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Abstract

This thesis has four parts.
In the first part, a theoretical formulation was developed to extend a simple quar-

ter car model to incorporate frame flexibility, inertia effects and other-wheel ground
contacts. A simplified Adams model of a vehicle was used to calculate the vehicle
body point responses to inputs at four locations. Using the responses obtained from
the Adams model, a transfer function matrix was found between ground excitations
and vehicle body responses by introducing an unsprung mass model and retaining
the suspension properties as free parameters within the formulation. Finally, the
transfer function between ground displacements at one wheel and body responses
above that wheel, incorporating the effects of the other three wheels with stationary
ground contacts, was obtained. We refer to this reduced model as a generalized
quarter car model. It is a model of intermediate complexity, of a type that has not
been presented in the literature so far.

The next part of the work includes experiments and develops new theoreti-
cal characterization of elastomeric suspension bushings. Four different commer-
cially available bushings were characterized in the frequency domain using an MTS
370.10 elastomer test system at Natrip (National automotive testing, research and
infrastructure project), Indore. Empirical models used to describe such frequency-
dependent behavior can often be shown to violate some theoretical restrictions like
causality. Two new, different, rationally derived, three-parameter models were de-
veloped to model the suspension bushings. The models were fitted using the ex-
perimental data in frequency ranges such as 1-30 Hz. The fit obtained was good
even though the model had relatively few fitted parameters. Such models can be
incorporated easily in frequency domain suspension models or models for the full
vehicle.

In the third part, a full vehicle Adams model and also a simplified Adams model
were partially validated against field test results. A prototype vehicle manufactured
at Shri G. S. Institute of Technology and Science (SGSITS), Indore was used. The
vehicle suspensions were characterized using an MTS 850.25 damper test-rig and
the vehicle was tested on different test tracks at Natrip, Indore. The vehicle had
accelerometers mounted at four wheel axle points and four suspension-to-body at-
tachment points, and the vertical accelerations of these points were recorded. A
reasonable correlation was obtained between the experimental and simulation re-
sults. Both successful and unsuccessful aspects of the results have been discussed.

Finally using the above field test data, and with the theoretical formulation
developed in the first part, a new Laplace domain transfer function model was
fitted to predict the body points’ accelerations in response to measured wheel-axle
accelerations. This model was further extended to incorporate an unsprung mass
model and retain suspension properties as free parameters, thereby serving as an
experimental application of the theory developed in the first part of this work. A
discussion is given of aspects of the model that match experiments as well as possible
sources for observed mismatch between model and experiment.
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Chapter 1

Introduction

This thesis presents simplified dynamic models and characterization experiments

for vehicle suspensions and components thereof. Vehicle suspensions are generally

modeled using commercial multi-body dynamics packages, but such models are com-

putationally complex. The aim here is to develop models of intermediate complexity

which can reasonably capture the vehicle dynamic characteristics.

There are four main contributions of this thesis. These are outlined below.

1.1 Generalized quarter car model with frame flex-

ibility and other nonlocal effects

The most widely used model of a vehicle suspension system is the quarter car model

(see Figure 1.1). The sprung mass Ms represents a quarter of the vehicle body mass

and the unsprung mass Mu represents the mass of one wheel and its suspension.

The effective suspension stiffness and damping are denoted by Ks and Cs and the

tyre stiffness and damping are represented by Kt and Ct.
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Figure 1.1: Quarter car model.

The vertical vibration to a vehicle using a quarter car model are given by the

following governing differential equations of motion [1].

Msẍs + Cs(ẋs − ẋu) +Ks(xs − xu) = 0 (1.1)

Muẍu − Cs(ẋs − ẋu)−Ks(xs − xu) +Ktxu + Ctẋt = Kty + Ctẏ. (1.2)

The quarter car model is the subject of numerous investigations since the invention of

the vibration absorber theory by Frahm in 1911 [2]. The first analytical investigation

of damping properties of two degree of freedom systems is due to Den Hartog [3].

Since then the quarter car model has been used by numerous researchers to design

vehicle suspensions [4, 5]. It contains the most basic features of the real problem.

However, the quarter car model does not incorporate geometric effects of the full

car and offers no possibility of studying longitudinal and lateral coupling. It does

not incorporate the effect of three ground contacts at other wheels. These effects,

in a simplified approach, will be studied in the present thesis.

Dynamic modeling of vehicle suspensions is a part of vehicle design activities.
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Based on the level of detailing and complexity, mathematical models of suspensions

are broadly classified into three types: quarter car [6], half car [7] and full car models

[8, 9] (see Figure 1.2).
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Figure 1.2: Types of car models: (a) quarter car, (b) half car and (c) full car model.

Clearly, the quarter car model accounts for neither the effects of three other

wheels and their suspensions nor frame flexibility. The full car model is computa-

tionally complex. The half car model is midway in complexity, allows for fore-aft or

sideways interaction but not both, and could in principle incorporate frame flexibil-

ity.

Although they are popular, quarter car models cannot capture all relevant dy-

namic effects [10, 11]. There are in fact remarkable differences in ride vibration

predictions of various models (quarter car, half car, half car with discrete masses,

models with and without frame flexibility) [12]. The engine, passenger CG loca-

tions, and frame flexibility influence the vibration response but are not included in

the quarter car model.

In the context of the above range of models, the aim here is to develop a gener-

alized quarter car model which has intermediate complexity and represents the car’s

dynamics with both reasonable accuracy and low computational effort (Figure 1.3).
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Figure 1.4: Comparison of displacements obtained from usual quarter car model and our
model in response to a unit step displacement input at wheel contact point C1. Both the
damping level and steady state response are affected by nonlocal stiffness and dissipation
that is captured well by our approach.

As an example of the sort of differences captured by the new proposed approach,
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the unit step response of the presented model is compared with that of a usual

quarter car model (see Figure 1.4). Note in the figure that the value of steady

state displacement of a quarter car model for a unit step displacement input will

necessarily be unity. In the proposed model the difference observed from unity is

strictly due to other-wheel effects.

1.2 Rationally derived models for elastomeric

suspension bushings

The second part of this thesis concerns elastomeric bushings of vehicle suspension.

These bushings are typically used inside shock absorbers, damper and spring mounts,

control arms and bumpstops [13] (see Figure 1.5).

Figure 1.5: Locations of bushings in typical front and rear suspensions of a passenger car.

Accurate material modeling of elastomeric dampers is necessary for reliable vehi-

cle dynamics simulations. Typical existing models for such dampers are empirical in

5



nature. Empirical fits to experimental data involves several fitted parameters which,

if chosen arbitrarily, violate theoretical restrictions derived from causality, linearity,

and time-invariance. Here, an asymptotic expansion for Bode’s representation of the

famous Kramers-Kronig relations is exploited [14, 15, 16]. In the asymptotic expan-

sion, both the leading order term as well as one correction term have been retained.

Usually, in the literature, only the leading term is retained. Using this asymptotic

expansion, two new mathematical forms that satisfy theoretical restrictions and also

fit the experimental data well are proposed. One form has logarithms and power

law terms, and is valid if the index in the power law is small. The second form has

only logarithmic terms, and satisfies restrictions exactly. Both forms proposed here

have three free parameters each, and successfully fit the test data for four different

automotive suspension bushings, in the low frequency range (∼ 1-30 Hz). One of

the test fits is shown in Figure 1.6.
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Figure 1.6: Comparison of the dynamic and the loss moduli versus frequency from the
modified power law model (solid), the logarithmic polynomial model, (dashed) and exper-
iment (dots) for one of the four suspension bushings.

The frequency response involves both a real and imaginary part, and it is empha-

sized that both parts have been simultaneously fitted with merely three parameters
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in all. The parsimoniousness of the model indirectly validates the approximations

proposed in this part of the work.

1.3 Partial validation of an Adams model against

test data

While developing the generalized quarter car model an Adams model of the vehicle

was used. A practical question remains: to what extent is the Adams model accurate

in describing the behavior of an actual vehicle?

To that end, in the third part of this thesis, Adams model correlation with field

tests results is presented.

The proposed approach is outlined using a flow chart in Figure 1.7. The individ-

ual blocks of the flow chart are described below.

An all terrain vehicle (ATV) prototype was selected for this study as indicated

in 1© of Figure 1.7. The front and rear suspensions were characterized on an MTS

850.25 damper test-rig at NATRiP1(see 2©). Using the measured suspension prop-

erties, a simplified Adams model of the vehicle was developed. A rigid wheel-road

contact kinematic model was developed in step 3©. The wheel’s vertical displace-

ments from this kinematic contact model were used as inputs to the Adams model.

Next, the vehicle was driven at different speeds on specialized tracks whose dis-

placement profiles are known. Accelerometers were mounted on eight key points,

four on the car body where the suspension is attached, and four on wheel axles, as

shown in step 4©. Vehicle tests were performed on specialized test tracks (two of

them are shown in 5©).

1National automotive research and infrastructure project, Indore.
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From each vehicle test, eight simultaneous time series measurements were ob-

tained corresponding to the vertical accelerations of suspension-to-body attachment

points and wheel axle points.

Finally, the field test results were correlated with Adams model simulation in 6©.

Figure 1.7: Work flow.
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We acknowledge that in a typical industrial setup, for detailed validation of

Adams models, vehicles are routinely tested on four-post test rigs where base-

excitation is applied at four ground-wheel contacts. This kind of testing is time

consuming, and requires experienced personnel and specialized equipment. Test

track data is used in industry as well, but usually for durability studies, stress

analysis, fatigue life estimation and other goals not related to dynamic suspension

model validation. In the research literature, field test data has not been used for

such partial validation of an Adams model. Since test track measurements can be

easily made, the present approach provides an alternative way of model validation.

Advantages of the present approach are that it is simpler and that it helps the

test engineer think more clearly about some individual sources of vibrations in the

accelerometer outputs; these aspects are discussed in the thesis as well.

1.4 Laplace domain reduced order model devel-

opment using test track data

From the field test acceleration measurements of the all terrain vehicle described

in the previous section, a Laplace domain reduced order model of the vehicle is

developed in the last part of this thesis.

This Laplace domain model is similar to the generalized quarter car model de-

veloped earlier, and may be viewed as a partial experimental implementation of the

same ideas.

The modeling approach is discussed using a flow chart in Figure 1.8.
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Figure 1.8: Model development using test track data.

To begin with, the test data is obtained from field testing in 1© of Figure 1.8.

From each vehicle test, eight simultaneous responses corresponding to the vertical

accelerations at wheel axles (Ai’s) and suspension to body attachment points (Bi’s)

are obtained. All effects of the car’s frame flexibility, mass distribution and the four

ground contacts are implicitly reflected in these measured responses. The intention

now is to obtain a useful transfer function matrix for the vertical response of the

vehicle using this test data. To this end, Fast Fourier Transforms (FFTs) are used
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to transform the time domain acceleration data into the frequency domain as indi-

cated in 2©. The FFTs are then approximated by an eighth order, strictly proper,

transfer function matrix H(s) in 3©. Using H(s), a new transfer function matrix

with suspension properties treated as free adjustable parameters is obtained in step

4©, which facilitates subsequent parameter studies. Finally, the wheel’s unsprung

mass model is incorporated to obtain a transfer function matrix between ground-

excitation at Ci and body displacements at Bi in step 5©. As a sample of results

obtained, model and test responses for one test are compared in Figure 1.9.
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Figure 1.9: Comparison of model and test results for one of the field tests.

It is emphasized that the plotted quantity is not the magnitude of an element of

the transfer function matrix. Rather, measured axle accelerometer inputs are used

by the model to predict body point accelerations, and the FFT of those predicted

quantities is compared with the FFT of measured accelerations at the body point.

Possible physical reasons for the observed mismatch are discussed later in the thesis.
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1.5 Outline of the thesis

An outline of the rest of the thesis is given here.

The generalized quarter car model of a vehicle’s suspension is developed inChap-

ter 2. Two models for vehicle suspension bushings are developed and validated in

Chapter 3. A simplified Adams model of the vehicle is partially validated against

test track data in Chapter 4. Finally a reduced order Laplace domain model of

the same vehicle’s suspension, using the test track data is developed in Chapter 5.

In Chapter 6, the summary, the major conclusions and some possible direction

of future work have been presented.
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Chapter 2

A generalized quarter car model
with frame flexibility and other
nonlocal effects

In this chapter a generalized quarter car model, incorporating frame flexibility and

other-wheel ground contacts will be developed. Quarter car models are popular,

simple, unidirectional in kinematics, and enable quicker computation than full car

models. However, they do not account for three other wheels and their suspensions;

nor for the frame’s flexibility, mass distribution and damping. We will incorporate all

of these effects in this model. The model developed is linear, uses Laplace transforms,

involves vertical motions of key points of interest, and has intermediate complexity

with improved realism. It uses baseline suspension parameters and responses to step

force inputs at suspension attachment locations on the frame. Subsequently, new

suspension parameters and unsprung mass compliance parameters are incorporated,

for which relevant formulas are developed.

The final expression for the transfer function, between ground displacement and

body point response, is approximated using model order reduction. Simple Matlab

code is developed that enables quick parametric studies. Finally, parametric studies

and wheel hop analysis are performed for a realistic numerical example. Frequency
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and time domain responses are obtained which clearly show other wheel effects which

are outside the scope of usual quarter car models. The displacements obtained from

the quarter car model are compared against this model and show ways in which

predictions of quarter car model include errors that can be reduced in this approach.

2.1 Introduction

A vehicle’s suspension isolates its occupants from ground disturbances. It achieves a

trade-off between ride comfort and vehicle handling. Much research has been carried

out on vehicle suspensions [17].

Mathematical models for suspension design are broadly of three types: quarter

car [6], half car [7] and full car models [8, 9] (see Figure 2.1).
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Figure 2.1: Types of car models: (a) quarter car, (b) half car and (c) full car model.

More sophisticated full car models may include the flexibility of the frame. These

models have various limitations. The quarter car model accounts for neither the

effects of three other wheels and their suspensions nor for frame flexibility. The full

car model is computationally complex. The half car model is midway in complexity,

allows for fore-aft or sideways interaction but not both, and does not incorporate
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frame flexibility.

Although they are popular, quarter car models cannot capture all relevant dy-

namic effects [10, 11]. There are remarkable differences in ride vibration predictions

of various models (quarter car, half car, half car with discrete masses, models with

and without frame flexibility) [12]. The engine, passenger CG locations, and frame

flexibility influence the vibration response and are not included in quarter car model.

In the context of the above range of models, the aim here is to develop a useful

modeling approach of intermediate complexity, representing the car’s dynamics with

both reasonable accuracy and low computational effort (see Figure 2.2).
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Figure 2.2: (a) Usual quarter car model, with a single sprung mass. (b) Proposed ap-
proach: somewhat resembles the quarter car model in that x1 is computed in response to
u, but incorporates complex dynamics of the car including effects of frame flexibility and
three other wheel-ground contacts. An unsprung mass is not shown here for simplicity but
will be incorporated later. Note here that small rolling and pitching motions of the frame
are reflected in corresponding vertical motions of points Bi.

Advantages of the proposed approach over the usual quarter car model go beyond

incorporation of frame flexibility and other-wheel effects. In a car, if the front left

wheel suspension stiffness is changed, the front right wheel suspension stiffness will

also be changed identically. This effect (symmetric changes at other-wheel locations)
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is ignored in the usual quarter car model, but incorporated in this approach below.

Our model is generalized as it represents the effect of other wheels’ suspension and

is one dimensional in kinematics like a quarter car model: that is why it is named a

generalized quarter car model.

Vehicle dynamics can be modeled at different levels of complexity. For instance,

in cruise control design the vehicle might be represented as a point mass [18]. For

some aspects of handling, a two-wheel bicycle-like model may suffice [19, 20]. A

half car model may elucidate braking and stability performance [21, 22]. In this

context, the developed approach provides a fundamental extension of the quarter

car model, incorporating frame flexibility as well as ground-wheel contacts at three

other locations.

Matlab code for obtaining the generalized quarter car model is provided. The

code enables a user to perform fairly quick parametric studies. An example of such a

parametric study is presented there as well. The role of other wheels, in particular,

is seen clearly within our simple modeling framework, emphasizing the advantages

of our approach over usual quarter car models.

Lastly, a numerical comparison between a usual quarter car model and our gen-

eralized quarter car model is given. As may be expected, the results reveal some

inaccuracies in the usual quarter car model which are captured by our model.

2.2 Methodology

The proposed modeling approach is outlined using a flow chart in Figure 2.3.

We start with the actual vehicle in step 1© on the flow chart. A realistic vehicle

model is developed using MD Adams R© [23], as shown in step 2©.
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Figure 2.3: Work flow of Chapter 2.

An alternative experimental approach might use direct field testing of a proto-

type1 as shown in 3©. In such experiments, applying and then removing forces on

1This option is explored later in Chapter 5 of this thesis.
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chassis points may require less specialized equipment than a full base-excitation test,

and this motivates our beginning with force inputs at chassis points Bi as described

below.

From the Adams model, the intention is to obtain a useful transfer function

matrix for the vehicle. A key point is that subsequent parameter studies should

be possible without repeated Adams modeling. To this end, four points on the car

body where the suspension is attached (labeled as B1 through B4) are identified2.

In addition to this the ground contact points (labeled as C1 through C4) are also

identified (see subfigure 4©).

Now, four independent sets of responses are calculated sequentially for unit step

inputs acting one by one at the four points B1 through B4.

For each such step input, the displacement time histories of points B1 through

B4 are computed numerically3. All effects of car flexibility, and the four ground

contacts, are implicitly included within these computed responses. The process is

indicated schematically in subfigure 4©. A total of 16 different time histories are

computed in this way.

The above time histories are then approximated using a linear combination of

decaying exponentials (plus a constant each). The exponential rates used are the

same for all 16 time histories. Sketches of four time histories are shown in subfigure

5©, which shows also that the approximation can be refined when three decaying

exponentials are used. These fitted exponential approximations are Laplace trans-

formed to yield a transfer matrix H(s) between forces and displacements at points

2If these points are not unique, then representative points can be used.
3Mathematically speaking, an impulse or a step input can both be used. For practical testing,

a load can be applied and then suddenly taken away, e.g., by cutting a rope, more easily. In
simulations, with a step input, velocities remain continuous so numerics are easier. The step input
was used for these practical reasons.
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Bi (subfigure 6©).

From H(s),the transfer function matrix between ground-excitation at Ci and

body displacements at Bi is computed. A key step here is that the notional suspen-

sion parameters of the model in step 4© are now replaced by adjustable parameters in

step 7©. A simple optimization calculation may be conducted on the side if desired,

as in step 8©. Finally, an unsprung mass at each wheel is incorporated in 9©.

Thus, the proposed modeling approach accounts for frame flexibility and damp-

ing, details of mass distribution, as well as interactions of the wheel-suspension of

interest with the other three wheels’ suspensions, under the simplifying assumption

that the dominant ground excitation acts on the wheel of interest. In terms of

kinematics, this approach retains much of the simplicity of the quarter car model.

Yet, it incorporates more realism and greater scope for parameter studies than the

usual quarter car model. At the same time, it is short of the significantly greater

complexity of full car models, wherein parameter studies can be more laborious and

time consuming.

2.3 Vehicle Model

In this section the vehicle chassis and suspension details will be discussed.

2.3.1 Chassis model

The structural part of the vehicle model used in this study is based on a FOX Silver

S2 GT racing car [24, 25] (see Figure 2.4).

The vehicle chassis is made of a roll cage type structure with 1.25 inch SAE 1018

steel pipes of 0.25 inch thickness.
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Figure 2.4: FOX racing car S2. Image source: Carlos Bordon’s laboratory, University of
Seville, Spain. Reproduced with permission.

Figure 2.5: Top left: CAD model of the chassis. Top right: FE model of simplified chassis,
Bottom: Simplified model of the car with flexible chassis and with suspension assemblies
replaced by equivalent spring-dashpots.
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From the CAD model of the chassis (see top-left of Figure 2.5), a simplified but

somewhat similar geometrical model was developed with pipe curvatures removed

(Figure 2.5, top-right), and a finite element (FE) model of the latter was developed in

Nastran R© [26]. The FE model had 17369 nodes and 18705 CQUAD4 shell elements4.

Next, a mathematical model of the vehicle including the suspension was developed

in Adams R©. The FE model of the chassis was imported into Adams from Nastran

using Adams/Flex5.

The four mounting locations Bi were defined as interface nodes. In addition, the

model had three more interface nodes denoted D, E and F, corresponding to the

center of mass locations of the passengers, some generic payload, and battery, re-

spectively (Figure 2.5, bottom). Three rigid bodies with mass and inertia properties

representing the passengers, payload, and battery were attached to these interface

nodes6. In reality, flexibility and damping in the driver and seat can be significant;

and these have indeed been modeled elsewhere, e.g., [27]. These effects were not

retained here for simplicity. It will be clear that adding such effects in our approach

will simply involve adding some internal modeling details.

2.3.2 Vehicle suspension

The vehicle is equipped with a push rod front and double wishbone rear suspensions

(see Figure 2.6).

The effective suspension characteristics were obtained from separate half car

4Four noded iso-parametric quadrilateral shell elements.
5Adams/Flex is an add-on for incorporating a component’s flexibility. It uses component mode

synthesis through modal superposition. For the present flexible body model first 42 modes were
retained.

6The rigid bodies have been modeled using spheres in Adams with mass of 300 kg, 100 kg, 100
kg and radius of gyration of 210 mm, 150 mm, 125 mm respectively. The interface nodes are in
turn connected to the FE mesh using RBE2 elements, which are used to connect rigid body nodes
to a few nodes in a deformable mesh.
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Figure 2.6: Push rod front and double wishbone rear suspensions respectively.

Adams models of the front and rear suspension assemblies. The details of the same

are discussed in Appendix A.1. Using those simulations, the suspensions in the full-

car model were replaced by four equivalent spring-dashpot pairs between the points

Bi and Ci described earlier.

At this stage, the Adams modeling is complete. Forces can be applied to points

Bi, and the responses of the vehicle can be computed, as depicted in subfigure 4© in

Figure 2.3.

2.4 Reduced order vehicle model

Model order reduction has well-known advantages in large-scale simulation, analysis

and control design, and has been extensively studied and used. Designers strive to

develop simple models of the physical system. Working with simpler models result in

faster and more reliable computations than their higher-order counter parts. Lower

order models are also easier to understand and manipulate. Therefore, it is useful

to reduce model order while preserving model characteristics that are important to
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the application.

The classical techniques for model order reduction are broadly divided as:

1. Modal analysis methods [28]

2. Aggregation methods [29]

3. Frequency domain methods [30]

4. Norm based methods [31]

More recent work on low order modeling in an automotive application (a quarter-

car model with realistic suspension details) is reported in [32]. Here, since the

displacements responses resembles strongly decaying oscillatory solutions, fitted de-

caying exponentials will be used for reduced order modeling.

As discussed in Section 2.2, eight key points are selected for reduced order mod-

eling, namely four ground-wheel contacts Ci and four suspension-body attachment

points Bi. Consider a set of four numerical responses obtained from Adams for the

motions at Bi, in response to a unit step input force (1 KN) at B1. The numerical

responses contain discretely sampled data, at time intervals of T = 0.02 seconds in

the present case. These are denoted by x(kT ), a 4 × 1 vector containing the dis-

placements of B1, B2, B3 and B4 at the kth sampling instant7. We will approximate

these displacement responses using the mathematical form

x̃(t) = R0+R1e
−σ1tsin ω1t+R2e

−σ1tcos ω1t+. . .+R2j−1e
−σjtsin ωjt+R2je

−σjtcos ωjt,

(2.1)

where x̃(t) is 4 × 1, the R’s are to-be-fitted 4 × 1 column vectors, and the σ’s and

7The ADAMS solver used was GSTIFF with integrator SI2 [33].
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ω’s are fitted real numbers. Equation (2.1) can be written more compactly as

x̃(t) = R0 +

j∑

k=1

(
R2k−1 e−σkt sinωkt+R2k e−σkt cosωkt

)
.

In our calculations, we initially estimated σ’s and ω’s using a separate simple state

space model, but finally refined our fits using nonlinear optimization (see Appendix

A.2). These estimates are modified later using Matlab’s fminsearch to get more

refined fits8. For fitting σ’s and ω’s, we work at any time with a set of estimates for

these parameters. Given these estimates, the coefficient matrices Rj are fitted by

solving the following system of equations in a least squares sense:

x(t) =

R︷ ︸︸ ︷[
R0 R1 R2 . . . R2j−1 R2j

]

4×(2j+1)

q(t)
︷ ︸︸ ︷


1

e−σ1tsin ω1t

e−σ1tcos ω1t

...

e−σjtsin ωjt

e−σjtcos ωjt



(2j+1)×1

, (2.2)

or

x(t) = R q(t), (2.3)

where q(t) is a vector with a unit entry followed by exponential terms. Equation

(2.3) is to be used for several time instants (say N + 1)9, with the left hand side

8fminsearch is an unconstrained nonlinear minimization algorithm in Matlab. For a multivari-
able function f(x) it starts with an initial guess x0 and attempts to find a local minimum x of the
function. The syntax is x = fminsearch(fun,x0).

9The Adams simulation was performed for 1.5 seconds with a time step T of 0.02 seconds, i.e.,
N = 75.
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vectors x(t) stacked side by side to make a large 4× (N +1) matrix X, and the right

hand side vectors q(t) stacked side by side to make a large (2j+1)× (N +1) matrix

Q. Thus,

X =

[
x(0) x(T ) . . . x(kT ) . . . x(NT )

]

4×(N+1)

and Q =

[
q(0) q(T ) . . . q(kT ) . . . q(NT )

]

(2j+1)×(N+1)

with Equations (3.17) or (2.3) yielding to

X = R Q. (2.4)

In Equation (2.4), X is known from simulation (or possibly experiment, if working

directly with a prototype), Q is known in terms of the σ’s and ω’s, and R is to

be found. Equation (2.4) can be transposed and solved in a least squares sense for

given σ’s and ω’s; and that sum of squares of errors then minimized with respect

to the σ’s and ω’s using an optimization routine (here Matlab’s fminsearch is used

for error norm minimization).

However, for the present application, the above fitting needs to be simultaneously

done for independent step force inputs at all suspension-to-body attachment points

Bi (16 responses in total). The same exponential rates must be used to fit all 16

responses. Thus, there are four versions of Equation (2.4), one for each individual

step inputs at four locations; and these can be stacked vertically in the form
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


X1

X2

X3

X4




16×(N+1)

=




R1

R2

R3

R4




16×(2j+1)

Q(2j+1)×(N+1). (2.5)

In Equation (2.5), Q does not change because the same σ’s and ω’s are used for all

four cases; the left hand side is known (computed or measured); and the matrix of

R’s is found in a least squares sense as described above for Equation (2.4).

Fitting results for different numbers of exponentials (i.e., j), are shown in Table

2.1 and Figure 2.7. The fit improves with increasing j, and j = 3 gives satisfactory

results. Numerical values of various R-vectors are not reported to save space.

From fitted displacement responses, a transfer function matrix between forces

and displacements at locations Bi is developed in Section 2.5. Note that, since X(t)

is explicitly fitted using exponentials, finding Laplace transforms (X(s)) is simple.

No. of exponentials used (j) σ ω

1 3.546 13.894

2 1.708 12.425
4.452 17.042

3 1.559 12.365
3.079 17.257
5.909 16.659

Table 2.1: σ’s and ω’s obtained for different number of exponentials j. With more
freedom, 3.079 ≈ 3 and 5.909 ≈ 6 provide a better fit compared to their average 4.452 ≈
4.5. Further individual interpretations of these parameters seems difficult and is not
attempted here.
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Figure 2.7: Fitted displacement responses for j = 1, 2 and 3, for two excitation cases (the
other two cases are not shown). The labels are: FR for front right; FL for front left; RR
for rear right; and RL for rear left. As seen clearly in the lowermost two plots, the lowest
curves on both sides are identical due to the reciprocal theorem [34] applied after Laplace
transformation: the response at RR due to forcing at FL equals the response at FL due to
forcing at RR. The steady state displacement of the point of application of force is positive
in both cases; the displacement at the diagonally opposite point is negative; and the other
two displacements are smaller and about the same, because the vehicle approximately
rotates about a diagonal line. Finally, displacements at the point of application are much
larger than displacements at other locations, as expected.
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2.5 Transfer function matrix H(s)

Assuming zero initial conditions10, the Laplace transforms of displacements, X(s),

and of forces, F (s), at four points Bi are related linearly as in

X(s) = H(s)F (s). (2.6)

Equation (2.6) can be expanded as




X1(s)

X2(s)

X3(s)

X4(s)




=




H11(s) H12(s) H13(s) H14(s)

H12(s) H22(s) H23(s) H24(s)

H13(s) H23(s) H33(s) H34(s)

H14(s) H24(s) H34(s) H44(s)







F1(s)

F2(s)

F3(s)

F4(s)




. (2.7)

x
x

x
x

H1(s) H2(s) H3(s) H4(s)

Each element of the above 4 × 4 matrix is a separate Laplace transform; and

individual columns have been named H1(s), H2(s), H3(s) and H4(s) as shown. For

clarity, the procedure for computing H(s) is indicated schematically in Figure 2.8.

First, a step input force is applied at point B1, with all other input forces equal

to zero. The Laplace transform of the force input is then F1(s) =
1
s
, with F2 = F3 =

F4 = 0. The corresponding response X(s) is computed analytically from the fitted

exponentials as described above; and this same X(s) is then (by Equation (2.6))

equal to H1(s)F1(s), whence H1(s) = X(s)F1(s)
−1 = sX(s). In this way, with four

successive simulation results, all the columns of H(s) are found.

10We have assumed zero initial conditions as we are interested in the response of the vehicle
under sustained road inputs (disturbances) in which the role of initial conditions rapidly becomes
insignificant.
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Figure 2.8: Methodology of obtaining transfer function matrix.

We expect from theory that H(s) can be taken as symmetric, as follows.

The linearized dynamics of the vehicle, subjected to vertical forces at four loca-

tions (Bi’s), can generally be described by a model of the form



M11 M12

M12
T M22






ẍ

ÿ


+



C11 C12

C12
T C22






ẋ

ẏ


+



K11 K12

K12
T K22






x

y


 =



f

0


 . (2.8)

In the above, x represents the vertical displacements at B1 through B4, and y repre-

sents a possibly very large number of additional unmeasured and unforced degrees of

freedom11. M and K are symmetric mass and stiffness matrices; their symmetry is a

11The FE model of the chassis has 17369 nodes. Four of them correspond to points B1 through
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consequence of the quadratic form of the kinetic and potential energies in Lagrange’s

formulation. The damping matrix C is also symmetric in typical formulations. The

reason for the symmetry of C is that our dynamic model of the vehicle frame consists

of (i) assigned modal damping values for the structure (automatically giving sym-

metric damping matrices), along with (ii) added discrete dashpots in the suspension,

which make symmetric contributions given by Rayleigh’s dissipation function [35].

Additionally, and more generally, several other linear damping models can in fact

be accurately captured using symmetric matrices, as discussed in e.g., [36, 37].

Taking the Laplace transform of Equation (2.8) we obtain






M11 M12

M12
T M22


 s2 +



C11 C12

C12
T C22


 s+



K11 K12

K12
T K22









X(s)

Y (s)


 =



F (s)

0


 , (2.9)

rewritten compactly as



G11(s) G12(s)

G12(s)
T G22(s)






X(s)

Y (s)


 =



F (s)

0


 , (2.10)

whence, eliminating Y (s), we obtain X(s) = H(s)F (s) with

H(s) =
[
G11(s)−G12(s)G22(s)

−1G12(s)
T
]−1

, (2.11)

which is symmetric. Since H(s) is symmetric, the system obeys reciprocity [34]. As

a result, the response at RR (rear-right) due to unit forcing at FL (front-left) equals

to the response at FL due to unit forcing at RR, as seen in Figure 2.7.

In the next section we obtain the transfer function matrix Hn(s) between ground

B4. The non-vertical displacements of these four points, and the displacements of all remaining
nodes, are unforced and unmeasured degrees of freedom.
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excitations at Ci and displacements at Bi.

2.6 Modified transfer function matrix Hn(s)

The matrix H(s) relates forces and displacements at points Bi. In determining

H(s), a set of baseline suspension properties were used. If the designer wants to

change the suspension properties during subsequent simulations, it is not practical

to repeat the process of exponential fitting for all design iterations. Instead, H(s)

will be modified to incorporate new suspension properties as free parameters.

Subsequently, this modified H(s) will be used to determine a matrix Hn(s) which

relates displacement inputs at points Ci to displacements at points Bi.

2.6.1 Incorporating the suspension properties as free

parameters

We have initially applied forces F (s) at Bi and obtained X(s) using H(s). The

relationship can be formally inverted (displacements to required additional forces)

as in

X(s) = H(s)F (s) −→ F (s) = H(s)−1X(s). (2.12)

To obtain Hf (s), we first imagine detaching the suspensions (spring-dashpots) from

the vehicle body, yet applying the same displacements X(s) at points Bi (see Figure

2.9).
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Figure 2.9: Towards finding Hf (s) with suspension properties retained as free parameters.

With suspensions detached, the required additional forces at Bi will change from

F (s) to Fb(s) as in

Fb(s) = F (s)−Do(s)X(s), (2.13)

where the subscript ‘o’ denotes ‘old’ or baseline properties, subscript ‘b’ denotes

‘body’, and the diagonal matrix

Do(s) =




Kfl + Cfls 0 0 0

0 Kfr + Cfrs 0 0

0 0 Krl + Crls 0

0 0 0 Krr + Crrs




, (2.14)

where in turn Kfl, Kfr, Krl, Krr are the equivalent stiffnesses and Cfl, Cfr, Crl, Crr

are the corresponding damping coefficients of front left, front right, rear left and

rear right wheel-suspension assemblies respectively. We assume for simplicity that

the left and right suspension properties are identical (lateral symmetry).
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Now, if we replace Do(s) with Dn(s) (‘n’ denotes ‘new’ suspension properties)12,

the forces in response to the same X(s) will become (using Equations (2.13) and

(2.12))

Fn(s) = Fb(s) +Dn(s)X(s) =
[
H(s)−1 −Do(s) +Dn(s)

]
X(s). (2.15)

Thus, upon changing suspension parameters, we obtain a new transfer function

Hf (s) to replace the old H(s) as

X(s) =
[
H(s)−1 −Do(s) +Dn(s)

]−1

︸ ︷︷ ︸
Hf (s)

Fn(s). (2.16)

The matrix Hf (s) obtained above (“f” denoting free parameters), between forces

and displacements at Bi, corrects the original H(s) for changed suspension parame-

ters. The baseline and the new suspension properties used in this study are reported

in Table 2.2.

Identifier Kf Kr Cf Cr

Original 25.0 N/mm 30.0 N/mm 0.50 N-s/mm 0.75 N-s/mm
New 23.6 N/mm 34.9 N/mm 0.62 N-s/mm 0.76 N-s/mm

Table 2.2: Original and new suspension parameters.

The transfer function matrix Hf (s) may be useful in future studies where non-

linearity is to be introduced in one wheel’s suspension. Here, however, we continue

our linear formulation and consider ground displacement inputs.

12The suspension properties used for illustration are given in Table 2.2. The original suspension
parameters were obtained from the Adams model of the vehicle (see Appendix A.1). The new
suspension parameter values were obtained from a peripheral optimization study (see 8© in Figure
2.3) that is not relevant here.

33



2.6.2 Obtaining the transfer function matrix from ground

to body displacements

We now incorporate displacement inputs at ground-contact points Ci (Figure 2.10).

To this end, recall the case without ground inputs, i.e., Equation (2.15). If displace-
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Figure 2.10: Displacement inputs at ground contact points Ci.

ments U(s) are additionally applied to the ground contact points, while holdingX(s)

constant, then additional forces Dn(s)U(s) are transmitted to the contact points Bi.

For X(s) to remain the same in Equation (2.15), we must subtract Dn(s)U(s) from

Fn(s). This leads to

Fwgi(s) =
[
H(s)−1 −Do(s) +Dn(s)

]
X(s)−Dn(s)U(s), (2.17)

where the ‘wgi’ subscript stands for ‘with ground input.’ When there is only base

excitation from the ground, and no additional forces are applied, the left hand side
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above becomes zero and we have

X(s) =
[
H(s)−1 −Do(s) +Dn(s)

]−1

Dn(s)
︸ ︷︷ ︸

Hn(s)

U(s), (2.18)

where Hn(s) is the transfer function matrix between displacements at Ci to Bi (‘n’

denotes ‘new’ suspension properties).

2.7 Model with unsprung mass

The term “unsprung mass” is attributed to Healey [38]. It refers to the inertial

effects of the suspension, wheels, and other components directly connected to them,

rather than the mass supported by the suspension.

We will now incorporate an unsprung mass in our formulation by attributing an

effective mass to the wheel13.

A schematic diagram of one wheel including its unsprung mass is shown in Figure

2.11. The key point is that, due to the nonzero mass, the force from the ground is

not transmitted directly through the wheel to the base of the suspension. In terms

of Figure 2.11, Fg,i 6= Ft,i.

The ith wheel’s suspension now relates four dynamic variables: displacement

Ug,i(s) and corresponding force Fg,i(s) at the true ground contact, and the transmit-

ted displacement and force Ut,i(s) and Ft,i(s) respectively, at the suspension base

point (these replace the points called Ci above). In other words, Ut,i(s) is the same

as the ith component of displacement U(s) in Equation (2.18).

13Sometimes point masses are also added to the body points Bi, but that does not affect our
procedure.
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Figure 2.11: Schematic diagram representing dynamic compliance of ith wheel including
its unsprung mass. Here, Ut,i(s) corresponds to base displacement U(s) in Equation 2.18.

These forces and displacements are related by



Fg,i(s)

Ft,i(s)


 =



T11(s) T12(s)

T21(s) T22(s)




︸ ︷︷ ︸
Tyre’s dynamic compliance



Ug,i(s)

Ut,i(s)


 , (2.19)

where i = 1, 2, 3, 4 for front left, front right, rear left, and rear right wheel re-

spectively. It is clear that these individual suspensions’ dynamic compliances are

unaffected by phenomena at other wheels. Considering the front left wheel we have

Ft,1(s) = Dn,11(s)(X1(s)− Ut,1(s)) (2.20)

From Equations (2.19) and (2.20), we obtain

Dn,11(s)(X1(s)− Ut,1(s)) = T21(s)Ug,1(s) + T22(s)Ut,1(s),
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which yields

Ut,1(s) = (Dn,11(s)+T22(s))
−1Dn,11X1(s)−(Dn,11(s)+T22(s))

−1T21(s)Ug,1(s). (2.21)

Equation (2.21) is of the form

Ut,1(s) = Ā1(s)X1(s)− B̄1(s)Ug,1(s). (2.22)

Four versions of above equation, one for each wheel, can be assembled in matrix

form as

Ut(s) =




Ā1(s) 0 0 0

0 Ā2(s) 0 0

0 0 Ā3(s) 0

0 0 0 Ā4(s)




︸ ︷︷ ︸
A(s)

X(s)−




B̄1(s) 0 0 0

0 B̄2(s) 0 0

0 0 B̄3(s) 0

0 0 0 B̄4(s)




︸ ︷︷ ︸
B(s)

Ug(s).

(2.23)

From Equation (2.18), noting that Ut(s) ≡ U(s), we have

Ut(s) = H−1
n (s)X(s), (2.24)

which finally yields

X(s) =
[
A(s)−H−1

n (s)
]−1

B(s)Ug(s) = G(s)Ug(s), (2.25)

where Ug(s) is the actual base excitation from the true ground-contact point. As

a check we may note that if the tyres’ compliance is set to zero, then in Equation
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(5.22) we must have A(s) = 0 and B(s) = I (the identity matrix), whence Equation

(2.25) reduces to Equation (2.18).
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Figure 2.12: Car model with unsprung mass.

The resulting car model is shown schematically in Figure 2.12. Superficially, it

looks like a full car model, but it is restricted in various ways. For example, the

motion kinematics at the body points Bi is purely vertical. Moreover, the devel-

opment of the model is based on individual attention to one-dimensional behaviors

of individual wheels’ suspensions. A desirable practical use of this model lies in

setting input ground displacements at three wheels to zero, and taking the appro-

priate scalar diagonal element of G(s) in Equation (2.25), to obtain the resulting

quarter car model for the wheel of interest, while incorporating chassis flexibility

and other-wheel effects to a useful extent.

For practical work, the matrix manipulations leading to Equation (2.25) lead

to long analytical expressions that can be simplified without sacrificing accuracy as
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shown below.

2.8 Model order reduction of the final transfer

function matrix G(s)

Model order reduction of G(s) leads to obvious computational simplifications. A

reduced order model is obtained earlier in section 2.4 to obtain H(s) by direct

exponential fitting using three pairs of decaying sines and cosines (j = 3 in Table

2.1) plus an added constant. Consequently, each element of H(s) is a transfer

function with both numerator and denominator of 6th order. The subsequent matrix

operations with H(s), as described in Equations (2.12) through (2.18), can be done

symbolically in Matlab. The matrix Hn(s) of Equation (2.18) has elements of 28th

order, which is quite large.

Finally, Hn(s) is itself modified using Equations (2.19) through (2.25) to incorpo-

rate an unsprung mass compliance model (see Table 2.3), leading to a more realistic

vehicle transfer function matrix G(s) as in Equation (2.25).

Identifier Mu (unsprung) Kt (tyre) Ct (tyre)

Front 45 kg 250 N/mm 0.05 N-s/mm
Rear 50 kg 275 N/mm 0.06 N-s/mm

Table 2.3: Parameter values used in the unsprung mass compliance model. Note that
the unsprung mass is small compared to the total sprung mass (548 kg in our case); the
stiffness is large and the damping is small compared to the suspension parameters of Table
2.2. The unsprung mass values used are high for conventional wheels. These values are
used for clearer demonstration later, and are representative of wheels with hub motors.

The elements of G(s) are of 36th order. One of them is reproduced for illustration

in Appendix A.4. Such complicated expressions can be simplified for easier use. For

demonstration purpose the model order reduction of one diagonal element of Gn(s),
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e.g., Gn,11(s) (for the front left wheel) will be done.

Since Gn,11(s) is a 36th order transfer function, its equivalent time domain model

will have 36 states, given by, [x1(t), ẋ1(t), ẍ1(t), . . . , x1
(36)(t)]. Different reduced order

models were developed using Matlab’s built-in function balred14.

Figure 2.13 shows that a 6th order approximation Gred(s) preserves the model

characteristics accurately. Frequency response and time domain step-input response

of reduced order Gred(s) and full order Gn,11(s) are compared in Figure 2.14. The

match is good in the frequency range plotted (up to 100 Hz). In particular, on a

logarithmic scale, differences are seen only where response itself is negligibly small.

There are three peaks in the bode plot of Figure 2.14. The first and second peaks

correspond to the front and rear suspension natural frequencies (1.8 and 2.6 Hz) and

the third peak represents the wheel hop frequency (10.3 Hz).

2.9 Recipe for Matlab implementation of our model

Finally, the Matlab code for simple implementation of the entire procedure for ob-

taining the generalized quarter car model, beginning from the original Laplace trans-

forms of Equation (2.7) is provided. Assuming lateral symmetry, only H1(s) and

H3(s) need to be specified, corresponding to inputs at front left and rear left respec-

tively. Additionally, due to reciprocal relations, in fact only the last two elements of

H3(s) need to be specified15. In addition to these, the user must also specify baseline

suspension stiffness and damping properties, in case these are to be changed later.

14The details about balred function are given in Appendix A.3. Note that while using balred

the option of matching the DC gain and phase should be used.
15In terms of the code below, H3(1) is the same as H1(3) by symmetry of H (reciprocal theorem),

and H3(2) is the same as H2(3) for the same reason. But H2(3) is the rear left response to front
right forcing, which by lateral symmetry of the car is identical to rear right response to front left
forcing, namely H1(4).
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Figure 2.13: Bode plot comparison of reduced order models against the full order model.
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Given the above information, the following Matlab code uses new suspension

stiffness and damping properties, unsprung mass and tyre compliance properties

(stiffness and damping), as well as the desired order of the final reduced order model.

The code returns the reduced order model Gred(s); compares the frequency response

(Bode plot) and the time domain step response of Gred(s) with the original G11(s)

to help the user decide if a higher order approximation is needed. The user can

change suspension properties at will and can simulate response to other excitations

beyond a simple step input, if desired.

The transparent algorithmic approach for obtaining the above approximation to

the quarter car response, accounting for vehicle flexibility and unsprung mass as well

as other wheel effects, is the main contribution of this chapter.

Matlab code

% Declare ‘s’ to be symbolic (Note: with s symbolic, we can define

% quantities like 0.2(s-1)/(s+3), save them, load them, etc.)

syms s

% Load 4x1 transfer function matrices H1(s) and H3(s) respectively

load H1.mat; load H3.mat;

% Assemble H(s):

H = [H1(1) H1(2) H3(1) H1(4);

H1(2) H1(1) H3(2) H1(3);

H1(3) H1(4) H3(3) H3(4);

H1(4) H1(3) H3(4) H3(3)];

% Enter baseline (old) suspension properties (Table 2)

K_f = 25; K_r = 30; C_f = 0.5; C_r = 0.75;

% Diagonal old suspension property matrix Do(s)

Do = diag([K_f+C_f*s; K_f+C_f*s; K_r+C_r*s; K_r+C_r*s]);

% Modifications begin (change below as needed)

% Input new suspension properties (Table 2)
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K_fn = 23.6; K_rn = 34.9; C_fn =.62; C_rn =.76;

% Diagonal new suspension property matrix Dn(s)

Dn = diag([K_fn+C_fn*s; K_fn+C_fn*s; K_rn+C_rn*s; K_rn+C_rn*s]);

% Obtaining modified transfer function matrix Hn(s) (Eq. 18)

Hn = ((H^-1-Do+Dn)^-1)*Dn;

% Input unsprung mass model parameters

M_uf = 45; M_ur = 50;

% Input tyre stiffness and damping

K_tf = 250; C_tf = 0.05; K_tr = 275; C_tr = 0.06;

% Assembling the diagonal unsprung mass matrix

M_unsp = diag([M_uf, M_uf, M_ur, M_ur]);

% Diagonal tyre compliance matrix Dt(s)

Dt = diag([K_tf+C_tf*s; K_tf+C_tf*s; K_tr+C_tr*s; K_tr+C_tr*s]);

% Obtaining A(s) and B(s) as defined in Equation (23)

C = M_unsp*s^2+ Dn + Dt; % Intermediate calculation quantity

A = C^-1*Dn; B = -C^-1*Dt;

% Obtaining the final transfer function matrix G(s) (Eq. 25)

G = (A-Hn^-1)^-1*B;

% Reducing order of G_11(s) for excitation only at front left wheel

[Num, Den] = numden(G(1,1));

N1 = double(coeffs(Num)); N = flipud(N1);

D1 = double(coeffs(Den)); D = flipud(D1);

% Building the transfer function from num and den coeffs

G_11 = tf(N,D);

% Defining balred options

opt = balredOptions(‘StateElimMethod’,‘MatchDC’);

% Input the desired reduced model order

n=6;

% Obtaining reduced order transfer function G_red(s)

G_red = balred(G_11,n,opt);
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% Extracting reduced order transfer function coefficients

[N_red, D_red] = tfdata(G_red,‘vec’);

% Dropping 6th order numerator term to obtain a strictly proper TF

N_red = N_red(2:end); G_red = tf(N_red, D_red);

% Comparing the bode plots and the step response

figure(1) bode(G_red,‘r’,G_11,‘--’);

figure(2) step(G_red,‘r’,G_11,‘--’,2)

The above Matlab code takes only a few seconds to run on an ordinary desktop PC.
It enables easy parametric studies. Two potential applications of our model will be
discussed in the next section.

2.10 Applications of our model

The first is a study of the effect of suspension parameters and second involves wheel

hop.

2.10.1 Parametric study of suspension

Here we consider the effects of varying three different parameters.

Front stiffness

The front suspension stiffness is increased by 25 and then 50 percent from its baseline

value K
n
f = 23.6 N/mm (Table 2.2). The corresponding frequency and time domain

responses are compared in Figure 2.15.

As the suspension stiffness increases, the peak overshoot in the unit step response

increases because of the reduction in effective damping. More interestingly, note that

the steady state displacement changes slightly as well. In all three cases considered,

the steady state displacement is close to 0.8. For a quarter car model, the steady
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Figure 2.15: Comparison of frequency domain response (Bode plot: top) and time domain
response (step response: bottom) for different values of front suspension stiffness.
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state displacement in response to a unit step displacement input is unity independent

of the stiffness. The difference from unity is a strictly an other-wheel effect.

Front damping
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Figure 2.16: Comparison of frequency domain response (Bode plot: top) and time domain
response (step response: bottom) for different levels of front suspension damping.

The front suspension damping coefficient is increased by 50 and then 100 percent
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from its baseline value C
n
f = 0.62 N-s/mm (Table 2.2). The corresponding frequency

and time domain responses are compared in Figure 2.16. With increase in damping,

the resonant peak in the Bode plot gets suppressed, and transients in the step

response die out faster, as expected.

Rear damping

Finally, the rear suspension damping coefficient is increased by 50 and then 100 per-

cent from its baseline value C
n
r = 0.76 N-s/mm (see Table 2.2). The corresponding

frequency and time domain responses are compared in Figure 2.17.

As damping increases, the second resonant peak in the Bode plot gets suppressed

and the step response shows small changes as well.

This is again because of the other-wheel effects, which are not observed in a usual

quarter car model.

Note also that there is no change in the steady state displacement due to changes

in damping: this shows that these automated approximation methods above retain

the “DC gain” behavior correctly.
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Figure 2.17: Comparison of frequency domain response (Bode plot: top) and time do-
main response (step response: bottom) for different values of rear suspension damping
coefficients.

2.10.2 Effect of wheel hop

Wheel hop is a strong vertical oscillation of the wheels of a car, i.e., a response

dominated by motion of the unsprung mass. The particular frequency at which

wheel hop may be dominant depends on suspension parameters and unsprung mass

but not significantly on vehicle mass. Here the effect of varying the unsprung mass
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is examined.

The unsprung mass is generally much smaller than the sprung mass, so in a

simplified quarter car analysis the sprung mass is held stationary while estimating

the wheel hop frequency [39] (see Figure 2.18).

C
tf

K
tf

u

 
x

f 
= 0

(Sprung mass is assumed as stationary) 

 M
uf

C
f

K
f

nn

Figure 2.18: Demonstration of wheel hop.

Mimicking that approach in this system, for the front left wheel, the total restor-

ing stiffness is Ktf + K
n
f , where the tyre stiffness Ktf is usually much larger than

the suspension stiffness K
n
f . In this way, an approximate equation of motion for the

free vibration of the front wheel assembly is

Muf ü+ (Ctf + C
n
f )u̇+ (Ktf +K

n
f )u = 0, (2.26)

where u is the corresponding unsprung mass displacement.

The wheel hop frequency is thus estimated to be

ωn ≈
1

2π

√
Ktf +K

n
f

Muf

. (2.27)
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The FOX vehicle that motivates this numerical example is equipped with in-hub

wheel motors (see Figure 2.19), and so the unsprung mass is a bit higher than for

conventional wheels 16

Figure 2.19: The vehicle is equipped with Kelly 72V - 7KW wheel hub motors (left)
weighing 46 kg each which leads to an overall front and rear unsprung mass of 60
kg and 65 kg respectively (see Table 2.3). The hub motor assembly on one of the
wheels is shown on the right. Image source: Kelly controls LLC [40].

We now study the effect of varying the unsprung mass. Results are given in

Table 2.4 and Figure 2.20.

Unsprung mass Muf Quarter car model Our model
(Equation (2.27)) (From poles of Gred(s))

33.75 kg (75% of baseline) 14.3 Hz 13.2 Hz
45 kg (baseline) 12.4 Hz 11.8 Hz
56.25 kg (125% of baseline) 11.1 Hz 10.9 Hz

Table 2.4: Comparison of wheel hop frequencies estimated from Equation (2.27) and
obtained from our model Gred(s).

16Naturally, the higher unsprung mass due to wheel hub motors can affect the dynamics, but
our procedure remains unaffected.
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Figure 2.20: Comparison of frequency domain response (Bode plot: top) and time domain
response (step response: bottom) for different values of the unsprung mass.

It was observed that in each case, the actual frequency corresponding to poles of

Gred(s) is slightly lower than the frequency estimated using Equation (2.27). The

actual poles are expected to be slightly lower because of both damping as well as

small motions of the sprung mass. Thus, it is seen that wheel hop effects on the

body motion are also captured easily by the present approach.
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2.11 Further comparison of our model with the

quarter car model

Finally, the unit step response of this model is compared with that of a quarter car

model (see Figure 2.21).

Figure 2.21: Comparison of displacements obtained from usual quarter car model and our
model in response to a unit step displacement input at wheel contact point C1. Both the
damping level and steady state response are affected by nonlocal stiffness and dissipation
that is captured well by our approach.

Note here that the value of steady state displacement of a quarter car model

for a unit step displacement input will necessarily be unity. In the proposed model

the difference observed from unity is strictly due to other-wheel effects17. The front

left suspension to body point B1’s displacement x1(t) is used for comparison. The

parameters for building the quarter car model are reported in Table 2.5. The vehicle

total sprung mass is 548 kg. There is almost equal mass distribution between front

and rear wheels and the vehicle is assumed to be symmetric about its center line.

17When the spatial frequencies are low (long wavelengths on the road), the 3 wheels fixed and
one wheel forced assumption will not be valid and the standard quarter car model will be better.
Our approach is better when spatial correlations are poor, and spatial wavelengths are small, like
one wheel going over an isolated bump or pothole.
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Therefore, the sprung mass in the quarter car model is taken to be 548/4 = 137 kg.

Msprung Munsprung Ks Kt Cs Ct

(kg) (kg) N/mm N/mm N-s/mm N-s/mm

137 45 23.6 250 0.62 0.05

Table 2.5: Quarter car model parameters.

2.12 Concluding remarks

The vehicle dynamics research literature includes many studies of vehicle suspensions

under the quarter-car or half-car simplifications. Here, we have proposed a fairly

simple way to incorporate vehicle mass, flexibility and damping effects, as well as the

effects of stationary ground contacts at other wheels. In this way, our approach is

of intermediate complexity, between quarter-car or half-car models on one hand and

full-car models on the other. Some obvious differences between usual quarter-car

model predictions and our more realistic approach can be seen easily, e.g., in unit

step input responses (see Figure 2.21). An examiner of this thesis has observed that

just like our ‘generalized quarter car model’, one could posit a ‘generalized half car

model’ that is 2 input 2 output, but including the effect of other wheels. But this

would not be quite as single input single output system, so not as compeling.

We have also provided simple Matlab code which makes it easy for a user to carry

out the full range of computations, beginning with Laplace-transformed step-force

input responses from two forcing locations.

In our approach the usual suspension parameters are retained as free parameters

to enable semi-detailed comparative studies in the design stage. The model can also
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be used for the analysis of wheel hop.

In future work, it should be possible to extend or adapt this formulation to

incorporate test results in place of initial simulation results; to incorporate more

sophisticated unsprung mass models; and also, if there is a need, to incorporate

nonlinearities in the local-wheel suspension (where displacements are largest), while

retaining linear behavior at other locations.

54



Chapter 3

Rationally derived models for
elastomeric suspension bushings:
theory and experiment

Elastomers find applications in diverse areas of vibration and noise control [41, 42],

including structural vibrations [43], as seismic dampers in civil engineering [44].

They are widely used in automotive industry in powertrain mounts, exhaust hanger

mountings, body and engine mounts and suspensions [13]. Particularly in suspen-

sions these are used in shock absorber bushings, control arm bushings and bumpstops

(see Figure 3.1). Therefore, accurate modeling of elastomers is necessary for reliable

vehicle dynamics simulations.

In the last chapter, a model of vehicle suspensions was developed. In this chap-

ter a frequency domain material model for automotive suspension bushings will be

developed. As both the suspension and the bushing models are developed in the

frequency domain, these can be assembled together to accurately predict the vehicle

response to vertical disturbances.

Linear, causal, and time-invariant viscoelastic material response models are of

practical interest in modeling elastomeric bushings. Many of these existing material

models are empirical in nature. Empirical fits to experimental data involves several
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Figure 3.1: The locations of suspension bushings in a typical front and rear suspension
of a passenger car.

fitted parameters which, if chosen arbitrarily, violate theoretical restrictions derived

from causality, linearity, and time-invariance. Here, an asymptotic expansion for

Bode’s representation of the famous Kramers-Kronig relations [14, 16] is considered.

In the asymptotic expansion the leading order term and one correction term has been

retained. Two new mathematical forms that satisfy theoretical restrictions and also

fit the experimental data well are proposed. Both forms proposed here have three

free parameters each. One form has logarithms and power law terms, and is valid if

the index in the power law is small. The second form has only logarithmic terms,

and satisfies restrictions exactly. Both forms successfully fit our test data for four

different automotive suspension bushings, in the low frequency range (1-30 Hz). The

first form, with a power law, is more complicated but fits the data slightly better.

Since the frequency response involves both a real and imaginary part, simultaneously

fitting both parts well with merely three parameters validates the approximations

proposed in this model.
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3.1 Introduction

Elastomers are viscoelastic, exhibiting both elastic and damping properties, often

referred to simply as dynamic properties. These dynamic properties depend on

temperature and frequency. Temperature dependence is captured by the classical

shift factor approach [45, 46]1.

The temperature dependence of dynamic properties are not considered here for

simplicity, and the suspension bushings were tested at a controlled room tempera-

ture. For frequency dependence of dynamic properties, a complex and frequency-

dependent modulus of elasticity is used [46], as in

M∗(ω) = Md(ω)︸ ︷︷ ︸
Elastic or dynamic modulus

+ i M1(ω)︸ ︷︷ ︸
Loss modulus

. (3.1)

These frequency-dependent complex moduli (dynamic modulusMd(ω) and loss mod-

ulus M1(ω)) fully characterize the viscoelastic material within the linear regime

[47, 48].

A summary of the main approaches used for linear systems which are relevant to

our work will be presented. Subsequent sections will present the experimental data,

new theory, and results.

3.2 Theory

Different kinds of viscoelastic models are available in the literature. These models

are broadly classified into four main categories.

1Using temperature-dependence data of 17 polymers, Williams, Landel, and Ferry derived the
famous WLF equation which estimates the elastomer properties at temperatures other than those
for which the material was tested using a temperature shift factor.
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3.2.1 Standard Linear Solid (SLS) models

In this approach, stress-strain or force-deformation behaviors are assumed to obey

differential equations of the form

N∑

n=0

an
dnσ(t)

dtn
=

M∑

m=0

bm
dmε(t)

dtm
. (3.2)

Special cases of the above are the Maxwell and the Kelvin-Voigt models, which in

turn lead to some generalizations thereof (see Figure 3.2).

These generalizations seem intuitively simple, but have many fitted parameters

[49]. This approach will not be pursued in this work.
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Figure 3.2: Different types of Standard linear solid models: (a) Kelvin Voigt model (b)
Maxwell model (c) Generalized Maxwell model (d) Generalized Voigt model.
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3.2.2 Prony series based models

These models use a series of exponentials to describe the linear viscoelastic material

characteristic functions (stress relaxation and creep), as in

E(t) = E∞ +
n∑

i=1

Ei exp
(−t

τi

)
, (3.3)

where E∞ = long-term modulus and τi = relaxation time. The parameters (Prony

coefficients) in the series are fitted from relaxation or creep test data [50]. This ap-

proach requires difficult experimentation, and is not directly usable with frequency-

domain test data.

3.2.3 Fractional order models

An interesting and powerful approach based on fractional calculus was proposed by

Bagley and Torvik [51], wherein the regular derivatives are replaced by fractional-

order differential operators Dα defined as

Dα[ε(t)] =
1

Γ(1− α)

d

dt

t∫

0

ε(τ)

(t− τ)α
dτ, 0 < α < 1. (3.4)

Fractional order models have succeeded in describing the behavior of many viscoelas-

tic materials using relatively few fitted parameters in the frequency domain [52]. A

single simple equation may be enough to describe dynamic characteristics over a

large range of frequencies, e.g.,

σ(t) = E0ε(t) + E1D
α[ε(t)]. (3.5)
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Taking the Fourier transform of Equation (3.5), denoted by “hats” as in F [·] = ·̂ ,

a power law representation can be obtained that is easy to use in the frequency

domain as,

σ̂(ω) = E0ε̂(ω) + E1(iω)
α ε̂(ω). (3.6)

The empirical success of such power law models (and some generalizations, see [53])

is appreciable and such a power law behavior will be incorporated in the proposed

model.

3.2.4 Dynamic mechanical characterization

Dynamic Mechanical Analysis (DMA) is a frequency-domain testing technique for

which standard commercial equipment is available (e.g., [54]). Sinusoidal loading

at a sequence of frequenci es is applied to the test specimen and the steady-state

displacement amplitude and phase are recorded for each frequency. In the frequency

domain, the general linear relationship can be written as (recall Equation (3.1)),

σ̂(ω) = M∗(ω) ε̂(ω) = (Md(ω) + iM1(ω)) ε̂(ω). (3.7)

For each individual frequency the following amplitude-phase relation may also be

written:

σ(t) = σ0 sin(ωt), ε(t) = ε0 sin(ωt− δ), (3.8)

where the phase δ as well as both σ0 and ε0 can be thought of as functions of fre-

quency, depending on the specific test conditions (load controlled with σ0 prescribed,

or displacement controlled with ε0 prescribed). Combining the above two equations,
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the following condition can be deduced:

Md(ω) =
σ0(ω)

ε0(ω)
cos δ(ω); M1(ω) =

σ0(ω)

ε0(ω)
sin δ(ω). (3.9)

3.2.5 Transfer function in the Laplace domain

If the test specimen is linear and time invariant, and starts from zero initial condi-

tions, then its transfer function in the Laplace domain is given by H(s) in

Lσ(s) = H(s)Lε(s), (3.10)

where Lσ(s) denotes the Laplace transform of σ(t), Lε(s) denotes the Laplace trans-

form of ε(t), and s is the Laplace variable. Although H(s) can be complicated, it

must have real coefficients.

If the test specimen is subjected to sinusoidal loading, say with ε(t) of the form

eiωt (either real or imaginary parts can be taken later; and a similar calculation can

be done if the test is load controlled), then the Laplace transform of the steady-state

stress response is given by [55]

Lσ(s) =
H(iω)

s− iω
,

when transient parts of the response have decayed to zero, it can be shown that

consistency with Equations (3.7) through (3.9) requires

H(iω) = Md(ω) + iM1(ω).

It is important to note here that the left hand side above comes from the Laplace
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domain transfer function (and so must have real coefficients), and the right hand

side comes from frequency domain testing.

It follows that substituting ω = s/i in the DMA test fit must necessarily yield

functions of s with real coefficients. It is this necessary consistency condition on the

DMA test fit that leads to a theoretical reduction in the number of fitted parameters,

which will be exploited below.

3.2.6 Other required frequency-domain theory

Finally, the contributions from some classical theoretical analyses of frequency-

domain or spectral methods [56, 57] are used. The use of these methods in vis-

coelasticity is generally attributed to Kuhn [58]. The intent of the analysis is to

relate causality and dispersion (see also [59]). As discussed before the elastic and

damping properties of a viscoelastic material can be characterized in the frequency

domain by the complex modulus of elasticity (see Equation 3.1). The viscoelastic

materials are assumed as linear for low amplitudes of excitation, moreover, they are

causal in time domain (see Figure 3.3). Causality, which means that the specimen’s

response does not anticipate the excitation, implies the Kramers-Kronig relations,

which find use in various fields like electromagnetism [14], optics [61], acoustics [62]

and electronics [16]. The relations are

Md(ω)−M0 =
2

π

∞∫

0

ω′M1(ω
′)

ω2 − ω′2
dω′, (3.11)

M1(ω) = −
2

π

∞∫

0

ω[Md(ω
′)−M0]

ω2 − ω′2
dω′, (3.12)
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Figure 3.3: (a) Viscoelastic material treated as a linear system (b) Excitation (c) Causal
response (d) Non-causal response. Image source [60].

whereM0 is the limiting value of the dynamic modulus at high (“infinite”) frequency.

A detailed proof of the above dispersion relations are given in Appendix B.1.

Furthermore Equation (3.12), under a change of variables with a subsequent

series expansion, and under the assumption of being far from resonances and in a

region of somewhat slow changes, leads to the following:

M1(ω) =
π

2
ω
dMd(ω)

dω
+

π3

24

(
ω
dMd(ω)

dω
+ 3ω2d

2Md(ω)

dω2
+ ω3d

3Md(ω)

dω3

)
+ · · · (3.13)

Some details of the derivation of Equation (3.13), with more terms in the expansion,

are given in Appendix B.2. This Equation (3.13) will be used below as well.

This concludes the summary of the background theory of linear systems that is

needed for the present work.

Now experimental characterization of these bushings will be discussed.
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3.3 Experimental characterization of bushings

For material characterization, two specimens each of four different commercially

available bushings are tested. These are aftermarket (non-OEM) bushings used in

the suspension mountings of passenger cars presently sold in India. The makes

and models of the corresponding vehicles are not mentioned because the aim is to

demonstrate the test, theory, and fitting procedures only. The bushings (one each)

are shown in Figure 3.4.

Figure 3.4: Suspension bushings used for dynamic mechanical characterization.

In order to test these suspension bushings, they have to be mount on the test-rig.

For this various fixtures have to be made depending on the shape and size of the

bushings. The details of the test rig, fixture, and the dimensional drawings of these

bushings are given in Appendix B.3.
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In actual application, these suspension bushings are loaded with the sprung mass

distributed on individual suspensions. In order to roughly represent operational

conditions, static preloads were applied on the bushings corresponding to the sprung

mass loads they might encounter in the field (see first row of Table 3.1).

Identifier 1© 2© 3© 4©

Preload 3434 N 2943 N 3188 N 4905 N
Frequency range 1-30 Hz 1-30 Hz 1-25 Hz 1-50 Hz

Table 3.1: Preload details and frequency ranges of different suspension bushings used for
testing.

For dynamic material characterization an MTS 370.10 elastomer test system was

used (see Figure 3.5).

Figure 3.5: Suspension bushings characterization on MTS 370.10 elastomer test-rig at a

room temperature of 20◦C (Image Source: NATRiP, Indore [63]).

The test-rig was configured for elastomeric specimens in the frequency range

0.1-200 Hz, with a maximum force capacity of 15 KN.

A sinusoidally varying displacement with amplitude of 1 mm (peak to peak) was

applied on the bushings. Displacement and resulting force are both recorded as time
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signals. In addition, the dynamic modulus Md(ω) and the loss modulus M1(ω) are

also directly reported by the system. Tests were performed at various frequencies

with a frequency interval of 1 Hz (see second row of Table 3.1).

As indicated in section 3.2.3, simple power law models are popular for charac-

terizing viscoelastic materials. A pure power law implies constant phase. In this

context, the primary result from our tests was that the phase angle δ varies by sev-

eral percent over the frequency range studied (see Figure 3.6), and so models that

are not pure power laws have to be developed.
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Figure 3.6: Phase angle versus frequency characteristics of the different bushings used in
our experimental study. There is variability of several percent in the phase; and variability
between two nominally identical bushings as well. Note that our focus here is not on
manufacturing consistency. Our intent is to see how far linear theory applies to a given

test specimen. Thus, we view these results as simply coming from eight different bushings.

New models of this type (not pure power laws), based on the background given

in the introduction, are the main theoretical contribution of this work.
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3.4 Modeling approach

In Equation (3.13), the leading order term is simply

M1(ω) =
π

2
ω
dMd(ω)

dω
. (3.14)

Equation (3.14) yields

tan δ(ω) = η(ω) =
π

2

d[logMd(ω)]

d[logω]
. (3.15)

The above simple result is widely quoted (e.g., [16, 60, 64]). It says a constant

loss factor (η = tan δ) implies a straight line plot of the dynamic modulus versus

frequency on log-log axes, i.e., a power law.

In the experimental data, however, it has been noted that there is some system-

atic variation in the phase angle δ (see Figure 3.6). To incorporate this variation in

a rationally derived theory, a two-term expansion is considered as

M1(ω) =
π

2
ω
dMd(ω)

dω
+

π3

24

(
ω
dMd(ω)

dω
+ 3ω2d

2Md(ω)

dω2
+ ω3d

3Md(ω)

dω3

)
. (3.16)

In order to fit the experimental data two different functional forms have been

considered. One is a power law with logarithmic multiplying terms; the other is

a polynomial on logarithmic axes. The requirements of consistency with the basic

theory above will lead to restrictions on fitting parameters, thereby yielding more

parsimonious models (with fewer free parameters).
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3.4.1 Modified power-law model

Prompted by the equidimensional nature of Equation (3.16) a modified power law

model is proposed, given by

Md(ω) =
(
A0 + A1 logω + A2(logω)

2
)
ωβ, (3.17)

where A0, A1 and A2 are the coefficients of a truncated logarithmic polynomial and

β is a fractional power, making four fitted parameters in all. From Equation (3.16)

the corresponding loss modulus M1(ω) is obtained.

As Equation (3.16) is linear, it allows the computation of corresponding loss

modulus M1(ω) in three steps.

1. The first term, A0ω
β in Equation (3.16) gives

[ 1
24

π β
(
12 + π2β2

) ]
A0ω

β. (3.18)

2. The second term, (A1 logω)ω
β in Equation (3.16) gives

[ 1
24

π
(
12 β + π2β3

)
logω +

1

24
π ωβ

(
12 + 3 π2β2

) ]
A1ω

β. (3.19)

3. Finally, the third term, (A2(logω)
2)ωβ in Equation (3.16) gives

[(1

2
π β +

1

24
π3β3

)
(logω)2 +

(
1

4
π3β2 + π

)
logω +

1

4
π3β

]
A2ω

β. (3.20)

M1(ω) is then obtained by adding the above three terms, which are rearranged
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as

M1(ω) =
(
B0 + B1 logω + B2(logω)

2
)
ωβ, (3.21)

where the coefficients B0, B1 and B2 are given by

B0 =
(1
2
πβ +

1

24
π3β3

)
A0 +

(1
2
π +

1

8
π3β2

)
A1 +

(1
4
π3β

)
A2

B1 =
(1
2
πβ
)
A1 +

1

24

(
π3β3 +

1

4
π3β2 + π

)
A2 (3.22)

B2 =
(1
2
πβ +

1

24
π3β3

)
A2.

It is clear that, even with M1(ω) determined as above, there are still only four

fitting parameters, namely A0, A1, A2, and β. Also while deriving Equation (3.16),

an allowance was made for a nonzero M0 and the causality condition was applied

to [Md(ω
′)−M0]. Thus, M0 remains an additional free parameter, and there are a

total of five parameters to be fitted.

Using Equations (3.17) and (3.21), the complex modulus M∗(ω) is given by

M∗(ω) = M0 +
(
A0 + A1 logω + A2(logω)

2
)
ωβ + i

(
B0 + B1 logω + B2(logω)

2
)
ωβ

(3.23)

Now the equivalence between descriptions based on Fourier and Laplace transforms

is invoked. The FRF can be represented in the Laplace domain (as discussed in

section 3.2.5) by substituting ω =
s

i
, in Equation (3.23) to obtain

M∗(
s

i
) = M∗(se

−iπ
2 ) =
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M0+ sβe
−iπβ

2


{A2 + iB2}︸ ︷︷ ︸

I

(log s)2 + {(A1 + πB2) + i(B1 − πA2)}︸ ︷︷ ︸
II

log s

+
{(

A0 − A2π
2/4 + B1π/2

)
+ i
(
−A1π/2 + B0 −B2π

2/4
)}

︸ ︷︷ ︸
III




(3.24)

Since the right hand side above must have real coefficients, the phases of each of the

three terms, labelled I, II and III respectively, must be
πβ

2
.

The above necessary consistency condition will limit the number of free param-

eters further. This consistency condition enforced for such a purpose has not been

seen in any of the related literature.

Term I of Equation (3.24) gives

tan−1
(B2

A2

)
=

πβ

2
(3.25)

Substituting the value of B2 from Equation (3.22) in (3.25) gives

tan
πβ

2
=

πβ

2

(
1 +

π2β2

12

)
(3.26)

The right hand side above is simply the truncated Taylor series of the left hand side

for small β. A small verifying calculation along similar lines using Equation (3.14)

yields a correspondingly truncated version of Equation (3.26), namely

tan
πβ

2
=

πβ

2
. (3.27)

Since both conditions, Equations (3.26) and (3.27), are derived from the truncated

Equations (3.16) and (3.14) respectively, these conditions are satisfied so long as β
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is small compared to unity. Term I has nothing more to contribute2.

Term II of Equation (3.24) gives

B1 − πA2

A1 + πB2

=
πβ

2
, (3.28)

which on simplification yields

A2 =
2

π2β
A1. (3.29)

Thus, the parameter A2 is not arbitrary after all; it is known in terms of A1.

Finally, term III of Equation (3.24) gives

B0 −
π

2
A1 −

π2

4
B2

A0 +
π

2
B1 −

2

π2β
A1

=
πβ

2
, (3.30)

whence

A1 =
4π4β3

24 π2 + 14 π4β2 − 96 + π6β4
A0, (3.31)

showing that the parameter A1 is also known in terms of A0. Therefore, there remain

only three fitting parameters, namely A0, β and M0. The modified power law model

is finally given by

Md(ω) = M0 +
(
A0 + A1 logω + A2(logω)

2
)
ωβ (3.32)

M1(ω) =
(
B0 + B1 logω + B2(logω)

2
)
ωβ, (3.33)

where B0, B1 and B2 are given by Equation (3.22), and also A2 and A1 are given by

Equations (3.29) and (3.31) respectively.

2Note that Equation (3.27) alone might be misleading, suggesting a sequence of discrete values
of β; but in conjunction with Equation (3.26) it seems clear that in fact β should be small.
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It is important to note here that although there remain only three free param-

eters, the dependence of the final formula on these parameters is complicated and

needs to be derived from theory; it cannot be guessed.

These parameters will be fitted using the dynamic and loss modulus data ob-

tained from testing, and the results will be discussed in Section 3.5. Now a different,

and somewhat simpler model will be considered.
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3.4.2 Logarithmic polynomial model

In the previous section, it was concluded that for the asymptotic approximation to

be valid, the fractional power β should be small. The Equation (3.25) is in fact

exactly satisfied for β = 0. This case will be explored here, in the form:

Md(ω) = A0 + A1 logω + A2(logω)
2. (3.34)

Again, by linearity, the three terms of Equation (3.34) will be separated and sub-

sequently substituted into Equation (3.16), to obtain independent contributions to

the form of M1(ω).

1. First term, A0 drops out upon differentiation in Equation (3.16).

2. Substituting the second term, A1 logω, in Equation (3.16) yields
π

2
A1.

3. Substituting the final term, A2(logω)
2, in Equation (3.16) yields πA2 logω.

Adding up the individual contributions above gives

M1(ω) = π

(
A1

2
+ A2 logω

)
. (3.35)

Notice that the dynamic modulus at infinity, namely M0, can be included in A0 with

no consequence to obtain

M∗(ω) = A0 + A1 logω + A2(logω)
2 + iπ

(
A1

2
+ A2 logω

)
. (3.36)
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Again the equivalence between the frequency response and Laplace domain repre-

sentations gives

M∗(se−iπ
2 ) = A0+A1

(
log s− i

π

2

)
+A2

(
log s− i

π

2

)2
+ i
(π
2
A1+πA2

(
log s− i

π

2

))
,

(3.37)

which simplifies to an expression where the coefficients are real already:

A0 + A1 log s+ A2

(π2

4
+ (log s)2

)
. (3.38)

Thus, there are no further restrictions and the model is

Md(ω) = A0 + A1 logω + A2(logω)
2 (3.39)

M1(ω) = π

(
A1

2
+ A2 logω

)
, (3.40)

with three fitted parameters, namely A0, A1 and A2.

These parameters will also be fitted using the dynamic and loss modulus test

data. Note that two models have been proposed: (a) Equations (3.32) and (3.33)

with added constraints on parameters, and (b) Equations (3.39) and (3.40) with no

constraints on parameters. Both models have three independent fitted parameters

each. The first model is mathematically more complicated. It is not clear in advance

which model will fit the data better.

3.5 Model fitting results

The model fitting results are presented here.

Both models were fitted by minimizing the sum of squares of a logarithmic error:
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J =
∑

ω

[(
log

Md(ω)model

Md(ω)testing

)2

+

(
log

M1(ω)model

M1(ω)testing

)2
]
, (3.41)

where the sum is over all frequencies for which data was collected (see Table 3.1).

The above error norm was used since the imaginary parts (M1) are typically

much smaller than the real parts (Md), yet it is necessary to seek good representa-

tions for both of them. For minimizinbg the error norm, Matlab’s built-in function

fminsearch is used. The fitted parameters are reported in Table 3.2.

Modified power-law Logarithmic polynomial

Bushing Specimen A0 β M0 A0 A1 A2

1© 1 529.720 0.056 485.635 1019.674 26.861 2.625
2 649.802 0.048 355.167 1002.370 28.931 2.304

2© 1 855.702 0.090 44.132 904.701 59.552 13.658
2 894.934 0.089 −54.369 839.987 61.474 14.078

3© 1 517.930 0.060 −109.340 413.357 26.932 3.069
2 365.390 0.078 23.210 389.852 24.116 4.086

4© 1 441.464 0.060 132.586 576.690 23.094 2.758
2 433.754 0.050 185.934 620.944 20.043 1.770

Table 3.2: Fitted parameters for both models, and all eight bushings. Note that β, the
index of the power is small, as required by Equation (3.26), i.e., for the approximation to
be valid. Moreover, A0+M0 from the modified power-law model approximately equals A0

of the logarithmic polynomial model, as expected upon comparing Equations (3.17) and
(3.39) for small β.

Graphical results of model fitting for all of these bushings are shown in Figures 3.7

through 3.13. Load-deflection loops at several frequencies are also shown therein3.

It is seen that in each case, both models fit the data well. The low frequency fit for

bushing 2 is the poorest of all (see Figure 3.10), with fits at other frequencies being

3We have observed what may be an oscillatory behavior in the response curves, superimposed on
the mean variation we have captured. We have been unable to develop a rational defensible theory
for this, and have treated those fluctuations as some combination of modeling and experimental
error. We have captured the mean behavior.
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fairly good. The modified power law model appears slightly superior overall, though

both models have the same number of fitted parameters.

76



0 5 10 15 20 25 30
1075

1095

1115

1135

1155

1175

1195

1215

1235

Frequency (Hz)

D
yn

am
ic

 m
od

ul
us

 M d (
N

/m
m

)

 

 
Modified power−law
Logarithmic polynomial

0 5 10 15 20 25 30
57

60

63

66

69

72

75

78

81

84

87

Frequency (Hz)

Lo
ss

 m
od

ul
us

 M 1 (
N

/m
m

)

 

 
Modified power−law
Logarithmic polynomial

0 5 10 15 20 25 30
1065

1085

1105

1125

1145

1165

1185

1205

1225

Frequency (Hz)

D
yn

am
ic

 m
od

ul
us

 M d (
N

/m
m

)

 

 
Modified power−law
Logarithmic polynomial

0 5 10 15 20 25 30
58

62

66

70

74

78

82

86

Frequency (Hz)

Lo
ss

 m
od

ul
us

 M 1 (
N

/m
m

)

 

 
Modified power−law
Logarithmic polynomial

Figure 3.7: Comparison of the dynamic and the loss moduli versus frequency from the
modified power law model (solid), the logarithmic polynomial model, (dashed) and exper-
iment (dots) for first specimen (top) and second specimen (bottom) of bushing 1.
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Figure 3.8: Load-displacement hysteresis loops at different frequencies: modified power
law model (solid), logarithmic polynomial model (dashed), and experiment (thick), for
the first specimen (top) and the second specimen (bottom) of bushing 1. The zoomed-in
trajectories are also shown for each frequency. Note that the aspect ratios of these elliptical
loops are similar but not identical; this is because (recall Figure 3.6) the phase δ(ω) is
roughly, but not exactly, constant. Capturing this small variation in δ(ω) using rationally
derived models with a small number of parameters was the main purpose of this work.
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Figure 3.9: Comparison of the dynamic and the loss moduli versus frequency from the
modified power law model (solid), the logarithmic polynomial model, (dashed) and exper-
iment (dots) for first specimen (top) and second specimen (bottom) of bushing 2.
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Figure 3.10: Load-displacement hysteresis loops at different frequencies: modified power
law model (solid), logarithmic polynomial model (dashed), and experiment (thick), for
the first specimen (top) and the second specimen (bottom) of bushing 2. The zoomed-in
trajectories are also shown for each frequency.The low-frequency match is poor (poorest
of all).
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Figure 3.11: Comparison of the dynamic and the loss moduli versus frequency from
the modified power law model (solid), the logarithmic polynomial model, (dashed) and
experiment (dots) for first specimen (top) and second specimen (bottom) of bushing 3.
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Figure 3.12: Load-displacement hysteresis loops at different frequencies: modified power
law model (solid), logarithmic polynomial model (dashed), and experiment (thick), for
the first specimen (top) and the second specimen (bottom) of bushing 3. The zoomed-in
trajectories (red-box) are also shown for each frequency. The match is nearly perfect, with
loops overlapping within plotting accuracy.
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Figure 3.13: Comparison of the dynamic and the loss moduli versus frequency from
the modified power law model (solid), the logarithmic polynomial model, (dashed) and
experiment (dots) for first specimen (top) and second specimen (bottom) of bushing 4.
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Figure 3.14: Load-displacement hysteresis loops at different frequencies: modified power
law model (solid), logarithmic polynomial model (dashed), and experiment (thick), for
the first specimen (top) and the second specimen (bottom) of bushing 4. The zoomed-in
trajectories (red-box) are also shown for each frequency. The match is nearly perfect, with
loops overlapping within plotting accuracy.
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3.6 Comparison with other models: accuracy and

theoretical restrictions

To model the frequency dependent properties of elastomeric vibration isolators re-

searchers have developed lumped parameter models with fractional damping ele-

ments [65], reduced order models using Laplace domain approaches [66] and models

using dynamic material characterization [67]. These models do not entirely satisfy

the theoretical restrictions imposed by causality, linearity and necessity of real co-

efficients in Laplace domain descriptions. Moreover, the models available in the

literature have many fitting parameters as opposed to a few (three) parameters in

our model.

In order to further emphasize the merits and success of our modeling approach,

we have compared it against the original fractional order Kelvin-Voigt model pro-

posed by Bagley and Torvik (see Equation (3.6)) [51]. This fractional order model

also has three fitting parameters, and satisfies some theoretical restrictions, but it

does not satisfy the higher-order expansion of the Kramers-Kronig relation given by

Equation (3.16); and it gives a poorer fit.

In this section we will compare fitting results from our model with that of the

three parameter fractional Kelvin Voigt model which satisfies the theoretical restric-

tions [51], and with the four parameter improved fractional order model of [68] which

is empirical and does not satisfy theoretical restrictions.
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3.6.1 Fractional order Kelvin-Voigt model

The model is:

Md(ω) = E0 + E1 cos
(απ

2

)
ωα; M1(ω) = E1ω

α sin
(απ

2

)
. (3.42)

This model has three fitting parameters namely, E0, E1 and α.

3.6.2 Four parameter improved fractional order model

The model is:

Md(ω) = E0

{
1 +

k
[
cos
(
απ
2

)
ωατα + ω2ατ 2α

]

1 + 2 cos
(
απ
2

)
ωατα + ω2ατ 2α

}
;

M1(ω) = E0

k sin
(
απ
2

)
ωατα

1 + 2 cos
(
απ
2

)
ωατα + ω2ατ 2α

(3.43)

This model has four fitting parameters namely, E0, k, τ and α.

These models are fitted to the data for the first bushing specimen, and the fitting

results are compared against the modified power law model in Figure 3.15.

The fit from our rationally derived model is distinctly superior. The fitting pa-

rameters of these models and their respective logarithmic error norms J are reported

in Table 3.3. The value of J is smallest for the modified power law model.
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Figure 3.15: Comparison of dynamic and loss moduli versus frequency from the modified
power law model (solid-red), fractional Kelvin-Voigt model (dashed-blue), 4 parameter im-
proved fractional model (dash-dot magenta), and experiment (dots-green): first specimen
of bushing 1©.

Identifier Parameters Values J

Modified power-law M0, A0 and β 485.64, 529.72 and 0.06 0.05

Fractional Kelvin-Voigt E0, E1 and α 615.72, 392.49 and 0.09 0.14

4 parameter fractional KV E0, k, τ and α 899.72, 1.82, 8.2e-6 and 0.19 0.07

Table 3.3: Fitting parameters of different models and their respective error norms J .
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3.7 Concluding remarks

Elastomeric dampers show frequency dependent behavior. In the literature, frac-

tional power law fits to this behavior have been proposed and found to be accurate

as well. However, the mathematical form of the empirical fits used have not been

fully consistent with linear systems theory. This work has provided a new and useful

contribution in that direction. In particular, by ensuring consistency between (a)

formulas based on causality, (b) an asymptotic expansion for a regime with slow vari-

ations, (c) frequency domain descriptions, and (d) the necessity of real coefficients in

Laplace domain descriptions, two useful simple mathematical forms with just three

fitted parameters each have been derived. Experiments with aftermarket automotive

bushings have shown that both these mathematical forms can fit the data well. Of

these, the modified power law model has more complicated expressions, but fits the

data slightly better than does the logarithmic polynomial model.

It is acknowledged that, unlike some models which address very large frequency

ranges (e.g., [53, 69]), here a more limited frequency range (about one and a half

decades) is considered. However, the selected frequency range is relevant for auto-

motive suspension dynamics simulations, and the small number of fitted parameters

along with the consistency with background linear theory makes the two proposed

models attractive for practical applications in vehicle dynamics.
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Chapter 4

Partial validation of an Adams
model for a prototype using test
track data

In Chapter 2, an Adams model of a vehicle was used to develop a Laplace domain

representation of a generalized quarter-car model. A practical question remains, viz,

to what extent is the Adams model accurate in describing the behavior of an actual

vehicle?

To that end, in this chapter, Adams model development and subsequent field

testing of an instrumented vehicle will be discussed. The Adams model simulation

results will in this way be partially validated against the test track data. The vehicle

used here is a prototype available in Indore, and is not the vehicle of Figure 2.4, so

the Adams model is to be built afresh.

For detailed validation of an Adams model for suspension design, a vehicle is

generally tested on a four-post test rig and base-excitation is applied at four ground-

wheel contacts. This kind of testing is expensive, time consuming, and requires

both experienced personnel and specialized equipment. Sometimes, test track data

is used in industry as well, but usually for durability studies, stress analysis, fatigue

life estimation and other goals not related to dynamic suspension model validation.
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In the research literature, as far as I know, field test data has not been used for

partial validation of an Adams model as undertaken in this chapter. Since test

track measurements can be easily made by using a few accelerometers and a data

acquisition system, no other sophisticated equipment is needed.

The two main activities involved in this chapter, therefore, are model develop-

ment and field testing. These are outlined using a flow chart in Figure 4.1. The

individual parts of the flow chart are described below.

An all terrain vehicle (ATV) prototype was selected for this study (see 1©). The

front and rear suspensions were characterized on an MTS 850.25 damper test-rig at

NATRiP (see 2©). Using the measured suspension properties, a simplified Adams

model of the vehicle was developed. A rigid wheel-road contact kinematic model was

developed in step 3©. The wheel displacements from this kinematic contact model

were used as inputs to the Adams model.

Next the vehicle was driven at different speeds on specialized tracks whose dis-

placement profiles are known. Similar to the approach in Chapter 2, eight key points

were identified: four on the car body where the suspension is attached, and four on

wheel axles. Accelerometers were mounted on these points as indicated by circles in

step 4©. Vehicle tests were performed on specialized test tracks (two of these tracks

are shown in 5©). From each vehicle test, eight simultaneous time series measure-

ments were obtained corresponding to the vertical accelerations at body points and

wheel axle points.

Finally, the field test results were correlated with Adams model simulation results

in 6©.
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Figure 4.1: Work flow of this chapter.
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In the rest of this chapter, the above mentioned activities will be described in

detail.

4.1 Vehicle model development in Adams

4.1.1 Vehicle suspension

The ATV is shown in Figure 4.2.

Figure 4.2: All terrain vehicle used for field testing. Photograph obtained from Weld-
ing Engineering Laboratory of Mechanical Engineering Department, SGSITS, Indore [70].
Reproduced with permission.

The vehicle was fabricated by undergraduate students of Shri G.S. Institute of

Technology and Science (SGSITS), Indore1.

The vehicle has a double wishbone front suspension and a semi-trailing arm rear

suspension. The front and rear suspensions are equipped with FOX pneumatic shock

absorbers. The suspension properties of these shock absorbers need to be estimated

before developing the Adams model.

The front suspensions have Float 3 and the rear suspensions have Float 3 EVOL

1Further details about the vehicle are available in a design report [71].
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(“extra volume”) R shocks respectively2(see Figure 4.3 (a)). These suspensions use

Figure 4.3: (a) Front and rear Fox suspensions; (b) Schematic diagram showing the
constructional details (adapted from [72, 73]); (c) Suspension component characterization
on MTS 850.25 damper test-rig at vehicle dynamics lab facility of NATRiP, Indore [63].

progressive air springs whose stiffness can be adjusted by changing the air pressure.

Underneath the air spring chamber is a damper consisting of an oil chamber and

a high pressure nitrogen gas chamber separated by an internal floating piston. In

2Further details about these Fox suspensions and their tuning procedure is given in their oper-
ational manuals [72, 73]
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addition to these features, there is also an EVOL (“extra volume”) chamber and re-

bound adjuster in the rear suspension. The constructional details of the suspensions

are given in Figure 4.3(b) The suspensions were characterized on an MTS 850.25

damper test-rig at NATRiP, Indore (see Figure 4.3(c))3.

To obtain suspension stiffness characteristics, a sinusoidal displacement is applied

at a frequency of 0.1 Hz and the peak force is measured. The actuator stroke of the

test rig is limited to 100 mm, and the sinusoidal displacement amplitude is varied

from 5 mm to 100 mm in steps. Force versus displacement characteristics of front

and rear suspension are shown in Figure 4.4.

Figure 4.4: Force versus displacement characteristics of front suspensions (main pressure
= 40psi) and rear suspensions (EVOL pressure, P1 = 125psi; main pressure, P2 = 25psi).

For the given pressure setting and in the useful range of suspension travel, these

characteristics are seen to be linear. The suspension damping properties were not

measured in this study, but obtained from damper charts in [72, 73]. Suspension

component properties used in the Adams model for both front and rear suspensions

are reported in Table 4.1.

3The test rig details are available in [74].
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S. No. Identifier Kfront Krear Cfront Crear

1. Suspension 25 N/mm 15 N/mm 1.50 N-s/mm 1.36 N-s/mm
2. At wheels 10.5 N/mm 6.5 N/mm 0.63 N-s/mm 0.59 N-s/mm

Table 4.1: 1. Typical values of suspension component properties obtained from suspension
characterization. 2. Equivalent suspension properties at wheels, obtained after multiplying
by the square of the motion ratios.

Figure 4.5: Accelerometer mounting positions and definition of motion ratio.
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Figure 4.6: Motion ratio characteristics of front and rear suspensions respectively.
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Note in Figure 4.5 that the suspension compression is not equal to the wheel

travel. Later, in the Adams model, the suspension spring and dampers will be purely

vertical. Such a simplification is routinely made in many industrial studies. The

advantage is that the complications of the linkages in Figure 4.5 are avoided. The

price paid is that suspension component stiffness and damping must be multiplied

by a motion ratio (squared); see Figure 4.6. The motion ratios were experimentally

obtained by raising/lowering the wheel of interest and measuring the spring com-

pression/extension. Note in Figure 4.5 that the suspension compression is not equal

to the wheel travel. Later, in the Adams model, the suspension spring and dampers

will be purely vertical. Such a simplification is routinely made in many industrial

studies. The advantage is that the complications of the linkages in Figure 4.5 are

avoided. The price paid is that suspension component stiffness and damping must

be multiplied by a motion ratio (squared); see Figure 4.6. The motion ratios were

experimentally obtained by raising/lowering the wheel of interest and measuring the

spring compression/extension.

Using these suspension properties, (i) a full vehicle Adams model and (ii) a

simplified Adams model similar to the one developed in chapter 2 were developed.

4.1.2 Adams model

The vehicle chassis is made of a roll cage type structure. The roll cage structural

details are given in Table 4.2.

Material CS Diameter Thickness Yield and ultimate strength

Steel AISI 4130 Circular 31.75 mm 1.65 mm 721 MPa and 760 MPa

Table 4.2: Physical and material properties of the roll cage pipe structural members. The
material properties were measured by the ASTM A370-2012 tensile test and the material
test certificate is available in [75].
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From the full vehicle Adams model (see 1© in Figure 4.7), a parasolid model of

the vehicle chassis is obtained as shown in 2© below (see ADAMS/Exchange [76]).

A simplified but somewhat similar geometrical model was built and a finite element

(FE) model of the latter was developed in Nastran as shown in 3© below.

The FE model was then imported into Adams. The four mounting locations Bi

were defined as interface nodes. In addition, the model had three more interface

nodes denoted D, E and F, corresponding to the center of mass locations of the

driver, engine and battery respectively (see 3© in Figure 4.7). Three rigid bodies

with mass and inertia properties representing the driver, engine-driveline assembly

and battery were attached to these interface nodes4.

The driver weight is 65 kg and the driver inertia properties were obtained from

[77, 78]. The battery has dimensions (in mm) 240×175×175 with mass 15 kg; using

these values, the corresponding inertia properties were calculated and used. Finally

the engine and driveline mass is 40 kg and the inertia properties were obtained from

the CAD assembly of the engine, transmission and gearbox (see Figure 4.8) [71].

Four spring-dashpot pairs with the equivalent suspension properties (see Table

4.1) are attached between points Bi on the car body and unsprung masses at wheel

axle Ai. The unsprung masses are further connected by springs and dashpots rep-

resenting tyre properties to ground contact points Ci. The unsprung mass and tyre

properties are listed in Table 4.3.

The above Adams model will be partially validated against test results.

4These interface nodes are in turn connected to the FE mesh using RBE2 elements, which
connects rigid body nodes to a few nodes in the deformable mesh.
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Figure 4.7: 1©: Full vehicle model in Adams. The road surface is also defined for
the full vehicle simulation. 2©: Parasolid model of the chassis obtained from the
full car Adams model. 3©: FE model of the simplified chassis with pipe curvatures
removed. The displacement inputs are given to wheel contact points Ci.

Identifier Mu (unsprung) Kt (tyre) Ct (tyre)

Front 15 kg 40 N/mm 0.2 N-s/mm
Rear 12.5 kg 40 N/mm 0.2 N-s/mm

Table 4.3: The vehicle is equipped with 22x7-10 BKT W207 ATV tires [79] in all four
wheels, but the front wheel has greater mass because of a brake assembly. Moreover, ATV
tyres use low inflation pressures (typically 7 psi) and have low stiffness and high damping
compared to typical commercial tyres.
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Figure 4.8: CAD model assembly showing engine, transmission and gearbox. This
assembly was used to calculate the inertia properties.
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4.1.3 Road contact kinematic model

The road surface geometry has to be converted into an equivalent vertical input to

be applied at the wheel-ground contact points Ci of the simplified Adams model.

We will use a road contact kinematic model that calculates the effective wheel dis-

placements for the continuous displacement tracks (see Table 4.4).

Since the half-wavelength of the sinusoidal tracks is comparable to the tire di-

ameter, although the road profile is sinusoidal the actual displacement input to the

wheel is not sinusoidal. The ground excitation at each wheel contact point Ci is

calculated approximately using a rigid-wheel kinematic model as discussed below.

Consider a rigid wheel going over a sinusoidal track as shown in Figure 4.9(a).

The track amplitude is A, wavelength is L and tire radius is R. The coordinates of

wheel center O is (x̄, ȳ) and the coordinates of the wheel-ground contact point P is

(x, y).

From geometrical considerations

x = x̄+R sin θ, (4.1)

y = A sin

(
2πx

L

)
, (4.2)

dy

dx
= tan θ. (4.3)

Differentiating Equation (4.1) gives

ẋ = ˙̄x+Rθ̇ cos θ, (4.4)
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Figure 4.9: (a) Kinematics of a rigid wheel going over a sinosuidal road; (b) The road
displacement input acting on the wheel contact point P as seen at O.

where ˙̄x is the vehicle longitudinal velocity (v). Substituting Equation (4.2) in (4.3)

and differentiating the same gives

θ̇ = −A

(
2π

L

)2

sin

(
2πx

L

)
ẋ cos2 θ (4.5)

Using Equations (4.4) and (4.5) yields

ẋ =
v

1 + AR cos3 θ
(
2π
L

)2
sin
(
2πx
L

) ; θ̇ =
−Av

(
2π
L

)2
sin
(
2πx
L

)
cos2 θ

1 +R cos3 θA
(
2π
L

)2
sin
(
2πx
L

) (4.6)
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Equation (4.6) is solved numerically in Matlab using ode45 with initial conditions

x = x̄ = L
4
, θ = 0 at t = 0. A typical solution is shown in Figure 4.9(b)5.

This type of computed ground excitations are used as a cubic spline inputs [80]

to Adams for all simulations.

In this approach for calculating the displacement input, two things are neglected:

the deformation of the wheel, and the shifting location of the contact force on the

wheel. In the Adams simulation, the computed displacement input is simply applied

at points Ci (see 3© in Figure 4.7). Note that the accelerometers used for field

testing measure only vertical accelerations; so, to the extent that the longitudinal

acceleration of the vehicle causes pitching oscillations, the present approach fails to

capture them. Incorporation of such effects could be attempted in future work.

In addition to the displacement input computed above, wheel compliance and

damping need to be assigned in the Adams model before final simulation. These

quantities were estimated from the tyre inflation pressure based on data for similar

tires in [81]. The stiffness and damping values used for model development are 40

N/mm and 0.2 N-s/mm respectively. Note that the tyre compliance is a lot smaller

than the suspension compliance, so small errors in the compliance estimates have

tiny effects.

4.2 Vehicle testing

The vehicle needs to be instrumented before performing field testing. We have used

the capacitor-based ADXL326 accelerometers (a total of eight) for vehicle testing.

These are triple axis accelerometers but only the Z-axis output is used for measuring

5This road displacement input is for the vehicle running at a speed of 9.5 kmph on high severity
washboard track.
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vertical accelerations. The data acquisition system consists of a FAT32 Micro SD

card module and an Arduino ATMega328P micro-controller board. These systems

are compatible with a breadboard, making it easy to connect them together and

power the circuit by a standard 9V battery.

The accelerometers need to be calibrated before use. The accelerometer details

and the calibration procedure followed are given in Appendix C.1.

The accelerometers were mounted at points Bi and Ai using magnetic mounting

strips; see Figure 4.10(left). The data acquisition system is mounted on the vehicle

dashboard; see Figure 4.10(right).

Figure 4.10: Left: Accelerometers mounted at Ai’s and Bi’s; Right: Data acquisition
system mounted on the vehicle dashboard.

Next the instrumented vehicle was tested on various specialized tracks at the

test track facility of NATRiP, Indore (see Figure 4.11).
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Figure 4.11: A plan view of NATRAX proving ground facility of NATRiP, India [63].

Some of the testing tracks used for this study are shown in Figure 4.12. These

test tracks are broadly classified into two categories:

1. Continuous displacement input tracks:

These are sinusoidal tracks having a simple displacement profile suited for

direct and deterministic simulation. The tracks selected under this category

are washboard, one-sided washboard, herringbone, sine sweep, and chassis-

twist track. The track details are shown in Table 4.4.

2. Discontinuous displacement input tracks:

These are tracks with non-deterministic and transient displacement inputs.

The tracks selected under this category are rough road, cobblestone and Bel-

gian pave. Apart from these tracks other test conditions were prepared in
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the university (SGSITS, Indore) which are half sine bump, step bump, and

one-sided half sine bump.

Figure 4.12: Some of the sinusoidal and rough tracks considered for study.

S. No. Track Severity Amplitude (mm) Pitch (mm)

1. Washboard Low 15 400

High 25 600

2. One-sided washboard Low 15 400

High 25 600

Low 10 500

3. Herringbone Medium 15 600

High 20 800

Low 150 2000

4. Chassis twist Medium 175 3000

High 200 4000

5. Sine sweep - 15 400-600 in 24 m

Table 4.4: Track details of continuous displacement tracks.
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Now the test results will be presented along with the Adams simulation results.

4.3 Test results

The test results for various tracks and its correlation with the Adams simulation

results of the vehicle developed in section 4.1.2 will be discussed in this section.

This both validates (at least partially) our Adams modeling approach and ensures

that the vehicle instrumentation gives satisfactory results.

The test data was acquired at a sampling frequency of 100 Hz. For subsequent

comparisons with Adams model, the test data is filtered using a low pass filter with

cut-off frequency of 30 Hz using Matlab’s designfilt command.

4.3.1 Continuous displacement input tracks

Washboard track

There are two sinusoidal washboard tracks of different pitch and amplitudes (see

Figure 4.13).

Figure 4.13: Low severity (left) and high severity (right) washboard tracks respectively.
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The vehicle test details are given in Table 4.5.

Speed Low severity High severity

Low 7.5 kmph 11 kmph
High 9.5 kmph 13 kmph

Table 4.5: Test details on two washboard tracks.

A discussion of the test response of the front left wheel axle A1 and the corre-

sponding response of the suspension-to-body attachment point B1, for a low speed

test on a low severity washboard track, is now given as a typical example of test

results.

The wheel displacement input is obtained from the rigid-road contact model and

is applied at wheel contact point C1 (see Figure 4.14).
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Figure 4.14: Ground displacement input at C1 given to the Adams model (see 3© in
Figure 4.7).

Corresponding to the wheel input there is an axle response and there is a body

point response. These responses will be studied sequentially because once the axle
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response has been determined subsequently the match or lack thereof with the body

response is a matter of the Adams model only and the wheel inputs no longer

have any role to play. The axle response at A1 obtained from the Adams model is

compared with the field test results as shown in Figure 4.15. We observe that the
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Figure 4.15: Response ÿ(t) of front left axle A1. The thicker line shows test data6.

widths of the periodic responses are correct on the whole, the peaks are comparable;

the rapid oscillations near the bottom are not fully captured, as expected. The

forward speed of the vehicle does show some variation that is not captured in the

present approach. On the whole, the wheel compliance and damping is reasonably

captured by the model as seen by peak widths and amplitudes.

In the same Adams simulation, the body point responses were also computed.

The body point response at B1 obtained from Adams model is compared with field

test results in Figure 4.16, as another typical example of the set of results obtained.

6There is apparently a low frequency fluctuation in amplitude and phase. This could be due to
a slight asymmetry in suspension parameters, a somewhat weak excitation of a roll mode, or even
an approximately periodic fluctuation in the forward speed of the vehicle during testing.
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Figure 4.16: Response ẍ(t) of suspension to body attachment point B1. The thicker line

shows test data.

Here too, the peak heights and the widths are roughly matched by the simulation.

This shows that the Adams model reasonably correlates with the field test measure-

ments. We conclude that the inertial and compliance properties of the overall vehicle

model are fairly accurate.

All other simulation results obtained with the same model parameters are given

in subsequent figures to show that the quality of the match with the field test

responses remains about the same for several test tracks.

Various road inputs given to the Adams model using the rigid tire-ground contact

kinematic model are shown in Figures 4.17 and 4.18.

In subsequent figures, where test results are compared against the Adams model,

accelerations of body points B1 through B4 are denoted by ẍ1(t) through ẍ4(t), and

the accelerations of wheel axle points A1 through A4 are denoted by ÿ1(t) through

ÿ4(t). The thicker lines show test data.
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Figure 4.19 shows the comparison of simulation and test results of low speed

test on low severity washboard track. The peak heights and the peak widths match

reasonably well.

Figure 4.20 shows the comparison of simulation and test results of high speed

test on low severity washboard track. The peak heights and the peak widths match

reasonably well.

Figure 4.21 shows the comparison of simulation and test results of low speed test

on high severity washboard track. The peak heights and the peak widths match

reasonably well for the acceleration responses of the wheel axle points A1 and A2.

The peak locations of the simulation and the test responses at A3 and A4 tend to

deviate after 1.5 seconds. The peak widths of the test responses of the body points

Bi are narrower than that observed in the simulation. One possible reason for

the mismatch being pronounced in this test case is that the forward speed fluctuates

more in this test as the track displacement amplitude is higher, and it is not possible

to maintain a constant low speed. Such fluctuations in forward speed could, e.g.,

set up pitching oscillations that the Adams model would not capture under purely

vertical base excitation.

Figure 4.22 shows the comparison of simulation and test results of high speed

test on high severity washboard track. The peak heights and the peak widths match

reasonably well.
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Figure 4.17: Ground displacement inputs given to the Adams model for low and high
speed tests on low severity washboard track.
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Figure 4.18: Ground displacement inputs given to the Adams model for low and high
speed tests on high severity washboard track.
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Figure 4.19: Results of low speed test on low severity washboard track.
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ÿ
3
(m

/
se
c2
)

 

 
Simulation Testing

0 1 2 3 4 5
−50

−25

0

25

50

Time (sec)

ÿ
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Figure 4.20: Results of high speed test on low severity washboard track.
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ẍ
4
(m

/
se
c2
)

 

 
Simulation Testing

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

Time (sec)

ẍ
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ÿ
4
(m

/
se
c2
)

 

 
Simulation Testing

Figure 4.21: Results of low speed test on high severity washboard track.
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Figure 4.22: Results of high speed test on high severity washboard track.
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Herringbone track

In the herringbone track the sinusoidal bumps are inclined at an angle of 20 degrees

across the width of the track (see Figure 4.23).

Bumps angled at 20 degrees

4 m 

wide

Figure 4.23: Schematic layout of the herringbone track.

There are three herringbone tracks with low, medium, and high severity respec-

tively as shown in Figure 4.24.

Figure 4.24: Low severity (left), medium severity (middle) and high severity (right)
herringbone tracks respectively.

The vehicle test details are given in Table 4.6.

Speed Low severity Medium severity High severity

Low 9 kmph 21 kmph 14 kmph
High 14 kmph 25 kmph 19 kmph

Table 4.6: Test details on different herringbone tracks.
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The road inputs for the left and the right wheels are no longer identical. These

displacement inputs are calculated using the rigid tire-ground contact model (see

Equation 4.6) and subsequently given to the Adams model as shown in Figures 4.25

through 4.27.

In subsequent figures, where test results are compared against the Adams model,

accelerations of body points B1 through B4 are denoted by ẍ1(t) through ẍ4(t), and

the accelerations of wheel axle points A1 through A4 are denoted by ÿ1(t) through

ÿ4(t). The thicker lines show test data.

Figures 4.28 and 4.29 show the comparison of simulation and test results of low

and high speed tests on low severity herringbone track. The peak heights and the

peak widths match well on the whole. The left and right wheels no longer experience

identical inputs. Note that the time series measurements of all eight accelerometers

are presented for the same 5 seconds.The match is reasonably good.

Figures 4.30 and 4.31 shows the comparison of simulation and test results of low

and high speed tests on medium severity herringbone track. The peak widths match

reasonably well. We note that the peak heights of the left body points B1 and B3

are relatively less than the right body points B2 and B4. One possible reason for the

mismatch is that the medium severity herringbone track is not exactly straight but

it has a curvature (see Figure 4.24). Also, since the bumps do not hit the right and

left wheels simultaneously, there is no symmetry in the right and left-side responses

of the vehicle.

Figures 4.32 and 4.33 shows the comparison of simulation and test results of

low and high speed tests on high severity herringbone track. The match between

simulation and test results is poorest of all. The main reason for the mismatch, in

my opinion, is that on high severity tracks the rigid wheel-ground kinematic model is
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no longer accurate. The wheel displacements predicted by the model are relatively

higher than the actual wheel displacements because the tyre compliance plays a

role. Also, the suspension properties tend to deviate from the linear characteristics

as used in the Adams model.
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Figure 4.25: Ground displacement inputs given to the Adams model for low and high
speed tests on low severity herringbone track.
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Figure 4.26: Ground displacement inputs given to the Adams model for low and high
speed tests on medium severity herringbone track.
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Figure 4.27: Ground displacement inputs given to the Adams model for low and high
speed tests on high severity herringbone track.
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Figure 4.28: Results of low speed test on low severity herringbone track.
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ẍ
2
(m

/
se
c2
)

 

 
Simulation Testing

0 1 2 3 4 5
−4

−2

0

2

4

Time (sec)

ẍ
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Figure 4.29: Results of high speed test on low severity herringbone track.
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Figure 4.30: Results of low speed test on medium severity herringbone track.
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Figure 4.31: Results of high speed test on medium severity herringbone track.
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Figure 4.32: Results of low speed test on high severity herringbone track.
124



0 0.2 0.4 0.6 0.8 1
−16

−8

0

8

16

Time (sec)

A
cc

el
er

at
io

n
s 

at
 B

i (
m

/s
ec

2
)

 

 
B

1
B

2
B

3
B

4

0 0.2 0.4 0.6 0.8 1
−36

−24

−12

0

12

24

36

48

60

Time (sec)

A
cc

el
er

at
io

n
s 

at
 A

i (
m

/s
ec

2
)

 

 
A

1
A

2
A

3
A

4

          Adams simulation results

Body point accelerations         Axle point accelerations

Comparison of test results with Adams simulations

−6

−4

−2

0

2

4

6

ẍ
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ẍ
3
(m

/
se
c2
)

 

 
Simulation Testing

0 1 2 3 4
−12
−8
−4

0
4
8

12
16

Time (sec)

ẍ
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Figure 4.33: Results of high speed test on high severity herringbone track.
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Chassis twist track

The chassis twist track is a 4 m wide track. The left and right track ends are

sinusoids that are separated in phase by π radians, i.e., the peak at the left end and

the valley at the right end occur at the same longitudinal position of the road. The

track surface is prepared by the linear interpolation of these two end profiles (ruled

patch [82]). The track schematic is shown in Figure 4.34.
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Sinusoidal right track
(shifted by π radians)

Sinusoidal left track

Figure 4.34: Schematic layout of the twist track.

There are three chassis twist tracks of different amplitudes and wavelengths as

shown in Figure 4.35. The test details are given in Table 4.7.

Figure 4.35: Low severity (left), medium severity (middle) and high severity (right) chassis
twist test tracks respectively.
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Speed Low severity Medium severity High severity

Low 7.5 kmph 6.5 kmph 5.5 kmph

High 15.5 kmph 21.5 kmph 14.5 kmph

Table 4.7: Details of vehicle testing on different chassis twist tracks.

The vehicle is driven at the left side of the track and the corresponding road

inputs given to the Adams model are shown in Figures 4.37 through 4.39.

In subsequent figures, where test results are compared against the Adams model,

accelerations of body points B1 through B4 are denoted by ẍ1(t) through ẍ4(t), and

the accelerations of wheel axle points A1 through A4 are denoted by ÿ1(t) through

ÿ4(t). The thicker lines show test data.

Figures 4.40, 4.42 and 4.44 show the comparison of simulation and test results

of low speed test on low, medium and high severity chassis twist tracks. The peak

heights and the peak widths match but there is a high frequency response in addition

to the main low frequency response in all of these three tracks. The underlying source

of this frequency component of around 10 Hz may be the CVT (continuously varying

transmission).

The reason behind this speculation is that the vehicle speed on all of these three

tracks is in the range of 5-7 kmph. The high frequency response is approximately

at 10 Hz. The engine runs approximately at 1800 rpm. The CVT was used with a

reduction ratio of 3, i.e., 600 rpm or 10 Hz.

Figures 4.41 and 4.43 show the simulation and test results of high speed tests on

low and medium severity twist track. The peak heights and the peak widths match

reasonably well.

127



Figure 4.36: Briggs and Stratton engine coupled with a CVT. Image source: Vehicle
design report [71].

Figure 4.45 shows the simulation and test results of high speed tests on high

severity twist track. The peak heights and the peak widths roughly match but here

also tyre compliance plays a role (recall Figure 4.9(a)). Moreover in this track the

suspensions behave nonlinearly as the input displacement amplitude is 200 mm.
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Figure 4.40: Results of low speed test on low severity chassis twist track.
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Figure 4.37: Ground displacement inputs given to the Adams model for low and high
speed tests on low severity twist track respectively.
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Figure 4.38: Ground displacement inputs given to the Adams model for low and high
speed tests on medium severity twist track respectively.
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Figure 4.39: Ground displacement inputs given to the Adams model for low and high
speed tests on high severity twist track respectively.
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ẍ
4
(m

/s
ec

2
)

 

 
Simulation Testing

−25

−12.5

0

12.5

25
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Figure 4.41: Results of high speed test on low severity chassis twist track.
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ẍ
3
(m

/s
ec

2
)

 

 
Simulation Testing

0 2 4 6 8 10
−1.5

−0.75

0

0.75

1.5

Time (sec)

ẍ
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Figure 4.42: Results of low speed test on medium severity chassis twist track.
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ẍ
4
(m

/
se
c2
)

 

 
Simulation Testing

−34

−17

0

17

34

ÿ
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Figure 4.43: Results of high speed test on medium severity chassis twist track.
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Figure 4.44: Results of low speed test on high severity chassis twist track.
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Figure 4.45: Results of high speed test on high severity chassis twist track.
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One-sided washboard track

We now present the results for a test on washboard track where the ground excitation

acts only on the left wheels. There are two one sided washboard tracks with low

severity and high severity as shown in Figure 4.46. The vehicle tests were performed

on these two tracks at speeds on 7 kmph and 13 kmph respectively.

Figure 4.46: Low (left) and high severity (right) one-sided washboard tracks.

The road inputs given to the Adams model are shown in Figure 4.47.

In subsequent figures, where test results are compared against the Adams model,

accelerations of body points B1 through B4 are denoted by ẍ1(t) through ẍ4(t), and

the accelerations of wheel axle points A1 through A4 are denoted by ÿ1(t) through

ÿ4(t). The thicker lines show test data.

In this track there is a substantial mismatch between the Adams simulation

results and test track measurements. It is because of the limitations of the Adams

model.

In this track the vehicle suffers rocking motions. The vehicle mass is 220 kg

while the driver weight is 75 kg. In this types of vehicle, driver inertia plays an
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important role which is not adequately captured in Adams model. Moreover the

driver provides a resistance to the vehicle rocking motion and there is a coupling

between driver and seat and driver and steering wheel which provides a torsional

stiffness which is not present in the Adams model.

This kind of modeling can be done as a part of future research work.
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on low and high severity one-sided washboard track respectively.
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Figure 4.48: Results of low speed test on low severity one-sided washboard track.
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Figure 4.49: Results of low speed test on high severity one-sided washboard track.
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Belgian pave track: stochastic model

The Belgian pave track is often used to evaluate vehicle ride comfort when traversing

over random terrains [83]. Its surface is made up of cobbles firmly cemented together;

see Figure 4.50.

Figure 4.50: Vehicle testing at Belgian pave test track.

The track width is 4 m. The elevations of different track points are measured at

intervals of 150 mm in longitudinal and 250 mm in lateral directions, providing 16

sets of measurement data. The data was provided to me by NATRiP.

Such road profiles are often characterized by their power spectral density (PSD)7

[84]. From the 16 sets of road elevation data, the displacement PSDs have been

obtained using the pwelch function in Matlab. In order to model the pave track,

the ISO 8608 road model is used [85]. It uses a two parameter spectrum to generate

a road profile Z(x) given by

SZ(Ω) = C

(
Ω

Ω0

)−w

, (4.7)

7PSD is the square of the elevation of road points distributed over wave number (cycles/m).
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where Ω is the spatial angular frequency, Ω0 = 1 rad/m, degree of unevenness C,

and waviness w are fitting parameters. These parameters were fitted from the 16

road PSDs and are reported in Table 4.8.

C w

6.7e− 4 1.36

Table 4.8: Fitting parameters of the ISO 8608 road model

The displacements corresponding to this road profile were applied to the four

ground wheel contact points Xi (see Figure 4.7).

The vehicle test is conducted on the pave track at a speed of 12 kmph and results

are shown in Figure 4.51.
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Figure 4.51: Test results for vehicle testing on pave track.
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The Adams simulation results for the acceleration responses of front left and

rear left body points B1 and B3 are compared with the test results in the frequency

domain in Figure 4.52. The Adams model matches the test data quite well for

frequencies upto 10 Hz.
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Figure 4.52: Comparison of acceleration FFT magnitudes at body points B1 and B3.

4.3.2 Tracks requiring full vehicle simulation

We now consider tracks that are rougher and cannot be described by using simple

expressions. A full vehicle model developed earlier in Section 4.1 is to be used for

simulation and meshed models of some of the tracks need to be prepared. These

tracks are discussed below.

Rough road track

The rough road track is used for evaluating the rough terrain mobility and structural

endurance of all-terrain vehicles. This track is primarily used to test the durability

of chassis, suspension, steering, axles, differential locks, mountings, etc. under accel-

erated conditions. Sometimes this track is also used to find the relative movement

between chassis and wheels to evaluate the vehicle ride comfort.
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Figure 4.53: Left: rough road track. Right: Vehicle on rough road track.

In Figure 4.53 the track may appear smooth; but the RMS values of the dis-

placement of this track is even higher than the RMS values of Belgian pave track.

A meshed model of the track was prepared, and for the test result correlation a

full vehicle Adams model was used. From the road profile measurements8, a meshed

model of the road was prepared in Nastran and the corresponding road data file was

used in Adams (see Figure 4.54).

The road surface is defined by specifying z values corresponding to nodes on

a triangular mesh. The road surface was modeled using Autodesk Inventorr (see

Figure 4.55(a)) and transferred to Nastran which in turn generated a road data file

to be used for full vehicle simulation in Adams as shown in Figure 4.55(b).

8The elevations of all road points were measured in a grid size of 150mm×250mm for the entire
rough road track.
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Figure 4.54: Left: 3D mesh definition in Adams. Right: Portion of rough road data file.

Figure 4.55: (a) Rough road surface modeling in Autodesk Inventor; (b) Simulation of
vehicle running on rough road track in Adams Car.

The simulation results and the test results are not shown on the same plot

because of the random-like nature of inputs. Instead qualitative aspects of the data

like peak width, heights, and variability are compared visually. The vehicle test is
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performed at a speed of 15 kmph. The simulation and test results for body point

and axle point accelerations are compared in Figure 4.56 and 4.57.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2

−1

0

1

2

3

4

Time (sec)

 

 

−4

−2

0

2

4

6  

x
3
 (

m
/s

ec
2
)

¨ x
4
 (

m
/s

ec
2
)

¨
x

2
 (

m
/s

ec
2
)

¨x
1
 (

m
/s

ec
2
)

¨

−4.5

−3

0

1.5

3

4.5

6  

−1.5

 −4

−2

0

2

 4

  6

A
cc

el
er

at
io

n
 a

t 
B

3 
(m

/s
ec

2 )
A

cc
el

er
at

io
n
 a

t 
B

1 
(m

/s
ec

2 )

A
cc

el
er

at
io

n
 a

t 
B

2 
(m

/s
ec

2 )
A

cc
el

er
at

io
n
 a

t 
B

4 
(m

/s
ec

2 )

−2

0

2

 4

  6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2

−1

0

1

2

3

4

Time (sec)

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2

−1

0

1

2

3

4

Time (sec)

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2

−1

0

1

2

3

4

Time (sec)

 

 

 −4

Figure 4.56: Comparison of simulation (top) and test results (bottom) of vehicle testing
on rough road track.
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Figure 4.57: Comparison of simulation (top) and test results (bottom) of vehicle testing
on rough road track.

From the simulation and test results it is observed that, roughly speaking, the

peak heights, the statistical fluctuations, and the typical spacings between different

peaks are quite similar. To this extent the vehicle response on rough road track

is reasonably captured by the full vehicle Adams model with no change in model

parameters.
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Cobblestone track

This track is used for performing the accelerated durability testing, in order to access

the fatigue life of a vehicle’s suspension by performing repeated tests under standard

conditions. It consists of different types of stones embedded in the pavement at

predetermined locations (see Figure 4.58).

Figure 4.58: Left: cobblestone track. Right: Vehicle running on cobblestone track.

As was done for the rough road track, here also the road surface was modeled

using Autodesk Inventorr (see Figure 4.59), is subsequently meshed using “tria” (tri-

angular) elements in Nastran, and the generated road data file was used in Adams.
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Figure 4.59: Top: Dimension details of different types of stones used in the cobblestone
track. Bottom: Cobblestone track modeled in Autodesk Inventor.

For the cobblestone track, too, a full vehicle model in Adams is used for test

correlation (see Figure 4.60).

Figure 4.60: (a) simulation of vehicle running on cobblestone track in Adams Car; (b)
zoomed-in wireframe image showing the road mesh.

The vehicle test is performed at a speed of 25 kmph. The simulation and test

results are compared in Figures 4.61 and 4.62.
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Figure 4.61: Comparison of simulation (top) and test (bottom) results for vehicle running
on cobblestone track.
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Figure 4.62: Comparison of simulation (top) and test (bottom) results for vehicle running
on cobblestone track.

By comparing the simulation and field test results it has been observed that,

roughly speaking, the peak heights, the statistical fluctuations and the typical spac-

ings between different peaks are similar. To this extent the vehicle response on

cobblestone track is reasonably captured by the full vehicle Adams model with no

change in model parameters.
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Sine sweep track

This is a sinusoidal track with varying wavelength. The wavelength changes from

400 mm to 600 mm in 24 meters (see Figure 4.63).

Figure 4.63: Left: sinesweep track (the decreasing wavelength is visible); Right: vehicle
on the sinesweep track.

The idea behind frequency sweep testing is to excite a vehicle, driven at con-

stant speed, with increasing (or decreasing) frequency. It excites the vehicle with a

specified frequency sweep to detect and solve squeak and rattle (S & R) issues.

The vehicle test is conducted at a speed of 10.5 kmph. The sine-sweep track

has been prepared using the 3D road builder interface in Adams Car [86]. The full

vehicle model is used for simulation (see Figure 4.64).

Figure 4.64: Vehicle running on sine-sweep track in Adams Car.
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The test results are compared against the Adams model in Figure 4.65.
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Figure 4.65: Results of vehicle testing on sine sweep track.

The full vehicle model reasonably matches the field test results with the peak

heights matching and the peak widths comparable. The modulation in the amplitude

of the response is reasonable captured as well.
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4.3.3 Other tests conducted at SGSITS, Indore

Some other tests, not requiring test tracks, were conducted at SGSITS¡ Indore with

help from students of that institute9.

Half sine bump

The vehicle is driven over a bump of length 1000 mm and amplitude 200 mm (see

Figure 4.66).

Figure 4.66: Left: bump dimensions. Right: vehicle traversing over the bump.

The full vehicle simulation was performed in Adams Car as shown in Figure 4.67.

Figure 4.67: Full vehicle simulation on half sine bump track.

9Mr. Amit Singh helped in preparing test conditions and Mr. Jap Pratap drove the vehicle.
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Two tests were conducted at 7 kmph and 15 kmph respectively. The test results

are shown in Figures 4.68 and 4.69. It is seen that for this transient case, the

qualitative match is excellent and the quantitative match is reasonable.
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Figure 4.68: Results of vehicle testing on half sine bump track (speed 7 kmph).
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Figure 4.69: Results of vehicle testing on half sine bump track (speed 15 kmph).

Single sided half sine bump track

This test is same as the half sine bump track but here only the right wheels go over

the bump (see Figure 4.70). Two tests are conducted at speeds 5 kmph and 12

kmph. The test results are shown in Figures 4.72 and 4.73.

155



Figure 4.70: (a) Right wheels traversing over the bump; (b) vehicle simulation in Adams.

Step bump track

In this test the vehicle traverses over a sharp step bump (see Figure 4.71). The

bump height is 80 mm and width is 200 mm. The vehicle test is conducted at 15

kmph. The test results are shown in Figure 4.74.

Figure 4.71: (a) Bump dimensions; (b) vehicle testing; (c) Adams simulation.

Again in Figures 4.72, 4.73 and 4.74 it is seen that, the qualitative match is

excellent and the quantitative match is reasonable.
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Figure 4.72: Results of vehicle testing on half sine single bump track (speed 5 kmph).
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Figure 4.73: Results of vehicle testing on half sine single bump track (speed 12 kmph).
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Figure 4.74: Results of vehicle testing on step bump track (speed 15 kmph).

This completes the vehicle testing and Adams model validation portion of this

thesis. The test data acquired is also used to develop a reduced order Laplace domain

model of the vehicle in the succeeding chapter.
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4.4 Concluding remarks

A partial validation of the Adams model for an ATV against the field test results, was

presented in this chapter. Such a simplified model is able to capture the essential

vertical suspension dynamic characteristics. The present approach of using test

track data to partially validate the model is a practical contribution presenting an

inexpensive option that nevertheless provides useful information and insights. It

gives the user an alternative approach for situations where a conventional four post

test setup is not available. The simulation results match the experimental results

reasonably well for several tests spanning a wide range of operating conditions.

In some of the tests, there is a mismatch between the Adams model results and

field test measurements, essentially because of the limitations of the Adams model.

Some possible reasons for the mismatch are listed below.

1. The displacement inputs used in simulations are possibly smoother than the

actual wheel displacements because of small-scale roughness on the road sur-

face.

2. When the vehicle moves on the track, there are longitudinal accelerations.

These accelerations cause pitching oscillations which cause vertical accelera-

tions in the frame, and these oscillations are not captured by the Adams model

with purely vertical base excitations.

3. The forward speed of the manually driven vehicle does show some variation,

which leads low frequency modulation in the response, not captured in the

Adams simulation.

4. The vehicle does not have a differential, so wheel slip may occur on uneven
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tracks. In the Adams model, the displacements given to the wheel contact

points Ci are calculated from idealized theory with no wheel slip.

5. The test tracks are curved at many places (see Figure 4.75). This causes lateral

dynamics and wheel slip.

Figure 4.75: Certain cases when the track geometry is not straight.

6. On the one-sided washboard tracks, the vehicle undergoes rocking motions.

In the actual field test there is a torsional coupling between the driver, seat

and the steering wheel, which affects vehicle rocking motions. This aspect is

absent from the Adams model.

7. One possible cause of high frequency vibrations is transmission coupling, which

is not modeled in Adams at all.

8. The shifting location of actual groung-wheel contact was not modeled.
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9. In the real vehicle there are other unmodeled effects like backlash, loose joints,

nonlinearity, etc. which are absent from the Adams model.

Nevertheless, the overall good match of the axle point accelerations suggest that

the wheel compliance and damping is reasonably captured by the model; and the

degree of match obtained in the body point acceleration suggests that the Adams

model reasonably captures the effects of mass distribution, inertia effects, other

wheel effects, frame flexibility and damping.

Our simplified Adams model will be used in the succeeding chapter to get initial

estimates of system natural frequency and damping in a Laplace domain reduced

order model of the vehicle.
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Chapter 5

Laplace domain model
development using test track data

Detailed field testing of an all terrain vehicle was described in the preceding chap-

ter. Using the same field-test measurement data, a Laplace domain reduced order

model of the vehicle will be developed in this chapter. This model is similar to the

generalized quarter car model developed earlier in Chapter 2, and may therefore be

viewed as a partial experimental implementation of the same ideas. While develop-

ing the generalized quarter car model in Chapter 2, it was pointed out that either a

mathematical model of the vehicle or the actual vehicle prototype can be used. The

latter option is investigated here.

5.1 Introduction

The proposed modeling approach is discussed using a flow chart in Figure 5.1.

The individual blocks of the flow chart are described below.

To begin with, the test data is obtained from field testing as described in the

preceding chapter, in 1© of Figure 5.1.
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From each vehicle test, eight simultaneous responses corresponding to the vertical

accelerations at wheel axles Ai’s and suspension to body attachment points Bi’s are

obtained. All effects of the car’s frame flexibility, mass distribution and the four

ground contacts are implicitly included in these measured responses. The intention

now is to obtain a useful transfer function matrix for the vertical response of the

vehicle using this test data. To this end, Fast Fourier Transforms (FFTs) are used to

transform the time domain acceleration data to the frequency domain as indicated

in 2©. The FFTs are then approximated by an eighth order, strictly proper, transfer

function matrix H(s) in 3©. This H(s) represents the dynamics of the car body, and

the suspension is to be modeled separately (see section 5.3 in Chapter 5). Using

H(s), a new transfer function matrix with suspension properties treated as free

adjustable parameters is obtained in step 4©, which facilitates subsequent parameter

studies without repeated vehicle testing. Finally, the wheel’s unsprung mass model

is incorporated to obtain a transfer function matrix between ground-excitation at Ci

and body displacements at Bi in step 5©. This last part of the formulation follows

Chapter 2 closely and may be viewed as an implementation of the same.

Details of the abovementioned experimental work follow.

5.2 Test data

The test data from continuous displacement tracks will be used for model devel-

opment. A total of 18 vehicle tests were performed on different sinusoidal tracks

as reported in Table 5.1. These tests were performed at different speeds. The test

speeds were selected so that the full set of test conditions covers a broad range of

frequencies.

165



Track Speed Low severity Medium severity High severity

Washboard Low 7.5 - 11

High 9.5 - 13

Herringbone Low 9 21 14

Medium 14 25 19

Chassis twist Low 7.5 6.5 5.5

High 15.5 21.5 14.5

One-side washboard Low 7 - 13

Table 5.1: Speed details of vehicle testing on various tracks. All speeds are in kmph1.

Since there are variations in speed and other effects as described in the previous

chapter, the actual frequency content is rich (for instance, see Figure 5.2).
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Figure 5.2: Time and frequency domain respresentations of the acceleration response of
body point B1 for a low speed test on low severity washboard track.

Over 18 test conditions, as will be seen, enough data is available for useful model

1The vehicle is driven on the tracks at “low” and “high” speeds. These are qualitative and im-
precise labels based on perception, and the reader should look at the absolute numerical quantities
for precise information.
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development.

The vertical accelerations of points Bi’s and Ai’s were obtained from each ve-

hicle test. Next, these time domain acceleration responses (ẍi(t) and ÿi(t)) were

transformed to the frequency domain responses (Ẍi(f) and Ÿi(f)) by taking the

fast Fourier transforms (FFTs)2. The vertical acceleration data was recorded at a

sampling frequency of 100 Hz, therefore the frequency content of the FFT signals

ranged over 0-50 Hz. Subsequently, digital filtering was done to cut off frequencies

above 30 Hz.

The frequency domain responses are vertically stacked to obtain eight big column

vectors Ẍi(f) and Ÿi(f) containing the accelerations at points Bi and Ai from all

eighteen vehicle tests given by

Ẍ1(f) =




Ẍ1(f)
1

Ẍ1(f)
2

...

Ẍ1(f)
18




, Ẍ2(f) =




Ẍ2(f)
1

Ẍ2(f)
2

...

Ẍ2(f)
18




, . . . , Ẍ4(f) =




Ẍ4(f)
1

Ẍ4(f)
2

...

Ẍ4(f)
18




.

Ÿ1(f) =




Ÿ1(f)
1

Ÿ1(f)
2

...

Ÿ1(f)
18




, Ÿ2(f) =




Ÿ2(f)
1

Ÿ2(f)
2

...

Ÿ2(f)
18




, . . . , Ÿ4(f) =




Ÿ4(f)
1

Ÿ4(f)
2

...

Ÿ4(f)
18




.

For each vehicle test, time domain data of 10.24 seconds is used to compute the

FFTs. As the sampling frequency is 100 Hz, there are 1024 data points, and there

will be 512 points in the one-sided FFT. Each time domain acceleration response can

2For obtaining the fast Fourier transforms, Matlab’s built-in routine fft was used.
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be reconstructed by 512 pure sinusoids whose magnitude and phase are computed

by the fft command in Matlab and the frequencies range from 0-50 Hz in steps of

50/512= 0.098 Hz. The size of all of the above column vectors containing eighteen

test responses is 18N × 1, where N = 512.

From the above column vectors, two combined matrices representing the fre-

quency domain acceleration response Ẍ(f) of all body points Bi and the frequency

domain acceleration response Ÿ (f) of all axle points Ai were obtained as

Ẍ(f) =




Ẍ1(f)

Ẍ2(f)

Ẍ3(f)

Ẍ4(f)




72N×1

; Ÿ (f) =




Ÿ1(f)

Ÿ2(f)

Ÿ3(f)

Ÿ4(f)




72N×1

(5.1)

It may be noted that the FFT of ẍ, written here as Ẍ(f), is nothing but −ω2 times

the FFT of x, i.e., −(2πf)2X(f). So X(f) can be found, if needed, from the FFT

of ẍ by dividing by −4π2f 2. A Laplace domain reduced order model of the vehicle

is obtained from these test data, as follows.

5.3 Vehicle transfer function

In the present study Laplace transforms are used, essentially interchangeably, with

the fast Fourier transforms (FFTs) of the measured time domain acceleration re-

sponses. The fast Fourier transforms (FFTs) can be thought of as Laplace trans-

forms evaluated at ‘s = jω’ (imaginary) axis, as will be clearer soon when the actual

matrix equations are written down. The frequency will range from zero to half of

the sampling frequency, i.e., ωrange = 0− 50 Hz.
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In principle, there are 4 accelerations at body points Bi, whose Laplace trans-

forms can be arranged in a 4× 1 matrix

s2{X(s)}

where the scalar premultiplier s2 should be dropped when we are interested in

displacements rather than accelerations.

Similarly, there are 4 accelerations at axle points Ai, arranged in a 4× 1 matrix

s2{Y (s)}.

The accelerations of Ai determine the accelerations at Bi (in the absence of any

other forcing on the system). Assuming a 4× 4 transfer function matrix, we write

s2X(s) = H(s)
(
s2Y (s)

)
. (5.2)

Now we note that if we insert s = iω in s2X(s) and s2Y (s), then we obtain the

Fourier transforms, Ẍ(ω) and Ÿ (ω), each a 4×1 matrix dependent on ω. With some

abuse of notation, when we use frequency f instead of angular frequency ω = 2πf ,

we will simply write Ẍ(f) and Ÿ (f) to avoid proliferation of symbols.

The next step is to choose a mathematical form for the elements of H(s). H(s)

is symmetric from theory (see Chapter 2) and also has other symmetries due to

lateral symmetry of the prototype vehicle. So it has 6 independent elements, namely

H11(s), H12(s), H13(s), H14(s), H33(s) and H34(s).

Each of these 6 elements is assumed to be well described by an 8th order transfer
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function (with different numerator and identical denominator coefficients):

Hij(s) =

7∑
k=0

cks
k

4∏
n=1

(s2 + 2ζnωns+ ω2
n)

(5.3)

We repeat that the c’s are different for each element Hij.

5.4 Model fitting

The transfer function model is to be fitted using the test data. The coefficients of

the numerator of the transfer function are found by linear least squares and the

denominator coefficients are obtained by nonlinear optimization. In each fitting

iteration the loop below is traversed (see Figure 5.3), and the error norm is reduced

iteratively to get a better fit.

Initial guesses
ζ’s

ω’s

Least squares

c’s

Error norm E

Linear fitting

Non-linear adjustment

Figure 5.3: Iteration loop used to determine numerator coefficients using linear least
squares, and denominator coefficients using nonlinear adjustment.

The procedure to obtain a reduced order model is now discussed in further detail

using block 3© in the flow chart of Figure 5.1.

To begin, guessed or estimated values3 of vehicle natural frequencies ωi and

damping ratios ζi are assigned in step (A) of 3© in Figure 5.1 These serve the same

3These initial values were themselves estimated from some simple calculations described in
Appendix D.1.
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purpose as the decaying exponentials used earlier in Chapter 2.

Given these initial estimates the coefficients di of the denominator of the transfer

function matrix are obtained from the identity

8∑

i=0

dis
i =

4∏

n=1

(s2 + 2ζnωns+ ω2
n) (5.4)

Note here that di for all elements Hij(s) of the transfer function matrix H(s) are

the same. Using the denominator coefficients along with candidate numerator co-

efficients ci (to be determined by a linear least square calculation very soon), the

individual transfer function elements Hij(s) are formulated in (B) and the transfer

function matrix H(s) is assembled in (C).

The ci are determined as follows.

1. As H(s) is symmetric and the vehicle has left-right symmetry, only 6 scalar

transfer functions define H(s) in (C). Equation (5.2) can be rewritten as:




X1(s)

X2(s)

X3(s)

X4(s)




︸ ︷︷ ︸
M(s)

=




Y1(s) Y2(s) Y3(s) Y4(s) 0 0

Y2(s) Y1(s) Y4(s) Y3(s) 0 0

0 0 Y1(s) Y2(s) Y3(s) Y4(s)

0 0 Y2(s) Y1(s) Y4(s) Y3(s)




︸ ︷︷ ︸
N(s)




H11(s)

H12(s)

H13(s)

H14(s)

H33(s)

H34(s)




(5.5)

where the left hand side matrix M(s) represents measured body point re-

sponses and the right hand side big matrix N(s) represents measured axle-

point responses. The right-most column vector consists of the six represen-

tative scalar transfer functions Hij(s) which includes specified ζ’s and ω’s as
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well as numerator coefficients cij to be determined.

2. Multiplying the left hand side of Equation (5.5) with the known common de-

nominator of the transfer function we obtain

[
M(s)

]

72N×1

(
4∏

n=1

(s2 + 2ζnωns+ ω2
n)

)
=

[
N(s)

]

72N×6




7∑
k=0

c1ks
k

7∑
k=0

c2ks
k

...
7∑

k=0

c6ks
k




6×1

(5.6)

3. In Equation (5.6), s can be replaced with iω, and then M(s) and N(s) will

contain known FFT data for a given frequency.

[
M(iω)

]( 4∏

n=1

(iω)2 + 2ζnωn(iω) + ω2
n

)

︸ ︷︷ ︸
[B]72×1

=

[
N(iω) N(iω)iω N(iω)(iω)2 · · · N(iω)(iω)7

]

︸ ︷︷ ︸
[A]72×48








c10

c11

· · ·

c17





...




c60

c61

· · ·

c67








︸ ︷︷ ︸
[C]48×1

(5.7)

Note that in Equation (5.7) above the 48 elements of [C], i.e., cij are (i) from

6 sets of 8 coefficients each and (ii) frequency independent.
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4. All such matrix equations are vertically stacked for all frequencies, and Equa-

tion (5.7) turns into the following matrix equation governing our data and

fitted model.

[B̄]72N×1 = [Ā]72N×48[C]48×1 (5.8)

5. Since the numerator coefficients of the transfer function are real numbers,

the real and imaginary parts of the above complex matrices [Ā] and [B̄] are

separated and to obtain




Re([B̄])

Im([B̄])




︸ ︷︷ ︸
[B]144N×1

=




Re([Ā])

Im([Ā])




︸ ︷︷ ︸
[A]144N×48








c10

c11

· · ·

c17





...




c60

c61

· · ·

c67








︸ ︷︷ ︸
[C]48×1

(5.9)

The overall sizes of [A] and [B] matrices are 73728× 48 and 73728× 1.

6. Finally the above equation containing the acceleration data from all tests is

solved in a least square sense in step (D) of the flow chart to obtain the
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numerator coefficient matrix [C] as

[C] = [cij ] = (ATA)−1ATB. (5.10)

Actually, in Matlab we use A\B.

Next, these coefficients are used in step (B) to obtain an error norm ε. The

model responses s2X(s) for inputs s2Y (s) are compared with the test responses in

step (E) to find the total sum of squares error norm between the model and field

test responses.

Finally, the error norm ε is adjusted by posing a nonlinear minimization problem

in Matlab using fminsearch, to obtain the new guesses for the originally guessed

parameters ζ’s and ω’s to be used in step (A). This iteration is continued by

fminsearch until satisfactory convergence. The entire process takes a few hours

on an ordinary desktop PC.

Final values of ζ’s and ω’s obtained via fminsearch are given in Table 5.2.

Identifier Mode Mode Mode Mode

1 2 3 4

f (Hz) 2.37 4.92 10.41 27.46

ζ 0.31 0.33 0.18 0.73

Table 5.2: Final values of ω’s and ζ’s obtained from fminsearch.

From the values of the numerator coefficients and the refined values of the system

natural frequencies and damping ratios, the six transfer functions Hij(s) are finally

obtained and assembled to get the transfer function matrix H(s).

The expressions for these transfer functions are given in Appendix D.2.1. The
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magnitude plots of the transfer functions Hij(s) are shown in Figure 5.4.

H(s) =




H11(s) H12(s) H13(s) H14(s)

H12(s) H11(s) H14(s) H13(s)

H13(s) H14(s) H33(s) H34(s)

H14(s) H13(s) H34(s) H33(s)



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Figure 5.4: Magnitude plots of six transfer functions Hij(s) which are assembled to build
the transfer function matrix.

The accelerations at Ai’s are inputs to the model. These are pre-multiplied by

H(s) to get the model response, i.e., accelerations at Bi’s. The transfer functions

have eight complex poles (a modeling decision). A discussion of the modes corre-

sponding to these poles and the reasoning used to select the initial guesses for the

ζ’s and ω’s is discussed in Appendix D.1.
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5.5 Model validation

For comparing the model response and the test response the test data is filtered using

designfilt command in Matlab. The cut off frequency is set to 30 Hz. Model and

test responses are compared for all four tracks selected for study (see Table 5.1),

with eighteen tests in all.

Since the reasonable success of the Adams model in the previous chapter leads

us to expect a reasonable match between test and simulation in this chapter as well,

we list the various figures below which show graphical results, and then present a

brief consolidated discussion at the end. The results are presented in the subsequent

figures in the following sequence.

5.5.1 Washboard track

The model response is compared against the test results in Figures 5.5 through 5.8.

5.5.2 Herringbone track

The model response is compared against the test results in Figures 5.9 through 5.14.

5.5.3 Chassis twist track

The model response is compared against the test results in Figures 5.15 through

5.20.

5.5.4 One sided washboard track

The model response is compared against the test results in Figures 5.21 and 5.22.
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Ẍ
4
(f
)

 

 

Testing Model Testing Model

Testing Model Testing Model

F
igu

re
5.7:

R
esu

lts
of

low
sp
eed

test
on

h
igh

-severity
w
ash

b
oard

track
.

179



0

2

4

6

8

10
Ẍ
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5.5.5 Discussion of test results

The model and test responses match reasonably well for all vehicle tests. It is

emphasized that the plotted quantity is not the magnitude of an element of the

transfer function matrix against frequency. Rather, measured axle accelerometer

inputs are used by the model to predict body point accelerations, and the FFTs of

those predicted quantities are compared to the FFTs of measured accelerations.

1. Washboard track:

Four vehicle tests were performed at low and high speeds on the washboard

track. The model fits all the four tests well. The peak heights in the FFTs are

captured and the peak locations match. As a reduced order model is developed,

the model responses do not match well beyond 15 Hz, but the working range

of vehicle suspensions is also limited to about that same frequency.

2. Herringbone track:

In this track the left and right wheel excitations were different and for high

speed herringbone tests, the time domain responses obtained from the Adams

model do not match the time series acceleration measurements well. However,

in the frequency domain the match is quite good as some of the limitations of

Adams model do not appear here.

3. Chassis twist track:

In the time domain acceleration measurements there was a high frequency

response in addition to the main low frequency response see section 4.35 in

Chapter 4. The high frequency response was not captured by the Adams

model as in the Adams model the excitation is only from ground (forcing due

to engine and driveline vibrations do not appear), but in the frequency domain
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the match appears satisfactory. However, if indeed there was a significant

∼ 10 Hz effect from the transmission, then the Laplace domain match for this

frequency may be misleading. This question, though acknowledged here, is

left for resolution to future work on similar vehicles.

4. One-sided washboard track:

In this track vehicle suffers rocking motions as the ground excitations are acting

only on the left wheels. The vehicle used for study did not have a differential

which leads to unequal wheel speeds. This difference of speeds was not modeled

in the simplified Adams model; also, there is a coupling between driver and

steering in the vehicle which was absent in the Adams model. Perhaps, as a

result there was substantial mismatch between simulation and test results in

the time domain. However, in the frequency domain the model fits the test

results well. This part of the improved fit (unlike item 3 above) is probably

reliable, because the chain of causality from ground excitation to body response

has not been violated.

Some of the FFT plots indicate frequency splitting (and side bands). There was

apparently a low frequency fluctuation in amplitude and phase of the measured wheel

accelerations. This could be due to a slight asymmetry in suspension parameters,

a somewhat weak excitation of a roll mode, or even an approximately periodic

fluctuation in the forward speed of the vehicle during testing. The last possibility

might explain the widening or apparent splitting of some FFT peaks. Such issues

may be investigated more closely in future work if the test conditions are more

tightly controlled.

We conclude that, overall, the model reasonably captures the vertical dynamics
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of the vehicle. Moreover, it is just an eighth order transfer function model as opposed

to a complicated multi-body dynamics Adams model.

So far, a transfer function matrix between accelerations or displacements from

Ai to Bi has been obtained. In the next section this transfer function matrix will

be used to obtain a more useful transfer function matrix Hn(s) between ground

excitations at Ci and displacements at Bi, retaining suspension properties as free

parameters.

5.6 Modified transfer function matrix Hn(s)

This section closely follows section 2.6 of Chapter 2. The main difference from section

2.6 of chapter 2 is that instead of forces at body points Bi we have displacements

inputs at the axle points Ai; we want to develop a new transfer function matrix in

terms of displacement inputs at ground contact points Ci.

To obtain H(s), vehicle testing was performed with a set of baseline suspension

properties. During subsequent suspension design iterations, it is impractical to build

new prototypes and conduct tests for every candidate design change. The aim here,

thus, is to obtain a more useful transfer function matrix Hf (s) which incorporates

the suspension properties as free parameters4. Note that while obtaining the transfer

function matrix H(s), the excitations at points Ai were considered, but in reality the

excitation comes from the ground at points Ci (see Figure 4.7). Therefore, Hf (s)

needs to be modified to determine a transfer function matrix Hn(s) between the

displacements at ground contact points Ci and body displacements at Bi.

Thus, there are two steps involved. In the first step, a transfer function matrix

4the subscript ‘f ’ denotes that the suspension properties are kept as free parameters.
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Hf (s) is obtained from H(s), and in the second step Hf (s) is used to obtain a

transfer function matrix Hn(s). These are discussed in the following subsections.

5.6.1 Incorporating suspension properties as free

parameters to obtain Hf(s)

We begin with the transfer function matrix H(s) as indicated in 1© in Figure 5.23.
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Figure 5.23: Steps involved in obtaining transfer function matrix Hf (s).

First detach the suspensions (spring-dashpots) from the vehicle body (see 2©)

and apply corresponding spring forces Fb(s) experienced by the suspension-to-body
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attachment points Bi as,

Fb(s) = −Do(s)
[
X(s)− Y (s)

]
, (5.11)

where Do(s) is a diagonal matrix (subscript “o” denotes old or baseline suspension

properties), given by

Do(s) =




Kfl + Cfls 0 0 0

0 Kfr + Cfrs 0 0

0 0 Krl + Crls 0

0 0 0 Krr + Crrs




, (5.12)

where Kfl, Kfr, Krl, Krr are the equivalent stiffnesses and Cfl, Cfr, Crl, Crr are the

corresponding damping coefficients of front left, front right, rear left and rear right

wheel-suspension assemblies respectively. The displacements of suspension-to-body

attachment points Xb(s) are written as

Xb(s) = Hb(s)Fb(s). (5.13)

In the above equation Hb(s) may be thought of as a body transfer function matrix

(forces to displacements, with suspensions removed). Since the suspension forces

are replaced exactly, and the displacements of the same points Bi are considered,

therefore in the above equation Xb(s) = X(s). Substituting Equation (5.11) in

(5.13) yields

X(s) = Hb(s)Do(s)
[
Y (s)−X(s)

]
. (5.14)
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From Equation (2.6), X(s) = H(s)Y (s), Equation (5.14) reduces to

H(s)Y (s) = Hb(s)Do(s)
[
I −H(s)

]
Y (s), (5.15)

whence, by the arbitrariness of Y (s), the above equation reduces to

Hb(s) = H(s)
[
I −H(s)

]−1

Do(s)
−1. (5.16)

Now the suspension properties of the front and rear suspensions will be changed

(design iteration). Since the vehicle body remains the same, therefore, Hb(s) remains

unchanged. The new suspension property matrix is represented by Dn(s) (see 3©

in Figure 5.23). With new suspensions the force acting at points Bi changes from

Fb(s) to F
n

b (s) indicated by 4© in Figure 5.23. The new set of displacements Xn(s)

are obtained as

Xn(s) = Hb(s)F
n

b (s), (5.17)

where F
n

b (s) = Dn(s) [Yn(s)−Xn(s)]. As similar to the old set of displacements

X(s) = H(s)Y (s) the new set of displacements Xn(s) are related to the forces by a

transfer function matrix Hf (s) as

Xn(s) = Hf (s)Y (s) (5.18)

Substituting Equation (5.18) in (5.17) gives

Hf (s)Y (s) = Hb(s)Dn(s)
[
Y (s)−Xn(s)

]
. (5.19)
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Simplifying above equation yields

Hf (s)Y (s) = Hb(s)Dn(s)
[
I −Hf (s)

]
Y (s). (5.20)

Again by the arbitrariness of Y (s) the above equation reduces to

Hf (s) = I −
[
I +Hb(s)Dn(s)

]−1

. (5.21)

5.6.2 Obtaining the modified transfer function matrix Hn(s)

Using Hf (s) the transfer function matrix from the displacement input U(s) at Ci

to the displacement output X(s) at Bi is obtained. For this purpose the unsprung

mass model developed in section 2.7 of chapter 2 is used.

The unsprung mass model is given by

Y (s) = A(s)Xn(s)− B(s)U(s). (5.22)

A(s) and B(s) are obtained from unsprung mass model properties (see Table 5.3).

Identifier Mu (unsprung) Kt (tyre) Ct (tyre)

Front 15 kg 40 N/mm 0.2 N-s/mm
Rear 12.5 kg 40 N/mm 0.2 N-s/mm

Table 5.3: Parameter values used in the unsprung mass compliance model. Note that
the unsprung mass is small compared to that of the car sprung mass; both front and rear
wheels are identical so the stiffness and damping are the same. Moreover ATV tyres use
low inflation pressures (in this vehicle an inflation pressure of 7 psi was used in all four
wheels) and as a result these tyres have low stiffness and high damping as compared to
the conventional bias-ply tyres.

By definition Xn(s) = Hn(s)U(s), and from Equation (5.21) finally the transfer
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function matrix Hn(s) can be obtained as

Hn(s) =
[
Hf (s)A(s)− I

]−1

Hf (s)B(s). (5.23)

This is the transfer function matrix from ground excitations U(s) at Ai to the

response X(s) at suspension to body attachment points Bi. It retains the effects of

frame flexibility, mass distribution and other wheel’s suspension.

To demonstrate a practical use of this model, a parametric study is performed

where both front and rear suspension stiffness is increased by 20% while the damping

is kept unchanged5. The equivalent suspension properties at the wheel for old and

new suspensions are reported in Table 5.4.

Identifier Kf Kr Cf Cr

Original 10.5 N/mm 6.5 N/mm 0.63 N-s/mm 0.59 N-s/mm

New 12.6 N/mm 7.8 N/mm 0.63 N-s/mm 0.59 N-s/mm

Table 5.4: Original and new equivalent suspension parameters.

The magnitude plots of the diagonal elements Hn,11(s) and Hn,33(s) of of the new

suspension are compared with that of the old suspensions in Figure 5.24.

5The suspension stiffness can be changed by changing the air pressure of the main air spring
chamber. For further details see [72, 73].
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Figure 5.24: Transfer function magnitude plots for old and new suspensions.

5.7 Model order reduction of the final transfer

function matrix Hn(s)

Initially four values of ω’s and ζ’s were chosen to obtain the reduced order vehicle

transfer function matrix H(s) (see Table 5.2). Each element of H(s) is an 8th order

transfer function. Next the suspension properties were changed to obtain a transfer

function matrix Hf (s) in Equation (5.21).

Subsequent matrix operations were performed on Hf (s) to incorporate an un-

sprung mass and wheel compliance to obtain the final transfer function matrixHn(s).

The matrix operations were performed symbolically in Matlab and as a result the

order of the transfer function increased from 8 to 44.

For practical work, the order of the transfer function can be reduced without
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sacrificing accuracy. For demonstration purpose the model order reduction of one

diagonal element of Hn(s), e.g., Hn,11(s) (for the front left wheel) will be done. Re-

duced order models of various orders were obtained using Matlab’s built-in function

balred6.

A comparison of these reduced order models is shown in Figure 5.25. The results

show that an 8th order approximation of the transfer function Hn,11(s) preserves the

model characteristics accurately.
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Figure 5.25: Transfer function magnitude plot comparisons of various reduced order
models with the full order model.

A similar exercise of model order reduction can be done for all six representative

elements (see Equation (5.5)) of the vehicle transfer function matrix Hn(s).

The advantage of this approach is that the suspension properties are kept as free

parameters. They can be varied and the response of the vehicle can be predicted

without repeated field testing.

6Options for matching the DC gain and phase should be used.
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5.8 Concluding remarks

In this chapter a Laplace domain model development approach from direct field

test measurements was demonstrated. The transfer function model was fitted to

predict the body points’ accelerations in response to measured wheel-axle accelera-

tions. This model was further extended to incorporate an unsprung mass model and

retain suspension properties as free parameters, thereby serving as an experimental

application of the theory developed in the first part of this work.

The model development requires very little instrumentation and minimal field

testing. It is a straightforward way to develop a detailed mathematical model which

incorporates vehicle mass, flexibility and damping effects, as well as the effects of

stationary ground contacts at other wheels. This approach can be directly used

for system identification where an Adams model (or other detailed mathematical

model) is not available.
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Chapter 6

Conclusions and future work

In this thesis, we have studied four different problems related to vehicle suspension

design. The following conclusions are derived from our work:

The vehicle dynamics research literature includes many studies of vehicle sus-

pensions under the quarter-car or half-car simplifications. A fairly simple way was

proposed for incorporating vehicle mass, flexibility and damping effects, as well as

the effects of stationary ground contacts at other wheels in Chapter 2.

Our approach is of intermediate complexity, between quarter-car or half-car mod-

els on the one hand and full-car models on the other. Some expected differences

between usual quarter-car model predictions and this more realistic approach can

be seen easily. In this model the usual suspension parameters are retained as free pa-

rameters to enable parametric optimization studies in the design stage. The model

can also be used for the analysis of wheel hop. It is in principle possible to incorpo-

rate non-linearities in the local-wheel suspension (where displacements are largest),

while retaining linear behavior at other locations.

Elastomers show frequency dependent behavior. In the literature, the mathe-

matical form of the empirical fits used have not been fully consistent with linear

systems theory. The present work has provided a new and useful contribution in

that direction.
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We have rationally derived two useful simple mathematical forms with just three

fitted parameters for modeling the suspension bushings in Chapter 3. In particu-

lar, we have ensured the consistency between (a) formulas based on causality, (b)

an asymptotic expansion for a regime with slow variations, (c) frequency domain

descriptions, and (d) the necessity of real coefficients in Laplace domain descrip-

tions. Experiments with aftermarket automotive bushings have shown that both

these mathematical forms can fit the data well. Of these, the modified power law

model has more complicated expressions, but fits the data slightly better than does

the logarithmic polynomial model.

It is acknowledged that, unlike some models which address very large frequency

ranges (e.g., [53, 69]), here a more limited frequency range (about one and a half

decades) is considered. However, the selected frequency range is relevant for auto-

motive suspension dynamics simulations, and the small number of fitted parameters

along with the consistency with background linear theory makes the two proposed

models attractive for practical applications in vehicle dynamics.

Partial validation of a simplified Adams model of a vehicle against field test

results has been presented in Chapter 4. Such a model is able to capture the essential

vertical suspension dynamic characteristics of the vehicle. The model also retains the

effect of frame flexibility (see Figure 6.1), which shows the effect is not insignificant.

The present approach of using test track data to partially validate the model is

a practical contribution presenting an inexpensive option that nevertheless provides

some useful information and insights. It gives the user an alternative approach for

situations where a conventional four post test setup is not available. The simulation

results match the experimental results reasonably well for several tests.
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Figure 6.1: Comparison of rigid and flexible frame body point acceleration responses
for a vehicle running at low speed on high severity washboard track.

The field test measurements mentioned above are also used for Laplace domain

reduced order model development in Chapter 5. This approach requires very little

instrumentation and minimal field testing, and no access to professional software

like Adams. It is a straightforward way to develop a detailed mathematical model

which incorporates effects of vehicle mass, flexibility and damping effects, as well

as the effects of stationary ground contacts at other wheels. This approach can be

directly used for system identification where an Adams model (or other detailed

mathematical model) is not available. The proposed model is simple, gives fairly ac-

curate results for the vertical dynamics of the vehicle, and can be used for suspension

design studies at an intermediate level of complexity.

Future work that builds on the approaches and results of this thesis might proceed

along one or more of the following lines. First of all, the simplified and generalized

quarter car model, with suspension properties retained as free parameters, could be

used for suspension optimization and control studies. Additionally, if one were to
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treat the near-wheel suspension as nonlinear but the three other-wheel suspensions as

linear (because responses are small there), then an explicit reduced -order nonlinear

model in the time domain could be developed and investigated.

Secondly, using our new formulas for the frequency domain behavior of suspen-

sion bushings, accurate and physically sound characterization of these components

could be incorporated in Laplace-domain models or even Adams models along the

lines of the generalized quarter-car model (with subsequent model reduction).

Third, in developing and validating Adams models of vehicle using test track

data alone, our results have suggested that fore-aft accelerations as well as vibrations

excited internally by the engine and transmission, could both potentially be built into

the Adams model. Additionally, driver-to-car interactions and wheel compliance in

more sophisticated ground contact models [87, 88] could potentially be incorporated.

Finally, a direct extension of the Laplace-domain model building effort of Chapter

5 might include fore-aft motions as well as more points of measurement so as to

obtain richer and more detailed models for further study and design improvements.

In this way, the work presented in this thesis has opened up avenues for fur-

ther developments in inexpensive, simple, yet effective modeling strategies in vehicle

suspension dynamics.
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Appendix A

Supplementary materials for
Chapter 2

A.1 Adams suspension model

The vehicle has independent front and rear suspensions. Suspension modeling is

done in Adams Car (see Figure A.1).

Figure A.1: Front and rear suspension assemblies modeled in Adams Car. Bushings
connect the suspension to chassis pivot points.

Essential aspects are described here, and some further details are available in

[25]. The front suspension is of double wishbone type along with bi-articulated

push rods and bell crank levers. The rear suspension is of double wishbone type.
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Both front and rear suspensions have elastic (spring) and dissipative (hydraulic

damper)elements.

An equivalent stiffness and damping needs to be estimated for the suspension,

accounting for the kinematics of the linkage (i.e., the damper compression differs

from actual wheel travel). The equivalent suspension stiffness at wheels (the “wheel

rate”) was determined directly by a quasi-static wheel travel study of a half car

model in Adams. The equivalent damping coefficient was obtained by scaling the

manufacturer-supplied damper data by the motion ratio factor (force and velocity

were scaled in inverse proportions) to account for linkage kinematics (see Figure

A.2).

Figure A.2: Equivalent stiffness and damping characteristics of front and rear suspensions.

The baseline suspension properties obtained are shown in Table A.1; see also

Table 2.2 in chapter 2.
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Kfront Krear Cfront Crear

25 N/mm 30 N/mm 0.50 N-s/mm 0.75 N-s/mm

Table A.1: Initial estimates of suspension parameters.

A.2 Initial estimates of σ’s and ω’s for use in Sec-

tion 2.4 of Chapter 2

The initial estimates of σ’s and ω’s for use in Section 2.4 will be obtained in this

section.

Consider the incremental model with four-dimensional state vector z̄k given by

z̄k = xk+1 − xk, (A.1)

where xk+1 and xk are the body points’ displacements at discrete time intervals

(k + 1)T and kT respectively. The dimension of the state vector is then extended

by considering the values of the increments at multiple time steps as in

zk =




z̄k

z̄k+1

...

z̄k+(j−1)




, (A.2)

where j is to be chosen large enough to get a good fit.

An underlying discrete-time model is assumed in the form

zk+1 = D zk, (A.3)
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where D is a state transition matrix to be fitted, in a least squares sense, from many

x-data points.

We know that the underlying continuous time state space model is given by

ż = A z; A = 4× 4 system state matrix. (A.4)

Integrating above equation we obtain

z(t) = eAtz(0). (A.5)

The system response at times t = kT and (k + 1)T is given by

zk = eAkT z(0);

zk+1 = eA(k+1)T z(0). (A.6)

Multiplying the first equation of the Equation (A.6) by eAT and subtracting it from

the second we obtain

zk+1 = eAT zk (A.7)

From Equations (A.7) and (A.3), we get the equivalence between the continuous

time and discrete time state space model as,

D = eAT (A.8)
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The eigenvalues of D provide the needed estimates of σ’s and ω’s, through

σ + i ω =
log
(
eig(D)

)

T
, (A.9)

where T is the time step (in our Adams simulations, T = 0.02 seconds).

The exponential rates obtained for various numbers of retained complex eigen-

values are reported in Table A.2.

No. of complex pairs retained Identifier σ ω

One Single time step model 2.11 14.72

Two Two time step model 1.88 17.88
1.90 12.26

Three Three time step model 1.52 12.28
2.41 18.29
4.29 13.40

Table A.2: Initial guesses of σ’s and ω’s. These need not be very accurate, as subsequent
nonlinear fitting is done.

These σ’s and ω’s were used as initial guesses in nonlinear fitting based on Mat-

lab’s built in optimization routine fminsearch.

A.3 Balanced reduction

Balanced reduction was introduced in the control community by Moore [89]. The

balanced reduction in Matlab is achieved in two steps.

First a balanced realization of the original system is obtained using balreal

[90]. Next a state elimination algorithm modred reduces the order of the balanced

state-space model by eliminating the non-significant states. These are discussed in
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the following subsections.

A.3.1 Balanced realization

In balanced realization scheme first the transfer function model is converted to a

state space model given by

ẋ = Ax+ Bu

y = Cx+Du (A.10)

Next the balreal algorithm creates a balanced system using a state transforma-

tion matrix T given by

ẋb = TAT−1
︸ ︷︷ ︸
Ab

xb + TB︸︷︷︸
Bb

u

y = CT−1
︸ ︷︷ ︸
Cb

xb +Du

(A.11)

The syntax for the balreal function is:

Balanced system = balreal(Original system)

A.3.2 Model truncation

Once the balanced system is obtained from the original state space model; truncation

is used to eliminate the unimportant state variables to reduce the model order. At

first the modred function partitions the balanced system states xb into xb1, to be
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kept, and xb2, to be eliminated. The number of states to be eliminated ‘Elim’ is

specified by the user. The resultant state space model looks like:



ẋb1

ẋb2


 =



Ab11 Ab12

Ab21 Ab22






xb1

xb2


+



Bb1

Bb2


 u

y =

[
Cb1 Cb2

]


xb1

xb2


+Du.

(A.12)

Next, the derivative of xb2 in the above equation is set to zero and the resulting

equation is solved for xb1. The reduced-order model is given by

ẋb1 =

[
Ab11 − Ab12A

−1
b22Ab21

]
xb1 +

[
Bb1 − Ab12A

−1
b22Bb2

]
u

y =

[
Cb1 − Cb2A

−1
b22Ab21

]
xb1 +

[
D − Cb2A

−1
b22Bb2

]
u.

(A.13)

The syntax for the modred function is:

Reduced system = modred(Balanced system, Elim, ‘MatchDC’)
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A.4 Expressions for full and reduced order trans-

fer functions

G11(s) was found to be the following 36th order transfer function:

G11(s) =

5.9s35 + 3e5s34 + 5.5e9s33 + 5.3e13s32 + 1.7e17s31 + 3.1e19s30 + 8.5e21s29 + 1e24s28

+1.5e26s27 + 1.5e28s26 + 1.3e30s25 + 9.9e31s24 + 6.3e33s23 + 3.4e35s22 + 1.6e37s21

+6.7e38s20 + 2.3e40s19 + 7.6e41s18 + 2.1e43s17 + 5.3e44s16 + 1.2e46s15 + 2.5e47s14

+4.7e48s13 + 7.9e49s12 + 1.2e51s11 + 1.7e52s10 + 2.1e53s9 + 2.4e54s8 + 2.5e55s7

+2.3e56s6 + 1.8e57s5 + 1.3e58s4 + 7.6e58s3 + 3.9e59s2 + 1.3e60s+ 4.1e60

s36 + 6.2e4s35 + 1.4e9s34 + 1.6e13s33 + 9.2e16s32 + 1.3e19s31 + 3.3e21s30 + 3.5e23s29

+4.7e25s28 + 3.8e27s27 + 3.3e29s26 + 2.1e31s25 + 1.3e33s24 + 6.4e34s23 + 3e36s22

+1.1e38s21 + 4e39s20 + 1.2e41s19 + 3.3e42s18 + 8.3e43s17 + 1.9e45s16 + 3.9e46s15

+7.3e47s14 + 1.2e49s13 + 2.0e50s12 + 2.8e51s11 + 3.7e52s10 + 4.3e53s9 + 4.7e54s8

+4.5e55s7 + 4e56s6 + 3e57s5 + 2e58s4 + 1.1e59s3 + 5.6e59s2 + 1.8e60s+ 5.4e60

This higher order transfer function was reduced, using Matlab’s function balred,
to:

Gred(s) =
8.3e-3s6 + 1.1s5 + 2.1e2s4 + 2.6e4s3 + 1.1e6s2 + 8.9e6s+ 1.9e8

s6 + 2.9e1s5 + 6.2e3s4 + 7.6e4s3 + 2.8e6s2 + 1.3e7s+ 2.5e8
.

The ‘s6’ term in the numerator of the above transfer function was dropped to obtain
a strictly proper transfer function as

Gred(s) =
1.1s5 + 2.1e2s4 + 2.6e4s3 + 1.1e6s2 + 8.9e6s+ 1.9e8

s6 + 2.9e1s5 + 6.2e3s4 + 7.6e4s3 + 2.8e6s2 + 1.3e7s+ 2.5e8
.
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Appendix B

Supplementary materials for
Chapter 3

B.1 Detailed proof of Kramers-Kronig dispersion

relations

For a linear and time-invariant (LTI) system the property of causality translates

from the requirement of a vanishing impulse response for times smaller than zero

directly to the Kramers-Kronig relations in the frequency domain [14, 15].

A short introduction to the Kramers-Kronig relations is provided here for com-

pleteness. The present discussion very closely follows [91, 92].

Let h(t) be the impulse response of a linear and time-invariant system. The

frequency response of this system is then given by its Fourier-transform as

F [h(t)] = H(ω) =

∞∫

−∞

h(t) e−iωt dt. (B.1)

Now, h(t) does not change if it is multiplied by a unit step function Θ(t), i.e.,

h(t) = h(t)Θ(t). (B.2)
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Equation (B.2) is substituted in Equation (B.1) to obtain

H(ω) =

∞∫

−∞

h(t)Θ(t) e−iωt dt. (B.3)

The right side of the above equation denotes the Fourier transform F [h(t)Θ(t)],

therefore the convolution theorem can be applied, i.e.,

F [h(t) ·Θ(t)] = F [h(t)] ∗ F [Θ(t)].

The Fourier transform of the unit step function is given by

F [Θ(t)] =
(
πδ(ω) +

1

iω

)
. (B.4)

Substituting Equation (B.4) in Equation (B.3) gives

H(ω) =
[
H(ω) ∗

(
πδ(ω) +

1

iω

)]
.

The convolution of two functions A(ω), B(ω) is defined as

A(ω) ∗B(ω) =
1

2π

∞∫

−∞

A(ω′) ·B(ω − ω′) dω′.

Executing the convolution we obtain

H(ω) =
1

2π




∞∫

−∞

πH(ω′) · δ(ω − ω′) +

∞∫

−∞

H(ω′)

i(ω − ω′)


 dω′,

which reduces to
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H(ω) =
1

2π

(
πH(ω) +

∞∫

−∞

H(ω′)

i(ω − ω′)
dω′
)
,

where the singular integral is to be taken in the Cauchy Principal value (CPV) sense

[60, 92].

The above can be further simplified to obtain

H(ω) =
1

π

∞∫

−∞

H(ω′)

i(ω − ω′)
dω′. (B.5)

The right hand side of the above integral is split up as

1

π

∞∫

−∞

H(ω′)

i(ω − ω′)
dω′ =

1

π

0∫

−∞

H(ω′)

i(ω − ω′)
dω′ +

1

π

∞∫

0

H(ω′)

i(ω − ω′)
dω′. (B.6)

Substituting ω′ = −ω′′, the negative-domain integral can be rewritten as

1

π

0∫

−∞

H(ω′)

i(ω − ω′)
dω′ =

1

π

∞∫

0

H(−ω′′)

i(ω + ω′′)
dω′′.

By the definition of Fourier integral, H(−ω′′) = H∗(ω′′), Equation (B.6) can be

written as

H(ω) =
1

π

( ∞∫

0

H(ω′)

i(ω − ω′)
dω′ +

∞∫

0

H∗(ω′′)

i(ω + ω′′)
dω′′
)
. (B.7)

By definition

H(ω) = H1(ω) + iH2(ω); H∗(ω) = H1(ω)− iH2(ω). (B.8)

Substituting Equation (B.8) in Equation (B.7) and combining both integrals gives
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H(ω) =
1

π

∞∫

0

((ω + ω′)(H1(ω
′) + iH2(ω

′)) + (ω − ω′)(H1(ω
′)− iH2(ω

′))

i(ω′2 − ω2)

)
dω′.

(B.9)

Simplification of the above equation yields

H(ω) =
1

π

∞∫

0

(2H2(ω
′)ω′ − i2H1(ω

′)ω

ω2 − ω′2

)
dω′. (B.10)

The real and imaginary parts of Equation (B.10) are separated to obtain

H1(ω) =
2

π

∞∫

0

ω′H2(ω
′)

ω2 − ω′2
dω′; H2(ω) = −

2

π

∞∫

0

ωH1(ω
′)

ω2 − ω′2
dω′. (B.11)

These are the well known Kramers-Kronig relations. The fundamental implication

in the context of this thesis is that the real and imaginary parts of H(ω) cannot be

independently assigned and fitted.

B.2 Asymptotic approximation to be used in model

development

In the present study, the frequency response function H(ω) corresponds to the com-

plex modulus of the viscoelastic materialM∗(ω) = Md(ω)+iM1(ω). Moreover, in the

original Kramers-Kronig application, an allowance was made for an instantaneous

component of response M0δ(t), where M0 is the value at high (“infinite”) frequency.

The causality condition was applied to the remainder of the total response, given by

[M(t)−M0δ(t)].

224



Md(ω)−M0 =
2

π

∞∫

0

ω′M1(ω
′)

ω2 − ω′2
dω′, M1(ω) = −

2

π

∞∫

0

ω[Md(ω
′)−M0]

(ω2 − ω′2)
dω′

(B.12)

Using the second equation of Equation (B.12), a more useful representation was

obtained by Bode [93].

Rewriting Equation (B.12) as

M1(ω) = −
2

π

∞∫

0

ω[Md(ω
′)−M0]

ω2
(
1− (ω

′

ω
)2
) dω′, (B.13)

a change of variable x = ln
(ω′

ω

)
gives

dx =
1

ω′
dω′, therefore, dω′ = ω′dx = ωexdx,

which yields (note the change in integration limits)

M1(ω) = −
2

π

∞∫

−∞

✚✚ω2ex[G(x)−G0]

✚✚ω2(1− e2x)
dx

where G(x) = Md(ω
′), G0 = M0.

Taking ex common from the denominator gives

M1(ω) = −
2

π

∞∫

−∞

✚✚ex[G(x)−G0]

✚✚ex(e−x − ex)
dx (B.14)

Equation (B.14) is to be integrated in order to obtain dispersion relations. Sub-

stituting ex = z, therefore, exdx = dz,G(x) = G̃(z), and thereby changing the limit
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of integration to 0 to ∞ gives.

M1(ω) = −
2

π

∞∫

0

[G̃(z)−G0]

z2 − 1
dz

=
1

π

∞∫

0

[G̃(z)−G0]
( 1

z + 1
−

1

z − 1

)
dz,

where the singularity at z = 1 is to be interpreted in the CPV sense, i.e.,

M1(ω) = lim
ε→0

1

π

[ 1+ε∫

0

[G̃(z)−G0]
( 1

z + 1
−

1

z − 1

)
dz

+

∞∫

1+ε

[G̃(z)−G0]
( 1

z + 1
−

1

z − 1

)]
dz

The above integral is evaluated to obtain

M1(ω) = lim
ε→0

1

π

[
(G̃(z)−G0) ln

(z + 1

z − 1

)∣∣∣∣∣

1+ε

0

+ (G̃(z)−G0) ln
(z + 1

z − 1

)∣∣∣∣∣

∞

1+ε︸ ︷︷ ︸
1

+

∞∫

0

dG̃(z)

dz
ln
(z + 1

z − 1

)
dz

︸ ︷︷ ︸
2

]

The first term vanishes and second term is transformed back to

M1(ω) =
1

π

∞∫

−∞

dG(x)

dx︸ ︷︷ ︸
F (x)

ln

(
ex + 1

ex − 1

)

︸ ︷︷ ︸
coth |x|

2

dx.

The above integral is symmetric about x = 0 and therefore it can be re-written as
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M1(ω) =
2

π

∞∫

0

F (x) ln

(
coth

|x|

2

)
dx, (B.15)

Equation (B.15) was primarily used by Bode to develop simplified relations be-

tween attenuation and phase of amplifiers [16]. Furthermore, using Equation (B.15),

O’Donnell et al. [64] obtained simple localized approximate series expansions. To

that end, F (x) is expanded in a Taylor series about x = 0 to obtain

M1(ω) =
2

π

∞∑

n=0

F n(0)

n!

∞∫

0

xn ln

(
coth

|x|

2

)
dx,

Note that coth
|x|

2
is an even function (see Figure B.1), and the integral vanishes for

odd powers of x.
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1

x

Figure B.1: Behaviour of function ln coth( |x|2 ) in the neighborhood of x = 0.

So we write

M1(ω) =
2

π

∞∑

n=0

F 2n(0)

(2n)!

∞∫

0

x2n ln

(
coth

|x|

2

)
dx, (B.16)
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Next ln

(
coth

|x|

2

)
is expanded in a power series in terms of e−x to obtain

ln

(
coth

|x|

2

)
= ln

(
1 + e−x

1− e−x

)
=

∞∑

m=0

2e−(2m+1)x

2m+ 1
(B.17)

Substitute Equation (B.17) in Equation (B.16) yield

M1(ω) =
4

π

∞∑

n=0

F 2n(0)

(2n)!

∞∑

m=0

1

2m+ 1

∞∫

0

x2ne−(2m+1)x dx

︸ ︷︷ ︸
Q

(B.18)

The integral Q is Γ(2n + 1)(2m + 1)−(2n+1). From the definition of the gamma

function,
Γ(2n+ 1) = (2n)!.

Substituting this in Equation (B.18) finally yields

M1(ω) =
4

π

∞∑

n=0

F 2n(0)

(2n)!

∞∑

m=0

1

(2m+ 1)2n+2
(B.19)

When the dynamic properties in the frequency range of interest are far from reso-

nance, so that variations are slow, the above series expansion and can be truncated

after a small number of terms.

Substituting F 2n(0) =
d2n+1G(x)

dx2n+1

∣∣∣
x=0

gives

M1(ω) =

4

π

(π2

8

dG(x)

dx

∣∣∣
x=0

+
π4

96

d3G(x)

dx3

∣∣∣
x=0

+
π6

960

d5G(x)

dx5

∣∣∣
x=0

+
17π8

161280

d7G(x)

dx7

∣∣∣
x=0

+ . . .
)

(B.20)

By changing the independent variable1 x to ω′ and retaining the leading order and

1Note that at x = 0, ω′ = ω and G(x)
∣∣∣
x=0

= Md(ω).
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the first correction term the above equation reduces to

M1(ω) =
π

2
ω
dMd(ω)

dω
+

π3

24

(
ω
dMd(ω)

dω
+3ω2d

2Md(ω)

dω2
+ω3d

3Md(ω)

dω3

)
+ . . . . (B.21)

This approximation is valid only when the frequency range of interest is far from

resonances. Also, the correction term in Equation (B.21) has to be much smaller

than the leading order term for the approximation to be good. This approximate

equation was used for the model development in Chapter 3.

B.3 Test rig, bushing and fixtures details

We have used an MTS 370.10 elastomer test system for dynamic material charac-

terization of suspension bushings. Test-rig details are shown in Figure B.2.

Figure B.2: MTS 370.10 elastomer test system. Image Source: NATRiP, India [63].
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The dimensional details of four different bushings are shown in Figures B.3 and

B.4.

Figure B.3: Dimensional details of bushing 1 and 2.
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Figure B.4: Dimensional details of bushing 3 and 4.
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Depending on the dimensions and the shapes of these bushings, fixtures were

prepared for mounting these bushings on the MTS 370.10 test rig. Moreover, in

order to apply a distributed load on bushings 1, 2 and 3 a sleeve plate was chosen

from the aftermarket. The fixtures used during the testing for different bushings are

shown in Figure B.5.

Figure B.5: Different fixtures used to mount various bushings on the test-rig. The four
subfigures show the mounting arrangements of four different bushings used for the dynamic
material characterization study.
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Appendix C

Supplementary materials for
Chapter 4

C.1 Vehicle instrumentation and accelerometer

calibration

In this section, vehicle instrumentation and accelerometer calibration will be dis-

cussed. We have used the capacitor-based ADXL 326 accelerometer for vehicle

testing. It is light weight (1.3 gm), compact (2cm×2cm); see Figure C.1, requires

low current (350µA), has a wide measurement range (±16g), a broad temperature

range (−40◦ to 125◦C), and can be easily interfaced with a 5V micro controller such

as the Arduino.

Figure C.1: Size of ADXL 326 accelerometer as compared to a small coin. Image source:
BC Robotics [94].
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The details of the accelerometer are shown in Figure C.2(a). The data acquisition

system used consists of a FAT32 Micro SD card module (see Figure C.2(b)) and an

Arduino ATMega328P micro-controller board (see Figure C.2(c)). These systems

are compatible with a breadboard, making it easy to connect them together (see

Figure C.2(d)). The circuit is powered by a standard 9V battery.

The accelerometers need to be calibrated before using them for measurements.

Though these are triple axis accelerometers, only the Z-axis output channel is used

for measuring vertical accelerations, therefore the calibration is done only for the

Z-axis output measurements.

For calibration the output from each accelerometer was first compared against

a standard Brüel & Kjær (B&K) Type-4382 piezoelectric accelerometer [95] using a

rigid beam-spring-damper system (see Figure C.3(a)) already present in a teaching

laboratory in IIT Kanpur.

234



Figure C.2: Details of the vehicle instrumentation and the data acquisition system.
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Figure C.3: Calibrating individual accelerometers using rigid beam vibration apparatus.

The forced vibrations are generated by an electrical motor-driven imbalance ex-

citer. The exciter frequency is set using a variable frequency drive (VFD) with

digital display. The vertical accelerations of rigid beam were measured by the previ-

ously calibrated B&K accelerometer, and recorded by NI 9215 analog input module

using Labview interface (see Figure C.3(b)) [96].

The ADXL326 accelerometer which is to be calibrated is mounted at the same

location as that of the B&K accelerometer and the accelerations are recorded using
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Arduino Uno developmental board. The outputs of both the accelerometers are

compared at various frequencies in our frequency range of interest (1-50 Hz) and the

calibration constants are determined for all eight accelerometers. The comparison

of output from both accelerometers for beam vibrating at 7 Hz is shown in Figure

C.3(c).

After calibrating all accelerometers individually, the data from a set of accelerom-

eters was simultaneously recorded to check for synchronicity in measurements. For

this purpose, four ADXL326 accelerometers were mounted on a flexible cantilever

beam (see Figure C.4-top). The beam is a slender mild steel ruler scale of length 24

inch, width 1 inch and thickness 1/40 inch.

The free end of the beam is attached to an electrodynamic actuator (B&K 4809)

which is driven by a function generator (GW Instek 2104) using the signal amplifier

(B&K 2718). A sinusoidal force input of frequency 15Hz and magnitude of 100gf is

applied by the actuator1. The beam vibration response is recorded at 15 Hz using

Arduino Mega developmental board and a FAT32 SD card module and is compared

with simulation results (see Figure C.4 (middle and bottom)). It has been ensured

that the excitation frequency is not close to one of the beam natural frequency so

that there is no resonances and damping is unimportant.

1Digital display: 100gf ≈ 1 N.
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Figure C.4: Top: four ADXL326 accelerometers mounted on a cantilever beam; middle:
beam deflection versus time plotted analytically; bottom: comparison of accelerations
measured at four locations L1, L2, L3 and L4 with analytical simulation results.

238



Appendix D

Supplementary materials for
Chapter 5

D.1 Initial estimates of ω’s and ζ’s for use in Sec-

tion 5.4 of Chapter 5

The initial estimates of ω’s and ζ’s in the model fitting of Chapter 5 are to be

supplied by the user to the fminsearch subroutine. Different vehicle vibration

modes considered for the study are shown in Figure D.1.

We will now use simple models for these modes to obtain initial guesses for the

ωn.

1. Vehicle pitch and bounce modes:

The vehicle pitch and bounce modes are shown in Figure D.1(a) and (b). The

pitch and bounce frequencies are calculated by simple theory as below.

The differential equations for the vehicle bounce, Z, and pitch, θ, motions of

a simple vehicle (ignoring damping) can be written as:

MsZ̈ + (Kf +Kr)Z + (Krlr −Kf lf )θ = 0

Iyyθ̈ + (Krlr −Kf lf )Z + (Kf l
2
f +Krl

2
r)θ = 0 (D.1)
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   Bounce mode                               Pitch mode

                (a)                      (b)

Roll mode                         Wheel hop mode       Chassis twist mode

       (c)                        (d)             (e)    

Side view

Front view

Side view

Figure D.1: Vehicle vibration modes.
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whereMs is the vehicle sprung mass, Kf andKr are equivalent stiffness of front

and rear suspensions and Iyy is the pitch moment of inertia of the vehicle.

Z
l
f

l
r

θ

Z − l
f 
θ

Z + l
r 
θ

Reference position

K
f K

r

Figure D.2: Vehicle coupled bounce and pitch motions.

Simplifying Equation (D.1) and written the same in matrix form gives



1 0

0 1






Z̈

θ̈


+




α β

Msβ

Iyy
γ






Z

θ


 =



0

0


 (D.2)

where

α =
Kf +Kr

Ms

; β =
Krlr −Kf lf

Ms

; and γ =
Kf l

2
f +Krl

2
r

Iyy
.

The above eigenvalue problem is solved to obtain the natural frequencies as

ω1 =

√√√√α + γ

2
+

√(
α− γ

2

)2

+
Msβ2

Iyy
; ω2 =

√√√√α + γ

2
−

√(
α− γ

2

)2

+
Msβ2

Iyy
.

(D.3)

of which ω1 is the bounce natural frequency ωbounce and ω2 is the pitch natural

frequency ωpitch.
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2. Vehicle roll mode:

The vehicle roll mode is shown in Figure D.1(c).

The vehicle roll frequency can be simply calculated as

ωroll =

√
Kroll

Ixx
(D.4)

where Kroll is the suspension roll stiffness given by, Kroll = Ksw
2; Ks =

summation of the front and rear stiffness and w = lateral separation between

the springs (see Figure D.3).

w

φ

K
s K

s

Figure D.3: Vehicle roll mode.

3. Wheel hop:

The wheel hop mode is shown in Figure D.1(d).

Wheel hop is a strong vertical oscillation of the wheels of a car. Wheel hop is

discussed in detail in Section 2.10.2 of Chapter 2. The wheel hop frequency
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can be calculated as

ωhop =

√
Kt +Ks

Mu

, (D.5)

where Kt is the tyre stiffness, Ks is the suspension stiffness and Mu is the

unsprung mass.

4. Chassis twist mode:

The last mode considered is the chassis twist mode (see Figure D.1(e)).

As we have considered a flexible chassis model, this mode is reatined as it is

the first flexible body mode. The chassis twist frequency is obtained from the

simplified Adams model of the vehicle developed in Chapter 4 [97, 98]. Mode

shape is indicated by the deflected shape of the vehicle in Figure D.1 (e); the

natural frequency computed is 26.49 Hz.

The different modal frequencies obtained from the above analysis are reported

in Table D.1.

Identifier Pitch mode Bounce mode Roll mode Wheel hop Twist mode

f (Hz) 3.03 4.93 4.95 10.56 26.49

ζ 0.1 0.1 0.1 0.1 0.1

Table D.1: Values of ω’s and ζ’s to choose initial guesses for fminsearch.

We have seen that the vehicle bounce and roll frequency are nearly equal, so only

one of these frequencies is used as an initial guess to the model. Therefore, there are

four initial estimates of ω’s. The value of ζ’s are assigned as 0.1 for all the modes

which will be adjusted by fminsearch.

These values need not to be very accurate, as subsequent nonlinear fitting will

be done.
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D.2 Expressions for the transfer function elements

obtained from test data

The expressions of the six representative elements of the original transfer function

matrix H(s) are presented here. Subsequently the expression of the 1-1 element

(Hn,11(s)) of the new transfer function matrixHn(s) and the reduced order transfer

function Hred(s) of the 44th order transfer function will be given.

D.2.1 Original transfer function expressions

The general expression of one scale transfer function element of the transfer matrix

H(s) is given in terms of the numerator and denominator coefficients as

c7s
7 + c6s

6 + c5s
5 + c4s

4 + c3s
3 + c2s

2 + c1s+ c0

s8+
(
2
∑

ωiζi

)
s7+

(∑
i 6=j

ω2
i +4ζiζjωiωj

)
s6+

(
2
∏
i 6=j

ω2
j

∑
ζjωj+8

∑
i 6=j,k

ζiωiζjωjζkωk

)
s5+(∑

i 6=j

(ωiωj)
2+4

∏
k 6=i,j

ω2
k

∑
i 6=j

ζiζjωiωj+16
∏

ζiωi

)
s4+

(
2
∏

k 6=i,j

∑
ζkωk

∑
i 6=j

(ωiωj)
2+8

∏
i 6=j

∑

ω2
i
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In the above expression i, j and k range from 1 to 4 corresponding to the four values
of system modes of vibration.

The expressions of the six transfer functions Hij(s)that are used to construct the
transfer matrix H(s) are given below,

H11(s) =

−0.4s7 + 72.1s6 − 3.9e4s5 + 3.9e06s4 − 9.1e8s3 − 3.6e5s2 + 5.5e4s+ 1.5e13

s8 + 305.1s7 + 5e4s6 + 3.3e6s5 + 2.3e8s4 + 6.8e09s3 + 2e11s2 + 2e12s+ 2.7e13

H12(s) =

−0.3s7 + 47.8s6 − 3.1e4s5 + 2.6e6s4 − 6.5e8s3 + 1.7e4s2 + 5.6e4s+ 6e12

s8 + 305.1s7 + 5e4s6 + 3.3e6s5 + 2.3e8s4 + 6.8e09s3 + 2e11s2 + 2e12s+ 2.7e13

H13(s) =

−0.1s7 − 11.1s6 − 7.1e3s5 − 4.3e5s4 − 1.4e8s3 − 1.6e6s2 + 1e4s+ 5.8e12

s8 + 305.1s7 + 5e4s6 + 3.3e6s5 + 2.3e8s4 + 6.8e09s3 + 2e11s2 + 2e12s+ 2.7e13
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H14(s) =

0.3s7 + 72.2s6 + 4.5e4s5 + 2.4e6s4 + 5.8e8s3 − 5e6s2 − 6e4s− 4.8e12

s8 + 305.1s7 + 5e4s6 + 3.3e6s5 + 2.3e8s4 + 6.8e09s3 + 2e11s2 + 2e12s+ 2.7e13

H33(s) =

−0.2s7 − 87.1s6 + 3.6e4s5 − 1e7s4 + 1e9s3 + 4.2e6s2 − 1.6e5s+ 1.2e13

s8 + 305.1s7 + 5e4s6 + 3.3e6s5 + 2.3e8s4 + 6.8e09s3 + 2e11s2 + 2e12s+ 2.7e13

H34(s) =

0.4s7 + 38.7s6 + 3.5e4s5 + 6e6s4 + 16e07s3 − 4.1e3s2 − 6.7e4s+ 5e12

s8 + 305.1s7 + 5e4s6 + 3.3e6s5 + 2.3e8s4 + 6.8e09s3 + 2e11s2 + 2e12s+ 2.7e13

D.2.2 Expressions for the 1-1 element of the full order and
the reduced order new transfer function

Hn,11(s) was found to be a 44th order transfer function given by

Hn,11(s) =

1.4e34s42 + 1.7e37s41 + 1e40s40 + 5e42s39 + 1.9e45s38 + 6e47s37 + 1.6e50s36 + 4e52s35

+8.2e54s34 + 1.6e57s33 + 2.6e59s32 + 3.9e61s31 + 5.1e63s30 + 6e65s29 + 6.3e67s28

+5.9e69s27 + 4.9e71s26 + 3.7e73s25 + 2.4e75s24 + 1.4e77s23 + 7.9e78s22 + 3.8e80s21

+1.6e82s20 + 6e83s19 + 2e85s18 + 5.4e86s17 + 1.1e88s16 + 1.7e89s15 − 7e89s14

−1.5e92s13 − 6.4e93s12 − 1.9e95s11 − 4.4e96s10 − 8.7e97s9 − 1.4e99s8 − 2e100s7

−2.4e101s6 − 2.4e102s5 − 2e103s4 − 1.3e104s3 − 6.7e104s2 − 2.3e105s− 4.2e105

2.7e33s44 + 4e36s43 + 3.1e39s42 + 1.6e42s41 + 6e44s40 + 1.8e47s39 + 4.5e49s38

+9.4e51s37 + 1.7e54s36 + 2.6e56s35 + 3.6e58s34 + 4.4e60s33 + 5e62s32 + 5e64s31

+4.4e66s30 + 3.7e68s29 + 2.8e70s28 + 2e72s27 + 1.2e74s26 + 7.2e75s25 + 3.9e77s24

+2e79s23 + 8.9e80s22 + 3.8e82s21 + 1.4e84s20 + 5.2e85s19 + 1.7e87s18 + 5.1e88s17

+1.4e90s16 + 3.5e91s15 + 8.1e92s14 + 1.7e94s13 + 3.1e95s12 + 5.4e96s11 + 8.2e97s10

+1.1e99s9 + 1.3e100s8 + 1.4e101s7 + 1.31e102s6 + 1e103s5 + 7.3e103s4 + 4e104s3

+1.7e105s2 + 5e105s+ 7.9e105

The order of Hn,11(s) is reduced to obtain a tenth order transfer function Hred(s)
given by

Hred(s) =

−0.1s7 + 46.7s6 − 4.6e3s5 + 1.9e5s4 + 3.9e7s3 − 3.2e8s2 + 1.1e10s− 8.3e11

s8 + 75.1s7 + 9.6e3s6 + 4e5s5 + 2.4e7s4 + 4.9e8s3 + 1.4e10s2 + 1e11s+ 1.5e12
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