

(c)

(d)

(e)

Anupam Saxena Professor

 $C = n_{flp} + \text{trace}(CE) = 1 + 12 = 13$

Compliant Mechanisms (ME 851)

DE-Vol. 71, Machine Elements and Machine Dynamics **ASME 1994** Examples 0 2 0 0 0 0 0 1 2 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 3 0 0 0 0 3 3 0 0 CE =0 0 3 3 3 3 0 1 0 0 3 3 3 0 0 0 0 3 3 3

Anupam Saxena Professor

Anupam Saxena Professor

Anupam Saxena Professor

Grübler's Criterion

$$F_r = 3(6 - 1) - 2(7) = 1$$

$$F_r = 3(7 - 1) - 2(9) = 0$$

Does one have confidence ?

Grübler's Criterion

$$F_r = 3(6 - 1) - 2(7) = 1$$

$$F_r = 3(7 - 1) - 2(9) = 0$$

Does one have confidence ?

But, this linkage moves...

Grübler's Criterion

$$F_r = 3(6 - 1) - 2(7) = 1$$

Does one have confidence ?

$$F_r = 3(5 - 1) - 2(6) = 0$$

Grübler's Criterion

$$F_r = 3(6-1) - 2(7) = 1$$

Does one have confidence ?

 $F_r = 3(5 - 1) - 2(6) = 0$

Kutzbach's Criterion 4L, $4j_1: DOF = 6(3) - 5(4) = -2$

Only Physics can explain !

Merely counting to gauge mobility seems insufficient

Force Equilibrium Equations

Compliant Mechanisms (ME 851)

Force Equilibrium Equations

Compliant Mechanisms (ME 851)

Force Balance Horizontal $f_1 \cos \alpha + f_2 \cos \beta + f_3 \cos \gamma = F_x$ Force Balance Vertical $f_1 \sin \alpha + f_2 \sin \beta + f_3 \sin \gamma = F_{\nu}$ Moment Balance about Z, at D $f_2d_2 + f_3d_3 = F_xd_4 + F_yd_5$ $\begin{bmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \sin \alpha & \sin \beta & \sin \gamma \\ 0 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \begin{bmatrix} F_x \\ F_y \\ F_x d_4 + F_y d_5 \end{bmatrix}$ $\mathbf{Pf}_{truss} = \mathbf{F}_{ext}$ If $\alpha = \beta = \gamma$

P becomes singular, rank deficient

Force Equilibrium Equations

https://ei

Compliant Mechanisms (ME 851)

Anupam Saxena Professor

 $0f_1 + 0f_2 + 0f_3 + p_{11,4}f_4 + p_{11,5}f_5 + 0f_6 = 0$ $0f_1 + 0f_2 + 0f_3 + p_{12,4}f_4 + p_{12,5}f_5 + 0f_6 = 0$ $0f_1 + 0f_2 + 0f_3 + 0f_4 + 0f_5 + p_{14,6}f_6 = G_y$

Compliant Mechanisms (ME 851)

 $p_{11}f_1 + 0f_2 + 0f_3 + 0f_4 + 0f_5 + 0f_6 = A_x$ $p_{21}f_1 + 0f_2 + 0f_3 + 0f_4 + 0f_5 + 0f_6 = A_v$ $p_{31}f_1 + p_{32}f_2 + 0f_3 + 0f_4 + 0f_5 + 0f_6 = 0$ $p_{41}f_1 + p_{42}f_2 + 0f_3 + 0f_4 + 0f_5 + 0f_6 = 0$ $0f_1 + p_{62}f_2 + p_{63}f_3 + 0f_4 + 0f_5 + 0f_6 = C_v$ $0f_1 + 0f_2 + p_{83}f_3 + p_{84}f_4 + 0f_5 + 0f_6 = D_v$ $0f_1 + 0f_2 + 0f_3 + 0f_4 + p_{95}f_5 + p_{96}f_6 = 0$ $0f_1 + 0f_2 + 0f_3 + 0f_4 + 0f_5 + p_{13,6}f_6 = G_x$

 $\mathbf{P}_{14\times 6} \mathbf{f}_{truss 6\times 1} = \mathbf{F}_{ext_{14}\times 1}$ $\mathbf{P}_{2 hinges} \times trusses$ **P** need not be square Can still be rank deficient

Elongation-Displacement Equations

https://engineering.purdue.edu/ME/Seminars/2021/compliant-mechanisms-memory-lane-and-some-novel-and-exciting-applications/amidha.PNG

Compliant Mechanisms (ME 851)

C Compliance matrix

 $\mathbf{C}_{trusses \times 2 hinges}$

Principle of VIRTUAL WORK...

At equilibrium, work done by external forces to displace a configuration arbitrarily is the same as work done by internal forces to bring it back.

 $\mathbf{f}^{\mathrm{T}} \boldsymbol{\delta} \mathbf{e} = \mathbf{F}_{ext}^{\mathrm{T}} \boldsymbol{\delta} \mathbf{U}_{truss}$ $\mathbf{f}^{\mathrm{T}}\left[\delta\mathbf{C}\mathbf{U}_{truss} + \mathbf{C}\delta\mathbf{U}_{truss}\right] = \mathbf{f}^{\mathrm{T}}\mathbf{P}^{\mathrm{T}}\delta\mathbf{U}_{truss}$ $\mathbf{f}^{\mathrm{T}}\mathbf{C}\delta\mathbf{U}_{truss} = \mathbf{f}^{\mathrm{T}}\mathbf{P}^{\mathrm{T}}\delta\mathbf{U}_{truss}$

 $\mathbf{Pf} = \mathbf{F}_{ext}$ PDe en Furdue et $\mathbf{KU}_{truss} = \mathbf{F}_{ext}^{Ashok Midha}$ $PDCU_{truss} = F_{ext}$

Compliant Mechanisms (ME 851)

