Maximum Likelihood (SML) estimation techniques. We show
that, as expected, the proposed SML estimator performs better
than the Conditional ML (CML) estimator of [4].

We also present a low complexity approximation to the
SML algorithm. Finally we derive an approximate but simple
expression for the loss in SNR due to timing errors and present
guidelines for choosing the observation length given the SNR
loss that can be tolerated.

The remainder of the paper is organized as follows: Section
II presents the notations and the system model used. Section III
presents the low-SNR UML and SML estimators. Section IV
gives the Cramer Rao Bound and the approximate version of
SML is presented in Section V. We analyze the SNR loss due
to timing error in Section VI. Section VII gives the simulation
results and a discussion of the trade-off parameters involved in
the estimation process. A comparison with ML DA estimator
is also provided. Finally we conclude in Section VIII.

II. SYSTEM MODEL

We consider a Space Time Coded Modulation based modem
containing N transmit and M receive antennas. Assuming a
quasi-static (block fading) channel, the received signal at each
of the M receivers is given by

rj(t) =

√
Es

N

N∑
i=1

hij

∑
n

ci(n)p(t − nT − ε0T ) + ηj(t) (1)

where j = 1, 2 . . . M ; Es/N is the symbol energy; T is
the symbol period; hijs are independent channel gains corre-
sponding to the channel between ith transmit and jth receive
antenna; ε0 is the timing error; p(t) is transmit filter pulse
(eg. square root raised cosine pulse or other improved Nyquist
pulses like [5] and [6]) with bandwidth (1 + α)/T , α being
the excess bandwidth factor; ηj(t) is additive white Gaussian
noise of power N0; ci(n) are space time coded symbols sent
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from the ith antenna. This signal when oversampled at a rate
of Q samples per symbol gives,

rj(m) =

√
Es

N

N∑
i=1

hij

∑
n

ci(n)p(mT/Q−nT−ε0T )+ηj(m)

(2)
where rj(m) is the mth sample at jth receive antenna. We
assume an observation period of L0R symbols and a guard
band of LgR symbols. Then (2) can be arranged in a matrix
format as follows [4]:

rj =

√
Es

N
Pε0Xhj + ηj (3)

where

rj =
[
rj(0) rj(1) . . . rj(L0RQ − 1)

]T

[Pε0 ]mn = p(mT/Q − (n − LgR)T − ε0T )

hj =
[
h1j h2j . . . hNj

]T

[X]in = ci(n)

ηj =
[
ηj(0) ηj(1) . . . ηj(L0RQ − 1)

]T

with m = 0, 1 . . . L0RQ−1, n = 0, 1 . . . (L0+2Lg)R and j =
1, 2 . . . M . The notation [A]mn refers to the (m, n)th element
of the matrix A, AT denotes the transpose while AH denotes
the conjugate transpose. For a rate K/R Linear Dispersive
Code (LDC) [7], the matrix X can be further partitioned as

X =
[
X−Lg

X−Lg+1 . . . XL0+Lg−1

]T
(4)

where each R × N sub matrix Xn is a LDC satisfying

Xn =
K∑

k=1

CksnK+k + Ck+Ks∗nK+k (5)

for each n = −Lg, −Lg +1 . . . L0+Lg−1. Straightforward
manipulations lead to

rj = Aε0θj + ηj (6)

where

Aε0 =
√

Es/NPε0(IL0+2Lg
⊗ C)

[C]ij =
[
[C1]ij [C2]ij . . . [C2K ]ij

]
θj =

[
IN ⊗ ST

−Lg
IN ⊗ ST

−Lg+1 . . . ST
L0+Lg−1

]T
hj

Sn =
[
snK+1 . . . snK+K s∗nK+1 . . . s∗nK+K

]T

where ⊗ stands for the kronecker delta product. We have thus
been able to present our system as a linear model. The next
section describes two approaches to estimate the timing error
from this model. Henceforth we will drop the subscript from
A and P for the sake of clarity.

III. SYMBOL TIMING ESTIMATION

We aim to estimate ε0 from (6). The joint maximum
likelihood function of ε and θj , for each receive antenna j,
can be formulated as

Λ(rj |ε, θj) = C exp(− 1
N0

‖rj − Aθj‖2) (7)

whose minimization leads to joint estimation of θj and ε (C
is a constant irrelevant to the estimation). For the purposes of
timing estimation however, θj is simply a nuisance parameter.
The classical maximum likelihood (also called the Uncon-
ditional Maximum likelihood or UML) approach considers
θj as random. The Unconditional likelihood function is thus
obtained by computing the marginal likelihood function of
wanted parameters,

ΛUML(rj |ε) = Eθj
Λ(rj |ε, θj) (8)

where the expectation is with respect to θj only. As in our case,
this expectation operation usually poses insuperable difficulties
and leads to a complicated cost function. A usual approach to
solve this problem is to assume low SNR at the receiver. The
likelihood function then becomes [8],

ΛUML(rj |ε, θj) ∼= Ca +
1

N0

(
2�{θH

j AT rj} − θH
j AT AT θj

)
+

1
2N2

0

(
2�{θH

j AT rj} − θH
j AT AT θj

)2

(9)

As shown in the Appendix, the marginal likelihood function
becomes,

ΛUML(ε) =
M∑

j=1

rH
j P(IL0+2Lg

⊗ CCT )PT rj (10)

The estimate ε̂0 is given by

ε̂0 = arg max
0≤ε<1

ΛUML(ε) (11)

As shown later in the simulations, the main limitation of the
low-SNR UML is the impact of approximations, especially
at high SNRs. The SML approach suggests the following
likelihood function

ΛSML(rj |ε) = C exp(− 1
N0

∥∥∥rj − Aθ̂j

∥∥∥2

) (12)

where θ̂j is itself a linear estimate of θj . The best linear
estimate for general θj is given by the Linear Minimum Means
Square Error (LMMSE) estimator [9],

θ̂j = E(θj) + Cθj
AT (ACθj

AT + Cηj
)−1(rj − AE(θj))

(13)
where Cθj

and Cηj
are covariance matrices of θj and ηj

respectively. For this paper we make the following assump-
tions about the complex symbols si (which constitute θj as
defined in (6)), E(si) = E(s2

i ) = E(s∗i
2) = 0 and E(|si|2) =

1, although extensions to other schemes is straightforward.
Therefore for our case, E(θj) = 0, Cθj

= I and Cηj
= N0I

(see Appendix).
The LMMSE therefore simplifies to

θ̂j = AH(AAH + N0I)−1rj (14)

We may now estimate ε in a least square sense. The log-
likelihood function for ε becomes

ΛSML(rj |ε) = (rj − Aθ̂j)H(rj − Aθ̂j) (15)
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Substituting θ̂j from (14), doing some straightforward simpli-
fications and averaging over all receive antennas we get,

ΛSML(ε) =
M∑

j=1

rH
j Mεrj (16)

where the real matrix Mε is given by,

Mε = ((
ξ

N
P(IL0+2Lg

⊗ CCT )PT + I)2)−1 (17)

where ξ = Es/N0, the signal to noise ratio (SNR) and the
estimated ε is given by

ε̂0 = arg min
0≤ε<1

Λ(ε) (18)

Note that the estimation of ε from the log likelihood function
Λ(ε) requires computation of the inverse of a matrix. A more
efficient method to implement the estimator is to pre compute
the matrix Mε at ε = 0, 1/L, . . . (L− 1)/L. This will provide
us with L values of Λ(ε) which can then be sinc interpolated
as in [4]. The final expression becomes

ε̂0 = 1 − 1
2π

arg

{
−

L−1∑
k=0

ΛSML(k/L)e−j2πk/L

}
(19)

where arg(.) operator gives the phase of its argument in the
range (0, 1). Typical values of L are 4 or 8, for which the
expression is simple to evaluate.

The SML estimator also requires a prior estimate of SNR.
However as shown later in Figure 8 the estimator is quite
robust to this estimate and a value of ξ = 20 dB suffices for
all SNRs in the range 0-30 dB.

For typical values of L0 = 16, Lg = 2, Q = 2, 2 transmit
and 4 receive antennas and using Alamouti code and using the
implementation suggested above with L = 4, the number of
multiplications required is in excess of 2×105 for each block,
both in UML as well as SML. Section 4 therefore presents
an approximate implementation which reduces the complexity
albeit at the cost of performance.

IV. THE CRAMER RAO BOUND

The SML estimator described above is based on LMMSE
estimator, which is the best possible linear estimator. SML
is therefore the best quadratic unbiased estimator, but is not
optimal unless the vector θj is itself Gaussian for each j (in
which case, LMMSE becomes the best estimator). Therefore,
as shown in [10], we can bound the performance of quadratic
unbiased estimators by the Gaussian Unconditional Cramer
Rao Bound (UCRB).

Stacking the different vectors by defining
r = [rT

1 rT
2 . . . rT

M ]T , θ = [θT
1 θT

2 . . . θT
M ]T and

η = [ηT
1 ηT

2 . . . ηT
M ]T , the system model becomes,

r = (IM ⊗ A)θ + η (20)

The expression for UCRB, when the noise power is known
and the θ vector is assumed Gaussian is given by [10],

UCRB =
1

�
[
tr

(
R−1{ ∂

∂εR}R−1{ ∂
∂εR})] (21)

where,

R � E[rrH ] = IM ⊗ AAH + N0I (22)
∂

∂ε
R = I ⊗ (ADH + DAH) (23)

where D = ∂
∂εA.

V. AN APPROXIMATE IMPLEMENTATION OF UML AND

SML ESTIMATORS

In this section we attempt to design a low complexity
estimator by making some approximations. First we note that
Λ(ε) may conveniently be expressed as

Λ(ε) =
M∑

j=1

L0RQ∑
m=1

L0RQ∑
n=1

r∗j (m)[Mε]mnrj(n) (25)

for both the estimators, so that Mε = AAT for UML and (17)
for SML estimators. Now, we can make the following general
observations about the central portion of Mε (ie. excluding
the outer square of TQ elements),

[Mε]m,m+l ≈ [Mε]m+2k,m+l+2k

[Mε]m,m+l+1 ≈ [Mε]m+2k,m+l+2k+1

(26)

for all “in range” integers m, n and l = −κ,−κ + 1 . . . κ.
We also observe that the above values become small for large
values of |l|, so they can be approximated to be zero. These
approximations suggest that we can arrange (25) as follows,

Λ(ε) =
2κ∑
l=0

mlρ(1; l) +
2κ∑
l=0

m2κ+l+1ρ(2; l) (27)

where,

ρ(m, l) =




M∑
j=1

L0R−1∑
k=0

|rj(2k + m)|2 if l = 0

2�{
M∑

j=1

L0R−� l+m
2 �∑

k=0

r∗j (2k + m)rj(2k + m + l)}
if l �= 0

(28)
and

ml =

{
[Mε]2k+1,2k+l+1 if l ≤ 2κ + 1
[Mε]2k+2,2k+l−2κ if l > 2κ + 1

(29)

where k = 
L0R� in the last equation (this is done to ensure
that above values lie in the central portion of matrix Mε).
These 4κ+2, ε dependent coefficients are fixed for a particular
pulse shape and a given value of α, the roll of factor. This
means that we can approximate ml(ε) by polynomials of
suitable degree and simply store the coefficients. It also implies
that we have been able to put Λ(ε) as a polynomial in ε. This
polynomial may now be calculated over a grid of values of ε
and sinc interpolated as described in Section II.

As shown later in simulations, a value of κ = 3 and fifth
degree polynomial for mls provides good approximation to
Λ(ε). For typical values given in Section III, the approximate
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implementation requires less than 2000 multiplications. Com-
pared to the matrix based implementation, the computational
complexity required is small. However as shown later in
Section VII, the price paid is loss in performance, especially
at high SNR.

VI. LOSS IN SNR DUE TO TIMING ERROR

Of the various timing estimators proposed so far, we have
mainly concentrated on evaluating the performance through
MSE. While MSE serves our purpose for comparison, we
need to address the issue of choosing the observation length
of a system with given constraints. Since the observation
length is proportional to the number of multiplications (i.e.
the computational complexity), we want to keep it as small
as possible. On the other hand, non zero MSE of the timing
estimate results in a loss of SNR and choosing a large L0 is
the only way to make the MSE go to zero. Thus for a system
operating at a particular SNR, there is a trade-off between
SNR loss and observation length.

To characterize this trade-off curve, we assume a simple
system employing V-BLAST scheme (so that ci(n) in (1)
are independent). Further we assume E[ci(n)] = 0 and
E[ci(n)2] = 1 for the sake of simplicity. More general
cases are also expected to have a similar pattern of behavior
though specific values may differ. After estimation of ε0, the
matched filtered and sampled version of the received signal is
reconstructed from the samples in (2),

rj(m) =

√
Es

N

N∑
i=1

hij

∑
n

ci(n)g(mT − nT ) + nj(m) (30)

where g(t) = p(t) ⊗ p(t) and nj(m) = ηj(t) ⊗ p(t)|t=mT

(convolution is denoted by ⊗). Note that this reconstruction is
equivalent to sampling the matched filtered version of received
signal (1) at t = mT + ε0. Conventionally we choose p(t) to
be an ISI free pulse so that p(mT − nT ) = 0 ∀m �= n and
p(0) = 1. Thus the reconstructed signal becomes,

rj(m) =

√
Es

N

N∑
i=1

hijci(m) + nj(m) (31)

The SNR of the received signal becomes,

ρ =
Es

N

E

[∣∣∣∑N
i=1 hijci(m)

∣∣∣2]
E[nj(m)2]

=
Es

N0
(32)

where we have used E[|hij |2] = 1. Now let us repeat the
same exercise assuming the reconstructed samples used a value

of ε̂0 instead of ε0. In this case the signal will consist of a
nonzero interference part which will contribute to the Signal-
to-Interference-plus-noise ratio (SINR). The received samples
are,

rj(m) =

√
Es

N

N∑
i=1

hij

[
ci(m− 1)g(1−∆ε) + ci(m)g(∆ε)

+ ci(m + 1)g(1 + ∆ε)
]
+ nj(m) (33)

where ∆ε = ε̂0−ε0 and we have neglected the ISI contribution
from all but the neighboring two symbols. The SINR ρe

becomes as shown in (24) at the bottom of this page. When the
error ∆ε is small, we can assume it to be uniformly distributed
in the interval [−εl, εl] for some εl << 1. If we make the
following two approximation,

g(∆ε) ≈ 1 − a∆ε2 + O[∆ε3]

g(1 − ∆ε) ≈ b∆ε + O[∆ε2] (34)

where a = 1
6 (π2 + 3α2(π2 − 8)) and b = cos(απ)

1−4α2 from
the Taylor Series expansion for a raised cosine pulse. The
approximate value of E[ρe] may be obtained as,

E[ρe] ≈ ρ

2εl

∫ εl

−εl

1 + 2ax2

1 + 2ρb2x2
dx

≈ ρ − 2
3
ρ(a + ρb2)ε2l + O[ε3l ] (35)

Also, since the MSE = E[∆ε2] = ε2l /3, we get,

ρe ≈ ρ
{
1 − 2(MSE)(a + ρb2)

}
(36)

Thus the loss in SNR in dB is given by,

∆ρ = 10 log
(

ρe

ρ

)
= 10 log

(
1 − 2(MSE)(a + ρb2)

)
≈ 20 log(e)(a + ρb2) × MSE (37)

From the above relation, the following observations can be
made:

1) At low SNRs when MSE is high, the loss in SNR is
also high.

2) Both DA and NDA timing estimation methods which
are based on some kind of approximation (as in [4], [2],
[3], to reduce system complexity) show an error floor
at very high SNRs. Thus ∆ρ is expected to be high at
large SNRs, since the product ρMSE eventually starts
increasing as ρ → ∞.

ρe =
Es

N

E

[∣∣∣∑N
i=1 hijci(m)g(∆ε)

∣∣∣2]

E

[∣∣∣∑N
i=1 hij (ci(m − 1)g(1 − ∆ε) + ci(m + 1)g(1 + ∆ε))

∣∣∣2] + E[nj(m)2]

=
Esg(∆ε)2

Es(g(1 − ∆ε)2 + g(1 + ∆ε)2) + N0
(24)
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3) There must be an optimal value of SNR when the loss in
minimum. In fact this point is observed to occur much
before than the error floor in MSE.

In Fig. 1, where the MSEs are obtained through simulations,
we illustrate the above points for SML, UML and CML
methods. From the graph we can see that the SNR loss
becomes minimum at some intermediate SNRs and starts to
increase with higher SNR, especially for UML for which the
error floor is high.

0 5 10 15 20 25 30
0

0.05

0.1

ρ (dB)

∆ρ
(d

B
)

SML
CML
UML

Fig. 1. Loss in SNR(∆ρ) against SNR(ρ) for SML, CML and UML methods.

VII. SIMULATION RESULTS AND DISCUSSION

We provide Monte Carlo simulations to determine the
performance of the proposed NDA methods. We also compare
SML NDA with ML DA method. In all the simulations, we use
the mean square error (MSE) ie. E(ε̂−ε)2 as the performance
measure. We assume QPSK modulated iid symbols si. The
channel coefficients hijs are taken to be independent complex
Gaussian distributed with mean zero and variance 0.5 along
each dimension. The elements of the noise vector ηj are also
assumed to be iid complex Gaussian with mean zero and
variance N0/2 in each dimension. Unless stated otherwise,
N = 2, M = 4, L0 = 16, Lg = 2 and Alamouti coding
scheme (ie. K = 2 and T = 2) has been assumed.

Figure 2 shows the comparison of CML, UML and SML
estimators for L0 = 16 i.e. 32 symbols. We also show the
low complexity version of SML estimator as described in
Section V, for κ = 3 and using a fifth degree polynomial
for approximation. Notice the better performance of SML at
low and moderate SNRs and that of UML at low SNRs than
the CML method of [4]. This is mainly because the proposed
estimators utilize the information about the space time code
used. The performance of UML and SML is almost same at
low SNRs, while UML degrades rapidly at high SNRs. This is
because at high SNRs the approximation in (9) does not hold.
Also, the performance of the approximate SML is almost as

good as SML but it develops an error floor with increasing
SNR, mainly because of the approximation errors.

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

M
S

E

CML
UML
Approx SML
SML
UCRB

Fig. 2. Comparison of various schemes for N = 2, M = 4, L0 = 16 and
Q = 2 employing Alamouti coding scheme.

In Figure 3, we compare ML DA [4] and SML NDA
algorithms. The DA scheme has been simulated for 16 training
symbols while the SML is simulated for L0 = 32. Both the
schemes use a 2 × 4 system. We see that the proposed NDA
scheme matches the DA scheme of [4] without any loss in
data rate, although the complexity of NDA is approximately
four-fold that of the DA scheme.

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

M
S

E

DA, 16 symbols
NDA, L

0
 = 32

Fig. 3. Comparison of DA and NDA schemes N = 2, M = 4, L0 = 16
for DA (CML of [4]) and L0 = 32 for NDA (proposed SML method) and
Q = 2 employing Alamouti coding scheme.

Figure 4 shows the performance of SML estimator against
variation in observation lengths. We see that the performance
of the estimator can be improved by increasing L0. This can
be handy for obtaining acceptable performance in low SNR
scenarios. From the graph we can also observe the approximate
3dB fall in MSE each time the value of L0 is doubled. This
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is a typical behavior of all ML based estimators whose error
variance is usually inversely proportional to the observation
interval L0.

1 2 4 8 16 32 64 128

10
−4

10
−3

10
−2

10
−1

L
0

M
S

E

0 dB
5 dB
10 dB

Fig. 4. Varying performance based on the observation length L0 for N = 2,
M = 4 and Q = 2 employing Alamouti coding scheme.

If we consider operation at a particular SNR, using Figure
4 and (37) we can draw a curve illustrating the variation of
∆ρ with L0. Fig 5 shows these curves for SML at 0 dB, 5 dB
and 10 dB. As expected, the loss in SNR becomes negligible
as we increase L0 beyond a certain point (depending on the
operating SNR). Also note that this transition becomes sharper
with increase in SNR because of the decrease in MSE.

1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

L
0

∆ρ
(d

B
)

0 dB
5 dB
10 dB

Fig. 5. Trade-off between L0 and ∆ρ at 0 dB, 5 dB and 10 dB for SML.

Figure 6 shows comparison of SML scheme for varying
number of receive antennas. The estimator’s performance
quickly degrades with decrease in the number of receive
antennas. This is expected since the overall likelihood function
is the sum of individual likelihood functions of various receive
antennas, so reducing number of antennas is very similar to
reducing the observation length.

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

M
S

E

M = 1
M = 2
M = 4

Fig. 6. Comparison of SML for varying number of receive antennas for
N = 2, L0 = 16 and Q = 2 employing Alamouti coding scheme.

Figure 7 shows the approximate SML estimator for varying
degrees of approximation. From the graph, it can be seen that
choosing κ = 2 and a fifth degree polynomial is good enough
and there is no need to go for polynomials of higher degree.
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Fig. 7. Comparison of SML for varying degrees of approximation by varying
κ and the degree of the polynomial used for approximation for N = 2,
L0 = 16 and Q = 2 employing Alamouti coding scheme.

Figure 8 analyzes the sensitivity of SML method to the
accuracy in the estimate of ξ, the estimated SNR. We plot the
MSE of SML for the true value of ξ and for the cases when ξ
is taken to be constant at 10 dB, 20 dB and 30 dB regardless
of the true value of ξ. We see that the curves overlap and
therefore SML is robust to inaccuracies in the estimate of ξ
used in (17). Thus we have used ξ = 20 dB for the range of
SNRs considered.
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Fig. 8. Sensitivity of SML to estimated SNR for N = 2, M = 4, L0 = 16
and Q = 2 employing Alamouti coding scheme.

VIII. CONCLUSION

Two Non-Data Aided symbol timing estimators based on
the classical Unconditional Maximum Likelihood (UML) and
Stochastic ML (SML) have been proposed. By carefully
arranging the system model in a matrix form, we have been
able to utilize the information about the type of code used
and hence obtain better performance than the existing CML
method. The Cramer Rao Bound and an approximate version
of the SML estimator have also been derived. Simulations
show that at the expense of higher computational complexity,
NDA schemes can perform as well as DA schemes. An approx-
imate expression for the loss in SNR because of timing error
has been derived and a trade-off curve between observation
length and the loss in SNR is provided.

APPENDIX

This section provides derivation of (10) assuming the ap-
proximation given in (9). First we note the structure of θj ,

[θj ]2mKN+2iK+n =

{
s(m−Lg)K+nh(i+1)j if 1 ≤ n ≤ K

s∗(m−Lg)K+nh(i+1)j if K + 1 ≤ n ≤ 2K
(38)

where −Lg ≤ m ≤ L0 + Lg − 1 and 0 ≤ i ≤ N − 1.
This means that E(θj) = 0 and Cθj

= I. For evaluating
Λ(rj |ε) = E[Λ(rj |ε, θj)], we consider the each of the terms
in (9),

E[�(θH
j AT rj)] = 0 (39)

since E(θj) = 0. Also using the identity E(xHAx) =
tr(ACx) where tr(.) denotes the trace operator,

E[θH
j AT AT θj ] = tr(AT A) (40)

Also note that E([θj ]m[θj ]n) = 0, ∀m, n. It can therefore be
easily verified by expanding and using the quadratic identity

stated above that,

E[�2(θH
j AT rj)] =

1
2
(rH

j AAT rj) (41)

As shown in [9, Chap. 15],

E[θH
j AT Aθjθ

H
j AT Aθj ] = tr(AT A)2 + tr(AT AAT A)

(42)
Lastly since hijs are all Gaussian, third order moment is zero,
which gives,

E[�(θH
j AT rj)θH

j AT Aθj ] = 0 (43)

It can be seen through numerical computations that tr(AT A)
and tr(AT AAT A) are both independent of ε. Plugging back
the terms in (9) and ignoring these terms, we get

Λ(rj |ε) = rH
j AAT rj (44)

Further, we may remove the multiplicative term ξ from the
likelihood function as it does not effect the maximization :

Λ(rj |ε) = rH
j P(IL0+2Lg

⊗ CCT )PT rj (45)

Finally the Λ(rj |ε) is averaged over all receive antennas to
give the overall likelihood function in (10).
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