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SYNOPSIS

This thesis studies collisions between a compact body and a slender flexible body. In

such collisions, the multiple, intermittent, vibration-induced subimpacts at a single contact

location result in a complex overall contact interaction and complicated system dynamics.

We model approximately a few aspects thereof, using new approaches developed herein.

In the first problem studied in this thesis, we study impact of a Hertzian ball on an

infinitely long Euler-Bernoulli beam, an idealized problem in wave-dominated impacts.

The system equations of motion are nonlinear and include a fractional derivative. A single

dimensionless number characterizes the complete contact behavior, which varies from single

contact with separation, to multiple contacts with eventual sustained contact, to a single

sustained contact. A detailed numerical description of the full range of contact behaviors

is given. Further, we present a semi-analytical solution valid until the first separation, and

a separate asymptotic solution for the ball’s large-time motion in the sustained contact

regime.

We subsequently consider collisions involving a finite-length Euler-Bernoulli beam, wherein

modal expansion can be used to represent the beam’s response. We study finite-beam im-

pacts from both detailed simulation and approximate modeling viewpoints.

In the second problem studied in this thesis, we consider impact of a Hertzian ball on a

finite beam. We study the interplay between dissipation and modal truncation in conver-

gence of the net restitution or the impactor’s (ball’s) rebound velocity. A modal expansion

for the beam response and a force-compression constitutive relation for the contact results

in a system of ODEs, which we numerically solve. We observe that with subimpacts, and

Hertzian contact, many modes are needed before convergence occurs; that including con-

tact dissipation, either viscous or hysteretic, has only a slight effect; and that a little modal

damping speeds up convergence of the net restitution value.

Following the above study of convergence with small modal damping, we find numeri-

cally the restitution values and the number of subimpacts for ball-beam impacts as above,

with different ball masses, different contact locations, and four different beams. The impact-
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contact interaction is rich. A few qualitative trends are seen in the restitution, which we

subsequently attempt to approximate using a simpler algebraic net-impulse model.

In an algebraic or net-impulse approach to impact modeling, we map pre-impact states

to post-impact states without solving differential equations. Such an approach is seldom

used for vibroimpacts with subimpacts. The main contribution of this thesis is a new

quadratic program based approach to model restitution in such vibroimpact problems.

In the new approach, we minimize post-impact kinetic energy subject to the basic linear

inequalities that govern contact, like nonnegative normal impulse and non-interpenetration

of bodies, along with a crucial “outward” or rebound-enhancing inequality. We refer to this

approach as Energy Minimization under Outward Constraints (EMOC). Impossibilities like

interpenetration or kinetic energy increases are never predicted by the EMOC approach. A

good choice of an outward inequality is a key requirement of the approach. Such a choice for

vibroimpact problems is proposed, which incorporates modal information, impactor mass,

and contact location.

For validation purposes, we apply and fit the EMOC approach to the earlier numerically

obtained restitution values for balls hitting the different beams. We obtain good results with

a small number of fitted parameters. Subsequently, the experimentally obtained outcomes

of bars dropped on an immovable surface at different angles of inclination, as reported by

Stoianovici and Hurmuzlu (in 1996), are also modeled using the EMOC approach. The

match obtained for both the cases shows that the EMOC approach is potentially useful

for rapid or large-scale simulation with reasonable accuracy and without unduly heavy

computational load. No comparable modeling approach exists in the vibroimpact literature.
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Chapter 1

Introduction

This thesis studies vibration-dominated impacts in solid bodies.

Impacts between solid bodies have been studied extensively in the past; see for example

the early classic text by Goldsmith [1], recent books [2, 3, 4], mauscripts and review articles

[5, 6, 7].

Impact involves short violent contact between two or more solid bodies. Such interac-

tions excite significant vibrations in many cases. There exists an extensive body of literature

on collisions and their modeling, involving both rigid bodies [3, 8, 9, 10, 11] and flexible

bodies [6, 12, 13, 14]. There are many articles that study the more complex phenomenon

of simultaneous and multiple impacts, e.g., [15, 16, 17, 18, 19], though impact-induced

vibrations are not explicitly modeled therein.

Impulsive impact interactions in solid bodies are complicated. In the literature on

vibration-dominated impact, aspects focused on have included waves and vibrations [20,

21, 22, 23, 24], energy losses through viscous dissipation [25, 26, 27] and plastic deformation

[23, 28], the related idea of a coefficient of restitution [6, 14, 29], contact detection (in

experiments and in numerical soluitons) [19, 30, 31, 32, 33, 34], impact oscillators [35, 36]

and some others. In the above, articles [20, 21, 22, 24] include fundamental studies wherein

one body has waves that radiate to infinity. In these papers, the effort has been on detailed

and accurate modeling of the mechanics. Application of a coefficient of restitution has been
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discussed in the context of simulations in [6, 37, 38], and the equivalence of such a restitution

model with a local contact-dissipation model has been studied in [13]. Articles [19, 30, 31]

report experimental studies that have helped establish the complexity of multiple contacts

at a given location, through contact detection.

Generally speaking, impact modeling can be categorized broadly into incremental and

algebraic formulations. Incremental models solve evolution equations, while algebraic mod-

els directly map pre-impact to predicted post-impact states. These two categories, incre-

mental and algebraic, are sometimes called continuous and instantaneous respectively (e.g.,

[10, 39]); or compliant and rigid respectively [40]. Some authors distinguish between locally

deformable or penetrable bodies, versus “truly” rigid bodies [41], with the same modeling

implications.

In incremental models, differential equations are used to describe the evolving dynamics

of the system during contact. The deformation may be modeled in detail, using either

ODEs or PDEs. Such treatments include models based on the finite element method (e.g.

[32, 39]), or with modal expansions for one or more colliding bodies (e.g., early but limited

treatments in [1] and a more detailed computational study in [42]). Such deformation-based

models may also be simplified using the assumption that the colliding bodies are essentially

rigid, with contact being mediated by a localized, massless, and possibly nonlinear as well as

dissipative compliance (e.g., [25, 28, 43, 44, 45]). A final class of incremental models changes

the independent variable from time to accumulated normal impulse, and solves differential

equations governing the evolution of velocities in the colliding bodies (e.g., see the classical

treatment in [46], and also [17, 47, 48, 49]). Compliant contact models are suitable for

longer-time global dynamics [50] or contact events with somewhat longer durations [51].

We also note that compliant contact models seem suitable for examining the transmission

of impulsive loads in linkages with clearances [52].

In contrast to incremental models, in algebraic or net-impulse models only pre- and post-

impact velocities along with the contact impulse(s) are considered and temporal details are

not simulated: see e.g., [2, 18, 40, 53, 54, 55]. Algebraic models are simpler, quicker,
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comparatively inaccurate, and sometimes aim only to predict some useful quantities while

avoiding impossibilities and physically non-intuitive outcomes.

The rest of this thesis is organized as follows. The description below also presents the

specific problems studied here, and briefly highlights new results and contributions.

In chapter 2, we study impact of a Hertzian ball on an infinitely long Euler-Bernoulli

beam. The impact interaction obeys two nonlinear differential equations with a fractional

order derivative. The contact dynamics exhibits multiple behavior regimes that are com-

pletely characterized by a single dimensionless parameter. Apart from detailed numerical

results characterizing the complete system, we provide new approximate solutions for two

regimes of the various contact behaviors. The work presented in this chapter has been

published in [24].

Subsequently we consider impacts involving a finite beam, where a modal expansion

solution can be attempted. In chapter 3, we numerically study impact between ball and

a simply-supported beam. We present a systematic study of the convergence of the ball’s

rebound velocity, or net restitution, with the number of beam modes retained and with

various dissipation mechanisms. With pure Hertzian contact (no dissipation) and with con-

tact dissipation, the convergence is rather slow. However, light modal damping regularizes

the interaction and convergence of restitution is achieved with relatively fewer modes. The

work presented in this chapter has been published in [56].

In chapter 4, we compute restitution values for impacts of balls on different beams, for

different impactor masses and impact locations. A few qualitative trends in the variation of

the restitution are observed. The detailed results of chapter 4 motivate our novel modeling

effort of the next three chapters.

Chapters 5 through 7 present the main academic contribution of this thesis, namely,

a new quadratic program based net-impulse model for restitution outcomes in vibration-

dominated impacts. The model greatly extends the work in [18], wherein simultaneous

impacts in rigid bodies was modeled, with no accounting of vibrations. In chapter 5, we

present relevant background related to algebraic modeling of collisions which leads to the

3



quadratic program approach. Chapter 6 presents the modeling approach, which we call

Energy Minimization under Outward Constraints (EMOC). In brief, the model minimizes

post-impact kinetic energy of the system subject to new “outward” or rebound enhancing

linear inequalities together with other basic constraints (e.g., nonnegative normal impulse

and nonnegative post-impact normal velocities). Physical impossibilities are never pre-

dicted. The model has three free parameters. The outward constraint is the key innovation

of this approach.

The proposed outward inequality incorporates modal information, impactor mass, and

contact location. Chapter 7 presents a parameterization of the model, and the match

against the numerically obtained restitution values from chapter 4. A reasonably good

match is seen over a range of ball masses and impact locations. It is emphasized that the

new approach is algebraic, i.e. it does not involve solution of ODEs and is comparatively

much quicker.

Chapter 8 applies the EMOC model to a completely different problem, namely the

experimentally obtained restitution values for tilted rods dropped on immovable surface, as

presented in [19]. The EMOC model works for this system when the axial modes are not

included in the falling rod’s dynamics, and only bending modes are retained. The reason

is uncovered and explained. Overall, with bending modes, a good match is obtained, again

with no ODE solution.

Chapter 9 presents some final discussion and concludes the thesis.
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Chapter 2

Transverse impact of a Hertzian body

on an infinite beam

The work presented in this thesis begins with a study of the transverse impact of a Hertzian

body (a ball) with an infinitely long initially stationary Euler-Bernoulli beam. The material

in this chapter has been published in [24].

2.1 Introduction

Impact between a compact body and an infinitely large slender body constitutes a special

limiting case, provides insights into observed behavior even for impacts with large but

finite-sized objects, and presents an academic problem that is interesting in its own right.

This chapter presents a study of such an impact.

A particular problem of historical interest within this category is the impact of a

Hertzian sphere with a large thin plate, which is analytically simpler than impact with

a beam. Raman [57] carried out experiments for a sphere striking an extended thin plate,

while Zener [22] did the analysis assuming an infinite plate and obtained a good match with

Raman’s experiments. Zener showed that the impulse response of a point on an infinite

plate is y = Pα, where y is the displacement of the point where an instantaneous impulse P

acts, and α is a constant dependent on plate parameters. This impulse response, y = Pα, is
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Figure 2.1: (a) A Hertzian sphere striking a thin infinite plate, and (b) its dynamic
equivalent. The impulse response of the plate is a constant, same as that for a dashpot;
y and z denote the displacements of the plate’s contact point and the sphere’s center
respectively.

coincidentally the same as that of a single dashpot. Thus, the lateral impact of a Hertzian

sphere with a large plate is mathematically the same as that of a point mass falling on a

dashpot with a mediating Hertzian spring in between (see Fig. 2.1).

In this chapter we consider impact between a compact Hertzian object and an infinite

beam, which is more complicated than the contact between a ball and plate, as mentioned

above. Schwieger [58], following [1, 59], noted that elastic central impact behavior on a

sufficiently long beam is independent of both the beam’s boundary conditions as well as

its length. Along the lines of Zener [22], Schwieger [58, 60] then obtained the relation for

the short-time deflection of a finitely long Euler-Bernoulli beam under impact loading (an

approximate solution); an extra factor of 2 was corrected in the later paper. The same

impulse response function for an infinite beam (an exact solution) was obtained in [61, 62]

using the Fourier transform, and in [63, 64] directly in the time domain. The key point is

that a beam’s impulse response is proportional to
√
t. Schwieger [58] also presented some

experiments with single contact phases.

More recently, Yigit & Christoforou [23] presented a general numerical study of the

impact of a mass on a composite beam and plate with a linearized contact stiffness. These
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authors proposed two nondimensional numbers using which the overall contact behavior

might be characterized into different regimes, identifying single contact at two extremes,

with passing remarks on the intermediate regime where multiple impact events are possible.

2.2 Problem formulation and initial simulations

In this chapter, we present significant progress beyond [23, 58, 60]. In particular, we present

a detailed study of the lateral impact of a compact Hertzian body with an infinitely long

Euler-Bernoulli beam, characterizing the full range of possible contact dynamic behaviors,

from impacts with a single contact phase followed by separation, through impacts with

more than one contact phase followed by sustained contact, to impacts with no separation

at all.

We now turn to equations of motion.

2.2.1 Equations of motion

z

y

Q

body

beam

y

zN

Figure 2.2: (a) Transverse impact of a compact body on an infinite Euler-Bernoulli beam.
The displacement of the beam and the body are referred to as y(t) and z(t) respectively.
(b) The body-beam contact. The solid lines show the actual configuration at contact. N is
the notional contact point on the undeformed body. Q is the notional contact point on the
beam. The distance from N to Q is the compression (positive in the sense shown); and a
contact force exists when the compression is positive.

The equations we use are similar to those in [58, 60].

See Fig. 2.2. A solid body of mass m strikes a horizontal initially stationary beam.

Hertz contact is assumed. The beam has uniform mass per unit length m and flexural
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rigidity EI. The displacement (upwards) of the beam’s contact point is taken as y(t). The

distance (upwards) of the notional point of contact of the body from the beam’s notional

undeformed surface is taken as z(t) (see Fig. 2.2). The body strikes the beam with a velocity

of ż0 < 0. The body has negligible internal vibration. Gravity is neglected.

The displacement (y) of the point on an initially stationary infinite beam where an

instantaneous impulse (P ) acts at time t = 0 is given by

y = PC
√
t, (2.1)

where

C =
[EI]−1/4[m]−3/4

√
2π

, (2.2)

where in turn EI and m denote the flexural rigidity and the mass per unit length of the

beam respectively (see [63, 64]). Using the above impulse response, it is easy to show that

the motion of the beam’s contact point obeys the equation1

D
3
2y = −C Γ

(
3
2

)
f, (2.3)

where D
3
2 represents a fractional order derivative (see also Appendix A.1), Γ (1.5) =

√
π

2
,

and f is the time varying contact force. Also, y(0) = 0, and ẏ(0) = 0. Simultaneously, the

motion of the impacting body obeys

mz̈ = f. (2.4)

It remains to specify f . Let ξ be the local compression at the contact location (see Fig.

2.2(b)), i.e., ξ = y − z. Then, for Hertzian contact,

f = kH ⟨ξ⟩
3
2 , (2.5)

1Assume zero initial conditions. The Laplace transform of Eq. (2.1) with P = 1 (unit impulse) gives the

impulse response function Y (s) = C
Γ ( 32 )

s
3
2

. With a continuous downward acting contact force −f(t) on the

beam, we have Y (s) = −
C Γ

(
3
2

)
s

3
2

F (s), where F (s) is the Laplace transform of f(t), which is the Laplace
transform of Eq. (2.3).
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where the angle brackets denote

⟨ξ⟩ =

 ξ ξ ≥ 0,

0 ξ < 0,
(2.6)

and kH is the Hertz contact stiffness.

For contact between two spheres having the same radius R and of the same material

(Young’s modulus E and Poisson’s ratio ν), kH =

√
2E

√
R

3 (1− ν2)
(see [65]). In our case, taking

the upper surface of the beam to be flat and the local radius of the impacting body to be R,

and considering the body and the beam to be of the same material, we have kH =
2E

√
R

3 (1− ν2)
.

However, we treat kH as a free parameter because mass is a global property of the impacting

body while kH is a local property2.

Note also that the general f of Eqs. (2.3) and (2.4) has been replaced with an explicit

function of ξ in Eq. (2.5). Thus,

D
3
2y = −C Γ (3

2
)kH ⟨ξ⟩

3
2 ,

mz̈ = kH ⟨ξ⟩
3
2 , y(0) = 0, ẏ = 0, z(0) = z, ż(0) = −v. (2.7)

Thus, Eqs. (2.7) together govern the motion for the body and the beam’s contact point.

2.2.2 Nondimensionalization

Equations (2.7) involve four dimensional parameters, namely C, kH , m and v, where v =

−ż0 (impact velocity). The system behavior therefore depends on one non-dimensional

number, S, which we choose to be

S = C
10
k2Hm

8v. (2.8)
2For a hemispherical impactor instead of a spherical one, kH would remain the same while the mass

would be halved. Localized changes in curvature can change kH without changing the mass.
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S governs separations versus sustained contact regimes. It governs contact dynamics, not

severity of contact stresses. The possibility of plastic yielding upon severe impact needs

separate analysis, not considered here. Both large and small S are possible for stress-wise

gentle impacts (see Table 2.1). The nondimensional number λ used in [58] is S 1
10 , but we

prefer Eq. (2.8) because it is proportional to velocity.

For simple conversion and comparison of dimensional versus nondimensional results, we

define the following dimensional groups of parameters:

units of time : T̂ = C
2
m2, (2.9)

units of force : F̂ =
v

C
2
m
, (2.10)

units of length : D̂ =

(
F̂

kH

) 2
3

. (2.11)

The above three quantities, namely T̂ , F̂ and D̂ will be used to scale dimensional quantities.

Other physical quantities for similar scaling purposes will be defined in terms of Eqs. (2.9)

through (2.11). For example, we will use

units of velocity : V̂ =
D̂

T̂
, (2.12)

units of mass : M̂ =
T̂ 2F̂

D̂
, (2.13)

and so on.

Now it will be possible to compare two different dimensional calculations with the same

S as follows. In the first calculation, suppose a parameter set consisting of C1, kH1 , m1 and

v1 is used to compute a force f1 at some time t1. In the second calculation, suppose C2,

kH2 , m2 and v2 are used to compute a force f2 at some time t2. It is crucial that

S1 = C
10

1 k
2
H1
m8

1v1 = C
10

2 k
2
H2
m8

2v2 = S2.

The dimensional quantities of Eqs. (2.9) through (2.13) need not have the same numerical
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values for the two calculations. In other words, to compare f1 at time t1 against f2 at time

t2, we allow the force and time quantities

v1

C
2

1m1

̸= v2

C
2

2m2

, i.e., F̂1 ̸= F̂2

and

C
2

1m
2
1 ̸= C

2

2m
2
2, i.e., T̂1 ̸= T̂2

in general. Nevertheless, since S1 = S2, we are assured that

if t1

T̂1
=
t2

T̂2
= tnd, then f1

F̂1

=
f2

F̂2

= fnd.

In other words, the variation of f/F̂ against t/T̂ depends on S but not on individual

parameter values. The “nd” subscripts denote nondimensional quantities. A numerical

example is given, for completeness, in Appendix A.2.

The above method of using dimensional analysis helps us to use a simplifying trick. In

some calculations that are in principle dimensional, we may choose numerical parameters

such that relevant quantities from among Eqs. (2.9) through (2.11) have convenient numer-

ical values, such as unity, even with S being simultaneously assigned any desired value, so

that the nondimensionalized quantities of interest have the same numerical values as the

dimensional quantities3. We will use this trick a few times in this chapter, and point it out

when we do so. There is no physical insight lost, and the presentation becomes slightly

simpler if we use this approach.

2.2.3 Range of physical parameters

A few examples to indicate the physical range of system parameters may be helpful.

For simplicity we assume a steel sphere of radius R striking a steel beam of square cross

section b× b. For steel, we assume Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.3

3 Assigning S implies one equation. Assigning specific values to Eqs. (2.9) through (2.11) gives three
more equations. Taking logarithms, we solve 4 linear equations to obtain 4 parameter values.
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and density ρ = 7800 kg/m2. Some examples are given in Table 2.1.

The last two rows show that large or small S does not necessarily indicate large or small

stresses, respectively. Severity of stresses would have to be checked in other dimensional

calculations if needed. In this chapter we assume that stresses are small enough for the

Hertzian contact and elastic beam analyses to hold.

Table 2.1: Representative system parameters. First three columns are in SI units.
b R v S comment

0.03 0.02 0.2 4.05 ×10−6

0.03 0.03 0.1 0.0512
0.028 0.033 0.5 15.556
0.02 0.027 0.4 371.05
0.015 0.04 1.55× 10−6 3.54× 104 large S, small stresses
0.05 0.03 10000 0.0146 small S, large stresses

2.2.4 Numerical solution strategy

We now consider numerical solutions of Eqs. (2.7). Several numerical methods have been

proposed for solving fractional order differential equations: see, e.g., [66, 67, 68, 69]. Of

these, [69] offers a simple recipe, and we adopt it here (for details, see Appendix A.1).

Some parameter choices may lead to high/low contact forces or very long/short times of

contact. Whenever needed, we restate the problem in numerically convenient but physically

equivalent terms by changing parameter values while holding S constant. An example are

given in Appendix A.2.

2.2.5 Contributions

The main contribution of this study is a complete characterization of the dynamic contact

behavior of the Hertzian-body and infinite-beam system.

To motivate development of the same, we present a few initial numerical simulations to

highlight the different regimes of behavior (see Fig. 2.3); detailed solutions will be developed

and presented in sections 2.3-2.5. For present purposes, all quantities in Fig. 2.3 can be
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Figure 2.3: Motion variables on the left, contact forces on the right. Examples for low,
moderate and high S depicted in the top, middle, and bottom rows respectively. Top:
S = 1, middle: S = 15, bottom: S = 4 × 105. All quantities shown are dimensionless,
following section 2.2.2.

viewed as nondimensional because, as explained in subsection 2.2.2 above, the relevant

quantities of Eqs. (2.9) through (2.11) were chosen to have numerical values of unity while

assigning the desired value to S (see footnote 3).

In Fig. 2.3, the left hand-side plots show motion variables, while the right hand-side

plots show the corresponding contact forces, both plotted against time. Three qualitatively

different regimes are seen for increasing S. In the low S-regime shown in the figure, there
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Figure 2.4: Schematic diagram of possible contact behaviors.

is a single contact phase followed by eventual separation. In the moderate S plot, there are

four distinct separations before eventual sustained contact. In the high S plot, the body

never separates from the beam. During final sustained contact, the contact force f shows

decaying oscillations due to the nature of the fractional derivative, and because energy gets

carried away from the contact point in the form of waves in the beam, although there is no

dissipation in the global system.

A schematic diagram showing the different regimes is given in Fig. 2.4; no such complete

picture of the contact dynamics of this system was available before.

The transition from a single contact to infinitely many contacts is due to the neglect

of gravity in the impact model. With gravity, every rebounding ball would eventually fall

back on the beam, again and again, no matter how high the intervening rebound. Since

we ignore gravity, if the rebound velocity of the ball after first impact is upwards, then no

other contacts occur. However, it is possible for the ball’s velocity to be downwards at the

end of the first contact phase, with the beam’s contact point traveling downwards faster

than the ball. In such cases, the ball’s velocity stays constant while the beam slows down,
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and another contact phase must unavoidably occur.

With the above motivation, we first develop a semi-analytical solution using a Galerkin

procedure, for low to moderate S impacts, valid for the first contact phase. Next, we develop

a new asymptotic approximation for the long-term behavior in moderate to high S impacts,

wherein the final state is sustained contact. Interestingly, the asymptotic behavior depends

on the impact velocity but not on the number of contacts and separations preceding final

sustained contact. Finally, we present detailed numerical simulations over a large range of

S, and show that the two approximations for the two regimes (S small, and S large) have

overlapping ranges of validity.

2.3 Semi-analytical approximation for the first contact

phase

We now develop a semi-analytical solution for the body and beam-contact-point’s motion

during the first contact phase until separation, with the understanding that contact may

or may not occur again.

We will present a dimensional calculation for convenience. We will be interested in

different amounts of rebound (hence, different restitution values), which will require differ-

ent S values, and so prior nondimensionalization is not convenient. Instead, because we

will use a Galerkin approximation, taking the contact duration uniformly to be equal to

unity makes the calculations less clumsy. For this reason, we will tackle the problem as an

inverse problem, where the dimensional quantities C = 1, kH = 1, time duration td = 1,

initial impact velocity v is specified, and the impactor mass m is determined as part of the

solution.

We emphasize that once the inverse problem is solved, then C = 1, kH = 1, v (specified)

and m (solved for) have all been determined, and subsequently nondimensionalization can

proceed along the lines of section 2.2.2 if so desired (see, e.g., Fig. 2.6).

We first expand the contact force f in a series of orthogonal basis functions ϕk(t), defined
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for 0 ≤ t ≤ 1, as in

f =
N∑
1

akϕk, (2.14)

where the ak are to be determined. To choose the ϕk, we note that the Hertzian force is

very small for small compression, and so the contact force does not increase linearly from

zero, and does not fall linearly to zero. While a fractional power such as t1.5 might seem

appealing, for analytical convenience we treat the initial force as t2 and the force just before

separation as (td− t)2 = (1− t)2. In the rest of this section, we will simply write 1 in place

of the contact duration td.

Accordingly, we begin with

ψk = t2(1− t)2 · tk−1, k = 1, · · · , N,

where we have obtained good results with N = 6. We then use Gram-Schmidt orthogonal-

ization in Maple to obtain mutually orthogonal basis functions ϕk from ψk, given by

ϕ1 = t2(1− t)2 · 3
√
70, (2.15)

ϕ2 = t2 (t− 1)2 · 3 (2t− 1)
√
770, (2.16)

ϕ3 = t2 (t− 1)2 · 3
(
22t2 − 22t+ 5

)√
182, (2.17)

ϕ4 = t2 (t− 1)2 · 3 (2t− 1)
(
26t2 − 26t+ 5

)√
770, (2.18)

ϕ5 = t2 (t− 1)2 · 3
(
130t4 − 260t3 + 182t2 − 52t+ 5

)√
2618, (2.19)

ϕ6 = t2 (t− 1)2 · 3 (2t− 1)
(
34t4 − 68t3 + 46t2 − 12t+ 1

)√
190190. (2.20)

Figure 2.5 plots the above ϕis againt time.

The contact force f in Eq. (2.14) is defined using Eqs. (2.15) through (2.20). The

displacement of the contact point on the beam, by Eq. (2.1), is (using C = 1)

y = −
∫ t

0

f(τ)
√
t− τdτ. (2.21)
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Figure 2.5: The orthogonal basis functions ϕi, i = 1 . . . 6.

By Eq. (2.4),

ż = ż0 +
1

m

∫ t

0

f(τ)dτ, (2.22)

which is then integrated again to obtain z. Note that in Eqs. (2.21) and (2.22), the unknown

parameters ak appear linearly. However, the Hertzian contact spring is nonlinear, and so a

residual r(t) is defined as (using kH = 1)

r(t) = f 2 − (y − z)3, (2.23)

in which the unknown parameters ak appear nonlinearly.

In the above, ż0 is an input; and the parameter m and coefficients ak are to be solved

for. We need N + 1 equations. Impending separation defines the first equation,

(y − z)|t=1 = 0. (2.24)

We obtain another N equations by making the residual orthogonal to ϕk,

∫ 1

0

r(t)ϕk dt = 0, k = 1, 2, · · · , N. (2.25)
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Equations (2.24) and (2.25) are nonlinear, and must be solved numerically for m and the

ak. These equations also have some unphysical solutions wherein f < 0 during the contact

interval; we discard such solutions.

In Eq. 2.23, since the contact force f is squared, negative values are in principle allowed

in solutions of the system of equations. It may be noted that we never enforced the f ≥ 0

constraint during numerical solution. In some solutions f < 0 values are mathematically

obtained but of course these are physically impossible. In numerical simulations, we always

plot f , and ensure that f ≥ 0. Any solution where f turns out to be less than zero is

discarded for being non-physical.

However, once we identify the physically valid solution of interest for a gentle impact,

we can obtain other solutions by numerical continuation, i.e., increasing v = −ż0 in small

steps and using the previous solution as an initial guess for each new value of ż0. We have

obtained our solutions in this way, using the Newton-Raphson method with numerically

estimated Jacobians.

We now present results obtained from this semi-analytical approximation. Although

our full numerical solutions will be presented in section 2.5, some numerical results are

presented in Fig. 2.6 to show that the semi-analytical approximation and full numerics

agree essentially completely, validating both.

An aspect of Fig. 2.6(b) should now be discussed. This issue was briefly mentioned in

section 2.2.5 as well.

At the end of the first contact phase, the impacting body has some velocity vf (measured

positive upwards). The impact had occurred with an approach velocity v (measured positive

downward). The nondimensional ratio vf
v

is a function of S alone. In the first contact

phase, a net impulse has acted on the beam, whose contact point keeps moving downwards,

proportionally to
√
t for large t. The impactor’s post-impact displacement is like vf t for

large t (because gravity is ignored). It follows that vf ≥ 0 implies no subsequent contacts;

while vf < 0 implies a subsequent contact, possibly after a very long time as vf → 0−,

because t ≫
√
t for large t. In other words, the transition from a single contact to more
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Figure 2.6: Approximate solution for the first contact phase. C = 1, kH = 1 in all cases. (a)
Approximated m against specified v. (b) Ratio of impactor velocity at separation to initial
velocity v against S. Two near-identical solutions are shown: one is the semi-analytical
approximation, and one is the full numerical solution with the obtained value of m. For
even larger S, the approximation eventually deteriorates. Contact force against time is
plotted for two cases in the next two subplots: (c) v = 70, m = 0.555 and (d) v = 125,
m = 0.769. Each subplot, (c) and (d), contains two near-identical nondimensionalized
solutions: one semi-analytical and one full-numerical with the same S.

than one contact occurs with the second contact occurring after an infinite time. We observe

for future reference that this transition point, i.e., vf
v

= 0 is at S ≈ 1.56. As S → 1.56+,

the time interval between subsequent impacts increases without bounded.
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By direct observation of the match with full numerics in Fig. 2.6(b), we conclude that

the semi-analytical approximation with N = 6 is good for 0 < S . 1.2× 104.

We now turn to an asymptotic description of the long-time behavior of the system

during final sustained contact, which occurs for large enough S.

2.4 Long-time asymptotics of sustained contact

The equations of motion are

z̈ =
kH
m

(y − z)
3
2 , (2.26)

y = −CkH
∫ t

0

√
t− τ (y (τ)− z (τ))

3
2 dτ. (2.27)

An initial observation will simplify progress. The largest possible impulse transmitted

to the beam equals the momentum of the impacting mass, mż0, since there is sustained

contact by assumption. For this impulse, the beam motion is roughly Cmż0
√
t. Thus, the

dominant terms in both y and z are

y ∼ z ∼ Cmż0
√
t. (2.28)

Note above that the corresponding velocity goes to zero as t → ∞, and the acceleration

goes to zero as well. This means the contact force goes to zero, too. The rest of this section

is concerned with correction terms to the above leading order asymptotic behavior.

We integrate Eq. (2.26) to obtain

ż(t)− ż0 =
kH
m

∫ t

0

(y − z)
3
2 dτ. (2.29)

From Eq. (2.27) through integration by parts, inserting Eq. (2.29), we obtain

y = CkH

(
− m

kH

√
t− τ (ż − ż0)

∣∣∣∣t
0

− m

2kH

∫ t

0

(ż − ż0)√
t− τ

dτ

)
,
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where the first term on the right hand side is zero. Thus,

y =
Cm

2

∫ t

0

ż0√
t− τ

dτ − Cm

2

∫ t

0

ż√
t− τ

dτ, (2.30)

where the first term is directly Cmż0
√
t (recall Eq. (2.28)). We now define a new variable

ζ by

z = Cmż0
√
t+ z∞ + ζ, (2.31)

such that z∞ is a constant to be determined, and ζ → 0 as t → ∞. In fact, we will tenta-

tively assume that ζ = O
(

1√
t

)
as t→ ∞. Equation (2.31) is not a series approximation,

however. It represents a change of variables and is exact.

Since z(0) = 0, it follows that

ζ(0) = −z∞. (2.32)

Subtracting Eq. (2.31) from Eq. (2.30) we obtain

y − z = −Cm
2

∫ t

0

ż√
t− τ

dτ − z∞ − ζ. (2.33)

From Eqs. (2.26) and (2.31),

(y − z)
3
2 =

m

kH
z̈ =

m

kH

(
−Cmż0

4t
3
2

+ ζ̈

)
. (2.34)

Substituting the right hand side of Eq. (2.34) into the left hand side of Eq. (2.33),

(
−Cm

2ż0

4kHt
3
2

+
m

kH
ζ̈

) 2
3

= −Cm
2

∫ t

0

ż√
t− τ

dτ − z∞ − ζ. (2.35)

The left hand side of Eq. (2.35) is exactly y − z, and so it is clear that for large t,

y − z =

(
−Cm

2ż0

4kHt
3
2

+
m

kH
ζ̈

) 2
3

∼
(
−Cm

2ż0
4kH

) 2
3 1

t
, (2.36)

and on the right hand side ζ → 0 as well. Substituting Eq. (2.31) into what remains and

21



dropping the asymptotically smaller contribution in the integral from ζ̇, we obtain

z∞ = −C
2
m2

4

∫ t

0

ż0√
τ(t− τ)

dτ = −C2
m2 ż0π

4
. (2.37)

What remains in Eq. (2.35) is (still with no approximation)

(
−Cm

2ż0

4kHt
3
2

+
m

kH
ζ̈

) 2
3

= −Cm
2

∫ t

0

ζ̇√
t− τ

dτ − ζ. (2.38)

For large t, the left hand side is O
(
1

t

)
as discussed above, while ζ on the right hand side is

by assumption O
(

1√
t

)
. Accordingly, we can now drop the left hand side and concentrate

on the right hand side alone.

Considering the integral on the right hand side of Eq. (2.38), we write

Cm

2

∫ t

0

ζ̇√
t− τ

dτ = Cm

(
1

2

∫ A

0

ζ̇√
t− τ

dτ +
1

2

∫ t

A

ζ̇√
t− τ

dτ

)
, (2.39)

where we have split the integral at some intermediate point A. To proceed further, we

assume A is large enough such that for t ≥ A,

ζ ∼ η√
t
+ smaller terms (2.40)

for some η that is yet to be determined. In other words, we choose A large enough that the

eventual asymptotic behavior is established; and then we hold A constant. Subsequently

considering t ≫ A, we treat A as being of O(1) compared to t. With such splitting of the

integral, we quickly obtain from Eq. (2.39) (temporarily keeping the factor of Cm aside),

1

2

∫ t

0

ζ̇√
t− τ

dτ =
ζ

2
√
t− τ

∣∣∣∣A
0

− 1

4

∫ A

0

ζ

(t− τ)
3
2

dτ − 1

4

∫ t

A

η

τ
3
2

√
t− τ

dτ + smaller terms.

(2.41)

Consider the first term on the right hand side of Eq. (2.41). It is (recall Eqs. (2.32) and
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(2.37))
ζ(A)

2
√
t− A

− ζ(0)

2
√
t
= −C

2
m2ż0π

8
√
t

+
ζ(A)

2
√
t
+ smaller terms (2.42)

because A is fixed and t→ ∞. Now consider the second term on the right hand side of Eq.

(2.41). It can be bounded easily as follows:

∣∣∣∣∣14
∫ A

0

ζ

(t− τ)
3
2

dτ

∣∣∣∣∣ ≤ |ζmax|
4

∫ A

0

1

(t− τ)
3
2

dτ <
|ζmax|
4

A

(t− A)
3
2

= O
(

1

t
3
2

)
≪ 1√

t
,

so this term can be dropped. The third term on the right hand side of Eq. (2.41) can be

evaluated in closed form. It is

− 1

4

∫ t

A

η

τ
3
2

√
t− τ

dτ = −η
2

√
t− A√
A t

= − η

2
√
At

+ smaller terms. (2.43)

Finally collecting the O
(

1√
t

)
terms from Eqs. (2.42) and (2.43) and inserting them into

Eq. (2.41), we obtain

Cm

2

∫ t

0

ζ̇√
t− τ

dτ = Cm

(
−C

2
m2ż0π

8
+
ζ(A)

2
− η

2
√
A

)
1√
t
+ smaller terms.

Inserting the above into Eq. (2.38), and recalling that the left hand side thereof is O
(
1

t

)
,

we finally have (noting explicitly the t-dependence of ζ on the left hand side)

ζ(t) = −Cm

(
−C

2
m2ż0π

8
+
ζ(A)

2
− η

2
√
A

)
1√
t
+ smaller terms. (2.44)

The above approximation should hold for any large-enough A, and so it does: from Eq.

(2.40) we use

ζ(A) ∼ η√
A
,

giving us the required cancellation in Eq. (2.44). We are left with

ζ(t) =
C

3
m3ż0π

8
√
t

+ · · · (2.45)
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Finally, from Eqs. (2.31), (2.37), and (2.45),

z = ż0
√
t
(
Cm

)
− ż0π

4

(
Cm

)2
+
ż0π

8
√
t

(
Cm

)3
+ · · · . (2.46)

Let znd, żnd and tnd denote the dimensionless quantities for length, velocity and time

respectively. We rewrite z = D̂×znd, ż = V̂ × żnd, and t = T̂×tnd in Eq. (2.46), where T̂ , D̂

and V̂ are given by Eqs. (2.9), (2.11), and (2.12) respectively. Then, the nondimensionalized

solution for the impacting body’s motion under sustained contact is

znd = żnd0
√
tnd −

żnd0π

4
+
żnd0π

8
√
tnd

+ · · · . (2.47)

żnd0 =
ż0

V̂
is the nondimensionalized initial velocity.

The above approximation depends only on eventual sustained contact, and is unaffected

by the number of separations that precede it.

Figure 2.7 compares asymptotic (Eq. (2.47)) and numerical solutions for two impacts;

technical details of numerics will follow in section 2.5. Two rather different impact severities

are considered: S = 15, with 4 separations; and S = 1 × 105, with no separations. All

quantities represented are dimensionless. The match is excellent, for both displacement

(znd) and separation (ynd − znd). In particular, it is seen that the long term asymptotic

behavior is indeed independent of the number of separations preceding sustained contact.

The above glimpses of excellent agreement between semi-analytical and asymptotic ap-

proximations for small and large S, respectively, give us an assurance that our numerical

solutions in the next section will be reliable. We now proceed to a fully numerical investi-

gation of the equations of motion, Eqs. (2.7), over the full range of S.

2.5 Full numerical solution of fractional order system

Finally, we turn to detailed numerical solutions spanning the entire range of behaviors of

this impact system.
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The numerical scheme we use is a recipe given by Das and Chatterjee [69], outlined for

completeness in Appendix A.1 (and some comments on numerical accuracy are given there

as well). Matlab’s stiff ODE solver “ode15s” is used to numerically integrate the equations

of motion, with error tolerances “abstol” and “reltol” set to 10−11.

Initial conditions are taken to be a = 0 (see A.1); y = 0 and ẏ = 0 (initially stationary

beam); z = 0 (first moment of contact) and impact velocity ż = −v.

In our simulations, we vary S from 10−10 to 105. Since there are four dimensional

parameters but only one nondimensional number, we have some freedom in selecting values

for dimensional parameters (recall footnote 3). Using Eq. (2.8), we write

10 logC + 2 log kH + 8 logm+ log v = log(S), (2.48)

where the right hand side contains the desired value of S, and the parameters on the left

hand side are to be determined.

We usually choose T̂ = 1, F̂ = 1 and D̂ = 1. Equations (2.9) and (2.10) then lead to

2 logC + 2 logm = 0, (2.49)

−2 logC − logm+ log v = 0, (2.50)

and Eq. (2.11) leads to

log kH = 0. (2.51)

Equations (2.48) through (2.51) are easy to solve, and yield parameter values for use in

simulations for any desired S.

A direct consequence, following section 2.2.2, is that since T̂ = 1, F̂ = 1, and D̂ = 1,

all other dimensional quantities of interest have unit values as well, and consequently all

computed quantities we show below have the same numerical values as the corresponding

nondimensionalized quantities.

Results from the entire set of simulations are depicted in Fig. 2.8, which summarizes the
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numerical contribution of this work. Both subfigures show contact initiation and separation

times against S. The upper subfigure uses a logarithmic scale for time, while the lower one

uses a linear scale. The complete simulation run takes about 10 hours on an ordinary

desktop computer.

In Fig. 2.8, see the upper subfigure first. Contact is initiated at time tnd = 0 in all

cases. The time of first separation is shown using a thick magenta curve. That curve

turns around at S ≈ 3.53 × 104, and for still larger S there is never any separation. For

S . 1.56, the end of the first contact phase denotes the end of the impact interaction, with

the impacting body rebounding away from the beam. For S & 1.56, first separation occurs

with the impacting body still moving toward the beam, and so contact must recur. For S

between about 1.56 and 3.53 × 104, first separation is followed by a second contact. The

time of initiation of the second contact phase is shown with a blue dashed curve with a

vertical asymptote at S ≈ 1.56.

Looking further, we note that for S between about 1.56 and 5.22× 102, the end of the

second contact phase is followed by a third contact. For a still smaller range of S, there

are four contacts, and then five contacts, and then six, and so on, for increasingly smaller

ranges of S. We have numerically tracked the first 18 separations, as shown more clearly

in the lower subfigure, which is a zoomed portion of the upper one (see the bold red “X”),

but drawn on a linear vertical scale. The lower subfigure also has an inset which shows a

zoomed portion of itself, indicated by a small rectangle (tnd ≈ 3 and S ≈ 1.72).

As far as we were able to determine numerically, all the above contact-time curves

approach the same vertical asymptote at S ≈ 1.56. Observe that the time durations

depicted in these curves range from about tnd = 0.5 to tnd ≈ 5 × 105, i.e., they span 6

orders of magnitude and up to 19 different contact events. With standard double precision

arithmetic and a nonlinear fractional order system to solve, we were unable to confidently

pursue these curves further. However, a reasonably detailed and clear picture has emerged

from the accuracy we were able to muster4.
4Actually, for 1.559 < S < 1.8, simulation times were very long and different scalings from those obtained

from Eqs. (2.48) through (2.51) were used. The idea used was to scale the initial maximum force to higher
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For easier viewing in Fig. 2.8, successive pairs of curves, denoting the start and end of a

contact phase, have been colored the same. At larger times, because the contact durations

stay relatively much smaller, these curves visually seem to coalesce, although in fact they

remain distinct. In the upper subfigure, it is seen clearly that beyond S ≈ 1.56, increasing S

is accompanied by fewer separations. The turning points for the different curves, indicating

the disappearance of the first separation (at 3.53× 104), and then the disappearance of the

second separation (at 5.22× 102), etc., are listed below, starting from the right and going

sequentially until the 12th separation, followed by the limit close to 1.56 as discussed above:

3.528 ×104, 5.219 ×102, 74.391, 22.403, 10.185, 6.030, 4.238, 3.328, 2.808, 2.485,

2.271, 2.121, · · · 1.559.

The above numerically obtained series concludes our numerical study.

2.6 Concluding remarks

We have studied the lateral impact of a compact Hertzian body with an infinitely long

Euler-Bernoulli beam. The motion of the beam’s contact point is given by a fractional-

order equation, and contact with the colliding body is mediated by a nonlinear spring.

Solution for the body and beam-contact-point’s coupled equations of motion are obtained

numerically using the recipe of [69].

The contact dynamics depends on four system variables, reducible to a single non-

dimensional number S. For low S there is a single impact followed by separation. For

moderate S, there are one or more separations followed by eventual sustained contact. For

still higher S, there are no separations. For S very slightly above about 1.559, the number

of separations before eventual sustained contact can be large.

Beyond the numerical picture obtained as above, a semi-analytical approximation for

the first contact phase for low and moderate S impacts, and an asymptotic solution for

values, because contact force magnitudes dropped rapidly with subsequent contacts. For uniformity, final
results were nondimensionalized.
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the long-term behavior in sustained contact for relatively high S impacts, have also been

developed. Both show excellent agreement with numerics.

Studies of impacts between solid bodies have often qualitatively distinguished between

two main types of impacts: those that cause significant global deformations, wave effects,

and vibrations during the impact; and those in which deformations are strongly localized

near the contact region (see, e.g., discussion in [10]). In the first kind of impact, i.e.,

with non-localized deformations and waves, an academically interesting and practically

somewhat useful idealization is the impact between a compact body and a large and flexible

object like a plate or a beam. Of these idealized problems, the sphere-and-plate impact is

simpler and was worked out several decades ago. The impact problem between a compact

Hertzian body and an infinitely long Euler-Bernoulli beam, on the other hand, had not been

satisfactorily studied until now, in part because of its nonlinearity coupled with a fractional

derivative, and in part because good analytical progress was difficult. In this study, due

to a few fortuitous insights, we have managed to obtain some new understanding of the

contact dynamics of this system, for the first time, and at a level of detail not available

before.
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Chapter 3

Finite-beam impact: Interplay

between dissipation and modal

truncation in convergence of

restitution

In this chapter, we study the impact of a Hertzian sphere or a ball on a finite-length Euler-

Bernoulli beam. For simplicity, the beam is taken as uniform and simply supported. The

impact location is varied. The goal is to understand the nature of convergence of impact

solutions obtained using modal expansions for the beam. The material in this chapter has

been published in [56].

3.1 Introduction

The dynamics of flexible bodies undergoing collisional contact is difficult to model reliably

and accurately. Ahn and Stewart [70] discuss, on an abstract mathematical footing, the

complications in elastodynamic impact without viscosity. It is qualitatively anticipated that

the presence of dissipation can regularize impact interactions, although many sub-impacts

may still occur within a single macroscopic impact interaction (e.g., if a ball is dropped on
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a beam, contact may be rapidly made and broken several times before the ball shows its

final macroscopic net upward rebound).

In engineering applications and simulations, modal expansions are frequently used. It is

either tacitly or explicitly assumed that with sufficiently many modes, and with reasonable

dissipation, the final results obtained will be both physically accurate as well as insensitive

to modeling approximations. Behind such assumed convergence, systematic study is neces-

sary. Such a study, for the case of a single instantaneous impulsive impact (corresponding

to one sub-impact in our detailed simulations later) was conducted in [37] with various

sets of assumed-mode expansions for a rotating beam. The same instantaneous impulse

approximation along with a coefficient of restitution for each sub-impact has been used in

modeling by Yigit et al. [12].

However, a detailed study of convergence in an actual vibration-dominated impact sim-

ulation, with many modes active and with many sub-impacts within the single macroscopic

impact, with and without dissipation, and with every sub-impact resolved in time using

Hertzian or similar compliant contact, has not been presented in the literature.

It is the aim of this work to address this gap in the study of modal expansions for

vibration-dominated impact. To this end, we take up for study the frictionless and purely

transverse impact of a Hertzian ball with an Euler-Bernoulli beam of square cross section.

We assume for simplicity and clarity that the beam has ideal pinned ends, so that the mode

shapes have a simple analytical form.

In this chapter we study this ball-beam impact system through detailed numerical sim-

ulations, modeling the contact in detail, resolving all the sub-impacts within each macro-

scopic impact, and examining many different cases as follows.

First, the system is simulated with no dissipation whatsoever. Hertzian contact is

assumed between the ball and the beam. The restitution observed (along with other collision

details) varies even with many modes retained (more than 60), but on average shows a

decreasing trend with increasing numbers of modes. There is also a significant dependence

on the location of contact. These phenomena have been noted qualitatively, in passing,
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and/or through small numbers of modes, in other work as well [12, 13, 26]. We emphasize

that this initial aspect of our study is more systematic and detailed than any previous study

we are aware of; and we proceed further in our search for meaningfully converged behavior.

Next, we note that stresses are largest in the contact region, and so dissipation in the

contact may need to be incorporated. Since there is a large body of literature that shows

material dissipation to be rate independent, we examine both (a) a convenient viscous

dashpot model, as well as (b) a rate-independent hysteretic damping mechanism in the

contact region. Interestingly, contact dissipation fails to make outcomes less scattered in

both cases.

Finally, we introduce a fixed and small amount of modal damping in all retained modes

(ζ = 0.02 or two percent damping). In this case, we find the most interesting results of

all. When only a few modes are retained, there is no change in outcomes. Yet, with large

numbers of retained modes, there is convergence in the observed net restitution and other

collision details. A simple physical and intuitive explanation for this observed behavior also

emerges from a study of the details of the collisions.

For the particular ball-beam (pinned-pinned) system under study, we find that with

modal damping on the order of 0.02 and about 25 or more modes retained, the variability

in the restitution gets reasonably small and convergence in a loose sense is obtained.

One of the smaller issues studied through the above simulations is the role of the contact

point location, which is known to be significant. For example, there is a marked difference

between a contact location at 2/5 of the length (a simple rational value) and a contact

location at (
√
5 − 1)/2 (an irrational value), with the latter location showing richer, or

more variable, behavior even with many modes retained. However, with modal damping, a

reasonable behavior with increasing numbers of modes, suggesting convergence for practical

purposes, is obtained in both cases.

In subsequent subsections, we first describe the physical system studied, and present

equations of motion in the absence of damping. Then we present simulation details and

results for the dissipation-free case. Subsequently, we provide brief details of various dis-
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sipation models incorporated, and numerical strategies used as appropriate. Finally, we

present our results and a concluding discussion.

We end this introduction with a quick review of the relevant literature. In flexible

body impacts, contact has been modeled at different levels, like including the net impulse-

momentum balance along with coefficients of friction and restitution [6, 23], and the con-

tinuous or incremental contact approach like Hertzian contact [13, 14], among others. Dis-

sipation in impacts (for rigid and flexible body impacts) has been modeled variously as

well. Direct lumped dissipation modeling through a coefficient of restitution is simplest

and perhaps commonest. Friction [11, 53] or viscous effects [25, 71] or plastic deformation

at the contact [28, 72, 23], and modal dissipation in the vibrating body [13, 14, 73] have also

been used. There are, in various papers, brief mentions or discussions of the possible effects

of higher modes of vibration on sub-impacts, the effects of modal or structural damping

on restitution, and similar topics (see e.g., [13, 14, 19]). However, as emphasized above, a

clear and detailed study on the convergence of restitution or other aspects of the impact

dynamics, with increasing numbers of retained modes and the role of dissipation therein, is

lacking in the literature. In particular, we will offer below a simple and clear understanding

of the interplay between dissipation and modal truncation in ball-beam impact.

3.2 Basic equations of motion via modal expansion

We present the equations of motion for the transverse impact of a sphere on a pinned-pinned

Euler-Bernoulli beam. See Fig. 3.1.

The beam has uniformly distributed mass m, length l, and flexural rigidity EI. The

sphere has mass m.

The sphere hits the beam at a distance b from one of its ends. All displacements

are small. The displacement (upwards) of the beam is taken as usual to be y(x, t). The

distance (upwards) of the notional point of contact of the sphere from the beam’s notional

undeformed surface is taken as zb(t) (see Fig. 3.1). The sphere collides with the elastic

beam with a velocity of żb(t). The sphere has negligible internal vibration, and behaves
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Figure 3.1: (a) Transverse impact of a Hertzian ball on a pinned-pinned Euler-Bernoulli
beam at a distance b away from the end. The displacement of the beam and the ball are
referred to as y(x, t) and zb(t) respectively. (b) The ball-beam contact. The unbroken lines
show the actual configuration at contact. P is the notional contact point on the undeformed
ball (i.e., the ball without localized contact deformation). Q is the notional contact point
where the ball hits the beam. The distance from P to Q is the compression (positive in the
sense shown); and a contact force exists when the compression is positive.

like a rigid sphere that interacts with the beam through a tiny massless compliant element.

We neglect gravity (see section 3.3.2 for discussion).

We use the Lagrangian formulation to obtain the equations of motion during impact.

The beam’s potential energy and kinetic energy are

PE =
EI

2

∫ l

0

(y′′ (x, t))
2
dx, KE =

m

2

∫ l

0

(ẏ (x, t))2 dx, (3.1)

where y′(x, t) and ẏ(x, t) denote partial derivatives with respect to x and t respectively.

We discretize the beam’s transverse displacement as

y(x, t) =
N∑
n=1

an(t)ϕn(x), (3.2)

where ϕn(x) is the nth mode shape corresponding to the generalized coordinate an(t). We

now have the beam’s potential and kinetic energy as

PE =
EI

2

∫ l

0

(
N∑
n=1

an(t)ϕ
′′
n(x)

)2

dx =
aTKa

2
, (3.3)

35



where Kij = EI

∫ l

0

ϕ′′
i ϕ

′′
jdx, and

KE =
m

2

∫ l

0

(
N∑
n=1

ȧn(t)ϕn(x)

)2

dx =
ȧTMȧ

2
, (3.4)

where Mij = m

∫ l

0

ϕiϕjdx. In the above, a is a vector of the generalized coordinates {an}.

M and K are the mass and stiffness matrices respectively. The mode shapes (pinned-

pinned) are

ϕn(x) = sin
(nπx

l

)
, n = 1, 2, . . . N. (3.5)

The orthogonality of ϕn(x) results in diagonal mass (M) and stiffness (K) matrices.

There remains one more degree of freedom, namely zb(t), the displacement of the ball.

The ball’s potential and kinetic energy are

PE = 0, (because gravity is neglected)

KE =
1

2
m (żb (t))

2 . (3.6)

Thus, for N assumed modes, the system has N + 1 degrees of freedom.

The contact force is included here as a non-conservative force F that acts upwards on

the ball and downwards on the beam. The virtual work done on the beam for a virtual

displacement of δy|x=b is

δWbeam = −Fδy|x=b = −F
N∑
n=1

ϕn(b)δan. (3.7)

The virtual work done for a virtual displacement δzb of the ball is

δWball = Fδzb. (3.8)

The corresponding generalized forces for the individual degrees of freedom are obtained

routinely.
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The equations of motion obtained are:

m

2
än +

EIn4π4

2l4
an = −Fϕn(b), (3.9)

mz̈b = F, (3.10)

representing N and 1 equations respectively. We now discuss various choices of F .

3.2.1 Contact force model

Let ξ be the local compression at the contact location (see Fig. 3.1(b)), i.e.,

ξ =
N∑
n=1

anϕn(b)− zb, ξ̇ =
N∑
n=1

ȧnϕn(b)− żb. (3.11)

We now consider various contact models.

Hertzian contact

In Hertzian contact, F is

F = kH ⟨ξ⟩1.5 , (3.12)

where the angle brackets denote

⟨ξ⟩ =

 ξ ξ ≥ 0,

0 ξ < 0.
(3.13)

In Eq. 3.12, Kh is the Hertzian contact stiffness given by [1]

kH =
2E

√
R

3 (1− ν2)
, (3.14)

where R is the radius of the ball, the beam surface has been taken as flat, and both ball

and beam are assumed to be made of the same material.

37



Viscous contact dissipation

Viscous losses are considered at the impact location by some other authors (see [12, 25] and

references therein). Here, when we incorporate such viscous dissipation, F will be taken as

F = kH ⟨ξ⟩1.5 (1 + c ξ̇), (3.15)

where c is a numerically-small constant. We assume, and will check, that the numerical

value of |c ξ̇| < 1 at all times, so that F = 0 only when ξ = 0.

Hysteretic contact dissipation

−1 0 1
0

2

4

6

ξ

F

Figure 3.2: F -ξ hysteresis loops seen for input ξ = sin(2πt) + 0.5sin(8πt), see Eqs. 3.16
and 3.17. Parameters used here are kH = 1, K = 4, θm = 1.6, β = 1.4, ϵ = 1× 10−4.

Many materials exhibit rate-independent dissipation [74]. We will consider rate-independent

contact dissipation. To that end, as an empirical rate-independent hysteretic damping

model that retains the flavor of Hertz contact, we will slightly modify a formula proposed

in [75]. Specifically, we will take the contact force F to be

F = kH ⟨ξ⟩1.5 (1 + θ), (3.16)
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where θ is an internal variable governed by

θ̇ =
K
(
θm + β sign(ξ ξ̇)− θ

)
⟨ξ⟩

|ξ|+ ϵ
|ξ̇|, (3.17)

where in turn K, θm, β > 0 are model parameters, and ϵ is a tiny regularization parameter

used to handle the singularity at ξ = 0.

During numerical simulation, the value of θ varies between θm±β. A typical hysteretic

response on F -ξ axes, obtained with this model, is shown Fig. 3.2. The input used is

ξ = sin(2πt) + 0.5sin(8πt). As seen in the figure, F = 0 only when ξ ≤ 0, unlike some

simpler models wherein upon unloading we obtain F = 0 with ξ > 0 (e.g., [28] and others).

Equations 3.16 and 3.17 have the advantage of reasonably modeling minor loops under

complex loading and unloading. This feature is attractive for impacts with several sub-

impacts and vibrations therein, with no significant permanent indentation.

Modal damping

Finally, we consider modal damping in the beam. In the equations of motion, Eq. 3.9 is

replaced with

än + 2ζωnȧn + ω2
nan = −2F

m
ϕn(b), n = 1 . . . N, (3.18)

with ωn =

√
EI

m

π2n2

l2
and ζ = 0.02 (say) for all modes. Contact remains Hertzian (recall

Eq. 3.12).

3.3 Numerical study of convergence

We now present results of detailed numerical simulations of the ball-beam impact for the

different contact force models mentioned in section 3.2.1 above.

39



3.3.1 Parameter choices and procedural aspects

In our simulations, both the sphere and the beam are assumed to be of the same material

(E = 2 × 1011 Pa or 200 GPa, ν = 0.3, ρ = 7800 Kg/m3). The beam has a square cross-

section with sides taken as 0.011323 m and length 1 m. The square section makes the

contact surface flat and the Hertz contact stiffness expression simpler. The sphere has a

diameter of 0.03 m and consequently mass 0.11027 Kg, unless otherwise noted. The ball and

the beam cross section have comparable dimensions (are of the same order of magnitude).

The ball hits the beam with a velocity of 1 m/s unless otherwise noted.

The equations are integrated numerically using Matlab’s stiff ode solver “ode15s”, with

error tolerances “abstol” and “reltol” set to 10−11. We take the initial conditions to be

an = 0, ȧn = 0 for all n (the beam is at rest when the ball first strikes); zb = 0 (first

moment of contact); and impact velocity żb = −1 unless otherwise noted. The impact

duration and displacements are small, but the error tolerances used are sufficiently tight

for reliable results (we verified that changing the tolerances did not change the obtained

answer). Matlab’s ode solver ode15s uses adaptive step sizing to estimate and control the

error. A typical solution computed by Matlab had step sizes ranging from below 1×10−8 to

well below 1× 10−6 with 60 modes retained (when the highest natural frequency retained

was under 1 × 105 Hz). The first natural frequency was close to 26 Hz (time period as

0.0385 second), and the 60th natural frequency is thus 602 × 26 ≈ 93600 Hz (time period is

1.0684× 10−5 second).

Numerical integration was continued until we were sure that the ball-beam interaction

is over, which we checked by ensuring that zb (the ball position) was sufficiently high (such

as 0.02 m, or sometimes smaller values as suggested by visual assessment of results). We

define the coefficient of restitution (e) as

e = − żseparation
żimpact

, (3.19)

where żseparation and żimpact denote the ball’s rebound and approach velocity respectively.
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Beam vibration velocities at the instant of separation will be damped out soon, and will

not be seen in overall large motions of the system.

We commonly observed multiple sub-impacts within single macroscopic impacts. Event

detection in Matlab was used for all simulations with hysteretic dissipation in the contact,

wherein several sequential partial simulations were then patched together for the full so-

lution. For all other (non-hysteretic) cases the stiff solver was able to adaptively handle

the smooth (Hertzian power law of 1.5) transitions between contact and separation, and

event detection was found to be unnecessary; in such cases a single simulation command

was most convenient.

It is known that the restitution varies with the point of impact [76]. We therefore

considered impact at two locations, at b = 0.4 (a rational number) and b = (
√
5 − 1)/2 =

0.618034 · · · 1. Note that, by symmetry, b = 0.4 is the same as b = 0.6 (because the beam

length is unity); and thus the two b’s are effectively only slightly apart.

Simulation results follow.

3.3.2 Hertzian contact

We begin with dissipation-free, pure Hertzian contact (Eq. 3.12), which for our chosen

parameters gives

kH = 1.7945× 1010 N/m1.5. (3.20)

For understanding, Fig. 3.3 shows the detailed system response during the entire collision

interaction with N = 25 modes and for impact location b = 0.4. The upper figure shows

motion quantities and the lower figures shows the contact force. The middle figure shows

the contact force against time, whereas the bottom figure shows the same on a magnified

time scale. We see several sub-impacts of comparatively brief durations within the total

macroscopic impact. At t = 0, the beam is at rest, while the ball just touches the beam

with a velocity of −1 m/s. Contact occurs when ξ = yb − zb ≥ 0, i.e., whenever the

1The number
√
5− 1

2
= 0.618033 is considered to be “highly” irrational; see [77]. For this choice of b,

we can anticipate that almost all modes will be significantly excited.
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Figure 3.3: Impact with Hertzian contact with N = 25 modes and b = 0.4. The top figure
shows the ball and beam motions during impact, using SI units but with displacements
scaled up by a factor of 1000. In other words, the velocity scale is m/s and the displacement
scale is mm. The middle figure shows F in Newtons. The bottom figure shows details of
F on a magnified time scale.

blue line (zb) touches or goes below the red line (yb). During contact, F shows spikes

and the ball’s velocity changes relatively rapidly. In between sub-impacts, the ball moves

with a constant velocity because gravity is neglected. The beam’s lower mode coordinates

have comparatively larger magnitudes, and dominate its displacement; however, higher

mode coordinates contribute significantly to velocities, and the displacement curve is not

very smooth. Some sub-impacts occur after a relatively long gap without contact (see the

later spikes in F plot), suggesting the possibility of somewhat complicated behavior; such

complexities will be seen below.

See Fig. 3.4. The ball’s rebound velocity or restitution (top) and the number of sub-
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Figure 3.4: Hertz contact, see Eq. 3.12 for F . Two impact locations are considered, left:
b = 0.4, and right: b = (

√
5 − 1)/2. Top: net restitution, and bottom: number of sub-

impacts, both against number of modes retained (N). For b = 0.4, mode numbers 5, 10,
15, · · · , are not excited at all. For this reason, it serves as a check to note that results for
N = 4 and 5 are identical; results for 9 and 10 are identical; and likewise 14 and 15, 19 and
20 etc. For b = 0.618034 · · · , no such simple check is available.

impacts (bottom) are shown against the number of modes retained, for b = 0.4 (left) and

b = (
√
5 − 1)/2 (right). The axes scales (divisions) are the same along the rows and the

columns for the subplots. For few modes retained, say N < 8, the response is similar for

both b’s. However, as N increases, many sub-impacts occur and results for the two b’s

differ significantly. In particular, for the irrational choice of b, convergence is very slow.

Note that, by symmetry, b = 0.4 is identical to b = 0.6, which is not much different from

b = 0.618034 · · · ; the difference in outcomes is presumably because the latter location is

irrational, and so all modes (including the fifth, tenth, etc.) are excited.
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Since the mode shapes for the simply supported case are of the form sin(nπx), for

x = b = 0.4 we find that sin(0.4nπ) = 0 whenever 0.4n is an integer, i.e., n = 5, 10, 15, · · · .

These modes are therefore not excited in the impact. Consequently, results for N = 4 and

5 are identical, as are results pairwise identical for N = (9, 10), (14, 15), (19, 20), · · · . This

equivalence is indeed seen in the left subplots, and serves as an elementary check on the

numerical results.
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Figure 3.5: Impact with N = 0. The viscous contact force F is plotted against ξ for ball
impact velocities of 1.2 m/s, 0.9 m/s, and 0.6 m/s. The loops are rounded at the ends.

We now comment briefly on the neglect of gravity in our simulations. The contact force

magnitudes are of the order of a few hundred Newtons (see Fig. 3), while the ball weight

is on the order of 1 N. Gravity would merely make the straight line portions of Fig. 3.3

(top) very slightly curved. Alternatively, if the beam was vertical and the ball motion was

horizontal, then using the formula s =
1

2
gt2 and a net time of 0.025 seconds, we see that

the vertical travel of the ball would be about 3 mm, which is small compared to the beam

length. All in all, these small effects would not change our main conclusion about modal

truncation.

We will use pure Hertzian contact as a reference case below, as we consider various

forms of dissipation in the impact.
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3.3.3 Viscous contact dissipation
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Figure 3.6: Impact with N = 27 modes. Left: F vs. t, right: F vs. ξ. The F vs. ξ loops
indicate dissipation of energy.

Here, viscous contact dissipation is considered: see Eq. 3.15. To choose c, we separately

simulated the impact of the ball while artificially holding the beam fixed (N = 0). By

N = 0 we mean that no beam modes are retained, i.e. ξ = −zb and ξ̇ = −żb (see Eq. 3.11).

We found that c = 0.08 gave a rebound of about 0.95 m/s for an impact velocity of 1 m/s.

We used this same c value in our numerical study of convergence with increasing N .

Figure 3.5 shows the viscous dissipation force with ξ during such an impact for three

different ball velocities. There is a single contact in each case. The loops are rounded at

the ends. Fig. 3.6 shows the F vs. ξ loops for impact velocity 1 m/s, N = 27 and b = 0.4.

Multiple sub-impacts occur.

Results are given in Fig. 3.7, which is displayed using the same scheme as in Fig. 3.4. Red

crosses denote the dissipative contact, while blue circles denote the original nondissipative

Hertzian case. It is seen that small contact dissipation has no significant effect in speeding

up convergence with increasing N , although on average there is some indication of lower

rebound.
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Figure 3.7: With and without viscous contact dissipation, see Eqs. 3.12 and 3.15. Two
locations, left: b = 0.4, and right: b = (

√
5 − 1)/2. Top: net restitution, and bottom:

number of sub-impacts, both against N.

3.3.4 Hysteretic contact dissipation

Here, rate-independent hysteretic dissipation is considered in the contact: see Eqs. 3.16

and 3.17. Recall that an additional differential equation is included for the evolution of the

internal variable θ,

θ̇ =
K
(
θm + β sign(ξ ξ̇)− θ

)
⟨ξ⟩

|ξ|+ ϵ
|ξ̇|.

Using both Matlab’s event detection as well as “ode15s”, with error tolerances of 1 ×

10−11 and parameter ϵ = 5× 10−8, the simulation worked well2.
2Additionally, at the start of each sub-impact, it is numerically best (as indicated by the small-ϵ limit,

not discussed here to save space) to take θ = θm + β as the initial value of θ. All other dynamic (modal
and ball) coordinates are obtained from numerical integration through the non-contact phase.
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ϵ = 5× 10−8, see Eqs. 3.16 and 3.17. The hysteretic force F is plotted against compression
for ball impact velocities of 1.2 m/s, 0.9 m/s, and 0.6 m/s. The restitution values obtained
are close to 0.95 in each case, decreasing very slightly with increasing impact velocity.
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Figure 3.9: Impact with N = 27 modes. Left: the hysteretic contact force against time,
right: hysteresis loops in the contact force, including minor loops.

As we did for the viscous contact case, we first artificially fix the beam (N = 0, no beam

modes are retained), and choose the hysteresis model parameters to obtain a restitution of

about 0.95 when the impact velocity is 1 m/s. Figure 3.8 shows the hysteretic force with ξ

during such an impact for three different ball velocities. There is a single contact in each

case and the hysteresis loops are plotted on the same scale for comparison. The parameters

used are θm = 1.6, β = 1.4, K = 0.4, and ϵ = 5 × 10−8, along with an adjusted Kh as

explained below.
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Figure 3.10: See section 3.3.4. Impact with rate-independent contact dissipation (red
crosses) and without (blue circles). Left: b = 0.4, and right: b = (

√
5 − 1)/2. Top:

restitution, and bottom: number of sub-impacts, against N .

Recall that the hysteretic force Fd is given in our model by

Fd = F0(1 + θ),

where F0 is the Hertzian contact force. Since on the rising curve we have θ = θm + β = 3,

the stiffness Kh used in the hysteretic simulation was taken to be one-fourth of the original

Hertzian stiffness of Eq. 3.20. As a result, Fd will be exactly equal to the Hertzian contact

force F0 during the initial compression phase of contact. While unloading, a hysteresis loop

will be formed, with Fd = 0 for ξ ≤ 0.

The restitution values obtained for this artificial case of N = 0 decreased slightly with
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increasing impact velocity, but were very close to 0.95 for all three cases.

Next, results of a simulation with impact velocity 1 m/s, with the above hysteresis

model parameters, and with N = 27, are shown in Fig. 3.9. Multiple sub-impacts occur,

as seen in earlier examples. The hysteretic force Fd shows many rate-reversals, including

some that occur within a single sub-impact. The suitability of the hysteresis model for the

present type of impact is thus demonstrated.

The results of a convergence study with increasing N , for the case with a hysteretic

contact force are given in Fig. 3.10. It is seen there that convergence with increasing N is

not improved with hysteretic dissipation in the contact.

3.3.5 Modal damping

Finally, we consider modal damping for the beam vibrations: see Eq. 3.18. The contact is

now purely dissipationless Hertzian. A uniform damping ratio of ζ = 0.02 is assumed for

all the beam modes. The equations for the beam’s modal coordinates now are

Mä+Cȧ+Ka = −F{ϕ(b)},

where C is a diagonal matrix whose nth diagonal element is ζωn, where in turn ω2
n =

EIn4π4

ml4
.

Results are shown in Fig. 3.11. It is clear that, at least for some purposes like approx-

imately predicting the outcomes of such impacts for engineering simulations, a significant

reduction in variability occurs by N ≈ 25 for both b values. Thus, even a relatively light

modal damping (such as 0.02) has a strong regularizing effect on the impact, and speeds

up convergence with increasing N .

In the next section, we study this improved convergence in greater detail.
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Figure 3.11: With modal damping (red crosses) and without (blue circles). Left: b = 0.4,
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√
5− 1)/2. Top: restitution, and bottom: number of sub-impacts, against

N . Convergence of a sort is seen for increasing N ; certainly the variability is greatly
reduced.

3.4 Further simulations

3.4.1 Role of modal damping in improved convergence

See Fig. 3.12. The ball-beam motion during contact (yb, ẏb, zb, żb) are plotted for ζ = 0 and

ζ = 0.02, for 40 modes and b = 0.618034.

The uppermost subplot shows displacements against time of the ball as well as the

beam’s contact point, for both ζ values; recall that the ζ = 0 case is expected to resemble

the results presented in Fig. 3.3 above. It is seen that the net restitution is significantly

different for the two cases, ζ = 0 and ζ = 0.02. In this specific example, the final sub-

impacts differ dramatically for the damped and undamped cases.
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Figure 3.12: Ball-beam motion with N = 40 during impact at b = (
√
5−1)/2 for damping

ratios ζ = 0 and ζ = 0.02. In these two particular simulations, the final sub-impacts differ
dramatically; other pairs of simulations show differences in details, but the qualitative effect
of light modal damping is the same.

The next subplot shows the velocity of the contact point on the beam, and here the

role of modal damping is clearly seen. There is enough time in the net impact interaction

for the higher mode responses to decay to negligible magnitudes, even for a small damping

ratio of ζ = 0.02. However, for ζ = 0, the higher mode oscillations persist indefinitely,

and it is clear that a random-like effect on restitution might arise in such cases. This

issue can also be clearly seen in a plot of modal energies for a damped versus undamped

beam. The higher modes damp out quickly for the damped beam leading to less scattered
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results. For example, see Fig. A.2 in Appendix A.3. Note that the pure impulse response of

undamped Euler-Bernoulli beams is known to be complex [63], and the high modal content

in the undamped response just reflects that complex behavior. With viscous and hysteretic

contact dissipations too, the rapid beam oscillations persist.

The third subplot shows the velocity of the ball for the two cases, and it is seen as

expected that there are quick transitions followed by relatively long phases of free flight,

all within one single macroscopic impact.

Finally, the lowermost subplot shows the contact force histories for the two cases.

Overall, the qualitative picture which emerges is that, with several brief sub-impacts

spread over a relatively long period, the higher mode responses decay quickly between

sub-impacts and lead to better convergence (or at least, less variability) with increasing N .

3.4.2 Some other parameter values

It remains to check that the qualitative behavior observed persists for some reasonable (not

too small) range of parameter values. To this end, we now vary two of the parameters,

namely the ball impact velocity żb and the ball diameter, in a few final simulations.

Figure 3.13 shows results for different impact velocities, namely 0.5, 0.25 and 0.1 m/s,

with and without modal damping, and b = 0.618034, and all other parameters unchanged.

The ball diameter is kept as earlier (3 cm), ζ = 0.02 and the beam parameters are un-

changed. We see that the restitution shows distinctly less variation against N with modal

damping present as opposed to absent, although for the 0.25 m/s case the convergence ap-

pears relatively a little slower. There is no doubt that the presence of small modal damping

regularizes the impact outcome significantly.

Figure 3.14 shows results for impacts at a velocity of 1 m/s, with balls of diameters

4 cm and 2 cm (and the Hertz contact stiffness adjusted appropriately), for ζ = 0 and

ζ = 0.02, and b = 0.618034 · · · . Interestingly, for the ball diameter of 4 cm, the behavior is

qualitatively similar to the 3 cm case except that the convergence is more convincing. In

contrast, for a ball diameter of 2 cm, there is just one single impact both with and without
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Figure 3.13: Restitution against N for different impact velocities, with b = (
√
5 − 1)/2,

for ζ = 0.02 (red crosses) and ζ = 0 (blue circles).

damping, results are regular in both cases, and the modal damping essentially plays no

role at all. In other simulations with the 4 cm ball we have observed that the converged

value of the restitution changes visibly (though not dramatically) with contact location b.

A numerical study of this variation in restitution for b between 0.6 m and 0.62 m is given

in Fig. 3.15 for completeness.

Qualitatively, for the smaller ball (2 cm diameter), there is only one impact and the

behavior is regular. For extremely massive balls, the beam would begin to behave like a

massless spring, and again the behavior would be regular. In an intermediate regime as

seen for the 3 cm and 4 cm balls, it is possible to have many sub-impacts, and in this regime

light modal damping has a strong regularizing influence.
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Figure 3.14: Impacts with ball diameters, of 4 cm and 2 cm at b = (
√
5 − 1)/2, for

ζ = 0.02 (red crosses) and ζ = 0 (blue circles). Top: restitution, and bottom: number of
sub-impacts, against N .

3.5 Concluding remarks

The dynamics of impact between a chunky object like a ball and a slender object like a

beam can involve several sub-impacts within each macroscopic impact due to vibrations in

the beam. In a dynamic simulation of such impact, retention of insufficiently many modes

in the model may lead to highly inaccurate predictions. For example, with dissipation-free

Hertzian contact as seen in Fig. 3.4, as we vary the number of modes retained between 30

and 40, the computed coefficient of restitution can vary by a factor of 6, between about 0.1

and 0.6. Such uncertainty (caused by unsuitable modal truncation) in the outcome of an

otherwise deterministic calculation is clearly undesirable.

In this context, in the present chapter we have studied the interplay between dissipa-

tion and modal truncation in such ball-beam impacts. In particular, we have found that
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Figure 3.15: See section 3.4.2. Impacts with a ball diameter of 4 cm, for different contact
locations b, with ζ = 0.02 and N = 40. Top: restitution, and bottom: number of sub-
impacts, against b.

introduction of contact dissipation (whether viscous or hysteretic) has little effect on the

observed variability of computed outcomes against number of modes retained. In sharp

contrast, we have found through detailed simulations that introduction of even rather light

(2 percent) modal damping makes the variability much smaller, and leads to convergence

of a sort (though not precise mathematical convergence within the numbers studied) with

increasing numbers of modes retained. In particular, the computed restitution settles down

to a variability within several percent (as opposed to a factor of 6) with 2 percent modal

damping and more than about 25 modes retained, for the ball size and impact velocities

studied. The results remain qualitatively the same for some significant range of parameter

values, such as steel balls with diameters from 3-4 cm, and impact velocities from 0.1-1.0

m/s, for a simply supported steel beam of length 1 m and mass about 1 Kg. For signif-

icantly smaller balls, such as diameter 2 cm, results are inherently less variable, and the

modal damping plays no significant additional role.

The key physical phenomenon responsible for the regularization of impact outcomes

with even light modal damping is the rapid decay of higher-mode oscillations during periods

of free flight, between subsequent sub-impacts, as shown in Figs. 3.12. In fact, the main
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qualitative understanding obtained in this chapter is summarized nicely by that one figures.

We believe that this insight is generally relevant to vibration-dominated impacts between

one compact and one slender body. However, the quantitative details of convergence, like

precise number of modes needed, will change from system to system.

We close this chapter with comments on two modeling issues.

The first comment is on the adoption of the Euler-Bernoulli beam model. The Euler-

Bernoulli beam neglects rotary inertia and deformation due transverse shear. We retain

about 30 to 40 modes in the simulations. For a beam under impact and with many modes

retained, rotary inertia and shear may play a role for very high modes. However, there are

many studies on the behavior of an Euler-Bernoulli beam under impact (see [37]), and in

these studies some lower frequency aspects of the solution are expected to remain valid.

Also, we emphasize that the use of a large number of modes should be looked upon as a

solution method, after the governing PDE has already been adopted. In other words, when

we have already decided to neglect rotary inertia and shear, we have arrived at a PDE,

which is called the “Euler-Bernoulli beam”. Solutions of that PDE may use a large number

of modes, and there is in principle no contradiction.

The second comment is on the number of modes required. For ease of a reader who

may want to estimate the number of modes required for an acceptable solution, we suggest

the following steps. For our considered ball-beam impact problem, we can hold the beam

immobile (zero modes, just Hertz contact), and calculate the contact duration. We can

then clearly cut off all beam modes whose time periods (inverse of natural frequencies) are

smaller than the contact duration obtained with zero modes. However, by this approach

that number turns out to be very large, (about 70). With this large number, i.e. 70, as an

approximate guideline we may estimate that the first 30 to 40 modes may be sufficient in

the presence of small damping. We acknowledge that giving a general prescription for all

kinds of systems may be difficult as the variety of systems is large, and the prescription

given here applies to slender beam like bodies impacted by chunky or compact bodies.
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Chapter 4

Finite-beam impact: Detailed

simulations and restitution values

The aim of this chapter is to present detailed numerical simulations of vibration-dominated

impacts between solid Hertzian spheres and finite beams.

We will consider both uniform and stepped, simply-supported and cantilever beams.

There is no dissipation at the contact and the beams are lightly damped, following the

observations of chapter 3.

It is well recognized that the coefficient of restitution is not a fundamental property of

a pair of materials or even a pair of objects. Restitution is a useful parameter in impact

models, and yet also one that is not fully understood, that shows variation depending on

impact configuration or colliding body type, and that deserves further case studies so that

clearer insights into its nature and variability can be obtained.

We distinguish here between the restitution as a ratio of separation to approach veloc-

ities at the end of the contact phase while the bodies are still vibrating, as examined in

[6, 13, 37, 38], as opposed to a similar ratio considering only the rigid-body motions (i.e.,

after vibrations have decayed to negligible levels, or when large enough overall motions are

examined such that small superimposed vibrational displacements are not important [19]).

The latter ratio may be called the net restitution, and is of primary interest in simulations
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of large overall motions of stiff bodies that vibrate briefly after impact.

We now discuss a few relevant articles on vibration-dominated impact models from a net-

impulse or net-restitution viewpoint, which also include those where modal decomposition

was used. The early articles [6, 37] and several other similar ones discuss a generalized

momentum balance method for intermittent motion in flexible multibody systems. Therein,

the authors show that, on incorporating sufficiently many assumed beam modes and a

coefficient of restitution, and using a matrix formulation, it is possible to describe a single

impulsive interaction in flexible body impacts. Note that, since the single contact may lead

to subsequent subimpacts, the impact simulation may not end with one computed impulse.

Various studies have presented experimental validation with the aforementioned approach

[23], and considered plastic deformation and an equivalent restitution [13, 26]. The recent

article [81] presents further developments along the same line of thought.

The most important general paper that discusses impact outcomes for a flexible body,

that we know of in this area, is [26]. In that paper, three asymptotically limiting regimes

are used to identify important nondimensional parameters that govern the net outcome of

impacts of a compact body on an extended flexible body. These limiting regimes are (i)

an extremely light impactor, such that the flexible body behaves like a half space, (ii) an

extremely heavy impactor, such that the flexible body acts like a massless spring, and (iii) a

short time impact on a large flexible structure, such that the flexible structure (typically a

beam or a plate) acts like an infinitely large object, with no waves reflected back. In regimes

that are in between these asymptotic limits, a moderate amount of additional variability

exists in the outcome, but enough is known to serve, e.g., design needs. Predictions and

validations for net restitution levels are, however, not shown in [26].

Another key paper in the area of modeling and predicting the net restitution in a vibra-

tion dominated impact is [19], where an analysis based on energy partitioning is developed

to explain and match the experimental results for a tilted rod falling on a massive ob-

ject [14]. Finally in simulations of ball-beam impacts [78], it was noted that while there

are other effects close to boundaries, the restitution level for some mass ranges is roughly
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constant for impact locations far from the boundaries.

However, a systematic, quantitative and detailed study as in this chapter, although

straightforward, is not available in the literature as far as I know. In subsequent chapters

these numerical results will be used to develop and validate a novel modeling approach.

Here we consider solid spheres of six different sizes, colliding at 25 impact locations,

on each of four different beam geometries with different boundary conditions. Similar

to chapter 3, we use modal expansion for the beam and a Hertzian spring for the contact

interaction. We compute detailed solutions of the ODEs and primarily report net restitution

values.

4.1 Physical model and equations of motion

The equations of motion are similar to those used in chapter 3. However, details like actual

mode shapes differ. To make the chapter self-contained, the equations are briefly presented

afresh. Readers familiar with such equations may move to section 4.2.

x

b

z

y
Q

S

(a) (b)

ball

beam

y
b

z

Figure 4.1: (a) Lateral impact of a compact body on an Euler-Bernoulli beam at x = b.
The displacements of the beam and ball are y(x, t) and z(t) respectively, positive upwards.
(b) The ball-beam contact. Solid lines show the actual configuration at contact. S and Q
are the notional contact points on the undeformed ball and beam respectively. A contact
force exists only if yb − z > 0.

See Fig. 4.1. We consider the transverse impact of a ball on an initially stationary

Euler-Bernoulli beam. The beam may have various boundary conditions (cantilever/built-

in/fixed, pinned, free, or some other). The beam is lightly damped, and vibrates during
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and after impact. All displacements during impact are small. Contact between the ball

and beam is Hertzian, and occurs at x = b. We neglect (i) gravity, (ii) vibrations in the

sphere, and (iii) friction at the contact. There is no dissipation in the Hertzian compliance

model. It may be noted that introduction of contact dissipation may not change results

much, going by chapter 4.

In Fig. 4.1, the dotted line along the beam’s undeformed surface denotes our reference

line. The displacement (upwards) of the beam from the reference line is taken as y(x, t).

The distance (upwards) of the notional point of contact of the ball from the reference line

is taken as z(t). Contact occurs when y(b, t)− z(t) ≥ 0.

The impacting ball has mass m and is taken for simplicity to be a solid uniform sphere

of radius r. It will be clear below that we actually only use the total mass m and the Hertz

contact stiffness kH , so the ball is notional. Other impacting body shapes are not really

excluded.

The beam has a length l and density ρ; its cross-sectional area is A and mass per unit

length is m, both of which we assume for simplicity are piecewise constant. The beam

cross-section’s area moment of inertia is I, which we also assume for simplicity is piecewise

constant (e.g., we consider stepped beams). We assume that both the bodies have the same

elastic modulus E, but only for computing the Hertz contact stiffness kH . Our assumption

that m, A and I are piecewise constant is merely to allow us to easily compute a large

number of natural frequencies and mode shapes; in principle spatially variable m, A and I

could be included as well.

The ball hits the beam at x = b with a vertical velocity ż(t) or vi < 0. We take vi = −1,

and study a parameter range where the dependence of restitution on impact velocity is

small1. The beam vibrates upon impact. After one or more contact interactions, the body

rebounds with a velocity of vf > 0, never to collide again. This final rebound velocity is

the effective or actual coefficient of restitution, since vi = −1.

The equation of motion of an undamped beam with a concentrated arbitrary downward
1We have separately verified that for a range of sphere masses, changing the impact velocity up or down

by a factor of 15 has only a small effect on the restitution, see Fig. 4.3.
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force F at x = b is

(EIy′′)
′′
+ ρAÿ = −δ(x− b)F, (4.1)

where primes and dots denote partial derivatives with respect to position x and time t

respectively.

For our impact problem, F is a time-varying contact force. We will be interested in∫ tc

0

Fdt = P, where P is the net-impulse, and “tc” is the contact duration. For the colliding

sphere, on which the contact force acts upwards,

mz̈ = F. (4.2)

Initial conditions are y(x, 0) = 0, ẏ(x, 0) = 0, z(0) = 0 and ż(0) = −1. Regardless of the

possibly complex vibrational dynamics with one or more subimpacts that determine the

temporal details of F (t), direct integration of Eq. (4.2) gives2 m(żf − ż(0)) = P.

We will tackle Eq. (4.1) using modal expansion and direct numerical integration after

introducing a small amount of modal damping. To this end, we write

y(x, t) ≈
N∑
i

ai(t)ϕi(x), i = 1..N, (4.3)

where ai(t) is the modal coordinate corresponding to the ith mode ϕi(x), N is the number of

modes to be retained, and the determination of the mode shapes and corresponding natural

frequencies is a routine calculation and not described here in detail3. The modes ϕi(x) are

mass-normalized, i.e., they satisfy

∫ L

0

ρAϕi(x)ϕj(x)dx = δij, (4.4)

2This is a simple special case of the idea that, even in the presence of vibrations, the effect on the rigid
body motion can be computed using the net impulse, and rigid body impact models remain useful.

3Two procedural points are noted: (i) For computing eigenvectors, stepped beams require three continu-
ity and one jump conditions at the step. (ii) For higher modes and their natural frequencies, there can be
exponentially large terms that almost cancel out, and some asymptotic approximations are useful to avoid
catastrophic cancellation of significant digits. We used high-precision Maple calculations to cross-check our
simplified expressions used in Matlab.
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where ρA = m (piecewise constant) denotes the mass per unit length of the beam; and

where δij is the Kronecker delta, equal to one if i = j and equal to 0 otherwise. The

velocity of any point on the beam is

ẏ(x, t) =
N∑
i

ȧi(t)ϕi(x), i = 1..N.

We now proceed to write Lagrange’s equations. The kinetic energy (KE) of the vibrat-

ing structure is KE =
1

2

N∑
i

ȧi(t)
2 due to use of the normal modes. The potential energy is

known to be of the form PE =
1

2

N∑
i

ω2
i ai(t)

2, where ωi is the natural frequency of the ith

mode. The equations of motion for the modal coordinates ai(t), in the absence of damping,

are

äi + ω2
i ai = −ϕi(b)F, i = 1 . . . N. (4.5)

Introducing uniform light modal damping, we write

äi + 2ζωiȧi + ω2
i ai = −ϕi(b)F, i = 1 . . . N, (4.6)

where we have used ζ = 0.02 in our study uniformly (see [56] for motivation and discussion).

Equation (4.6) will be solved along with Eq. (4.2) for the impacting body, wherein the

contact force F will be taken as Hertzian,

F = kHξ
3/2, ξ =

 y(b, t)− z(t), y(b, t) > z(t),

0 otherwise.
(4.7)

Finally, in Eq. (4.7), kH is given by [1]

kH =
2E

√
r

3 (1− ν2)
, (4.8)

where r is the local radius of the impacting body, the beam’s contacting surface is flat,

the impactor and beam are of the same material, E is Young’s modulus and ν is Poisson’s
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ratio. kH , in principle, can be a free parameter. In that case, as the contact stiffness kH

varies, the number of modes actively participating in the impact will change.

4.2 Numerical simulations

In our simulations below, material parameters match steel. In SI units, E = 2 × 1011,

ν = 0.3, ρ = 7800. A ball mass of m = 0.0638 Kg or 0.025 m diameter gives, e.g.,

kH = 1.638× 1010 Nm−3/2 by Eq. (4.8).

Four different beams are considered, as shown in figure 4.2.

(c)

0.5 L 

(b)

L

(a)

fixed-pinned (stepped)fixed-free (stepped)

L

fixed-free 

h h/4 h/4h

m=1 m=1

m=1 m=1/4
m=1

m=1/4

0.5 L 

(d)

0.6 L 0.4 L 

pinned-pinned

Figure 4.2: Four beams considered. Where m = 1, the beam cross section is square. In
slimmer portions with m < 1, the width is kept the same and the thickness is lowered.

We numerically integrate N + 1 equations of motion (see Eqs. (4.6), (4.2) and (4.7))

using Matlab’s stiff ode solver “ode15s”. Variation of rebound with impact velocity is shown

in Fig. 4.3. We have chosen N = 40 and ζ = 0.02 after some initial convergence studies:

see Fig. 4.4, which shows one such. As the contact stiffness kH varies, the number of modes

actively participating in the impact will change. It is noteworthy (as in Fig. 4.4, bottom

right) that near the free end of the beam the number of impacts can be quite large, but even

a small modal damping regularizes the interaction and produces a more rapidly convergent

modal expansion. The number of subimpacts may change a lot while the net restitution
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Figure 4.3: Variation of restitution (top) and number of subimpacts (bottom) against vi
at several impact locations on the stepped cantilever beam, with sphere mass m = 0.147
Kg. N = 40.

does not change much. This is because many of the subimpacts are very gentle. A large

number of gentle subimpacts is dynamically well approximated by a sustained contact.

While convergence is not perfect for N = 40, it is reasonably good (see also [56]).

Retaining even higher modes leads to high natural frequencies and correspondingly slower

and more challenging numerical simulation (for example, for a simply supported uniform

beam, the 40th natural frequency is 1600 times higher than the first one). Additionally,

if we retain extremely high modes, with extremely small modal amplitudes, then their

contribution may become comparable to other neglected effects like contact imperfections

and asperities, plastic yielding at the contact location, shear effects and other deviations

from Euler-Bernoulli beam theory near the contact location, and imperfections in boundary

conditions. For these reasons, we proceed with N = 40.

See Fig. 4.5 for some representative results. Numerically obtained solutions are shown

for a fixed-pinned, stepped beam, impacted independently at four locations, b = 0.375,

0.583, 0.75, and 0.917. Multiple sub-impacts are seen. High frequencies are excited, and

contact events are complicated.
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Figure 4.4: Variation of restitution and number of subimpacts against N at three b’s on
the stepped cantilever beam, with sphere mass m = 0.147 Kg. Compare results for ζ = 0
(blue circles) and ζ = 0.02 (red pluses). Convergence is more rapid where restitution is
higher, because small changes in energy can cause large relative changes in small restitution
values. Reasonable convergence is achieved for N ≈ 40.
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Figure 4.5: Numerical simulations. A sphere (m = 0.0638) strikes a stepped beam (L = 1)
at b = 0.375 (A), b = 0.583 (B), b = 0.75 (C), and b = 0.917 (D), as shown in the
schematic at the top. For each case A, B, C and D, there are three subplots as follows.
Top: displacements y(b) and z against t. Intersection of the blue (beam) and the red
(sphere) lines indicates contact. Middle: velocities ẏ(b) and ż against t. When there is
no contact, ż is constant. The final ż = vf equals the restitution. Bottom: F against t.
Multiple sub-impacts are seen.
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Figure 4.6: Restitution and number of contacts for impacts on uniform pinned-pinned
beam (see Fig. 4.2 a), for different m and b.

67



0

1

0

1

2

0

10

20

0

10

20

0

1

0

20

40

0

1

0 0.5 1
0

50

0 0.5 1 0 0.5 1

re
st
it
u
ti
o
n

su
b
im
p
ac
ts

re
st
it
u
ti
o
n

su
b
im
p
ac
ts

re
st
it
u
ti
o
n

su
b
im
p
ac
ts

m=0.003

m=0.024 m=0.064

m=0.1

m=0.003 m=0.024 m=0.064

m=0.1

m=0.147 m=0.303

m=0.608 m=1.40

m=0.147 m=0.303

m=0.608 m=1.40

b b b

m=0.997

m=0.997

Figure 4.7: Restitution and number of contacts for impacts on uniform fixed-free beam
(see Fig. 4.2 b), for different m and b.
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Figure 4.8: Restitution and number of contacts for impacts on stepped fixed-free beam
(see Fig. 4.2 c), for different m and b.
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Figure 4.9: Restitution and number of contacts for impacts on stepped fixed-pinned beam
(see Fig. 4.2 d), for different m and b.
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Detailed restitution and number of subimpacts plots are given for the four beams, in

Figs. 4.6, 4.7, 4.8 and 4.9.

A few general trends are observed. For very small m, vf is high and there is a single

contact event. For slightly higher m, the number of sub-impacts increases (indicating

significant beam vibrations), the dynamics is richer, there is more variability, and vf is low.

As m increases further, vf increases again. This is because energy comes back to the sphere

through subsequent impacts, and also the beam begins to behave somewhat like a spring.

For stepped beams, since the compliance of the thinner portion is higher, greater rebound

is seen from those locations (the impacting mass is, relatively speaking, larger). Near free

ends, a general rising trend in vf is seen. There is a sudden rise in restitution very close to

pinned or fixed ends.

It may be noted in the modal expansion that there is a singularity at b = 0 in that no

modes are excited there. But if the contact is at b = ϵ, where ϵ is a small positive number,

then essentially every mode is excited. In reality it is not exactly a discontinuity but a

region of rapid change in behavior. However, in order to avoid complexities of such a rapid

change, we do not take b extremely small and have restricted ourselves to 25 equally spaced

impact locations. Therefore the smallest nonzero value of b is 0.04166 . . . .

We now comment briefly on the correctness of our simulation results. For comparison

and better understanding, we have also simulated the ball-beam impact for a uniform

cantilever beam using the Finite Element Method (FEM). We have compared the rebounds

obtained using modal analysis and FEM. For uniformity (in number of modes present), we

discretized the beam into 20 beam elements (40 dof). A very good match is observed: see

Fig. A.3 in Appendix A.4.

Having satisfied ourselves that our results are accurate, the rather significant variation

of restitution values with b is still surprising for some readers. The reason for this variation,

especially for the cantilever beams, can be seen in Figs. 4.10 and 4.11. The subfigures show

the simulated ball and beam displacements with time. The compliances of the beams

increase as we move away from the fixed end, more so when the beams’ cross-section are
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reduced at the step. Very coarsely, we see that for the larger b’s, the magnitudes of the

displacements of the beam-contact-point increase, the impactor’s rebound velocities after

the first overall contact event decrease, and as such (more than one) subsequent impacts

occur. We see that a large number of grazing bifurcations and associated complications

may occur (see, e.g, [35, 36]). The variability in restitution is therefore inherent to the

system.

Another point worth mentioning here is that the percentage variation in the restitution

value is significantly larger when the restitution itself is smaller. This is because of physical

reasons, e.g., if the restitution is 0.1 or 0.2 it may seem like a 100% variation, but in the

first case the ball retains 1% of its original energy and in the second case it retains 4% of

its original energy. Very small changes in the physical conditions may lead to such changes

in the energy retained in the ball. It is for this reason that small values of restitution are

particularly sensitive to details of the model, system parameters, and solution method.
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Figure 4.10: Ball and beam displacements against time for different b for the uniform
fixed-free beam with m = 0.608. The straight lines are the ball’s motion, the undulating
lines are the beam-contact-point’s displacement.
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Figure 4.11: Ball and beam displacements against time for different b for the stepped
fixed-free beam with m = 0.147. The straight lines are the ball’s motion, the undulating
lines are the beam-contact-point’s displacement.

4.3 Concluding remarks

In this chapter, we have numerically studied vibration dominated impacts between a Hertzian

ball and an Euler-Bernoulli beam. Through direct and detailed dynamic simulation, we

have studied how the interaction varies with boundary conditions, impact location, and

ball mass. These ball-beam restitution observations are used in the following chapters to

guide a simple net-impulse model for vibroimpact problem.
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Chapter 5

Algebraic models, contact inequalities

and “outward” inequality

In chapters 3 and 4, we examined in some detail the impact between a Hertzian sphere and

an Euler-Bernoulli beam. We will now try to capture same impact outcomes (obtained by

solving ODEs) with more approximate net-restitution models in the spirit of algebraic or

impulse-based collision models (without solving ODEs). There are various impulse-based

models for single- and multiple-point impulsive contacts without accounting for vibrations.

However, we have not seen explicit net-impulse based algebraic restitution modeling that

accounts for impact induced vibration and multiple subimpacts in the way developed in

this thesis.

Here, we begin with a general discussion of algebraic modeling of impacts, and then

introduce the quadratic program based approach for impacts. Chapter 6 presents the model

for vibration dominated impacts. Chapter 7 presents a possible model parameterization

and fitting results.

5.1 Introduction

Incremental or continuous impact models consider a finite duration force and use differen-

tial equations to describe the evolving dynamics of the system during contact. They require
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detailed information like material model, geometry, contact characteristics etc. which may

not be available or involve high computational cost. On the other hand, algebraic models

consider the impulse as instantaneous and use some simple rules with a few fitted param-

eters, are approximate, yet have utility in fast dynamics simulations, like physically based

animations, robotics, games, movies, and granular flows. Contact models based on the

Linear Complimentary Problem (LCP) or based on quadratic programming are algebraic

models as well, but have mostly been used in rigid body impacts [8, 16, 79, 80, 18].

Here, similar to some “rigid body” approaches (see e.g., [1, 3, 4, 5]), we assume that

the overall contact interaction is brief though it may include multiple vibration-induced

separations; motions during the impact interaction are small; contact and constraint forces

are large compared with existing bounded forces like weight; velocity-squared acceleration

terms can be neglected during the impact interaction; deformations during post-impact

large motions are negligible; and the net effect of the contact impulses on those large “rigid

body” or overall post-impact motions of the colliding objects is described accurately using

rigid body impulse-momentum relations.

In such impacts, in spite of the above simplifying assumptions, the contact impulses

remain indeterminate, and must be modeled using separate constitutive modeling or impact

laws. In physical reality, the very short time impulsive opposing contact force depends on

the localized deformation. However, in net-impulse modeling we predict the net change

in overall motion quantities using rigid body dynamics and as such additional modeling

assumptions are required. For example, for a two dimensional frictionless collision between

two rigid bodies, we might specify a scalar coefficient of restitution.

The early articles [6, 37] and several other similar ones discuss a generalized momentum

balance method for intermittent motion in flexible multibody systems. Therein, the au-

thors show that, on incorporating sufficiently many assumed beam modes and a coefficient

of restitution, and using a matrix formulation, it is possible to describe a single impul-

sive interaction in flexible body impacts. Note that, since the single contact may lead to

subsequent subimpacts, the impact simulation may not end with one computed impulse.
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Various studies have presented experimental validation with the aforementioned approach

[23], considered plastic deformation and an equivalent restitution [13, 26], and the recent

article [81] presents further developments along the same line of thought.

In an altogether different approach, experiments with a tilted rod falling on a mas-

sive object [19] were described using a detailed mechanically motivated modeling effort in

[14]. Energy losses due to friction, local deformation, and transfer to vibration modes are

separately modeled and accounted for in [14].

In a recent article [82], a two dimensional impulse based approach is presented for

repeated impacts of a ball on a beam under gravity wherein change in impact location due

to beam bending is accounted for. In contrast, we consider a single macroscopic impact

with no gravity.

Our modeling approach, that significantly extends [18], includes a combination of basic

contact constraints, kinetic energy minimization, and the introduction of key new inequality

constraints which we refer to as outward constraints. We now discuss these background ideas

that underline our approach.

5.2 General observations

We start with net impulse modeling of rigid body impacts. If two notionally rigid bodies

collide at a point, then the impulse vector from one body to another, say P, is related to

the change in the relative velocity at the contact point, namely vC, by

P = MC∆vC, (5.1)

where MC is a rank 2 tensor, has units of mass, and can be thought of as a local anisotropic

contact inertia [79, 4]. In three dimensions, Eq. 5.1 presents three equations in six un-

knowns. Further modeling assumptions are thus needed. If the frictional impulse (con-

sisting of two components) is zero, then only one unknown remains; historically, for such

frictionless impacts, we define a (kinematic) coefficient of restitution 0 ≤ e ≤ 1, introduced
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by Newton. Other definitions for restitution include the Poisson restitution (impulse-based)

and energetic restitution [3] (normal-direction-work-based). The coefficient of restitution

has been used for impacts with friction as well, e.g. [3, 10]. The Poisson and energetic

restitution assume an absence of strong vibration effects; the Newtonian definition makes

no such assumption. Readers looking for more exhaustive discussion of rigid-body impacts

can see [1, 3, 2, 4, 5].

5.2.1 Restitution modeling using inequalities

Figure 5.1 depicts a well known problem with usual Newtonian restitution in simultaneous

multiple impact.

P

P

intially touching 

points separate

ball strikes beam at end

Figure 5.1: Usual kinematic (Newtonian) restitution is problematic here.

For single point impacts, the normal component of separation velocity is taken to be

some modeled restitution coefficient e times the normal component of approach velocity,

vf,n = −evi,n,

where the subscript n denotes “normal” and the subscripts f and i denote final and initial

respectively. The minus sign is because the approach and separation velocities have different

senses. In Fig. 5.1, the dropping ball on the left end of the rod causes new separation to

occur at a pre-existing stationary contact between the table and the right end of the rod. In

this case, since vi,n = 0, no finite e can model the impact. It is commonly understood, e.g.
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[4, 2], that a good way to model restitution in simultaneous impact is to use an inequality

constraint of the form

vf,n ≥ −evi,n, or vf,n + evi,n ≥ 0. (5.2)

The next modeling step is to make the restitution amount definite. A commonly adopted

approach is to use the linear complementarity conditions (LCP) on separation velocity and

normal impulse Pn as follows:

vf,n + evi,n ≥ 0, Pn ≥ 0, and (vf,n + evi,n) Pn = 0.

However, we will make the impulse definite using a different approach which has some

advantages over the LCP, see [79, 18].

5.2.2 Further restrictions

We observe that the contact interaction can never violate some fundamental physical re-

lations, which can be described using several inequalities that either are linear or can be

approximated as linear:

1. At any contact location, the normal component of the contact impulse is nonnegative

(assuming no adhesion). This is a linear inequality constraint.

2. The normal component of the post-impact relative velocity at the contact point is

nonnegative (since, otherwise, the bodies interpenetrate). This is a linear inequality

constraint.

3. If we consider Coulomb friction at the contact, then in planar interactions, the fric-

tion inequality is effectively two linear inequalities. In three dimension, the friction

inequality cone can be approximated using a set of m linear ones, where larger m

makes the approximation better [16, 70]. These are linear inequality constraints.
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4. Post-impact rigid body velocities are linear (technically, affine) functions of the con-

tact impulses, given pre-impact velocities. These impulse-momentum relations are

linear equality constraints.

Finally, kinetic energy, a quadratic function of velocities, is a quadratic function of the

set of contact impulses. The predicted post-impact kinetic energy should not exceed the

pre-impact kinetic energy. However, instead of treating this as a quadratic inequality, we

will use minimization subject to additional constraints, as described next.

5.3 Towards a quadratic programming formulation: New

outward inequalities

A significant conceptual departure from the net-impulse impact models referred to ear-

lier was made by Todorov [80], who used a quadratic program to model impacts, wherein

post-impact kinetic energy was minimized subject to friction and non-interpenetration con-

straints. This approach, while very interesting, often predicts impact outcomes with un-

realistically low restitution or rebound. We do highly appreciate Todorov’s idea, wherein

post-impact kinetic energy is minimized subject to the linear inequality and equality con-

straints listed above. The only drawback of that approach is that collision outcomes have

low rebounds.

This is where a key contribution of [18], and of this thesis, lies. In a fundamental

extension of Todorov’s idea, an additional “outward” or rebound-enhancing inequality was

introduced for simultaneous multiple impacts of rigid bodies in [18], where it was found

that predicted restitution outcomes were superior in several cases to outcomes predicted

by the popular linear complementarity formulation (LCP).

To explain the idea of an outward inequality, consider a vertically dropped ball. Friction

plays no role, and impulse-momentum relations are trivial. If we adopt Eq. 5.2, with vi,n < 0

to ensure an impact and 0 ≤ e ≤ 1, then nonnegative normal impulse and separation

inequalities are automatically obeyed. If we now minimize the post-impact kinetic energy

79



for the dropped ball, we obtain vf,n = −evi,n, which is a satisfactory outcome. Here, Eq.

5.2 serves as a rebound-enhancing inequality. If it was not enforced, then minimization of

kinetic energy would lead to a prediction of vf,n = 0, which is the minimum possible level

of rebound.

v
i

Figure 5.2: Ball falls on a rigid surface. Equation 5.2 ensures a minimum nonzero rebound.

The same idea, of an outward or rebound-enhancing inequality along with energy min-

imization, is formulated for vibroimpact in this thesis.

It is emphasized that the choices of two such inequalities used here are the main novel

elements of the present work. No restitution inequalities like them have been similarly used

in the vibroimact literature. The proposed quadratic program approach is guaranteed to

never predict impossibilities (interpenetration, energy increases).

Subsequently, solution of the impact model equations is fairly straightforward using

readily available routines in Matlab. We adopt quadratic programming, which fits our

needs well:

1. the linear inequality constraints are incorporated easily;

2. the quadratic nature of the KE, which we minimize, is convenient;

3. there is scope for adding general new inequality or “outward” constraints; and

4. we have found possible model parameterizations within this framework that match

detailed simulations well (see chapter 7).
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Our quadratic program approach, which will be described in the next chapter, never violates

the fundamental physical restrictions outlined above, gives a reasonable restitution value

that is between 0 and 1, considers separately local energy losses and energy transmitted

to beam vibration modes, and considers possible subimpacts. This approach, which we

call Energy Minimization under Outward Constraints (EMOC), is novel. No similar and

comparable modeling attempt exists in the literature.
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Chapter 6

Energy Minimization with Outward

Constraints (EMOC)

In this chapter, we develop a new modeling approach to restitution modeling for vibration-

dominated impacts between a compact body and a flexible body. We refer to this model

as Energy Minimization with Outward Constraints (or EMOC). The modeling approach

minimizes post-impact kinetic energy subject to various basic impact restrictions and one

or more additional “outward” or rebound enhancing inequality constraints. Such system-

specific, non-unique, and to-be-found “outward” inequalities constitute the primary novelty

of the approach.

Recall that a quadratic program with linear inequality constraints seeks to minimize,

with respect to a column matrix of unknowns q, an objective function of the form

qTQq

2
+ cT q,

subject to inequality constraints of the form

Aq ≤ b,

where Q is a symmetric positive semidefinite matrix and c is a column matrix of appropriate
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size; and where A is a rectangular matrix with each row representing one constraint, and

b is a column matrix of consistent size. In the special case where Q is positive definite and

the feasible set is nonempty, there is a unique solution (see, e.g., [83], section 4.2.2).

We first present our EMOC model. The constraints therein are nonlinear. So we

construct an equivalent quadratic formulation with linear constraints. Parameterization of

the model is presented later in chapters 7 and 8 for two rather different problems.

6.1 Fundamental constraint on modal response ampli-

tudes

The model incorporates a basic inequality as follows. The instantaneous-impulse response

of a single mode ai satisfies

äi + ω2
i ai = δ(t)ϕi(b), ai(0) = 0, ȧi(0

−) = 0, (6.1)

where δ(t) is the Dirac delta function and ϕi(b) ≥ 0. By elementary methods,

ȧi(t) = cos (ωit)ϕi(b).

With an arbitrary time-varying downward force −f(t), where f(t) ≥ 0, the modal velocity

satisfies

ȧi(t) = −ϕi(b)
∫ t

0

cos (ωi (t− τ)) f(τ) dτ (6.2)

whence, in terms of the net impulse

P =

∫ t

0

f(τ)dτ > 0,

it follows easily that

|ȧi(t)| ≤ ϕi(b)P. (6.3)
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The above ensures that if impact occurs near a nodal location of a certain mode, then

that mode cannot absorb much energy during the impact. Equation 6.3 represents N

inequalities, which must be retained as constraint equations.

6.2 EMOC impact model

For our impact model, the known or specified quantities are:

1. the pre-impact velocity vi < 0,

2. a nominal restitution value e (we will use e = 1 unless otherwise stated),

3. the number of active modes, namely N1, and

4. N mass-normalized mode shape values ϕi(b) ≥ 0.

It is understood that the beam velocities in modal coordinates, i.e., the ȧi, are all zero

at the start of the interaction.

Our unknowns are the impacting body’s post-impact velocity vf , and the modal veloci-

ties ȧi. Of these, the modal velocities will presumably damp out quickly after the impact

and are not of primary interest. The main quantity of interest is vf . The post-impact

kinetic energy of the system is simply

KEfinal =
1

2

(
mv2f +

N∑
i=1

ȧ2i

)
. (6.4)

The model is now stated as follows:

1. Impulse-momentum for the impacting mass is P = m(vf − vi). The above implies, by

Eq. 6.3,

|ȧi| ≤ ϕi(b)m(vf − vi), i = 1 . . . N. (6.5)
1In general it may be difficult to know a priori the number of active modes.
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2. Our basic restitution inequality is

vf −
N∑
i=1

ȧiϕi(b) ≥ −ēvi. (6.6)

In the above, although ϕi(b) ≥ 0, ȧi is allowed to be negative. Also, ē may be less

than the specified e, based on model parameterization choices.

3. Higher mode oscillations, their participation in sub-impacts, and slow lower-mode dy-

namics are all included approximately in the following additional outward inequality,

which is a key part of the proposed model:

vf − β0

N∑
i=1

|ȧi|ϕi(b) ≥ −β1ē vi. (6.7)

Here, ϕi(b) ≥ 0, β0 ≥ 0, 0 ≤ β1 ≤ 1, 0 ≤ ē ≤ 1. We draw the reader’s attention

to the absolute value used in |ȧi|, which is prompted by the fact that an away-going

oscillatory velocity component can reverse itself to cause a fresh subimpact.

Equation 6.7 is our key “outward” or rebound-enhancing inequality, and an essential

part of our model. Since vi < 0, the right hand side is positive; and since ϕi(b) ≥ 0,

the second term on the left represents subtraction of a positive quantity; and therefore

vf is guaranteed to be positive if ē ≥ 0, which is crucial for separation.

4. All our inequalities, including the “outward” inequality, are now in place: Eqs. 6.5,

6.6 and 6.7. The model minimizes post-impact kinetic energy, Eq. 6.4, subject to

these inequalities. As discussed above, vf ≥ 0 is assured. It remains to demonstrate

that kinetic energy increases are not predicted. To this end, we note that ȧi = 0 for all

i, and vf = −ēvi, satisfy all constraints and predict a reduction in net kinetic energy.

This shows that there is a feasible point with nonnegative energy dissipation. The

minimized kinetic energy is guaranteed to be at least as small. and possibly smaller.

Thus, KE increases will never be predicted. It may be noted that Eqs. 6.6 and 6.7

are not unique and are modeling choices only. In general, the main feature that all
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appropriate inequalities must share is that at least one point must be retained in the

feasible set where is there is non-negative energy dissipation.

6.3 Equivalent model: Quadratic program

To easily solve the optimization problem posed in the previous section, we can write an

equivalent quadratic program which can be solved using a built-in function in Matlab.

We introduce new variables ci, and the new set of unknowns now is vf , ȧi, and ci,

i = 1 . . . N . The new quadratic function to be minimized is

1

2

(
mv2f +

1

2

N∑
i=1

ȧ2i +
1

2

N∑
i=1

c2i

)
, (6.8)

subject to

vf −
N∑
i=1

ȧiϕi(b) ≥ −ēvi, (6.9)

vf − β0

N∑
i=1

ciϕi(b) ≥ −β1ēvi, (6.10)

ȧi ≤ ci, i = 1, 2, · · · , N, (6.11)

−ȧi ≤ ci, i = 1, 2, · · · , N, (6.12)

ci ≤ ϕi(b)m (vf − vi) , i = 1, 2, · · · , N. (6.13)

6.4 Proof of equivalence and uniqueness

Let the original impact model (minimize Eq. 6.4 subject to Eqs. 6.5, 6.6 and 6.7), be named

problem P0, and the obtained minimum value of Eq. 6.4 be called k0. Let the new problem,

namely minimize Eq. 6.8 subject to Eqs. 6.9 through 6.13, be named problem P1, and the

obtained minimum value of Eq. 6.8 be called k1. It is easy to prove that P0 and P1 are

equivalent.

First suppose P0 has been solved. If we take its solution (which contains vf and ȧi),

86



and additionally let ci = |ȧi|, then we obtain a feasible point of P1 with same value of the

objective function. In other words, P1’s minimum is not higher than that of P0. That is,

k1 ≤ k0.

Next suppose it is P1 that has been solved. Then the ci of P1 must necessarily be equal

to its |ȧi| for each i; for otherwise the ci could be reduced to equal |ȧi| without violating

any constraints, and the objective function could be lowered further, giving a contradiction.

But if the ci are equal to |ȧi|, then the same ȧi and vf provide a feasible point of P0 and

yield the same value of the objective function. In other words, P0’s minimum is not higher

than that of P1. That is,

k0 ≤ k1.

Combining the above two paragraphs, we find that the two problems P0 and P1 must

give the same minimum value, i.e, k0 = k1. Naturally, P1 is preferred because it can be

solved using standard software.

It remains to check if the minimizing values of the variables are unique. Since P1 satisfies

the conditions mentioned at the start of the chapter, its solution is unique (see [84], section

2.3.2). To prove that the solution of P0 is unique, we can directly tackle the |ȧi| in that

problem statement. To this end, note that any inequality of the form

|A1|+ |A2|+ · · · |AN | ≤ B (6.14)

is equivalent to the set of 2N linear inequalities

±A1 ± A2 · · · ± AN ≤ B.

By the above simple trick, problem P0 is actually equivalent to a quadratic program in the

same variables, albeit with a large number of linear inequality constraints; it therefore has

a unique solution as well. Problem P1 is preferred because it is both equivalent and has
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fewer constraints.

6.5 Concluding remarks

Our EMOC approach minimizes the post-impact net kinetic energy subject to several in-

equalities. These linear inequalities express various constraints on the mechanics and the

motion, and include an outward or rebound enhancing linear inequality constraint. The

outward inequality cannot really be derived from mechanics or physics, and must be pro-

posed based on intuition and approximation.

We now validate the model for two cases: (a) the ball-beam impacts outcomes presented

in chapter 4, and (b) a tilted beam dropped on an immovable surface. We take up these

two problems in chapters 7 and 8.

88



Chapter 7

Ball-beam impact: formulation and

fitting results

We first make a few modeling simplifications using which we describe the model parameters

ē, β0 and β1. Later we fit the EMOC model to the obtained numerical restitution values

in chapter 4.

7.1 Dimensionless numbers, and functions thereof

We first look at the available variables and identify a few relevant nondimensional quantities.

Simple functions of these dimensionless quantities are then chosen to characterize some

aspects of the considered vibroimpact problem.

The available or specified variables are:

1. colliding mass,

2. impact velocity,

3. notional restitution e (without vibratory effects and no dissipation),

4. Hertzian contact stiffness,

5. beam natural frequencies,
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6. beam mode shapes at contact location, mass-normalized (i.e., not ϕ(x) entirely, but

only ϕ(b)), and

7. the number of active vibration modes.

We list these same quantities using symbols below, assuming without loss of generality

that ϕi(b) ≥ 0 because mass normalized mode shapes have indeterminate sign:

m, vi < 0, e, kH , ωi, ϕi(b) ≥ 0, N. (7.1)

We now make the following modeling assumptions and simplifications:

1. Natural frequencies:

We drop ωi from our list (Eq. 7.1) because we will not model the temporal structure

of the impact. Our aim is an algebraic or net-impulse model.

2. Contact stiffness:

kH affects the duration of each separate contact or sub-impact. However, we will

not model those in detail. Yet, if we treat kH as infinite, then an infinite number of

modes should get excited. In this way, we think of kH as approximately determining

the number of active modes N ; and we drop kH but retain N . Another way to say it

is that the role of the contact stiffness is approximately retained through the presence

of N in the model.

3. Dissipation:

Our model is for a lightly damped beam, where vibrations are significant but very

high modes damp out during the relatively extended impact interaction. Beyond

choice of finite N , this is not incorporated explicitly.

4. Modes ϕi(b) and impacting mass m:
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We assign a special role to two simple quantities:

ϕ1(b) and
N∑
i=1

ϕ2
i (b).

The first of the above two quantities is related to the low frequency response (which

is usually dominated by the first few modes). The second quantity provides a simple

measure of the richness or intensity of the modal response to an impulse at location

b; it will also be directly relevant to kinetic energy considerations later on.

For later nondimensionalization, we note that mass-normalization of the modes means

∫ L

0

ρAϕi(x)
2 dx = 1, where

∫ L

0

ρAdx = mass of the beam.

It follows that ϕ2
i (b) is of the order of the reciprocal of the beam mass. The quantity

mϕi(b)
2, where m is the mass of the impacting sphere, is dimensionless.

More formally, consider the ratio of the velocity change of the beam-contact-point

to the velocity change of the colliding sphere under equal and opposite impulses P .

Integrating dissipationless beam-modal equation over the infinitesimal contact dura-

tion ϵ, we obtain the jump discontinuity for the modal velocity under instantaneous

P as ∫ ϵ

0

äidt+

∫ ϵ

0

ω2
i aidt = −

∫ ϵ

0

Fϕi(b)dt⇒ ȧ+i = −Pϕi(b). (7.2)

The above induces a contact point velocity (as contributed by the ith mode) of

−Pϕ2
i (b). For the colliding mass, the change in velocity is P/m. The ratio of the two

has magnitude

Z = −∆v(b)beam
∆vsphere

= m

N∑
i=1

ϕi(b)
2, (7.3)

which is dimensionless. Noting that Z of Eq. 7.3 is a mass ratio that is affected by

mode shape magnitudes, we refer to it informally as a moderated mass ratio.

The system parameter Z will be useful in our modeling efforts. For small Z (small m;
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or small
∑
ϕi(b)

2, which occurs near fixed points of the structure), we have observed

that vf is relatively high (closer to unity). For large Z (large m or high contact

compliance), vf is high again. For intermediate Z, vf is low. We will use these

observations later.

5. Multiple sub-impacts:

Qualitatively, we can think of the beam modes as lower modes and higher modes

(admittedly, the boundary between them is blurred). The lower modes cause large

deflections and slow subsequent returns of the beam into a fresh contact event; and

the higher modes cause rapid oscillations, loosely reminiscent of a disordered buzzing,

influencing the velocity of the beam contact point. We try to model the above in an

average sense.

The separation between the two types of modes is enhanced and simplified by consid-

ering the first mode as representing slow modes and all modes together as an overall

collection of fast modes.

sphere 

beam contact point 

time

higher mode 

oscillations

slower ‘average’ lower 

mode response

initial impactd
is

p
la

ce
m

en
t

Figure 7.1: Schematic showing lower mode dynamics causing a return to fresh contact,
and higher mode dynamics influencing rebound levels therefrom. Oscillatory displacement
amplitudes are exaggerated for illustration.

The qualitative idea is shown schematically in Fig. 7.1, where oscillations in beam

displacement are exaggerated. The beam’s contact point velocity plot depicts signif-

icant high frequency oscillations (recall Fig. 4.5). With this view, we will use two
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terms: one involving all modes, to represent all higher modes; and one involving only

the first mode, to approximate the lower-mode responses.

6. Vibration-incorporating restitution:

Recall item 4 above. We need a function of Z that is close to unity for both small

and large values of Z, and has a minimum for an intermediate value. To this end, we

consider
µ2
0Z

2 + 1

µ2
0Z

2 + µ0Z + 1
, (7.4)

where our first fitted parameter µ0 > 0 is thought of as a moderated mass ratio

coefficient. The above function value is unity for Z = 0 and Z → ∞; and it has a

minimum of 2/3 at Z = 1/µ0.

In the impact model below, for a given notional restitution value 0 ≤ e ≤ 1, we will

use a vibration-incorporating restitution

ē =
µ2
0Z

2 + 1

µ2
0Z

2 + µ0Z + 1
e. (7.5)

Clearly, other choices could have been adopted. Our choice is based on its simplicity

and a wish to keep the number of fitted parameters low. Note that Eq. 7.5 incorporates

information about the ratio of masses (ball and beam), as also the collective modal

response at the beam contact point.

7. Average modal richness parameter:

An average value over all active modes, which we have found useful for modeling

multiple sub-impacts, is

S0 =
Z

N
, whence we define, β0 =

α0S0

1 + α0S0

=
α0Z

N + α0Z
, (7.6)

where in turn α0 > 0 is our second fitted parameter, referred to as a modal richness

coefficient. β0 is given in terms of α0 and the system parameters Z and N , and is
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guaranteed to lie between 0 and 1 in this restricted parameterization although in

chapter 6 we noted that β0 ≥ 0 is sufficient for physical reasonableness.

8. Pseudostatic response:

For incorporating low-frequency or pseudostatic responses, we will use only the first

mode. Along the lines of item 7, we define

S1 = mϕ1(b)
2, and β1 =

α1S1

1 + α1S1

, (7.7)

where α1 > 0 is our third and final fitted parameter, referred to as a slow response

coefficient. β1, also, is guaranteed to lie between 0 and 1.

We observe that the dimensionless quantities defined above, namely ē, β0 and β1, are

all between 0 and 1; and that the parameters µ0, α0 and α1 are positive but otherwise

unrestricted. The notional restitution e is assumed given, and in the present study is taken

as e = 1 because there is no contact dissipation. Thus, our collision model has only three

fitted parameters.

7.2 Model parameter fitting results

We now validate our EMOC model, which minimizes Eq. 6.8 subject to Eqs. 6.9 through

6.13, for the four beams given in Fig. 7.2 (same as in Fig. 4.2, repeated here for complete-

ness).

For each beam, we had numerically found the rebounds vf (with vi = −1) for varying

sphere mass m (12 values) and impact location b (25 locations) with N = 40, see chapter 4.

For each beam separately, for the full set of 12×25 data points, we use Matlab’s “fminunc”

optimization routine to fit vfs in a least squares sense using three positive parameters µ0,

α0 and α1. It may be noted that for quadratic programming for EMOC model we use

Matlab’s “quadprog” sub-routine1.
1Matlab’s (“R2013a”) “quadprog” sub-routine has different options. The default method is the “trust-
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Figure 7.2: Four beams considered. Where m = 1, the beam cross section is square. In
slimmer portions with m < 1, the width is kept the same and the thickness is lowered.

In particular, the overall calculation is done as follows. A Matlab program is written

which will take an input parameters µ0, α0 and α1. It then generates the other parameters.

Then it predicts the model’s impact outcomes, subtract the true restitution, square all

of these predicted errors, add them up and return that scalar value. Finally, Matlab’s

“fmincon” subroutine was used to minimize that scalar value as a function of µ0, α0 and

α1.

For a single beam (12 m’s, 25 b’s), the full numerical simulation (using modal analysis)

takes about 10 hours on an ordinary desktop computer. For a single beam, optimization

for the EMOC model takes about ten minutes (100 to 200 function evaluations).

For the EMOC model the number of active modes N is a free parameter as discussed

in item 2 in section 7.1. For fitting the quadratic program model we have used N = 50

because in principle we should not know the number of modes retained in the full dynamic

solution. In fact, results do not change much between N = 40 and 50, see Fig. 7.7. The

fitting results are shown in Figs. 7.3, 7.4, 7.5, and 7.6. It is emphasized that each of these

region-reflective”, and other available options are the “interior-point-convex” and “active-set”. For 50 modes
and our somewhat complex calculations, the “interior-point-convex” was seen to be more reliable. That
later option was used uniformly for all calculations in the thesis.
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figures, with 25×12 data points, corresponds to one fitted set of µ0, α0 and α1 as mentioned

therein. In the figures, red plus signs mark results obtained using by solving ODEs, and

blue circles mark results using the quadratic program based algebraic model.

For each beam, our model captures reasonably well the variation of vf with m, and

captures correctly the rising trend near the beam’s free end in both relevant cases. The

model also captures correctly the variations seen near the beam’s steps in geometry, in both

relevant cases; the variation is downward for very small masses, upward for intermediate

masses, and shrinks for larger masses; these trends are all captured. At fixed or pinned

ends, rebound is perfect, and captured by our model. The model is, however, unable

to capture details of the somewhat irregular variation in rebound velocity with changing

impact location; in these regimes, the average behavior is reasonably captured.

To comment on the mismatch, it may be noted that our model has some ad hoc com-

ponents. In particular, the outward constraints that are adopted are based on guesswork

and successful parameterization, so that the average behavior is captured. There is no a

priori reason to be sure that the adopted outward inequalities are in fact physically accu-

rate. Only the final fit demonstrates that they are useful. Similarly the inequalities on the

modal velocity amplitudes as a function of net-impulse are loose inequalities, e.g.. if sev-

eral subimpacts occur at different phases then the sum would have a significantly smaller

magnitude than the inequality bound. In the presence of all these inaccuracies, which seem

to be unavoidable in our algebraic approach, a detailed match with the entire range of

behaviors has not been obtained. Please note however that our model presents significant

progress; nothing comparable has been presented in earlier studies of this topic.
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Figure 7.3: Pinned-pinned uniform beam.
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Figure 7.4: Fixed-free uniform beam.
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Figure 7.5: Fixed-free stepped beam.
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Figure 7.7: Fitting error of the algebraic model with different N for the four beam types
studied. In the main text, we used N = 50. It is seen that the difference beyond N = 40
is small.

7.3 Concluding remarks

The proposed model has three fitted parameters for a given beam. Since even linear regres-

sion with two variables, of the form q0 + q1m+ q2b, would have three fitted coefficients, the

number of fitted parameters should be viewed as small. In the same context, the overall

performance of the model is good.

It is emphasized that, even with guessed µ0, α0 and α1 (e.g., with all of them set to

1), the model will in any case predict physically feasible solutions, even if they may not

match detailed dynamic simulation. The approach presented can also be used for other

vibroimpact situations, e.g., impacts between compact bodies and thin plates or other

flexible, lightly damped barriers. As such, the present algebraic model can be used with

confidence for quick simulations in movies, virtual reality, computer graphics, and early

stage design studies, e.g., granular flows or robotics.
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Chapter 8

Dropped tilted rod: formulation and

fitting results

We finally try to fit the EMOC model to a type of impact for which it was not designed.

The reason for this attempt is a similarity in governing equations as will be seen below,

although the physical interpretations are different.

Stoianovici and Hurmuzlu [19] experimentally obtained restitution values for slender

bars dropped on a rigid surface at different angles of inclination. We now model their

experimental outcomes using our EMOC approach.

In [19], the authors studied the 2D motions of freely dropped bars rebounding from a

rigid immovable surface. The rods (hardened steel, ρ = 7876.74 Kg/m3, E = 2.1 × 1011

Kg/m2) had circular cross-sections with hemispherical ends. Several experiments were

carried out, with different dropping heights, angles of inclination at impact, and bar lengths.

The post-collision rigid body motion variables were measured using a high-speed camera.

The number of collisions within each impact was measured as well, using electrical contact

detection.

Subsequently, a simulation was developed that used several discrete rigid segments with

interconnecting springs and dash-pots. A good match was reported. Here, we only use the

experimental results, and match them approximately using our EMOC approach.
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We first formulate the equations of motion. Later, we present the fitting results and

discussion.

θ

F
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i
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e
t 
, ξ^

e
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v
i

rod: mass m, length L

Figure 8.1: Free body diagram of a rod striking a surface at a configuration of θ. The rigid
body mode rotational degree of freedom is ψ. θ is a parameter and ψ varies dynamically,
but ψ(t) ≈ θ at all times during the collision.

8.1 Equations of motion

See Fig. 8.1. A bar (mass m, length L) strikes an immovable surface at an orientation angle

of θ measured from the horizontal. The unit vectors êt and ên are along the horizontal and

vertical axes respectively, while î and ĵ are along, and normal to, the rod respectively.

η and ξ denote the post-impact rigid body displacements of the rod center of gravity G,

whereas ψ denotes the rod’s rotation. The freely dropped rod has a downward velocity of

vi < 0 at impact. F denotes the force at contact that is normal to the surface. Friction is

neglected. The bar vibrates upon impact (both lateral and axial modes), while the stuck

surface shows no macroscopic motion whatsoever.

The lateral and axial vibrational displacement of the bar is expressed in terms of the
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normal modes, as discussed in chapter 4, here written as

Nl∑
k=1

qlk(t)ϕlk(x)ĵ +
Na∑
j=1

qaj(t)ϕaj(x)̂i,

where lateral and axial vibrations are written separately, subscripts ‘l’ and ‘a’ denote lateral

and axial vibration respectively, the q’s denote generalized coordinates and the ϕ’s denote

the mode shapes. The coordinate x is along the î direction. Nl (or Na) denotes the number

of modes to be retained.

Considering free-free boundary conditions on the bar, we first obtain its normal modes

and the corresponding natural frequencies. For a bar of length l, the mass-normalized

modal displacement at the bar’s end is ϕlk(0) =
2√
L

and ϕaj(0) =

√
2√
L

for all k and j

respectively.

We use the Lagrangian formulation to determine the equations of motion during colli-

sional contact, i.e. for non-zero F but with neglected weight.

The kinetic energy of the system is

T =
m

2

(
ξ̇2 + η̇2 +

L2

12
ψ̇2

)
+

1

2

Nl∑
k=1

q̇2lk +
1

2

Na∑
j=1

q̇2ak . (8.1)

The potential energy of the system is

V =
1

2

Nl∑
k=1

ω2
lk
q2lk +

1

2

Na∑
j=1

ω2
ak
q2ak . (8.2)

We neglect friction. The various generalized forces are

Qξ = 0, Qη = F, Qψ =
FL

2
cos(θ), Qqlk

= Fϕtk(0) cos(θ) Qqaj
= Fϕaj(0) sin(θ).

(8.3)

The equations of motion are

mξ̈ = 0, mη̈ = F,
mL2

12
ψ̈ =

FL

2
cos(θ), (8.4)
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and

q̈lk + ω2
lk
q2lk = Fϕlk(0) cos(θ), k = 1 . . . Nl, (8.5)

and

q̈aj + ω2
aj
q2aj = Fϕaj(0) sin(θ), j = 1 . . . Na. (8.6)

It is now important to note that ξ, η and ψ contribute indistinguishably to the rigid

body part of the normal component of the contact point’s displacement, which is

ZRB = η +
L

2
ψ cos(θ). (8.7)

Differentiating twice, we obtain

Z̈RB = η̈ +
L

2
ψ̈ cos(θ) =

F

m
+
L cos(θ)

2

6F cos(θ)

mL
=
F

m

(
1 + 3 cos2(θ)

)
. (8.8)

Seeking an equation of the form

mRBZ̈RB = F,

to match Eq. 4.2, we find that we must use

mRB =
m

1 + 3 cos2(θ)
. (8.9)

Recall that, our EMOC model minimizes the post-impact kinetic energy of the system

subject to several linear constraints. We are interested only in restitution in the normal

direction. As such, we need to represent all dynamic variables in the constraint equations

in the ên direction. As in chapter 7, here too we use vibration modes, modal displacements,

and an effective mass mRB as above. However, there are differences from chapter 7. There

a compact mass strikes a stationary beam that vibrates. Here the dropped beam vibrates

and has rigid body motions as well. Also, here the impact location is the same for all cases,

but the beam angle varies.

Consider ak(t)ϕkeff (x) as the vertical component of displacement of the contact point due
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to vibrations (both axial and transverse). For the transverse modes, this means akϕkeff =

qlkϕlk cos(θ). We denote ak = qk, ϕkeff = ϕlk cos(θ), the vibrational kinetic energy remains∑ 1

2
q̇2k, and we only need to replace the earlier ϕ(b) (in Eqs. 6.5, 6.6 and 6.7) with the

ϕkeff =
2√
L
cos(θ), if lateralmode.

By nearly identical arguments, we find

ϕkeff =

√
2√
L
sin(θ), if axialmode.

Therefore, we have essentially the same mathematical structure as for the ball-beam impact

of chapter 7. The physical details are quite different, however. It is interesting to see how

well EMOC works for these tilted rod impacts.

The notable points in adapting EMOC to this system are

• Instead of m, we will use the effective mass mRB in Eq. 8.9 that relates the vertical

acceleration at contact point to the contact force F ,

• We will use modal displacements in the vertical direction as the new effective dis-

placement (see above),

The model parameters to be fitted are µ0, β0 and β1.

Using the effective mass in Eq. 8.4, the total kinetic energy to be minimized is

KE =
1

2
mRBv

2
f +

1

2

∑
N

ȧ2k =
1

2

(
m

1 + 3 cos2(θ)

)
v2f +

1

2

∑
N

ȧ2k, (8.10)

where vf = ŻRB is post-impact velocity of the rod’s end point in the vertical direction. The

above includes both transverse and axial modes.
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The constraints are

|ȧk| ≤ ϕkeffmRB(vf − vi), k = 1 . . . N, (8.11)

vf −
∑
N

ȧkϕkeff ≥ −ē vi, (8.12)

vf − β0
∑
N

|ȧk|ϕkeff ≥ −β1 ē vi. (8.13)

We reemphasize, ȧk = q̇k are the modal velocities, ϕkeff is the modal displacement in the

ên direction. All the constraints above include variables resolved in the vertical direction.

As done earlier, we use the previously given equivalent quadratic program (see section 6.3)

which we solve using Matlab.

8.2 Fitting results and discussion

We will now fit the EMOC model to the data of Stoianovici and Hurmuzlu [19] (see also

Appendix A.5). We note that they have presented data for five (5) different rod lengths.

For each rod length, they have presented data for many different rod inclinations.

Using a web-based tool, we extract restitution values approximately at 60 different

angles of inclination for each rod length. Using our three parameter model, we will try to

choose one set of three parameters that will match all the data reasonably well.

8.2.1 Problem caused by axial modes

When fitting the data, we realize that there is a difficulty when we include the axial modes

of the rod. This is because all the natural frequencies of axial vibrations of the rods are

commensurate1. In fact, a perfectly vertically dropped rod on a rigid surface according to

1D rod theory has perfect normal restitution e = 1, and leaves the impacted surface with

no vibrational effects, see [1, 46]. Specifically, if two rod rods having identical mass per

1for free-free beam, the axial natural frequencies are ωn =
nπ

L

√
E

ρ
with n = 1, 2, . . . .
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unit length and density but having lengths L1 and L2 collide normally (along their axes),

the restitution is e =
L1

L2

. In the special case when L1 = L2, it is like one rod colliding

with a rigid surface, and the restitution is e = 1. This remarkable behavior affects the

collision outcome even when the rod is nearly vertical, and we have found that the EMOC

approach fails to accurately capture the data when axial modes are retained, because the

EMOC model predicts that energy goes into the axial modes, lowering overall restitution.

Interestingly, in the present problem, when the rod is nearly horizontal the axial modes

are not excited and the bending (lateral) modes dominate. When the rod is nearly vertical,

bending modes are not excited strongly. It can be be seen in [19] (see also appendix A.5)

that for nearly vertical impacts, there occurs a single contact event.

The net consequence is that if we retain axial modes then the EMOC model under-

predicts the restitution for this problem.

8.2.2 Better results with only lateral modes

By coincidence an interesting improvement in the fit occurs when the axial modes are left

out of the model. The reason is that the lateral modes do not get excited when the rod

is nearly vertical. Qualitatively, this is like the problem of chapter 7 where impact occurs

near a support point and restitution increases because vibrations do not get excited. In the

same way, if we do not retain the axial modes and include only the lateral modes, then the

impact restitution increases for the nearly vertical rod case, which matches experiments.

In reality, the axial modes may participate briefly and the restitution is still high, but the

EMOC model does not capture that dynamics.

Since we do not want to include axial modes, it appears inconsistent to include lateral

vibration modes whose frequencies exceed that of the first axial mode. For this reason,

for every rod, we calculate the first several lateral mode frequencies and retain only those

modes whose frequencies are smaller than the first axial mode frequency.

The number of lateral modes retained for the rods of different lengths are: (a) 7 modes

(600 mm), (b) 5 modes (400 mm), (c) 4 modes (300 mm), (d) 3 modes (200 mm) and (e)
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2 modes (100 mm).

We emphasize that we will use the same parameter values µ0, α0 and α1 to fit the

experimental results for all rods. The results of fitting can be seen in Fig. 8.2. A good match

is obtained. The match is considered good because the EMOC model is fully algebraic,

has no ODE solution, uses no detailed frequency information, and still captures trends

qualitatively with just three parameters.

Figure 8.3 shows the fit only for the 600 mm rod when we include one axial mode, with

all fitted parameters the same as in Fig. 8.2. It is seen that the fit worsens when an axial

mode is included and the rod is near vertical. The fit worsens upon retaining more axial

modes.

8.3 Concluding remarks

In this chapter, we have applied the EMOC model to the experimentally obtained restitution

values for rods dropped on an immovable surface, at different angles of inclination, as

presented in [19]. We formulated the equations of motion and showed the necessary changes

to be made to the EMOC formulation for this tilted rod problem. On fitting, we observed

that our model is inappropriate for near vertical impacts where axial modes dominate,

because the longitudinal impact of a slender uniform rod has special restitution properties

[46]. The axial natural frequencies are commensurate, and there is an unexpectedly high

restitution which the EMOC cannot capture. Thus, we retained only the first few lateral

modes and obtained a good fit.
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Chapter 9

Conclusions

This thesis has examined, and presented new approximations, for vibration-dominated im-

pacts between a compact body and a flexible vibrating beam. A novel restitution modeling

approach developed in this thesis has also been tested on experimental data for tilted rods

dropped on an immovable surface, from Stoianovici and Hurmuzlu [19].

The first problem studied in the thesis (chapter 2) is the idealized limiting case of a

Hertzian sphere striking an infinitely long Euler-Bernoulli beam initially at rest. In this

problem, waves radiate away from the point of contact but no waves ever get reflected back.

A modal expansion solution is not possible. The impulse response at a point of an infinite

beam is known to be proportional to the square root of time. So, the governing equation

for the interaction can be written using a nonlinear ODE with a fractional derivative term.

Using existing routines, we solve the governing equations. The dynamic behavior of the

contact-impact problem is completely characterized by using a single nondimensional num-

ber S. It was demonstrated that high S need not imply high severity of contact stress.

When S is sufficiently low there is just one contact phase followed by separation. Beyond

S ≈ 1.56 the eventual fate is sustained contact, but multiple separation events can occur.

For sufficiently large S, no separation occurs and sustained contact occurs with decaying

oscillations. A complete numerical characterization of the entire behavior is given. In addi-

tion, a semi-analytical solution for the first contact phase is given. Finally, an asymptotic
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description of the motion of the impactor (or the contact point) for large time is given for

such situations where the final state is sustained contact. That final asymptotic description

is independent of the number of intervening separations. These foregoing results for the

ball and infinite beam impact-contact are new.

After the infinite beam problem, impact with a finite beam is taken up. Since the

beam is finite, a modal expansion solution can be attempted and is implemented. It is

found numerically that the restitution value converges very slowly for impacts of reasonable

sphere sizes, even though the Hertz contact means that the contact is technically “soft”. A

detailed numerical study in chapter 3 demonstrates that a small amount of modal damping

regularizes the impact, and the number of modes required to obtain a reasonably accurate

value of restitution decreases from more than 60 to around 25, for a simply-supported beam.

Additionally, it is seen that contact dissipation plays almost no role, and modal damping

helps only when there are multiple subimpacts. For single-contact impacts, small damping

plays a negligible role in all cases.

Having established that light modal damping can regularize the impact, a detailed

numerical study is taken up of restitution for many different ball sizes, at many differ-

ent contact locations, for four different beams with different boundary conditions. Those

numerical results are presented in chapter 4. These results serve as a data set for the

subsequent modeling effort in this thesis.

Over chapters 5 and 6, we present the main academic contribution of the thesis, which

is a new way of approximately modeling restitution in such vibration-dominated impacts.

This approach has been named Energy Minimization under Outward Constraints (EMOC),

and is a new modeling philosophy for such modeling impacts. The idea is that since the

impact is complicated and there are multiple impacts, simple yet accurate models are not

likely to be found. However, some fundamental constraints on the impact outcome are

known (noninterpenetration, nonnegative normal impulse). Those constraints are either

linear equality constraints or linear inequality constraints. There is one other physical

quantity of interest, namely the final kinetic energy of the system, which is a quadratic
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function of the unknowns. This quadratic function should not be allowed to increase in the

predicted impact outcome because that violates physical principles. A modeling approach

that therefore suggests itself is to minimize this kinetic energy subject to the constraints

that are available as mentioned above. Such an approach can be easily implemented using

quadratic programming. Consequently, the model will also be easy to implement using

existing routines, e.g., in Matlab. However, if such an approach is implemented directly

the impact will turn out to have very poor rebound. Extending the work of Rakshit and

Chatterjee [18] for rigid body simultaneous multiple impacts, here two new and additional

outward constraints are posed and incorporated. The form of the outward constraint is

a modeling exercise and a successful proposal for the same has been presented in this

thesis. In summary, a principle of energy minimization subject to fundamental physical

constraints and the new outward constraints leads to a novel quadratic program based

model, the solution of which gives a candidate impact outcome.

The EMOC model is parameterized using three free parameters described in chapter

7. For any choice of those parameters, a physically reasonable outcome will always be

predicted. Impossibilities are never predicted. Moreover, when we fit the model to the

earlier numerically obtained data for ball and beam impacts, a good overall fit is obtained.

Three parameters are fitted for each beam, for a variety of ball sizes and impact locations.

In chapter 8, a completely different problem is taken up, and the EMOC approach is

tested on this problem. Now, the experiments of Stoianovici and Hurmuzlu [19] are consid-

ered, where tilted rods were dropped on a rigid immovable surface. A detailed mechanistic

model was presented by those authors and a system specific restitution model was developed

in [14]. However, here we wish to take our less-mechanistic algebraic impact model and see

how it can be applied to their physical problem. On writing the equations of motion, it is

seen that the structure of the equations is similar to that of the ball-beam impacts. Thus,

we are able to test the EMOC model on these impacts.

It is found that incorporation or activation of the axial beam modes makes the EMOC

model inappropriate for the falling rod problem, because for a rod in axial vibration all
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the natural frequencies are commensurate and on rebound, the rods retain no vibration

effects. Observing this difficulty, as an ad hoc criterion, only lateral modes were retained.

It was ensured that the natural frequency of the highest lateral mode retained was lower

than the frequency of the first axial mode of the rod. Subsequently, for three parameters

fitted globally, a reasonable fit was obtained for the impact outcomes for the rods of five

different lengths and all the inclinations.

Before we conclude, we remark on two aspects of the EMOC model that can be envisaged

in future work.

One is the application of the EMOC model to real and complicated structures. In such

cases, instead of a theoretical or computational modal analysis, experimental modal tests

on the structure at different locations can be done to determine the natural frequencies and

the associated mode shapes. After those are found, on dropping balls at different locations,

it can seen if the model makes a reasonable prediction. We believe that even if we are

able to predict the restitution within ±0.1 in a range from 0 to 1, there is no comparable

effort in the existing vibroimpact literature. An experimental study with modal testing at

different locations is envisaged in future work.

Another comment relevant here is that, so far the EMOC model considers only trans-

verse impact. In the case of an oblique impact, if there is no friction then there is no

difference as the tangential motion of the ball does not couple with the normal motion.

However, in the presence of friction, to the extent that the lateral deformation and the

normal deformation of the ball or the beam may couple, or to the extent that the presence

of tangential tractions may excite vibrations of the beam, there may be a difference. If the

coefficient of friction is very high, then there may be a strong tangential impulse and if the

slope of the beam is significantly different from zero during the application of the tangen-

tial impulse, there will actually be a net downward component. Such nonlinear interactions

may be taken up in future work.

In summary, in this thesis, three fundamentally different types of impacts have been

studied and new approximations have been presented for them. The first is a Hertzian
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sphere on an infinite beam, the second is a Hertzian sphere on finite beams with different

boundary conditions, and the third is a tilted rod falling on an immovable surface. The

latter two problems were modeled using the new EMOC approach with good results. It is

hoped that the EMOC modeling approach will be found interesting both for its academic

novelty as well as its possible utility in multi-body dynamic environments, games, and

multi-physics simulations where a quick solution is required in the presence of complicated

dynamics.
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Appendix A

Appendix

A.1 Numerical recipe for fractional DE

This appendix is relevant to chapter 2.

The numerical recipe of [69] extends the work of [67], which was independently developed

but rather similar to [66]. A brief introduction to the recipe follows for completeness.

We denote fractional derivatives as Dαy where n−1 < α < n, and n is a positive integer.

Two common definitions of the fractional derivative are: Riemann-Liouville definition

Dαx(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

to

x(τ)

(t− τ)(α−n+1)
dτ,

and Caputo definition

Dαx(t) =
1

Γ(n− α)

∫ t

to

x(n)(τ)

(t− τ)(α−n+1)
dτ,

and we usually assign t0 = 0. In our problem, we assume zero initial conditions, for which

the above two definitions are equivalent.

This numerical recipe uses three α dependent matrices AN×N , BN×N and cN×1, where

N represents the number of internal states used to approximate the fractional derivative.

In what follows, we will drop the size-denoting subscripts and simply write A, B and c.
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Matlab code from [69] is used to compute these matrices given α, N and a frequency range

of interest (controlled using two parameters β1 and β2 in the Matlab code of [69]).

Given these matrices, if we solve the system of ODEs

Aȧ+Ba = c
dnx

dtn
, with initial conditions a(0) = 0, (A.1)

then, to an excellent numerical approximation,

cTa ≈ Dαx,

where x is the primary variable of interest and aN is a vector of internal variables used to

approximate the fractional derivative (for related discussion, see [85]).

We have used A, B and c for α = 0.5 and N = 50. The equations that are numerically

solved are

Aȧ+Ba = cÿ,

ϵÿ + cTa = −
√
π

2
C f,

z̈ =
F

m
, (A.2)

where

F = kH ⟨y − z⟩
3
2 ,

and where ϵ is a small regularization parameter (see [69]). We have used ϵ = 1× 10−8.

The graphs of chapter 2 were generated after careful convergence checks. In simulations,

the parameters and error tolerances were repeatedly adjusted for large ranges of the solution

regimes, and it was ensured that every graph plotted was significantly more accurate than

plotting accuracy. In particular, convergence studies were done with the number of elements

used in the discretization of the fractional order derivative; convergence studies were done

using “abstol” and “reltol” settings in the ODE solver in Matlab; and finally whenever

solutions for a particular S were plotted next to solutions where the parameters were scaled

118



differently by dimensional analysis, the magnitude of the mismatch was checked and it was

ensured that is extremely small in all places.

Numerically, solution requires more care when multiple impacts occur (seven or more).

It was seen that f decreases roughly exponentially for later subimpacts. The contact

duration increases roughly exponentially as well. As such, we chose the force scaling term as

about F̂ = 7 in Eq. 2.50 (number of subimpacts) and T̂ = −2 for overall shorter simulation

time. We also modified the frequency range of interest parameter in the numerical recipe; we

used β1 = −2.4 and β2 = 1.2 for all the numerical simulations, except for 1.56 . S . 2.12,

where we varied β1 from (−2.4, −3.5) and β2 from (1.2, 2) depending on the S value.

A.2 Nondimensionalization example

This appendix is relevant to chapter 2.

We consider three sets of parameters, given in Table A.1. For each set, S = 0.528. The

scaling constants (F̂ , T̂ ) for each set are also given.

We simulate the system for parameter sets 1 and 2. The dimensional contact force is

plotted against the dimensional time; see Fig. A.1(a) for parameter set 1, and subplot (b)

for set 2. The graph of nondimensionalized contact force versus nondimensionalized time,

for both parameter sets, is the same: see subplot (c).

Table A.1: Representative system parameters for S = 0.528. The first two rows give the
results shown in Figure A.1. The third row shows parameter values obtained from Eqs.
(2.48) through (2.51) for the same S.

Set C kH m v F̂ T̂ S

1. 0.0279 1.6481 97.43 0.0838 F̂1 = 1.105 T̂1 = 7.389 S1 = 0.528

2. 0.30 5.0 2.0 13.9715 F̂2 = 77.62 T̂2 = 0.36 S2 = 0.528

3. 0.8082 1.0 1.2372 0.8082 F̂3 = 1 T̂3 = 1 S3 = 0.528
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A.3 Modal energies for damped and undamped beam

Figure A.2 compares the total energy (kinetic and potential) for each mode for an undamped

and a damped simply supported beam. The left hand side graphs are with no damping

whereas the right hand side graphs are with ζ = 0.02. Other simulation parameters are:

b = 0.618 . . ., m = 0.1103 and N = 40. The jumps in the energies correspond the contact

phases. It is seen that the higher modes damp out more quickly for the damped beam.

A.4 Simulation of ball-beam impact using the FEM

Here we simulate the ball-beam impact using the Finite Element Method (FEM). We

compare the solutions obtained using earlier modal analysis in chapters 3 and 4, against

those obtained now by the FEM. We use Matlab for the FEM simulation.

We consider only the uniform cantilever beam. The ball has mass m = 0.608. The

beam is discretized into beam elements, where each node has two degrees of freedom (a

transverse displacement and a rotation). We drop degrees of freedom of the first node (fixed

end). For uniformity, we use 20 elements (because earlier we had used N = 40 modes).

The discretized beam, therefore, has 21 nodes and 40 degrees of freedom.

We assume for simplicity that impact occurs exactly at a node. The contact force is

then a nodal force. We assume Hertz contact as earlier. The system parameters are kept
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Figure A.2: Modal energies for a damped and an undamped pinned-pinned beam. b =
0.618.... At time very close to zero, the energy goes from zero to nonzero values and on
logarithmic scale there is a very rapid variation which is not shown in the graphs.

the same as earlier.

The discretization of the beam results in a system of ODEs governing evolution of the

nodal degrees of freedom. We thus have 21 second-order ODEs for the ball-beam system.

The initial conditions are kept the same as earlier: the nodal degrees of freedom all start

with zero initial conditions, the ball starts at z = 0 and with ż = −1. Matlab’s “ode15s” is

used to numerically integrate the system of ODEs. We have 21 possible impact locations,

spread uniformly between 0 and 1 (we ignore b = 0). We determine the restitution values
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using both FEM and modal decomposition at all these 21 impact locations.

Figure A.3 compares the restitution values obtained using modal analysis and the FEM.

A good match is seen. However, it is mentioned that in other simulations when the rebound

was much smaller, e.g. 0.1, the mismatch was a bit larger as discussed earlier in the main

text of the thesis.
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A.5 Data extraction of tilted rods experiments

Data was extracted manually from an electronic version of the following graphic, Fig. A.4.

Figure A.4: Screenshot of Fig. 5 in the article by Stoianovici and Hurmuzlu, 1996
adapted/scaled slightly. These are the experimentally obtained restitution values for
dropped rods of different lengths at different angles of inclination. The rod lengths are
(a) 600 mm, (b) 400 mm, (c) 300 mm, (d) 200 mm and (e) 100 mm. We fit our EMOC
model to these experimental outcomes, see chapter 8.
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