
Dilbert’s problems

Anindya Chatterjee, Mechanical Engineering, IIT Kharagpur

Please report any errors to anindya100@gmail.com

This version: March 12, 2012

Abstract

Fifty numerically-oriented, skill-building problems in applied mathematics are offered for engineering

graduate students. The intention is to solve slightly unfamiliar problems using widely available tools like

Matlab and Maple. These problems may help students with computer programming in addition to nonlinear

simultaneous equations, differential equations, boundary value problems, optimization, numerical integration

and elementary probability. The student will usually have to think a little about how the problem should

be set up for solution. Partial answers are provided.

1 Introduction

I have frequently wished for a set of small applied mathematics problems that might help a beginning engineering

graduate student develop a few practical skills. I eventually put some together myself. I have used Matlab and

Maple to get reasonable numerical answers, as indicated below.

2 Problem statements

1. Given ẍ + 2.6 ẋ + 7.9x3 = 3.2 sin(xt), and x(0) = 1.2, ẋ(0) = −3.3, find numerically the value of x(2.3).

Use ode45 in Matlab. Experiment with error tolerances (odeset).

2. Assume a > 0. Given ẍ + a ẋ + 7.9x3 = 3.2 sin(xt), and x(0) = 1.2, ẋ(0) = −3.3, and x(2.3) = −0.6,

find numerically all the possible values of a, each accurate to at least 3 significant digits. Comment on

negative solutions for a.

3. Write your own routine in Matlab for solving systems of nonlinear simultaneous equations using the

Newton-Raphson method. Use finite differences to estimate the matrix of partial derivatives. Use your

routine to solve the system of equations

x+ y = 2, x2 + y2 = 3.

4. Consider the matrix








7 a 0 14

−13 15 12 0

i 1 + i 0 0

i i i i









,

and numerically seek real a for which the matrix has an eigenvalue with magnitude 2.6.

5. Same as above, only now ignore the magnitude and let the eigenvalue have an argument of 37◦ (see

Matlab’s phase).

6. Same as problem 4, only now seek complex values of a and plot an appropriate curve (or curves) on the

complex plane.

1

7. Consider the matrix
[

1 a

3 6

]

.

Find a such that the acute angle between its eigenvectors is 35◦.

8. Given ẍ + 2.6 ẋ + 7.9x3 = 3.2 sin(3.4xt), and x(0) = a, ẋ(0) = b, numerically seek a and b such that

x(2.3) = 0.3. Plot a curve (or curves) in the a-b plane.

9. Write your own routine in Matlab to find scalar integrals on an interval using Simpson’s rule. Use a high

enough degree of refinement to find, accurate to at least 3 significant digits,

∫ 2

0

sin

(

2x3

1 + ln(1 + x)

)

dx.

10. Find 5 terms of a power series expansion, for small x, of

x0.7 cos(1 + ln(1 + x))
√

sin(x) ln(1 + x)
.

11. Using what you learnt from the last two problems find, to at least 3 significant digits,

∫ 2

0

x0.7 cos(1 + ln(1 + x))
√

sin(x) ln(1 + x)
dx.

12. Find by integrating on the positive real line

∫ ∞

0

ln(1 + x) cos (1 +
√
x)

x0.6
dx.

The integral converges slowly, so the contribution from x ∈ (A,∞) for some large A should be computed

from a suitable asymptotic approximation. Similarly consider a series for small x.

13. Using complex variables, reduce the previous integral to one on the imaginary axis. Compare results.

14. Given ẍ+λ(2+cos t)x = 0 and the boundary conditions x(0) = x(2.2) = 0, find the first five positive real

values of λ for which nonzero solutions exist. All ODE solution should be done using Matlab’s ode45.

15. For problem 14, set up a finite difference scheme in Matlab, and find the first five λ values using Matlab’s

eig.

16. Again for problem 14, assume a solution in the form of a Fourier sine series, and find the first five λ values

using Maple.

17. Learn Floquet theory. For the system ẍ + sin(t) ẋ + cos(t)x = 0, find the Floquet matrix (monodromy

matrix).

18. For the system ẍ + sin(t) ẋ + a cos(t)x = 0, seek real values of a such that the Floquet matrix has an

eigenvalue of magnitude 5.

19. Analytically find the solution, for x ∈ (0, 3), of

y′′ + 0.3 y′ + 3y =

∫ 3

0

y dx, y(0) = 0, y(3) = 1.

You will need to solve an algebraic equation numerically.

20. Numerically solve, for x ∈ (0, 3),

y′′ + 0.3 y′ + 3y3 =

∫ 3

0

e−y dx, y(0) = y(3) = 0.

2

21. Numerically solve, for x ∈ (0, 3),

y′′(x) + 0.3 y′(x) + 3y(x) +

∫ x

0

s cos y(s) ds =

∫ 3

0

e−y(s) ds, y(0) = y(3) = 0.

22. Consider

y′′(x) + y′(x) + y(x) =

∫ 2

x

√
1 + s y(s) ds,

with initial conditions y(0) = 0, y′(0) = 1. What is y(3)?

23. Given that

y′′(x) + cos(x) y(x)2y′(x) + y(x)3 = 1, y(0) = 1,

and that there exists one or more real a such that y(a) = y′(a) = 0, find y and plot it for x between 0 and

a.

24. Given that

ÿ + 0.3 zẏ + 3y3 = sin t,

ż + yz = 0,

and

y(0) = 1, y(1) = 0, z(0.5) = 1,

find numerically y(t) and z(t) for t ∈ (0, 1).

25. Consider the matrices

A =















1 2 −3

1 3 0

0 −2 −3

1 0 −7

−3 −1 2















, b =



























1

0

0

4

−2



























.

Find the column vector x which minimizes the error e = Ax− b in the 2-norm (or least squares sense).

26. Consider the function f(x) = abs(x) for x ∈ [−1, 2]. Using 300 equally spaced points on this interval,

and considering polynomials of fourth order, approximate f(x) in the least squares sense. Show f and its

approximation on a plot. Separately plot the approximation error. (Use problem 25.)

27. For the matrices in problem 25, consider x such that Ax ≤ b elementwise. In addition, x ≥ −6 and x ≤ 5,

also elementwise. Maximize the sum of the first 2 elements of x. Use Matlab’s linprog.

28. Reconsider problem 25. Now find the vector x which minimizes e in the infinite-norm (maximum error

magnitude sense). (Problem 27 is relevant. You can define an auxiliary variable which bounds the errors

using linear inequalities, and then minimize that.)

29. Reconsider problem 26, only now approximate the function in the maximum absolute error sense. Show

f and its approximation on a plot. Separately plot the approximation error. (Use problem 27.)

30. Reconsider problem 27, only now minimize the sum of the squares of the first 2 elements of x. Use Matlab’s

quadprog.

31. Consider the van der Pol oscillator, ẍ + µẋ
(

x2 − 1
)

+ x = 0. The system has a unique stable periodic

solution. Find the time period, accurate to at least 3 significant digits, for µ = 3.

32. In problem 31, find µ to at least 3 significant digits if the time period is known to be 8.

33. In problem 31, find the steady state RMS value of x.

3

34. Using a method of your choice that you implement in Matlab, plot a closed curve in the x-y plane that

satisfies

x4 + 0.1x3 + 2x2 − x+ y4 − 0.1y3 +
y2

1 + y2
+ 0.1xy = 100.

35. Numerically obtain the area and perimeter of the closed curve in problem 34.

36. Consider ẍ + ẋ5 + x = 0, with x(0) = 1000 and ẋ(0) = 0. Guided by numerics, obtain an analytical

estimate of the time taken for x to first attain the value 1.0.

37. Consider

p(x) = x5 + 2x4 + 3x3 + b x2 + a x+ 6.

Let f1 be the largest of the real parts of the roots of p. Let f2 be the sum of the real parts of the roots of p.

These are both functions of the real parameters a and b. Minimize g(a, b) = f1+0.2 f2+0.1 abs(a)+0.1 b2.

Use Matlab’s fminsearch. Redo using contour plots in the a-b plane.

38. Consider all 2× 2 complex matrices such that the absolute values of their elements add up to 1. What is

the maximum absolute difference achievable between the eigenvalues of such a matrix?

39. Consider all 3 × 3 complex matrices such that the absolute values of their elements add up to 1. The

eigenvalues of such a matrix define a triangle on the complex plane. Let the area of the triangle be A.

What is the maximum possible value of A?

40. Reconsider problem 39 with all 3 × 3 complex matrices, only now the magnitude of each element is 1.

What is the maximum possible value of A?

41. Let f(x) = eax+
√
1+x cos

(

bx2 + ln(1 + x)
)

. Given that

∫ 2

0

f(x) dx = 2 and

∫ 2

0

xf(x) dx = 0,

seek solutions for a and b.

42. Consider the matrix

A =





1 2 −3

1 3 0

a −2 −3



 ,

and suppose that we know ea + cos(2a) is an eigenvalue of A. Find possible values of a.

43. Use some combination of asymptotics and direct summation to find, accurate to at least 2 decimal places,

the sum
ln(2)

1
+

ln(3)

11.1 + 1
+

ln(4)

21.1 + 1
+

ln(5)

31.1 + 1
· · ·

44. Let A be a 2× 2 matrix whose elements are independent random numbers each uniformly distributed on

(0, 1), i.e., from Matlab’s rand. What is the probability that the eigenvalues of A both lie inside the unit

circle? What is the probability of the same if the elements of A are normally distributed with mean 0.5

and standard deviation 0.5? (Numerics only.)

45. Let ẍ+ aẋ+ 6bx+ x3 = 0, with x(0) = 1 and ẋ(0) = 0, where a and b are independent random variables

uniformly distributed on (0, 1). What is the probability that |x(4)| < 0.2?

46. Let X be a real random variable. The probability that X < x is known to be

F (x) =
3

10

e2x

1 + e2x
+

7

10π
tan−1

(

2x3 + 5
)

+
7

20
.

What is the expected value of X?

4

47. Use Monte Carlo integration to evaluate

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

ln (1 + x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6) dx1 dx2 dx3 dx4 dx5 dx6.

48. Use Monte Carlo integration to evaluate

∫ 1

0

∫ x6

0

∫ x5

0

∫ x4

0

∫ x3

0

∫ x2

0

ln (1 + x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6) dx1 dx2 dx3 dx4 dx5 dx6.

49. Use a Monte Carlo simulation to find the mean and standard deviation of the number of times we need

to toss a coin in order to get 7 heads in a row.

50. Consider an equilateral triangle of side 3 units, lying in the x-y plane with one vertex at the origin, and one

edge along the x-axis. Remove the region inside the circle of radius 0.8 with centre at (1.0,0.5). Further

remove the region inside the circle of radius 0.7 with centre at (1.0,1.5). Finally, remove all points below

the curve y = 0.3x2. Use Monte Carlo integration to find the remaining area.

3 Partial answers

1. x(2.3) = −0.7735841.

2. The ODE is nonlinear. What we can solve easily is an initial value problem for any given a. Large negative

a might make numerical solutions unreliable, but let us first suppose that Matlab tolerances of reltol and

abstol set to 10−12 will give acceptable results. Tighter (smaller) values are often problematic anyway,

because roundoff errors may begin to exceed truncation errors.

Given a and the initial conditions at t = 0, the computed value x(2.3) is just some function f(a), which

we can compute and plot, as shown below (figure 1). A horizontal line at −0.6 is plotted for reference,

and every intersection gives a solution for a. It is seen that there are infinitely many solutions for negative

a, but a few easy ones for a > 0. In computing f(a), it helps to define a as a global variable inside the

derivative-evaluating m-file given to ode45. Then a can be set from the Matlab command window, or

from any m-file, as needed.

 -4 -2 0 2 4 6
 -4

 -3

 -2

 -1

0

1

2

3

4

a

f(
a

)

Figure 1: See problem 2.

3. Newton-Raphson method with numerically estimated Jacobians. You may adjust the termination toler-

ance, size of the finite difference step for estimating the derivative, and allowed number of iterations. fun

is the name of the m-file which evaluates some vector function f(x), where we seek x for which f(x) = 0.

5

function x=newton(fun,x)

% numerically estimates derivatives and implements Newton-Raphson method

n=length(x);

epsil=(1e-5*max(1,norm(x)));

pert=eye(n)*epsil;

iter=0; nmax=60;

ee=feval(fun,x);

while (norm(ee)*max(1,norm(x))>1e-10)*(iter<nmax)

iter=iter+1;

for k=1:n

D(:,k)=(feval(fun,x+pert(:,k))-ee)/epsil;

end

x=x-(D\ee);

if nargin == 3

disp(x)

end

ee=feval(fun,x);

end

disp(iter), disp(’iterations’)

if (iter == nmax)+(abs(x)==inf)

disp(’did not converge’)

end

Having newton, we make a new m-file as follows:

function z=p3(x)

z=[x(1)+x(2)-2; x(1)^2+x(2)^2-3];

Then, in Matlab, supplying an initial guess to newton, we get:

>> newton(’p3’,[0;1])

5

iterations

ans =

0.292893218812655

1.707106781187345

4. Consider the following m-file:

function z=p4(a)

A=[7,a,0,14; -13,15,12,0; i,1+i,0,0; i,i,i,i];

z=abs(eig(A))-2.6;

[m,n]=min(abs(z));

z=z(n);

Note that the magnitude of the eigenvalue could be slightly below or above 2.6 (the desired value), and

the sense of the difference should not be lost. So we do not want abs(abs(eig(A)) - 2.6).

Now, with newton as above, many random initial guesses fail to give solutions. However, after a few

random inputs, I found the following two solutions:

−1.9470938, −54.7383329.

5. Similar to the previous one. I got a few solutions:

−3.56597462, 5.7292335, 84.6838382.

6

−5 0 5 10 15
−5

0

5

10

15

Figure 2: Eigenvalues on the complex plane: 4 curves for 4 eigenvalues. See problems 4 and 5.

You might like to plot all the eigenvalues, in the complex plane, as a is varied. Superimpose a circle of

radius 2.6 (for the previous problem) and a line through the origin at 37◦ (for this problem). The resulting

figure (figure 2) is consistent with the numerical results (2 solutions for problem 4 and 3 solutions for this

one).

6. This problem involves numerical continuation of solutions. Since a is complex, let us write a = x+ iy and

note that we have two things to find. Given one solution, like −1.9470938 + 0i, we want to find a nearby

solution (say at a distance of 0.01 on the complex plane). Then use that newly found solution to obtain

yet another solution, a further distance of 0.01 away.

To this end, we define a0 = −1.9470938 to begin with, and use the following m-file:

function z=p6(x)

global a0

a=x(1)+i*x(2);

A=[7,a,0,14; -13,15,12,0; i,1+i,0,0; i,i,i,i];

z=abs(eig(A))-2.6;

[m,n]=min(abs(z));

z=z(n);

z=[z;norm(x-a0)-0.01];

Then, at the Matlab command,

>> a0=[-1.9470938;0];

>> a_new=newton(’p6’,a0+randn(2,1)/4)

5

iterations

a_new =

-1.944288035329471

-0.009598316759364

>> plot(a0(1),a0(2),’.’)

>> hold on

>> for k=1:100; a_guess=2*a_new-a0; a0=a_new; a_new=newton(’p6’,a_guess);

>> plot(a0(1),a0(2),’.’); end

The results obtained are shown in figure 3. Further results can be obtained in the same way.

7. Similar to problem 4. Note only that the dot product of normalized eigenvectors will give you the cosine

of the included angle, and you should take the absolute value before you compare with cos 35◦.

7

 -2 -1.8 -1.6 -1.4
 -1

 -0.8

 -0.6

 -0.4

 -0.2

0

Real part of a

im
a

g
in

a
ry

 p
a

rt
 o

f
a

Figure 3: A series of points in the complex-a plane that solve problem 4.

8. Similar to problem 6, except that the evaluation of the function involves numerical integration of a differ-

ential equation.

9. Simpson’s rule:

function z=simp(a,b,N,fun)

% note: "fun" is a string; it is a file name where the integrand is

% evaluated; it should evaluate the function on arrays (be vectorized)

if floor(N/2)*2 == N

N=N+1;

end

x=linspace(a,b,N); h=x(2)-x(1); y=feval(fun,x);

w=2*ones(1,N-2); w(1:2:end)=2*w(1:2:end); w=[1,w,1]*(h/3);

z=y*w’;

The integrand:

function z=p9(x)

z=sin(2*x.^3./(1+log(1+x)));

In Matlab:

>> simp(0,2,101,’p9’)

ans =

0.427570776769777

>> simp(0,2,201,’p9’)

ans =

0.427571207725242

10. From MAPLE (partially evaluating to numerical values):

0.5403023059x−4/5 − 0.5713198318x1/5 − 0.2701511530x6/5 + 0.2502233507x11/5 − 0.2449287360x16/5

11. The above approximation is fine for direct analytical integration from x = 0 to (say) x = 0.01. The

remainder (from 0.01 to 2) can be done using Simpson’s rule. There is some arbitrariness in choosing the

limit of 0.01. The power series expansion shows that simply throwing away the integral from 0 to even

10−10 would lead to an error in the second decimal place.

8

12. In this problem, there is a weak singularity at x = 0. Moreover, the domain of integration is infinite. The

integrand decays slowly and oscillates with decreasing frequency. Thus, for direct evaluation on the real

line, attention is needed both for small x and large x.

As shown above, we can use a power series expansion for small x and evaluate the integral to some suitable

small positive value ǫ. I get (from MAPLE)

5

7
cos(1)ǫ

7

5 − 10

19
sin(1)ǫ

19

10 − 5

12
cos(1)ǫ

12

5 +
20

87
sin(1)ǫ

29

10 +
25

136
cos(1)ǫ

34

10 − 17

156
sin(1)ǫ

39

10 + · · · ,

which for ǫ = 0.05 gives (for the terms shown) 0.0041938.

We also need an approximation for A ≫ 1 in

f(A) =

∫ ∞

A

ln(1 + x) cos (1 +
√
x)

x0.6
dx.

Here, note that
cos(1 +

√
x)

2
√
x

is a perfect derivative. So we let u = 1 +
√
x to obtain

f(A) =

∫ ∞

1+
√
A

2 ln(1 + (u− 1)2) cosu

(u− 1)0.2
du. (1)

We could expand

h(u) =
2 ln(1 + (u− 1)2)

(u− 1)0.2
(2)

for large u to obtain some further analytical simplification, but it is unnecessary. Integrating by parts in

Eq. 1 (see Eq. 2), we obtain

f(A) ∼ (h(u) sin(u) + h′(u) cosu− h′′(u) sinu− h′′′(u) cosu+ · · ·)|∞1+√
A .

A small trick we can use is to let 1+
√
A be nπ for a large positive integer n, so that the sine terms are zero

in the expansion above. Using MAPLE to compute five derivatives of h, we obtain a long expression that

decays rather slowly, such that its asymptotic behavior is clearly established for something like u > 400π

(a visual estimate from a graph not reproduced here). The corresponding value of A is inconveniently

large:

A = 160000π2 + 1.

So we do the following (taking an even larger A for the asymptotic behavior):

f(100) ≈
∫ 1200π

11

2 ln(1 + (u− 1)2) cosu

(u− 1)0.2
du− 0.000132.

Evaluating the integral using Simpson’s rule (using 1000000 points, after some convergence checks), we

have

f(100) ≈ 5.8422584.

We are finally left with one integral to get our final approximation, which is:

0.0041938 +

∫ 100

0.05

ln(1 + x) cos (1 +
√
x)

x0.6
dx+ 5.8422584,

which (using Simpson’s rule again) is

∫ ∞

0

ln(1 + x) cos (1 +
√
x)

x0.6
dx ≈ −1.3703.

9

contour for integration

x-plane

Re(x)

Im
(x

)
8

Figure 4: Contour for problem 13.

13. The above evaluation of the integral was laborious. Now we will use contour integration in the complex

plane. To this end, we rewrite the integrand as

Re

(

ln(1 + x)ei(1+
√
x)

x0.6

)

.

The real part can of course be taken after evaluation of the integral; and the evaluation of the integral

can use a suitable contour in the complex plane.

Consider the contour in the first quadrant, shown in figure 4, to be traversed counterclockwise. There

is a small circular arc near the origin, which makes a negligible contribution. Similarly, the outer circle

contributes terms that decay exponentially as its radius grows to infinity. There being no singularities

within the contour, the contour integral is zero. The net result is that the integral from zero to infinity

along the real line is the same as that from zero to infinity along the positive imaginary axis. Having

identified the line integral needed, we can again take real parts before integration, obtaining

∫ ∞

0

ln(1 + x) cos (1 +
√
x)

x0.6
dx =

∫ ∞

0

Re

(

ie−0.6π

2
i ln(1 + iy)ei(1+

√
iy)

y0.6

)

dy.

Since evaluation of the intregral is numerical, the integrand need not be simplified further. Taking three

portions on the y axis (somewhat arbitrarily from 10−13 to 10−3, 10−3 to 103, and from 103 to 106), with

about 2 million points each time (takes less than a second anyway), Simpson’s rule gives the above integral

as
∫ ∞

0

ln(1 + x) cos (1 +
√
x)

x0.6
dx ≈ −1.37016.

I believe this approximation is much more accurate than the previous one.

14. In this problem, since the boundary conditions are zero, the solution x can be multiplied by any scalar

quantity. It is clear that ẋ(0) 6= 0 (because the solution of the initial value problem would then give

x ≡ 0). By these two observations, we may take x(0) = 0 and ẋ(0) = 1. It remains to use ode45 to

compute x(2.2), which may be viewed as a function of λ (call it f(λ)). We can now easily compute and

plot f(λ). Results are shown in figure 5. Accurate λ-values can be obtained using the Newton-Raphson

method.

15. Problem 14 can be solved using finite differences. Taking N uniformly spaced mesh points with tk−tk+1 =

h, t0 = 0 and tN+1 = 2.2; and x0 = xN+1 = 0; we have

xk+1 − 2xk − xk−1

h2
= −λ (2 + cos tk)xk,

which leads to a generalized eigenvalue problem of the form

Ax = λBx.

10

0 5 10 15 20 25

−0.4

−0.2

0

0.2

0.4

0.6

λ

f(
λ)

Figure 5: Figure for problem 14. Intersections with the horizontal axis give the required λ-values. The circles

were computed as per problem 15.

I used the Matlab code

function L=p15(N)

t=linspace(0,2.2,N+2); h=t(2)-t(1); t=t(2:end-1);

A=-2*eye(N); A(2:end,1:end-1)=A(2:end,1:end-1)+eye(N-1);

A(1:end-1,2:end)=A(1:end-1,2:end)+eye(N-1);

A=A/h^2;

B=-diag(2+cos(t));

L=eigs(A,B,5,’sm’);

For N = 500, I got the eigenvalues (see also figure 5)

0.8378, 3.4544, 7.8148, 13.9183, 21.7650.

16. Now with Maple. Assume

x =

N
∑

k=1

ak sin

(

kπt

2.2

)

,

substitute into the ODE, multiply sequentially by each sine term and set the integral to zero, to obtain

N linear homogeneous coupled equations involving a parameter λ. Then find λ values such that the

coefficient matrix is singular.

The following lines of Maple code (using 6 sine terms)

N:=6: x:=add(a[k]*sin(k*Pi*t/(22/10)),k=1..N): de:=expand(diff(x,t,t)+lambda*(2+cos(t))*x):

for k from 1 to N do eq[k]:= evalf(integrate(de*sin(k*Pi*t/(22/10)), t=0..22/10)); end:

with(linalg): A:=matrix(N,N): for k from 1 to N do for n from 1 to N do

A[k,n]:=coeff(eq[k],a[n]): end: end: dd:=det(A): evalf(solve(dd,lambda));

give the following results for the first 5 eigenvalues (with increasing, but acceptable, inaccuracy):

0.8378, 3.4545, 7.8151, 13.9193, 21.7849.

17. Writing the system in first order form using

q =

{

ẋ

x

}

,

11

the Floquet matrix is computed to be
[

1 0

21.6237 1

]

.

18. Directly evaluating the Floquet multipliers for various values of a, we can plot the results to see some

solutions as in figure 6. The curves with dots are the multipliers, and the horizontal line is at 5. There

are 8 solutions within the range −5 ≤ a ≤ 5.

−5 0 5
10

−4

10
−2

10
0

10
2

10
4

a

F
lo

qu
et

 m
ul

tip
lie

r

Figure 6: Floquet multipliers (log scale).

19. The point is that although y varies with x,
∫ 3

0
ydx is just some number. Call it a. Then we are really

solving

y′′ + 0.3y′ + 3y = a, y(0) = 0, y(3) = 1,

with a as yet undetermined. The solution is analytically easy to find (if somewhat long), and we write it is

(say) f(a, x). Now we set
∫ 3

0
f(a, x)dx = a as originally assumed, and find that a = 2.743245. Substituting

back into f(a, x), we obtain

y(x) = 0.9144− 0.6080 e−0.1500 x sin(1.7255x)− 0.9144 e−0.1500 x cos(1.7255x).

20. See the previous problem. Now we set
∫ 3

0
e−ydx = a, and consider the system of ODEs

y′′ + 0.3y′ + 3y3 = a,

z′ = e−y.

We now integrate these using initial conditions y(0) = 0, y′(0) = b and z(0) = 0. The aim is to adjust a

and b so that y(3) = 0 and z(3) = a. The following Matlab code works:

function zdot=p20(t,z)

global a

zdot=[-0.3*z(1)-3*z(2)^3+a; z(1); exp(-z(2))];

and

function z=p20a(x)

global a

op=odeset(’reltol’,1e-10,’abstol’,1e-10);

a=x(1); b=x(2);

[t,z]=ode45(’p20’,[0,3],[b;0;0],op);

z=z(end,:);

z=[z(2); z(3)-a];

12

Using the Newton-Raphson method to find a zero of the vector function p20a, we obtain many solutions.

Some of the a-values obtained are

3.1085, 4.1565, 5.8713, 8.5398, 9.5796, 13.2869.

The corresponding y(x) are plotted in figure 7.

0 0.5 1 1.5 2 2.5 3
- 4

- 3

- 2

- 1

0

1

2

3

4

5

x

y

Figure 7: Some solutions for problem 20.

21. This is similar to problem 20 except you need to add on a third differential equation, as follows

y′′ + 0.3y′ + 3y + ξ = a,

z′ = e−y,

ξ′ = x cos y.

Now start with initial conditions y(0) = 0, y′(0) = b, z(0) = 0, ξ(0) = 0. Iteratively adjust a and b such

that z(3) = a and y(3) = 0. Using the Newton-Raphson method, I found

a = 2.2136, b = −1.2309.

22. Rewrite the problem as

y′′(x) + y′(x) + y(x) =

∫ 2

0

√
1 + s y(s) ds−

∫ x

0

√
1 + s y(s) ds.

Setting
∫ 2

0

√
1 + s y(s) ds = a,

solve the system

y′′(x) + y′(x) + y(x) = a− z,

z′ =
√
1 + x y,

with initial conditions y(0) = 0, y′(0) = 1 and z(0) = 0, from x = 0 to x = 2. Now adjust a such that

z(2) = a. Finally, knowing a, integrate one last time to x = 3. I found a = −28.8458 and y(3) = −10.0262.

23. This is a second order ODE. The initial condition y(0) is given, but y′(0) must be chosen along with a to

satisfy the two conditions y(a) = y′(a) = 0. Many solutions exist; some are shown (for both positive and

negative a) in figure 8.

13

−5 0 5 10

−3

−2

−1

0

1

2

3

x

y

Figure 8: Some solutions for problem 23. The common point (0, 1) is marked with a circle.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

t

y,
 z

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

t

y,
 z

Figure 9: Two solutions for problem 24 (I found others as well). The curves for y and z may be distinguished

by noting z(0.5) = 1.

24. In order to solve an initial value problem, we need y(0) (which we have) along with ẏ(0) and z(0) (which

we do not have). These two have to be adjusted so that y(1) = 0 and z(0.5) = 1. Multiple solutions exist.

Two are shown in figure 9.

25. This is simply A\b in Matlab. (When A is square and invertible, it computes the unique solution. When

the system is overdetermined as in this problem, it computes the least squares solution.)

26. The following lines in Matlab work. See figure 10.

x=linspace(-1,2,300)’; f=abs(x); A=[ones(size(x)),x,x.^2,x.^3,x.^4];

c=A\f; subplot(1,2,1); plot(x,f,x,A*c,’-.’); legend(’abs(x)’,’approximation’);

xlabel(’x’); ylabel(’abs(x) and polynomial approximation’); subplot(1,2,2);

plot(x,f-A*c); xlabel(’x’); ylabel(’approximation error’);

27. The sum of the first 2 elements turns out to be 3.3333.

28. Impose Ax− b ≤ c, where we understand Ax− b is a vector, each element of which is less than some scalar

quantity c. Further impose Ax − b ≥ −c, understood similarly. Now minimize c using linprog. I found

c = 0.85. I used the following Matlab program (written compactly for space).

function x=infnormsol(A,b)

[n,m]=size(A); f=[1;zeros(n+m,1)]; op=optimset(’maxiter’,2000);

14

−1 0 1 2
0

0.5

1

1.5

2

x

ab
s(

x)
 a

nd
 p

ol
yn

om
ia

l a
pp

ro
xi

m
at

io
n

abs(x)
approximation

−1 0 1 2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

x

ap
pr

ox
im

at
io

n
er

ro
r

Figure 10: Least squares approximation using a polynomial: problem 26.

AA=[zeros(n,1),-eye(n),A]; B=zeros(2*n+1,n+m+1); B(:,1)=-ones(2*n+1,1);

B(2:n+1,2:n+1)=eye(n); B(n+2:2*n+1,2:n+1)=-eye(n); z=zeros(2*n+1,1);

x=linprog(f,B,z,AA,b,[],[],[],op); x=x(n+2:end);

29. In approximating abs(x) using 300 equally spaced points on [−1, 2], a fourth order polynomial, and with

the goal of minimizing the maximum error, the maximum error was 0.1245 (compare with figure 10 right,

where the maximum error is about 0.2).

30. Try help quadprog in Matlab. Take H to be the 3× 3 diagonal element with diagonal elements (2, 2, 0);

take f to be the 3 × 1 zero matrix, and A and b as already defined. Then quadprog gives the answer

x = {0.9,−0.3, 0.2}T .

31. Since there is a periodic solution and the system is autonomous, assume ẋ(0) = 0. If the time period is

T , then on solving the initial value problem with initial conditions ẋ(0) = 0 and x(0) = a (ode45), the

solution must satisfy x(T) = a and ẋ(T) = 0. Iteratively adjust a and T (Newton-Raphson). I found

a = 2.0233 and T = 8.8591. (A warning: Matlab already has built-in functions called vdp and vdp1.

Avoid clashes.)

32. Very similar to the previous problem, except T = 8 (fixed), and we must adjust µ and a. I found µ = 2.3157

and a = 2.0217. I found it helps to have a rough idea in advance about where the solution lies.

33. The periodic solution directly gives the steady state behavior. Upon solving problem 31 you know T . Now

add on a differential equation, ż = x2, and integrate it along with the van der Pol equation with z(0) = 0,

for exactly one period (T = 8.8591). Divide by T and take the square root.

34. See problem 6 for an elementary method of numerical continuation. To use that, you need a starting

point. Set y = 0 and solve for x. Since it is a polynomial in x, use Matlab’s roots. There are 4 roots,

of which 2 are complex. The real ones are 3.0106 and −3.0059. Start with the point (3.0106, 0), use an

arclength of 0.01 (something small but manageable), and find some N points to begin with. It turns out

2146 points are needed, with the last one slightly overshooting y = 0. We can drop that last point and

insert the starting point in its place to make sure the loop is complete. The resulting plot is shown in

figure 11.

35. Perimeter: sum the distances between successive points for a piecewise linear approximation. I got 21.44.

Area: think of each line segment along the curve as the base of a triangle with its vertex at the origin.

Taking the position vector of each point as r and the corresponding little line segment as dr, sum 0.5 |r×dr|.
I got 34.82.

36. The numerical solution shows an almost linearly varying, non-oscillating solution for large x. In the

equation ẍ + ẋ5 + x = 0, when x is large, it has to be balanced by another large term. Being balanced

by ẍ would imply ẋ5 is relatively small, and require oscillatory solutions (not seen). This suggests ẍ is

15

 -4 -2 0 2 4
 -4

 -3

 -2

 -1

0

1

2

3

4

x

y
Figure 11: Closed curve plot using continuation: problem 34.

negligible, and ẋ5 ≈ −x. Solving the approximating equation, the time taken for x to become 1 is about

312.7 units. The match with numerics is good.

37. Using fminsearch I find a = 0, b = 0.21042, and g = 0.29028. The contour plot shows a matching minimum

(figure 12).

b

a

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.3

0.35

0.4

0.45

0.5

Figure 12: Contour plot of g for problem 37.

38. Before we begin, we note that the matrix

A =

[

1 0

0 0

]

has elements whose magnitudes add up to 1, and the eigenvalues (0,1). Thus, the maximum distance

achievable between eigenvalues is at least 1. We will see below that the maximum in fact appears to be 1

(since we use numerical optimization, we will not have a proof).

We will use fminsearch. How to define the objective function? The sum of absolute values must add up

to 1, and this could be used as an explicit constraint. However, if A is a square matrix and a is a number,

and if λ is an eigenvalue of A, then aλ is an eigenvalue of aA. And so we can directly minimize (note the

minus sign)

g = − |λ1 − λ2|
∑

i,j |Aij |
.

Now the elements of A could be complex, so we presently seem to have 8 independent variables. But

the first element A11 can be assumed real. This is because if it is complex with phase θ, then its phase

can be set to zero by multiplying A with some a = e−iθ. This multiplication leads to a rotation of the

eigenvalues about the origin in the complex plane, but does not affect their separation. So we seem to

have 7 independent variables. However, scaling up all the elements of A by any real multiplier a does

16

not change the objective function g, as discussed above, so we might as well take A11 = 1, leaving 6

independent variables.

Try the following Matlab function with fminsearch:

function z=eig_prob_1(x)

% assume x is 6X1 and real, and convert to 3X1 and complex.

x=x(1:3)+i*x(4:6); x=[1;x];

x=[x(1:2),x(3:4)]; z=eig(x); z=-abs(z(1)-z(2))/sum(sum(abs(x)));

The minimized objective function turns out to be −1, but the minimizing x is very large and changes from

run to run. I believe this is because many redundancies remain in the optimization problem formulation.

For example, similarity transformations (A → P−1AP) will leave the eigenvalues unchanged but might

affect the sum of the absolute values of the elements of the matrix; and so every optimal A must have

the property that
∑

i,j |Aij | cannot be reduced by any similarity transformation (the optimization could

conceivably be carried out over the subset of matrices that possess this property). But I do not know how

to use this idea to reduce the number of explicit independent variables.

For our present purposes, the problem as originally stated is solved, and the maximum possible distance

is unity.

Comment: In such simple-minded uses of fminsearch, I usually try several runs with random initial

guesses, and in each case take the offered optimal x as a new initial guess to run it again, several times in

a row. Such persistence does not ensure finding the true optimum, but improves the odds.

39. Let the matrix be called B. Based on our (my) inability in the previous problem to reduce the number of

independent variables to the minimum possible value, let us here choose simplicity and allow every element

to be complex and unrestricted; the constraint of
∑

i,j |Bij | = 1 will be implicitly incorporated later.

Upon computing the 3 eigenvalues (λ1, λ2, λ3), we compute 2 complex numbers, namely e1 = λ1 − λ2 and

e2 = λ1−λ3. These two complex numbers may be also viewed as vectors in the plane, and the magnitude

of their cross product is twice the area of the triangle. Alternatively, we can rotate the vector e1 through

90 degrees by multiplying with i, and then take the dot product of the two vectors (ie1 and e2). At this

point,
∑

i,j |Bij | 6= 1. Scaling the elements of B uniformly with a factor α will scale the eigenvalues by α

and the area A by α2. And so the computed area A should be divided by





∑

i,j

|Bij |





2

.

Accordingly, consider the following Matlab program:

function z=eig_prob_2(x)

% input has 18 elements, convert to 9 complex elements

x=x(1:9)+i*x(10:18); x=[x(1:3),x(4:6),x(7:9)];

z=eig(x); z=[i*(z(1)-z(2));z(1)-z(3)];

z=-abs(prod(z)* cos(phase(z(1))-phase(z(2))))/(sum(sum(abs(x))))^2/2;

As it did for the previous problem, fminsearch gives different optimizers for different random initial

guesses. But it settles frequently on the value (dropping the minus sign) 0.14433 =
1

4
√
3
. The optimal

number may be obtained by considering a diagonal matrix, with the diagonal elements equal to one third

of each of the cube roots of unity. There is a local optimum at 0.125 which is frequently offered by

fminsearch, but persistence yields the correct result.

40. For this problem, we can think of each element as eiθ, suggesting 9 independent inputs. The number could

be reduced, but is not necessary with fminsearch. The optimal value obtained (largest area) appears to

be
9
√
3

4
.

41. A straightforward use of Simpson’s rule and Newton’s method, both already covered. Try the Matlab

function:

17

function z=p41(q)

N=5001; a=q(1); b=q(2);

x=linspace(0,2,N); h=x(2)-x(1);

w=2*ones(1,N-2); w(1:2:end)=2*w(1:2:end); w=[1,w,1]*(h/3);

y=exp(a*x+sqrt(1+x)).*cos(b*x.^2+log(1+x)); z=y*w’-2;

y=x.*y; z=[z;y*w’];

Newton’s method gives many solutions. A few are:

(a, b) = (−0.2219, 0.3493), (2.8845, 5.1847), (1.0313,−2.5893), and (2.6977,−5.7385).

42. Matlab works fine with complex numbers, and so we can use the following program:

function z=p42(a)

% a could be complex

A=[1,2,-3;1,3,0;a,-2,-3]; B=(exp(a)+cos(2*a))*eye(3); z=det(A-B);

Trying Newton’s method with real initial guesses keeps all iterates real, and gives some real solutions. I

found the following two: −0.8370 and 1.5728. But there are infinitely many complex roots as well. Starting

with a few random complex initial guesses, I found the following (there are infinitely many more):

a = 1.3602− 1.0887i,−1.5208 + 1.0333i,−4.6718 + 1.1726i.

Complex conjugates of the above are roots as well.

43. The series theoretically converges. However, direct summation is hopeless. The sum is on the order of
∫ ∞

0

ln(x+ 2)

1 + x1.1
dx ≈ 101 (from Maple).

The numerical sum to 106 terms is 41.5, and the sum to 107 terms is 49.2. How many terms will we need

for the error to be about 0.01? The answer N is given by

∞
∑

k=N

ln(k + 2)

1 + k1.1
≈ 0.01.

Approximately,
∫ ∞

N

ln(x+ 2)

1 + x1.1
dx ≈

∫ ∞

N

ln(x)

x1.1
dx = 10

10 + lnN

N1/10
≈ 0.01.

Substituting N = 10p, we have

10
10 + p ln 10

10p/10
= 0.01.

The solution is impossibly large: p ≈ 51.

An asymptotic approximation can be found as follows. Let N be large (it will become clear how large).

Define f(x) =
ln(x+ 2)

1 + x1.1
. Consider

∫ ∞

N

f(x) dx =

∞
∑

k=N

∫ k+1

k

f(k + u) du.

Since f(x) and its derivatives decay successively faster for large x, we can write

∫ ∞

N

f(x) dx =

∞
∑

k=N

∫ k+1

k

{

f(k) + f ′(k)u+
f ′′(k)

2
u2 + · · ·

}

du,

whence
∞
∑

k=N

f(k) =

∫ ∞

N

f(x) dx− 1

2

∞
∑

k=N

f ′(k)− 1

6

∞
∑

k=N

f ′′(k)− · · · .

18

Applying the above formula for the first sum on the right hand side, we obtain

∞
∑

k=N

f ′(k) =

∫ ∞

N

f ′(x) dx− 1

2

∞
∑

k=N

f ′′(k)− · · · = −f(N)− 1

2

∞
∑

k=N

f ′′(k)− · · · ,

or

∞
∑

k=N

f(k) =

∫ ∞

N

f(x) dx+
1

2
f(N) +

1

12

∞
∑

k=N

f ′′(k) + · · · =
∫ ∞

N

f(x) dx+
1

2
f(N)− 1

12
f ′(N) + · · · .

Thus, the desired sum may be approximated as

∞
∑

k=0

f(k) ≈
N−1
∑

k=0

f(k) +

∫ ∞

N

f(x) dx+
1

2
f(N)− 1

12
f ′(N).

In the above, since N is large, the integral itself is perhaps best evaluated after expanding the integrand

in a series for large x (using Maple). The result, for N = 100, is 92.146. Thus

∞
∑

k=0

f(k) ≈
99
∑

k=0

f(k) + 92.1458 +
1

2
f(100)− 1

12
f ′(100) = 9.1793 + 92.1458 + 0.0145− 0.00002 ≈ 101.34.

44. The following Matlab program can be used, with N larger if you want a more accurate result.

function [p1,p2]=p44

N=1e6; s1=zeros(N,1); s2=s1;

for k=1:N; A=rand(2); s1(k)=max(abs(eig(A)))<1; A=randn(2)*.5+.5;

s2(k)=max(abs(eig(A)))<1; end

p1=sum(s1)/N; p2=sum(s2)/N;

I found p1 ≈ 0.50 and p2 ≈ 0.46.

45. This problem just requires repeated ODE solution. Use the follwing Matlab program to define the ODE

system.

function zdot=p45(t,z)

global a b

x=z(1); xdot=z(2);

zdot=[xdot;-a*xdot-6*b*x-x^3];

Then, at the Matlab prompt, try

global a b

op=odeset(’reltol’,1e-6,’abstol’,1e-6); s=zeros(1000,1);

for k=1:1000; a=rand; b=rand; [t,y]=ode45(’p45’,[0,4],[1;0],op); s(k)=abs(y(end,1))<0.2; end

mean(s)

I got 0.415 and 0.395 on 2 consecutive runs. With 10000 trials instead of 1000, I got 0.4112 and 0.4085

on 2 consecutive runs. I suggest 0.41 may be a reasonable estimate of the required probability.

46. The probability density function of X is pX(x) = F ′(x). The expected value of X is

∫ ∞

−∞
xp(x) dx ≈ −0.8453 (from Maple).

In the above integral (numerically evaluated), it is sufficient to plot the function and choose a finite range

for the integral, because p decays rapidly for large x.

19

47. First find the correct answer using Maple. Define

f = ln (1 + x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6) .

Then successively evaluate

f1 =

∫ 1

0

f dx1,

f2 =

∫ 1

0

f1 dx2,

etc. The expressions involved become long. The final integrand, a function of x6 alone, has 147 terms.

Writing x in place of x6, the first few terms are (directly from Maple)

992

15
x ln(2) +

21

4
ln(1 + 6x)x3 +

259

96
ln(1 + 6x)x+

43

8
ln(1 + 6x)x2 +

198

5
ln(2)− 78651

1600
ln(3)− 137

60

−130361

3600
ln((3 + 2x)

−1
)− 128

15
x ln(4+3x)+

16384

225
ln(8+3x)− 15093

160
ln(3)x− 128

15
ln((1 + 2x)

−1
)x+· · ·

The integral finally is

−26006

675
ln(2)− 49

20
− 1058841

6400
ln(7)− 12717

100
ln(3)− 844375

10368
ln(5) +

12400927

57600
ln(11)

− 4826809

518400
ln(13)+

24137569

518400
ln(17) = 2.41104.

The Monte Carlo integral proceeds as follows. We generate N points uniformly distributed on the 6-

dimensional cube defined by xk ∈ (0, 1), k = 1, 2, · · · , 6. The joint probability density function of these

points is some constant p. Requiring

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

p dx1 dx2 dx3 dx4 dx5 dx6 = 1,

we find p = 1 in this case. Being interested in

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x1, x2, x3, x4, x4, x6) dx1 dx2 dx3 dx4 dx5 dx6,

we note that it is the same as

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

pf(x1, x2, x3, x4, x4, x6) dx1 dx2 dx3 dx4 dx5 dx6,

which in turn is just the expected value of f , and may be estimated by averaging the N values of f . Thus

we have the Matlab code:

N=1e6; x=rand(N,6); f=1; for k=1:6 f=f+k*x(:,k); end; f=mean(log(f))

which estimates the integral as (three random attempts) 2.4111, 2.4113, and 2.4115. In general, the error

is inversely proportional to
√
N .

48. Maple evaluates the integral. It is

−11573523

2464000
ln(3)−82707247

17496000
ln(7)− 49

14400
+
47045881

19595520
ln(19)+

19351049

21049875
ln(2)+

1771561

637875
ln(11) ≈ .0036398.

To evaluate the integral using a Monte Carlo method, we can use logical variables as follows. Instead of

evaluating
∫ 1

0

∫ x6

0

∫ x5

0

∫ x4

0

∫ x3

0

∫ x2

0

f(x1, x2, x3, x4, x4, x6) dx1 dx2 dx3 dx4 dx5 dx6,

20

we evaluate

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x1, x2, x3, x4, x4, x6)g(x1, x2, x3, x4, x4, x6) dx1 dx2 dx3 dx4 dx5 dx6,

where

g(x1, x2, x3, x4, x4, x6) = (x1 < x2)(x2 < x3)(x3 < x4)(x4 < x5)(x5 < x6),

where in turn the right hand side is a product of logical variables (each takes the value 1 if the inequality

holds, and 0 otherwise). The following Matlab code can be used (N = 2× 107):

N=2e7; m=6; x=rand(N,m); f=1; for k=1:m f=f+k*x(:,k); end; f=log(f);

for k=1:m-1 f=f.*(x(:,k)<x(:,k+1)); end; s=std(f), F=mean(f)

It gives

s = 0.098, F = 0.003633.

The standard deviation is useful in that the random estimate of the integral (here F) is approximately

normally distributed with mean equal to its correct value and standard deviation equal to s/
√
N ≈ 2×10−5,

consistent with the exact result above.

49. The following Matlab program simulates a series of coin tosses until 7 heads in a row are obtained, and

returns the number of throws needed.

function N=p49

% how many coin tosses to get 7 heads in a row?

% let heads=1 and tails=0, with 50% probability each

% use 400 throws at a time

x=[]; n=400; head7=0;

while 1-head7

x=[x;(rand(n,1)>0.5)];

p=x(1:end-6);

for k=1:6

p=p.*x(1+k:end+k-6);

end

if any(p)

head7=1; [m,N]=max(p); N=N+6;

end

end

Running this many times (30000 times), we get a sample and compute the mean (253.8) and standard

deviation (247.9).

Comment: Those expecting an approximation to the exponential distribution (wherein mean and median

are identical) may note the difference of about 6 between the mean and the standard deviation: I assume

this is because one attempt to get 7 heads in a row requires 7 tosses, which adds 6 to the mean.

50. First write a program which, given a point (x, y), will determine whether it lies inside the region of interest.

Here is such a program:

function z=p50(X)

% to determine whether a given point (x,y) is inside the region of interest

y=X(2); x=X(1); z=1;

if y<0, z=0; end % if below x-axis, then outside

c=polyfit([0,3/2],[0,3*sqrt(3)/2],1);

if y>polyval(c,x), z=0; end % if above first inclined edge, then outside

c=polyfit([3/2,3],[3*sqrt(3)/2,0],1);

21

if y>polyval(c,x), z=0; end % if above second inclined edge, then outside

if norm(X-[1,.5])<0.8, z=0; end % if inside first circle, then outside

if norm(X-[1,1.5])<0.7, z=0; end % if inside second circle, then outside

if y < 0.3*x^2, z=0; end % if under parabola, then outside

In slightly formal notation, let the region of interest be R, and define

χ(R;x, y) =

{

1 if (x, y) ∈ R, and

0 otherwise.

Then if Ω is any portion of the x-y plane that completely includes R, then the integral of χ over Ω equals

the area of R. Choose Ω to be a rectangle of length 3 units and height
3
√
3

2
units, with one long side

along the x-axis and its bottom left corner at the origin. The area of the rectangle is
9
√
3

2
units, and so

random points uniformly distributed on this rectangle have the constant joint probability density function

p =
2

9
√
3
. The expected value of χ(R;x, y) is

∫∫

Ω

pχ dxdy = p

∫∫

Ω

χdxdy = p×Area of R.

Thus, using 10000 points in Matlab:

figure; hold on; x=rand(10000,2); x(:,1)=x(:,1)*3; x(:,2)=x(:,2)*3*sqrt(3)/2;

s=0; for k=1:10000; t=p50(x(k,:)); if t, plot(x(k,1),x(k,2),’.’); end; s=s+t; end

generates a figure showing the retained points and returns a value of s. I got s = 813, whence the expected

value of χ is 813/10000, and the area of R is estimated to be

813

10000
× 9

√
3

2
= 0.63.

The region, with a parabola and two circles drawn in to show excluded points, is shown in figure 13.

0.5 1 1.5 2

0.5

1

1.5

2

2.5

x

y

Figure 13: Points retained for problem 50.

Comment: Using 300000 points in place of 10000, I got 0.614 (I do not trust the third digit). We could

use a shorter rectangle, e.g., by computing the intersection between the second (right-most) inclined edge

of the triangle and the parabola y = 0.3x2. I avoided the complication for easier presentation.

Acknowledgements

Sovan Das and Atanu Mohanty provided useful comments. Additionally, some errors were pointed out by Atanu

Mohanty and Saurabh Biswas.

22

