

Compliant Mechanisms (ME 851)

(c)

(d)

(e)

Anupam Saxena Professor

Indian Institute of Technology Kanpur

suspension

Function and Advantages

Force, Motion and/or Energy Transfer Function, Path and Motion Generation Repeatability

Brad E Smith: https://www.youtube.com/watch?v=tFtsr1-l2vI

Function and Advantages

Force, Motion and/or Energy Transfer Function, Path and Motion Generation Repeatability

Mechanisms: Designed, Existed and Developed over CENTURIES Libraries and cool Animations available

Stephenson's STEAM ENGINE

1700 ANIMATED MECHANICAL MECHANISMS

Pokáčovo Kanál : https://www.youtube.com/watch?v=73txXT21aZU

< Friction clutch I

Compliant Mechanisms (ME 851)

Spherical 4 bar

4

Function and Advantages

Force, Motion and/or Energy Transfer Function, Path and Motion Generation Repeatability

Dr. Nguyen Duc Thang Hanoi, Vietnam 1946-2002 (RETIRED)

Mechanisms: Designed, Existed and Developed over CENTURIES Libraries and cool Animations available

Stephenson's STEAM ENGINE

1700 ANIMATED MECHANICAL MECHANISMS

Pokáčovo Kanál : https://www.youtube.com/watch?v=73txXT21aZU

Friction clutch I

Compliant Mechanisms (ME 851)

Function and Advantages

Force, **Motion** and/or **Energy** Transfer Function, Path and Motion Generation Repeatability

Disadvantages

Friction Wear and Tear Lubrication Vibrations Noise Need for Assembly Backlash (play)

Compliant Mechanisms (ME 851)

A (my) Little Story Masters student at UT 1995-97

https://www.utoledo.edu/engineering/mechanical-industrial-manufacturing-engineering/people/kramer.html

Fall of 1996

Purdue University

Prof. Ashok Midha

Compliant Mechanisms (ME 851)

A (my) Little Story Masters student at UT 1995-97

https://www.utoledo.edu/engineering/mechanical-industrial-manufacturing-engineering/people/kramer.html

Fall of 1996

Purdue University

Compliant Mechanisms (ME 851)

A (my) Little Story Masters student at UT 1995-97

https://www.utoledo.edu/engineering/mechanical-industrial-manufacturing-engineering/people/kramer.html

Fall of 1996

Purdue University

Prof. Ashok Midha

Compliant Mechanisms (ME 851)

A (my) Little Story Masters student at UT 1995-97

https://www.utoledo.edu/engineering/mechanical-industrial-manufacturing-engineering/people/kramer.html

Fall of 1996

Purdue University

Compliant Mechanisms (ME 851)

A (my) Little Story Masters student at UT 1995-97

https://www.utoledo.edu/engineering/mechanical-industrial-manufacturing-engineering/people/kramer.html

Fall of 1996

Purdue University

Prof. Ashok Midha

Compliant Mechanisms (ME 851)

A (my) Little Story Masters student at UT 1995-97

https://www.utoledo.edu/engineering/mechanical-industrial-manufacturing-engineering/people/kramer.html

Fall of 1996

Purdue University

Compliant Mechanisms (ME 851)

Mechanical Elements

Hinges? Sliders ?

Belt-pulley? Chain-sprocket?

Gears?

What are these then?

Monolithic (Single-piece) Devices Force, Motion, Energy Transfer While performing desired function, path, motion generation Through purely (Large) elastic deformation

Compliant Mechanisms

https://engineering.purdue.edu/ME/Seminars/2021/compliant-mechanisms-memory-lane-and-some-novel-and-exciting-applications/amidha.PNG Prof. Ashok Midha

Compliant Mechanisms (ME 851)

Mechanical Elements

Hinges? Sliders?

Belt-pulley? Chain-sprocket?

Gears?

What are these then?

Monolithic (Single-piece) Devices Force, Motion, Energy Transfer While performing desired function, path, motion generation Through purely (Large) elastic deformation

Compliant Mechanisms (ME 851)

Function and Advantages

Force, Motion and/or Energy Transfer Function, Path and Motion Generation Repeatability

Disadvantages (Would we now witness)

Wear and Tear Lubrication Vibrations

Noise

Friction

Need for Assembly

Backlash (play)

Compliant Mechanisms (ME 851)

A (my) Little Story Masters student at UT 1995-97

https://www.utoledo.edu/engineering/mechanical-industrial-manufacturing-engineering/people/kramer.html

Fall of 1996

Purdue University

Prof. Ashok Midha

Compliant Mechanisms (ME 851)

Flexibility is concentrated FLEXURES

LUMPED **COMPLIANT MECHANISMS**

Compliant Mechanisms (ME 851)

Flexibility is Distributed

DISTRIBUTED COMPLIANT MECHANISMS

Compliant Mechanisms (ME 851)

ons/amidha.PNG Midha

FULLY COMPLIANT MECHANISMS

No rigid-body joints

ALL Members undergo elastic deformation

PARTIALLY COMPLIANT MECHANISMS

SOME rigid-body joints SOME Members undergo elastic deformation

CONTACT-AIDED COMPLIANT MECHANISMS

No rigid-body joints

ALL Members undergo elastic deformation

Pseudo joints at contact sites

(MANY) Youtube videos

https://www.youtube.com/watch?v=C-SbMsYNTxM

Compliant Mechanisms (ME 851)

https://www.youtube.com/watch?v=T5wnomW_CJE (MANY) MORE out there!

APPLICATIONS ...

Aerospace/Automotive Sensing, Actuation, Grasp, Manipulation **Biomedical/Healthcare** Orthotic/Prosthetic devices **Robotics** Soft/Medical **Miniature Scales** Micro/Nano Electro Mechanical Systems Space Foldable/Deployable mechanisms **Product Design Special Purpose Mechanisms** Statically balanced mechanisms Bistability Constant I/O force mechanisms

HOW DO WE CONCEIVE (DESIGN) COMPLIANT MECHANISMS

Intuition/Experience based

FACT (Freedom And **Constraint** Topologies)

Rigid-body replacement (PRBM)

Approach

Approaches

References: Personal Notes

WEB Course: Prof. G. K. Ananthasuresh: Compliant Mechanisms: **Principles and Design** https://archive.nptel.ac.in/noc/courses/noc18/SEM1/noc18-me22/

Compliant Mechanisms (ME 851)

TENTATIVE OUTLINE

L2: Generic Design Philosophy: Is concurrent design process sustainable? L3-L4: Understanding kinematics, kinetics, kinetostatics, dynamics... R-B and C L5: Flexures — Lumped Compliance L6-L7: Nonlinear FEM — introduction: trusses with torsional springs — K & K L8-L14: Pseudo-Rigid-Body-Models (lumped and distributed compliance) L8-L10: Incentive, 4 bar, function, path, motion generation L9-L14: Models for various beams, loading and boundary conditions L5-L22: Structural Optimization: beams, four-nodes, hexes, small deformation, large deformation

Compliant Mechanisms (ME 851)

APPLICATIONS ...

Aerospace/Automotive Sensing, Actuation, Grasp, Manipulation **Biomedical/Healthcare** Orthotic/Prosthetic devices Robotics Soft/Medical **Miniature Scales** Micro/Nano Electro Mechanical Systems Space Foldable/Deployable mechanisms **Product Design Special Purpose Mechanisms** Statically balanced mechanisms Bistability Constant I/O force mechanisms

