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Abstract
Hybrid damping of structural vibration using a combination of active and
passive layers is found to have high application potential due to the
requirement of a lower power supply and guaranteed stability. Use of
hard-coating layers as a passive damping treatment is found to be industrially
acceptable for turbine blades etc, due to the high damping capacity and large
service temperature range. However, such damping materials also have high
strain dependence. In a way that is similar to active constrained layer
damping, by using an active material the strain in the passive damping can be
controlled, and thereby the damping performance of the passive layer. This
paper proposes a semi-analytical method to estimate structural damping in
such a system and obtain the response of a smart hybridly damped system.
The paper delves into the closed-form solution of all common boundary
conditions of a vibrating beam, namely cantilever, hinged–hinged, free–free,
hinged–free, and fixed–fixed beams. It also compares the damping
performance of a beam with only a passive damping layer to that of beams
comprising both active and passive damping layers.

(Some figures in this article are in colour only in the electronic version)

List of symbols

η mean loss factor
ρ density of the plate
ω modal frequency of the beam
εa active strain in the host beam
E modulus of elasticity
Ei total energy in the system at the i th instant
I moment of inertia
C̄ modal constant for beam vibration
M modal loss factor of the beam
tv thickness of the hard-coated damping layer,
tc thickness of the top structural layer
ta thickness of the bottom structural layer
m total mass of the beam

3 Author to whom any correspondence should be addressed.

n number of time-segments in one oscillation
ms number of segments of the active beam
Ip current applied on the smart magnetostrictive actuator

Introduction

Smart materials like piezoceramics, magnetostrictive materials
and shape memory alloys have been investigated for active
vibration control application over the last decade. Major
concerns related to the use of such materials have been
the availability of limited dynamic strain, on-board power
supply and robustness [1]. Active constrained layer damping
(ACLD) of structures using piezoelectric actuators as smart
materials has emerged as a trade-off solution [2, 3] between
active and passive damping, and has shown significant
application potential due to higher energy dissipation to weight
characteristics. The success of this technique has been
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shown to be influenced by the capacity of shear deformation
of the active constraining layer made of piezoceramic or
magnetostrictive material [4, 14].

Tani et al [5] have reviewed extensively the uses of
active materials for vibration control and have shown that
smart magnetostrictive actuators based on Terfenol-D material
can generate comparatively larger strokes for the same power
and have good potential for active damping. With the
advent of particulate magnetostrictive composites [6, 7], it is
found that such a material could also be used in a layered
form over a host beam to introduce distributed control of
vibration. However, in general, magnetostrictive composites
do not possess good inherent structural damping. Hence,
in highly flexible structures like helicopter rotor blades and
remote arm manipulators, active control using such materials
may lead to instability due to poor observability/controllability
of the system. It is expected that a thin layer of
passive damping coating could enhance the stability of the
system in such circumstances without any significant weight
penalty.

Lim et al [8] have proposed a new strategy of ACLD-
based damping in which a viscoelastic material is sandwiched
between the host structure (made of aluminium) and active
piezo-layer. An attractive three-dimensional (3D) finite-
element model has been developed by representing the
frequency-dependent damping of the viscoelastic material as
a series of second-order oscillators in the Laplacian domain.
This has facilitated a time-domain solution of the ACLD-based
vibrating system. Bhattacharya et al [9] have applied the finite-
element method (FEM) in numerical modelling of different
types of smart ACLDs, and they have studied the performance
of combined damping in composites, using both active and
passive damping layers. It was observed by Karimmi et al
[10] that hard coatings of Fe–Cr alloy could be used effectively
for passive damping. Unlike the situation with viscoelastic
materials, the passive damping in such cases is dependent
on the applied strain, and it requires a different approach
to model the dynamic behaviour. Bhattacharya et al [11]
have proposed a new type of ACLD for vibration control of
systems having an active layer and strain-dependent damping
layer as the coating over host beams. Their formulation
expressed the generalized displacement matrix in terms of
nodal displacements using the FEM approach and used this
to compute the strains. They explored the active only,
passive only and hybrid damping cases separately. The
effect of active damping was incorporated by applying the
extended Hamilton’s principle and recomputing the strain from
the undamped displacement vector. New damping (C) and
stiffness (K ) matrices were computed and used in the equation
of motion (due to the strain dependence of the loss factor in
the passive layer) to obtain the frequency response function
(FRF). The numerical scheme was iterated several times until
convergence in the frequency response was achieved. Thus,
the scheme was not advantageous from the computational
point of view and difficult to implement in real-time
control.

In this paper, a closed-form hybrid control scheme related
to the vibration of beams for different boundary conditions
is proposed. A multilayer beam comprising host layers, a
strain-dependent passive damping layer and an active layer
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Figure 1. Variation of material loss factor versus strain amplitude for
a typical hard-coated damping material of Fe–Cr alloy as reported by
Karimmi et al [10] used as a passive damping layer.

is considered. The passive damping layer is arranged either
sandwiched or in an Oberst beam configuration. Usually,
for a specific range of strain, the loss factor in the damping
material may be an order of magnitude higher that the average
damping, while for some other range of strain it may become
extremely low. A typical strain-dependent damping is depicted
in figure 1. Damping applications of similar coatings have
recently been reported by Patsias et al [12]. The introduction
of an active layer gives a means by which the strain in
the hard-coated damping layer can be controlled directly or
indirectly so as to derive maximum or optimal damping from
the passive layer. This external control is obtained by applying
an external voltage field in the case of piezo-composites or
external current in the case of magnetostrictive composites.
Typically the feedback-based control works on the following
principle.

The vibrations induce a strain in the passive damping
material (referred to also as a ‘hard-coat’ layer), which in
conjunction with the induced active strain governs the resultant
loss factor of the damping layer. However, due to the dynamic
nature and strain dependence, the loss factor in the material is
also a function of time. Hence, in a closed-loop system, the
active strain required to maximize the loss factor of the passive
layer is to be determined at each time instant. The active strain
is appropriately changed through the voltage/current applied.
Hence, closed-form estimation of the temporal dependence of
the external current would enable real-time vibration control in
such cases.

Section 1 introduces the closed-form modelling of free
vibration in a multilayered beam corresponding to different
boundary conditions. Section 2 has developed the closed-
form analysis corresponding to passive damping using the
modal strain energy method. In section 3, the method is
further extended to include active damping assuming a simple
velocity-proportional feedback control. Finally, in section 4
different case studies are provided corresponding to various
arrangements of the active and passive damping layers.
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Layer a

Layer b

Layer c

x, u 

y, ν

Layer a: Host layer 
Layer b: Material with hard coating (Passive damping layer) 
Layer c: Host layer

Layer ‘b’ has strain dependent loss factor; x, y - Cartesian coordinates;
u, v - In-plane and Out-of-plane displacements respectively

Figure 2. General configuration of a three-layered beam.

fav

fbv

fav , f bv  are the 
interaction forces at 
the interface 

Figure 3. Free-body diagram of a multilayer beam.

1. Modelling of free vibration in a multilayered beam
with different boundary conditions

1.1. Undamped model of a hybrid beam

In order to establish the significance of some new terms that
will be used to quantify the damping of vibration, a succinct
study of undamped cantilever vibration is presented here. The
cantilever multilayered beam model is shown in figure 2.

The transverse equation of motion for the different layers
of the beam (as shown in figure 2) may be expressed as

− ∂2

∂x2

(
Ea Ia

∂2v

∂x2

)
+ fav = mata

∂2v

∂t2
(1a)

− ∂2

∂x2

(
Eb Ib

∂2v

∂x2

)
− fav + fbv = mbtb

∂2v

∂t2
(1b)

− ∂2

∂x2

(
Ec Ic

∂2v

∂x2

)
− fbv = mctc

∂2v

∂t2
(1c)

where v is the displacement relative to the natural undisturbed
configuration of the beam; fav denotes the interaction force
between the two layers in the ‘y’ direction (as shown in
figure 3). The interaction in the form of shearing force between
the layers is neglected in this model since the thickness of the
host beam is very large in comparison to the coating layers b
and c.

Considering the entire beam, the transverse equation of
motion may be written as

− ∂2

∂x2

(
(Ea Ia + Eb Ib + Ec Ic)

∂2v

∂x2

)

= (mata + mbtb + mctc)
∂2v

∂t2
. (2)

Alternatively,

− ∂2

∂x2

(
E I

∂2v

∂x2

)
= mt

∂2v

∂t2
(3)

where
E I = Ea Ia + Eb Ib + Ec Ic

mt = mata + mbtb + mctc.

Applying the appropriate boundary conditions and variable
separation, the standard solution for the response may be
written as

Y = c1 sin(βx) + c2 cos(βx) + c3 sinh(βx) + c4 cosh(βx).

(4)

Using the boundary conditions, β is evaluated and three of the
constants may be evaluated in terms of the constant c1. The
term c1 is then taken out and serves the purpose of quantifying
the amplitude of vibrations. This term is designated as C̄ , and
it is assigned a value of unity initially. As the vibrations of the
beam die down due to damping, C̄ reduces to zero. Dividing
each period of oscillation into sufficiently small intervals, and
applying the undamped response over each time interval, C̄ for
any instant of vibration may be found by taking into account
the effect of energy dissipation in the previous instant.

Thus the complete solution of the differential equation for
undamped cantilever vibration may be written as

v = C̄(sin(βx) + c′
2 cos(βx) + c′

3 sinh(βx)

+ c′
4 cosh(βx)) sin(ωnt). (5)

The values of the modal constants and β may be obtained from
any standard text [15].

2. Analysis of passively damped beams using the
modal strain energy (MSE) method

In this section the procedure to model passively damped
vibration using the equations for undamped oscillation is
formulated. The time interval of an oscillation may be divided
into suitable small time segments, and the undamped response
may be coupled with the C̄ multiplier that embodies the
effect of energy dissipation. Reduction of the value of the C̄
multiplier in every successive time step in consonance with
the energy dissipated in earlier time segments incorporates the
damping effect.

The length of the beam may be divided into suitably
small length segments (figure 4) and the strain induced in
each segment at a particular time instant is computed. A
temporal discretization scheme that uses the value of C̄ at a
particular time instant for computing C̄ at the next time instant
is proposed. Let m denote the number of length divisions in
the beam and n denote the number of segments into which one
oscillation time period is divided. Denoting each time segment
by �t , and the kth modal frequency by ωk ,

�t = 2π

nωk
.

First, the strain in the beam is computed for the required
time instant using the Euler–Bernoulli beam model. Next,
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ΔX

Y

X

tc

ta

tv

Figure 4. Multilayer beam with the passive damping material in the
middle.

depending on the location of the passive (hard-coated)
damping layer, the strain experienced in the hard-coated
damping layer is computed for that time instant. It may
be noted that the hard-coated damping layer could either be
sandwiched between two layers or it could be applied as a free-
standing layer on the top or the bottom of the beam. First,
the damping layer is considered to be fixed between two host
layers. At a particular location along the length of the beam,
strains may be computed and the mean value of strain across
the beam’s cross section may be computed. This process is
elucidated as follows.

Let tv denote the thickness of the damping layer, tc the
thickness of the upper host layer and ta the thickness of the
bottom host layer.

εx =
∫ t2

t1
ε(x, y)∂y

tv
=

∣∣∣∣ tc − ta

2

∣∣∣∣ ∂2v

∂x2
(6)

t2 = tc + tv − ta + tv + tc

2
; t1 =

(
− ta + tv + tc

2
+ tc

)
.

If the damping layer is assumed to be at the top or the
bottom of the beam,

εx =
∫ t2

t1
ε(x, y)∂y

tv
=

(
tc + ta

2

)
∂2v

∂x2
(7)

t2 = ta + tv + tc

2
; t1 =

(
ta + tc − ta + tv + tc

2

)
.

Subsequently, the loss factor in the damping layer is
determined from the parametric curve of loss factor versus
strain (see figure 5). The variation of loss factor versus strain
for an actual material is approximated from figure 1 by line
segments using three points between which the variation is
assumed to be linear. Based on material specification, the three
nodes can be specified to simulate the actual variation of loss
factor with strain based on the material specification [10].

The mean loss factor may be computed for the current
instant along the length of the hard-coated damping layer by
taking the arithmetical mean of the loss factors of ms segments.

η(t) =
∑m

j=1 η j (t)

ms
(8)

where η denotes the mean loss factor.
The next step is to obtain the amplitude C̄i+1 in terms

of C̄i , where the index ‘i ’ denotes the i th time instant of an
oscillation. The loss factor for any temporal segment may be
expressed as

ηi = nWdissipated

2Eiπ
(9)

Figure 5. A three-parameter variation of loss factor versus strain for
a hard-coated material layer.

where Ei denotes the total energy of the beam at the beginning
of the i th instant.

Wdissipated = 2Eiηiπ

n
. (10)

Also since:
Ei+1 = Ei − Wdissipated. (11)

The energy term Ei includes both the kinetic and the potential
energy of the beam. The kinetic energy and the potential
energy are computed in terms of C̄i . Accordingly,

Ti =
∫ ∫ ∫

1
2 (ẏ)2 dm = 1

2ω2
∫ ∫ ∫

y2 dm

= bω2

2
(ρata + ρvtv + ρctc) cos2(ωk t)(C̄i )

2

×
∫ L

0
(sin(xβ) + c′

2 cos(xβ) + c′
3 sinh(xβ)

+ c′
4 cosh(xβ))2 dx at t = 2iπ

ωkn
. (12)

The expression for Ti+1 may be obtained similarly by
substituting the index i + 1 by I at t = 2(i+1)π

ωk n .
Next, the potential energy, Vi , is calculated as follows.

Vi = 1
2 C̄2

i (Ea Ia + Ev Iv + Ec Ic)(βk)
4 sin2(ωk t)

×
∫ L

0
(− sin(xβk) − c′

2 cos(xβk) + c′
3 sinh(xβk)

+ c′
4 cosh(xβk))

2 dx at t = 2iπ

ωkn
. (13)

As with the kinetic energy, the expression for Vi+1 may be
obtained after substituting the index i by i + 1.

An additional term appears in the expression of potential
energy that may be considered to be due to stretching. The
additional term is given by

1

2

∫ L

0

Ea Ia + Ev Iv + Ec Ic

4

(
dy

dx

)4

dx

= Ea Ia + Ev Iv + Ec Ic

8
(βk)

4C̄2
i sin4(ωk t)

∫ L

0
(cos (xβk)

− c′
2 sin (xβk) + c′

3 cosh (xβk) + c′
4 sinh (xβk))

4 dx

at t = 2iπ

ωkn
. (14)

629



S Ahlawat et al

Following energy conservation,

Vi+1 + Ti+1 = Vi + Ti − �E

where

�E = 2π(ηa(Via + Tia) + ηh(Vic + Tic) + ηv(Viv + Tiv))

n
.

(15)

ηv is calculated from the plot of strain versus loss factor.
Using equations (12)–(15), we calculate Ci+1 in terms of

C̄i and progress in time, recomputing the value of the modal
constant after every time segment.

2.1. Calculation of the modal loss factor

The modal loss factor for the vibrating beam may be defined as

Modal loss factor (at i th time instant) =
∑m

j=1 Vi j η j∑m
j=1 Vi j

. (16)

The potential energy terms have been formulated for different
length segments. These are used to obtain the modal loss factor
as a function of time (since the loss factor of the hard-coated
damping layer varies with time).

For the case when the beam boundary conditions are not
those of fixed–fixed type, the equation for modal loss simplifies
to

M =∑m
j=1 Ea Iaηa( j ) + ∑m

j=1 Ec Icηh( j ) + ∑m
j=1 Ev Ivηv( j )

Ea Ia + Ev Iv + Ec Ic
.

(17)

This is because the integrals common to both numerator and
denominator cancel out. For the case of a fixed–fixed beam,
because of the existence of the two terms in the potential
energy, the expression becomes

M =
{(

m∑
j=1

1
2 Ea Iaηa( j ) +

m∑
j=1

1
2 Ec Icηh( j )

+
m∑

j=1

1
2 Ev Ivηv( j )

)
sin2 (ωkt) I1

+
(

m∑
j=1

1
8 Ea Iaηa( j ) +

m∑
j=1

1
8 Ec Icηh( j )

+
m∑

j=1

1
8 Ev Ivηv( j )

)
sin4 (ωk t) I2

} {∑
Vi

}−1

I2 =
∫ L

0
(cos(xβk) − c′

2 sin(xβk) + c′
3 cosh(xβk)

+ c′
4 sinh(xβk))

4 dx

I1 =
∫ L

0

(− sin(xβk) − c′
2 cos(xβk)

+ c′
3 sinh(xβk) + c′

4 cosh(xβk)
)2

dx .

(18)

Active layer

Signal 

Power 
amplifier

Figure 6. Closed-loop control of beam vibrations with the active
layer on the top.

3. A closed-loop system (active layer operative)

An active layer is now introduced (figure 6) and the external
current required for rapid damping of beam vibrations is
determined. A thin layer of active material is spread over the
beam. This active layer is applied on beam segments, and
for ease of modelling, it is assumed that the active layer is
applied at alternate length segments into which the beam has
been divided (number of segments is m in number).

Sufficient strain in the beam is introduced (through the
active element) so that the strain of the hard-coated damping
layer corresponds to the maximum loss factor. However, since
this maximum loss factor condition cannot be met exactly at
all the points of the hard-coated damping layer at a particular
instant of beam vibration, the method of least squares is
employed to get the value of optimum voltage to be applied
at a particular instant.

First, the active strain shared by the hard-coated damping
layer is determined. Absence of shear force is assumed in the
analysis.

The discussion is split into two cases: when the hard-
coated damping layer is sandwiched between two host layers
and when it is on top of the beam, just below the active layer
(of thickness t). The case when the hard-coated damping layer
is the bottommost layer is dynamically equivalent to the case
when it is on the top.

3.1. Case I: Hard-coated damping layer sandwiched

The mean active strain at a particular distance (figure 7) across
the thickness of the hard-coated damping layer is

εx,a = 2εa

ta + tc + tv + t

(∫ tv/2
−tv/2

( tc+t−ta
2 + z′) dz′

tv

)

=
tc+t−ta

2
ta+tc+tv+t

2

εa = tc + t − ta

ta + tc + tv + t
εa. (19)

3.2. Case II: Oberst beam with hard-coated damping layer at
the top next to the smart actuator

For this case, the mean active strain experienced by the hard-
coated damping layer (figure 8) at a particular distance is
computed:

εx,a = tc + t + ta

ta + tc + tv + t
εa. (20)
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Table 1. Details of layer-wise material parameters of the smart laminate.

Material
Thickness
(m)

Elastic
modulus
(GPa)

Density
(kg m−3)

Loss
factor, η

Aluminium 0.01 70 2700 0.001
Host layer II 150 × 10−6 70 2700 0.001
Hard-coated damping layer (Fe–Cr–Al alloy) 150 × 10−6 200 7000 (loss factor as in figure 1)
Terfenol-D [13] composite 0.001 35 9250 a

a Magneto-mechanical constant = d31 = 1.67 × 10−8 mA−1.

Smart Actuator

tc

tv

ta

t εa

Figure 7. Active strain propagated through the beam’s cross section.

From these two cases, it can be written that the strain in
the hard-coated damping layer at a particular distance is kεx .a ,
where k is the appropriate factor, as the case may be. Let εx .p

denote the strain due to passive vibration. Using the method of
least squares, we attempt to minimize the following function:

f =
m∑

i=1

(
εx .a + εx .p − εmax .lossfactor

)2

i . (21)

εa is determined from εx .a . We know that εa = kεx .a .
Differentiating, we obtain

d f

dεa
= 0 =

m∑
i=1

2
(
εx .a + εx .p − εmax .lossfactor

)
i
k

⇒ kεa = εmax .lossfactor −
∑m

i=1

(
εx .p

)
i

m

⇒ εa = εmax .lossfactor −
∑m

i=1 (εx.p)i
m

k
. (22)

Finally, the applied external current is obtained as

Ip = −Kc sgn(εa)
t |εa|
d31

(23)

where Kc is the control constant.
Once εa is obtained for a time instant, the loss factors

for the hard-coated damping layer (in the segments having an
active layer) are calculated. The energy dissipated is obtained,
and after recalculating C̄i by the elucidated procedure, the next
time step is considered.

4. Results and discussion

For numerical studies, a composite beam fixed at both ends
is considered. The beam is initially composed of three
layers: two structural layers and one layer of hard-coated
damping material (see table 1 for the material properties) that
provides the passive damping. An active layer is subsequently

Smart Actuator

t

tv

ta

tc

εa

Figure 8. Active strain directly induced in the damping layer (tv).

introduced over this beam. The host beam material is taken
to be isotropic and homogeneous. Two possible ways of
arranging the hard-coated damping layer are considered in
this study: sandwiched in the middle or placed at the top.
The dimensions of the beam layers along with their material
constants are specified below:

• length of the beam: 1 m;
• number of oscillations simulated: 1000;
• segments into which the length of the beam has been

divided: 10;
• segment into which an oscillation is divided: 10.

The amplitudes of vibration corresponding to the first
bending mode are shown in figures 9 and 10 for the sandwiched
and Oberst configurations respectively. In both cases the
hybrid damping could successfully damp the amplitude. Also,
in both cases, the hybrid damping scheme has shown high
reduction of amplitude in comparison to the passive damping
scheme. With hybrid damping, in the case of the sandwiched
configuration the time taken to reach 10% of the initial
amplitude was about 26 s, while that for the Oberst case was
only 14 s. The efficiency of the active layer was clearly higher
when the hard damping layer was placed just adjacent to it.

Certain hard-coated damping layers do not show the
typical three-point feature of change in loss factor as assumed
in the first case. For such materials, the material damping
stabilizes to a particular value beyond a certain specified
strain [16]. The closed-form analysis for hybrid and passive
only damping is carried out similarly for such cases. The
results are presented in figures 11 and 12. It may be noted
that here again hybrid damping has shown significantly better
results for both sandwiched and Oberst configurations. With
hybrid damping, in the case of the sandwiched configuration
the time taken to reach 10% of the initial amplitude was
about 14 s, while that for the Oberst case was only 3 s.
Also, the Oberst configuration has shown better performance
in comparison to the sandwiched configuration. A possible
reason for the better performance of the Oberst configuration is
due to the adjacency of the smart layer to the coating. This has
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Table 2. Comparison of loss factors for the smart beam evaluated by the FE technique [11] and closed-form analysis, respectively.

Mode no. Frequency
(FE) (Hz)

Frequency (closed form)
(Hz)

Modal damping
(FE) (%)

Modal damping (closed form)
(%)

I 28.8 28.8 2.1 2
III 150.3 149.4 4.0 4.5
V 375.4 369.9 4.1 4.7
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Damping of vibration for sandwiched hard coated element, 1000 oscillations

 Strain (x 10-4)
Loss
factor

Node 1 0.2 0.05 
Node 2 0.8 0.1 
Node 3 2 0.05 Strain

Loss
factor

Damping with hard coated layer 

Active layer added to hard coated layer

1

2

3

1. Hard-coated damping layer is sandwiched between two host layers

Figure 9. Damping of vibration using a hard-coated damping layer
sandwiched between the host layers, and using a combination of an
active layer with a hard-coated damping layer.

caused direct control of applied strain up to an optimal level
and hence resulted in higher damping.

The loss factors related to the first three odd modes of
vibration evaluated by the iterative FE technique [11] and
closed-form analysis are given in table 2. The iterative
technique is based on a simple four degrees of freedom
beam element consisting of in-plane displacement, out-of-
plane displacement, slope, and voltage at the piezo-patch. For
FE analysis the beam is divided into ten elements and the
results are reported after six iterations. The results show that
both FEM and closed-form results agree quite well for all three
odd modes of vibration of the beam. However, the finite-
element analysis has underestimated the modal damping for
higher modes, which may be due to the limitation in number of
iterations and mesh refinement.

Finally, studies were carried out on the settling time of the
amplitude of vibration for the same beam with the sandwiched
damping layer corresponding to different modal vibrations.
The results obtained for the first three nodes are presented in
table 3. The table shows that even for the higher modes of
vibration the proposed scheme is quite successful compared
with conventional passive damping.
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Dissipation of energy for first mode, 1000 oscillations
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Loss
factor

Node 1 0.2 0.05 
Node 2 0.8 0.1 
Node 3 2 0.05 

Damping with hard coated layer 

Active layer added to hard coated layer

Strain

Loss
factor

1

2

3

2. Hard-coated damping layer is at the top (Oberst beam):

Figure 10. Damping of vibration using a hard-coated Oberst
damping layer, and using the same in combination with an active
layer.

Table 3. Comparison of settling time for different modes of
vibration with and without the hybrid control scheme.

Mode
number

Settling time
(hybrid) (s)

Settling time
(passive) (s)

I 26 32
II 7 11
III 2.9 4.6

5. Conclusions

Closed-form analysis of hybrid damped systems based on the
modal strain energy method and discrete time computation
of the loss factor is proposed. The closed-form results will
facilitate parametric studies of this complex system to obtain
optimal layer configuration and necessary control gain. The
superiority of the hybrid damping scheme over a fully passive
damping scheme is established. The damping is found to be
more efficient when the hard-coating layer is placed adjacent
to the smart patches. The studies also matched quite well with
the results of an iterative finite element analysis. The method
could be extended in the future to take into account both strain-
dependent and frequency-dependent damping materials.
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 Strain (X10-4) Loss factor 
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Node 2 0.8 0.1 
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Figure 11. Damping of vibration using a sandwiched
strain-dependent damping layer and using the same in combination
with an active layer.
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