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Structural Health monitoring of Ribbon Reinforced Composite Laminate 

using Piezoelectric Sensory Layer 

 

Arvind Kumar Jaiswal, Anand Kumar and Bishakh Bhattacharya* 

Department of Mechanical Engineering, IIT-Kanpur, Kanpur 208016 

 

Abstract: 

The ribbon reinforced composites are widely used in prosthetics – for example, in the 

field of orthodontics where canine to canine retention is carried out with the help of resin 

composite retainers reinforced with Polyethylene/Kevlar ribbons. These structures 

typically work like a bridge between the canines. They are subjected to central loading as 

well as support yielding due to unequal movement of the of the end supports. However, 

due to the high strain in the laminate, the chances of delamination and laminate failures 

are quite high in such structures. The present work has proposed a high precision 

piezoelectric finite element which can be used with a piezoelectric sensory network to 

identify a damage signal and help in early replacement of the bridge. In order to identify 

the damage the voltage profile and mechanical impedance are obtained for healthy and 

damaged laminate which can be used as a data-base for fault detection.  

* For Correspondence: Dr. Bishakh Bhattacharya, Department of Mechanical 
Engineering, IIT-Kanpur, Kanpur 208016, India 
e-mail: bishakh@iitk.ac.in, Tel: +91-512-259-7824 (O) Fax: +91-512-259-7408 
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1. Introduction 

 

The structural advantages of laminated composites are often compromised due to the 

presence of hidden defects. Damages such as delamination, ply failure or crack in the 

matrix may lead to the severe reduction in the load bearing capacity of a composite. 

Ribbon reinforced composite laminate, for example, are widely used in the field of 

orthodontics where canine-to-canine retention is carried out with the help of resin 

composite retainers reinforced with polyethylene/ Kevlar ribbons. These structures 

typically work like a bridge between the canines. They are subjected to central loading as 

well as support yielding due to unequal displacement of the two end supports. This 

farther generates large strain in the laminate and the chances of delamination and 

laminate failures are quite high in such composite. Therefore, it is important to develop a 

technique for monitoring the severity, type and location of damage in such composites. 

Experimental damage monitoring mainly involves non-destructive sensing of the damage 

in the structure such as using ultrasonic, magnetic field or X-ray based scanning etc. 

Many of these methods of identification involve experimental techniques which are quite 

expensive and also difficult for applications related to prosthetics.  

Chung [1] has developed an electrical resistance method for structural health 

monitoring of composite materials. It is limited to composite materials which are 

electrically conductive such as composites with carbon fibers. Pandey et al [2] have 

developed a damage identification technique based on curvature of mode shapes. They 

have shown that the absolute difference in the curvature of mode shapes between the 
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healthy and the damaged ply may be used as a parameter for predicting the damage and 

the damage location. This concept has been applied to a vibrating flat plate with the 

assumption that the modulus of elasticity in the damaged area becomes equal to zero. Liu 

et al [3] have shown that embedded piezoelectric sensors can act as wave transmitters as 

well as sensors. The evaluation of the structural status can thus be monitored using 

information carried by waves propagating in the structure and interacting with any 

internal damage. Coverley and Staszewski [4] have shown that using a classical sensor 

triangulation scheme and a Genetic Algorithm procedure the impact location can be 

accurately identified. This procedure substantially alleviates the complexity in learning 

and matching and thus becomes computationally efficient. 

The present work has proposed knowledge based piezoelectric sensory system 

which can identify the damage signal and help in early replacement of the bridge. In 

order to identify the damage a voltage profile and mechanical impedance is developed 

both for healthy composite and damaged ply. Finite element analysis using high precision 

element are carried out in this paper to identify the damage signals accurately.  

Cowper [7] developed a high precision bending element of arbitrary triangular shape and 

applied to the solution of several static and dynamic passive plate problems. Lindberg et 

al [8] developed a high precision cylindrical shell finite element. Jeyachandrabose and 

Kirkhope [9] presented an efficient formulation for eighteen degree of freedom high 

precision bending element also they & B. Bhattacharya [10] developed an efficient 

formulation of the stiffness matrix for a high precision triangular laminated anisotropic 

finite element. The formulation is based on classical lamination theory. This consistent 
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methodology is followed here. The results of dynamic analysis are expected to help in 

efficient damage diagnosis for these kinds of structures.  

 

2. Piezoelectric Voltage Sensing in Laminated Composite  

This section briefly describes the finite element formulation of Smart Laminated 

Composite Plate and the voltage sensed by embedded Piezo-electric layers during 

vibration.  

2.1 Constitutive Relationship of Laminated Composite 

The composite plate is modelled in this paper following CLPT (Classical Laminated Plate 

Theory). The derivations related to macro mechanics of composites are common text 

book material [] – however they are briefly discussed here for the sake of completeness. 

Considering the deformation of a laminate in x-z plane (as shown in Figure 1) and 

assuming that normal to the mid plane remain straight and normal after deformation the 

strain-displacement relations for a point at a distance z from the middle surface of the 

laminate are given by equations (1-4): 
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Where  
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vector; and u, v and w are the mid plane displacements. 

 Following the standard notations of laminated composite theory, the constitutive 

relationship for any k-th layer of laminate with respect to the principal material axis is 

given by: 
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where, Q is known as the reduced stiffness matrix; the elements of Q matrix are functions 

of the elastic constants and Poisson’s ratio of the layer 

The constitutive relation may be farther transformed from the principal axes of 

each lamina to the global coordinate system x-y-z by: 
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Where the transformed matrix 


Q  is given by: 
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In which   m = Cosθ   and    n = Sinθ  ;θ  being the fibre angle which is the angle between 

the global axes x -y-z and the principal axis of each lamina 1-2-3. 

The resultant forces and moments per unit length in a cross-section may be 

obtained by integrating the corresponding stresses through the laminate of thickness h 

and are given by the equations (8-11). 
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Where N are the membrane forces, M are the bending moments, n = total no. of layers. 

Hence, the constitutive relationship for the complete laminate are given by, 

 0N A B

M B D
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[A], [B]and [D] are the effective membrane, bending membrane coupling stiffness and 

bending stiffness matrix of the laminate defined as, 
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2.2 Development of Element Stiffness Matrix: 

The finite element used here is based on a 38 DOF freedom triangular plate bending 

element developed by Jeychandrabose and Kirkhope [] and later extended by 

Bhattacharya et al [] for dynamic analysis. 

The element properties are derived using the area coordinate system , η  and . These 

coordinates are related to the Cartesian coordinate as: 
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i k jc x x  . 

Here i, j, k = 1, 2, 3 in cyclic order, (xn, yn) n= 1, 2, 3 are the global coordinates of the 

three vertices of the triangle in Cartesian system and  denotes and area of the triangular 

element. 

In each element, three field displacements u, v (in plane components) and w (transverse 

component) along x, y and xz directions are considered. Nodal DOF chosen are grouped 

into three vectors as, 

         TTTT WVU ,,                                                                                                 (15) 

Where, 
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ux, wx, etc. are the first order derivatives with respect to at the node i (i = 1,2,3). 

Similarly, wxxi, etc. are the second order derivatives; uc, vc denote the displacements along 

x and y direction at the centroid of the element. The in plane displacement functions are 

assumed to be complete cubic polynomial such as, 
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or,       Cu T
1,                                                                                                   (17) 

W`here     3
1 ....,,,1  T  and 

       101,.....,CCC T   

A quintic polynomial series is adopted for the transverse displacement function: 

       Cw T
2,                                                                                                     (18) 

Where     4 5 3 2 2 3 4 5
2 1 21

1, , ,..... , , , , , ,
T          


   

The in plane displacement u can be written as: 

      UNu  ,                                                                                                       (19)           

      VNv  ,                                                                                                        (20) 

Similarly transverse displacement can be written as: 

       WNw  ,                                                                                                      (21) 

Where,    T

1N = Λ [R]  

 and       T

2N = Λ [S]    

Where, [R] and [S] is the transformation matrix between natural and global coordinates. 

Closed form expressions of these two matrices are reported in [9] and [10]. 
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The strain energy of a thin laminated plate element is given by integral over the element. 
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U = N ε + M κ dxdy

2                                                                           (22) 

 

Substituting equation (15) into equation (27) we get the Strain energy as  
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Substitution of equation (29) into (28), the final form of strain energy is  
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The strain energy in form of element stiffness matrix can also be written as: 
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Therefore, the element stiffness matrix [K] is given by 

              
11 12 13

22 23

33

X X X

K = X X

sym X

 
 
 
  

                                                                                     (37) 

                                                                    

where, 

                    T
11 1X =[R] [F ][R]  

 

                    T
12 2X =[R] [F ][R]  

 

                    T
13 1X =[R] [G ][S]  

 

                    T
22 3X =[R] [F ][R]  

 

                     T
23 2X =[R] [G ][S]  

 

                     T
33X =[S] [H][S]  

 

The Matrix 1[F ] , 2[F ], 1[G ], 3[F ] , 2[G ]  and [H]  are defined as follows: 

Mass Matrix: 

The kinetic energy T, of the element is given as 
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Where, M is the mass matrix,   is the density of the plate and V is the volume of the 

element. Expressing u, v and w in terms of nodal variables U, V and W and using 

equation (2.22), the expression for kinetic energy may be written as: 

          
T T T T

T T

U N NU+V N NV1
T= dVv2 +W N Nw


 

  
 

   

 
                                                                (46) 

 

Hence, for any composite laminate, the mass matrix can be written as: 

 

    
n

T T
k k s s

k=1

M= Δt ρ [N N ]dxdy                                                                                      (47) 

     

Where kΔt = thickness of the thk  layer, kρ = density per unit area of the thk  layer and  
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N 0 0

N = 0 N 0

0 0 N
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The shape functions used to find mass matrix is same as that for field displacement. Such 

mass matrices are called ‘Consistent Mass Matrix’. There is another type of mass matrix 
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called ‘Lumped mass matrix’ where only diagonal term are present and is less populated 

than consistent mass matrix. Hence the consistent mass matrix is computationally more 

intensive but more accurate so consistent mass matrix is chosen for this problem. The 

expression for mass matrix on transformation to area coordinates is  

  

11n
T

k k s s
k=1 0 0

M= 2Δt ρ [N N ]d d


 


                                                                                     (49)       

Sensor Voltage: 

       The linear constitutive equations of a piezoelectric layer, including the converse and 

direct piezoelectric effects, can be written as  

 

       i ij j ki kC e E    

       s
l l j l kj kD e E                                                                                                 (50) 

  

where i  and j  are the stress vector and strain vector, kE  is the electric field vector, lD  

is the electric displacement vector, ijC  is the elastic stiffness matrix, kie  is the 

piezoelectric stress charge tensor and s
l k is the piezoelectric permittivity matrix. The 

electric field vector of the piezoelectric layer is related to the electric potential vector V 

by  

                                   i ,iE =-V                                                                                        (51)                                 
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It can be assumed that the electric potential functions have linear variation across 

the thickness of the piezoelectric and it is constant throughout the area. For the sensor 

layer that is poled in z direction, the electric field is absent therefore E3 = 0. 

The resultant stress due to mechanical deformation is 

   
1 1

2 2

3 3
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σ ε
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y

xy





 
 
 
 
 

                                                                                (52)  

                                                        

 For Piezoelectric layer  
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                                                                 (53) 

 

 pE  is the Young modulus and v  is the Poisson ratio. The transformation matrix m2T  is  

         

2 2

2 2
m2

2 2

m n mn

[T ]= n m -mn

-2mn 2mn m -n

 
 
 
  

                                                                           (54)  

m=Cosθ , n=Sinθ and θ  is the skew angle. 

 

The electric displacement on the sensor surfaces given by 

 

 D3= 31 1 32 2e ε +e ε =
T T

3 m2 x y xy{e } [T ][ε ε γ ]                                                                         (55) 
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From Gauss law, the charge output iQ (t)  of the thi  electroplated sensor can be expressed 

in terms of spatial integration of D3 over its surface as i i
jQ (t)= Q (t)  j denotes the 

element no. of the thi  sensor.  

 

       i
j 3 3

1
Q ( ) ( )

2 j jA A
t D dA D dA

 
                                                                          (56) 

 If jA   = jA   then  

 

             i
j 3Q ( )

A
t D dA       

                   

 D3 in can also be written as: 

 

 D3=  31 32 m2 2[d d 0][C][T ][B ]                                                                                    (57) 
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   and    is the nodal displacement vector. 

So, charge for thi  electroplated sensor is  

  

              i i
dsQ =[B ]                                                                                               (58) 
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where i
ds[B ]  is the mechano-electronic matrix of the thi  sensor. 

i
ds[B ]  in the element wise can be written as: 

 
11

ds 31 32 m2 2

0 0

b [d d 0][C][T ][B ]d d


 


                                                                      (59)  

The output charge iQ  can be transformed into sensor voltage as: 

             
i

c
i

r

Q
G

C
i
s                                                                                                   (60) 

Where c
iG  is the constant gain of the charge amplifier and rC  is the capacitance of the ith 

electroplated sensor.  

 

3. Formulation for Mechanical Impedance: 

 

The mechanical aspect of the structure is described by its mechanical impedance 

(Zm). This includes the effect of mass stiffness, damping and boundary conditions. 

The equation of motion for a general dynamical system is in the form 

 

[M]{x}+[K]{x}={F(t)}                                                                                        (61)                                 

The only assumption needed here is that M and K are positive definite. Introducing the 2n 

- dimensional state vector  

( ) [ ( ) ( )]T T Tq t x t x t                                                                                                          (62) 
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and the 2n-dimensional  excitation vector ( ) [ ( ) 0 ]T T TQ t F t  , equation (61) can be 

transformed into  

 

* *[M ]{q}+[K ]{q}={Q(t)}                                                                                               (64)                               

 

Where  * M 0
M =

0 K

 
 
 

 and * C K
K =

-K 0

 
 
 

 are real 2 2n n  matrices. But, whereas *M  is 

a positive definite symmetric matrix, *K  is neither positive definite nor symmetric. Using 

Cholesky decomposition mass matrix can be written as  

 

           * TM LL                                                                                                               (65)   

 

Then, introducing the linear transformation  

 

           TL q(t)=u(t) ,  -Tq(t)=L u(t)                                                                                    (66) 

 

Where -TL  = ( TL ) = -1 T(L ) , equation (63) can be reduced to  

 

         u(t)=Au(t)+U(t)                                                                                                      (67) 

 

in which -1 * -TA=-L K L  is a real nonsymmetric matrix and -1U(t)=L Q(t)  is a real vector. 
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The solution of equation (67) can be obtained by modal analysis, which amounts to the 

determination of the Jordan form for A. The eigenvalue problem associated with equation 

(67) has the form Au=λu . The solution consists of 2n eigenvalue iλ  and 2n 

eigenvectors iu (i=1,2,.....2n) .The Jordan matrix is diagonal  

                      

                [ ]idiag                                                                                                      (68) 

  

The eigenvectors iu , known as right eigenvectors of A, can be arranged in the square 

matrix  

 

                 1 2 2[ ..... ]nU u u u                                                                                            (69) 

 

Similarly, left eigenvectors are arranged in a square matrix, as follows:  

             

                1 2 2[ ..... ]nV v v v                                                                                                (70) 

 

The set of eigenvectors iu  is orthogonal to the set of eigenvectors iv  and eigenvectors can 

be normalized so as to satisfy  

                 T TV U U V I                                                                                                (71) 

 

in which case Jordan matrix is simply 
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                   TV AU                                                                                                     (72) 

 

Either set of eigenvectors can be taken as a basis for 2nL . Hence we assume that the 

solution of equation has the form  

                                             
2

1

( ) ( )
n

i i
i

u t u z Uz t


                                                          (73) 

where z(t) is a 2n-vector with components ( )iz t . Substituting equation (73) into equation 

(67), premultiplying the result by TV and using equations (71-72), we obtain  

                                         ( ) ( ) ( )z t z t Z t                                                                  (74) 

 

 

in which  

                   ( ) ( )TZ t V U t                                                                                           (75) 

 

From equation (64), the actual response is 

 

                 
2

1

( )
n

T
i i

i

q t L u z



                                                                                           (76) 

 

The homogeneous solution of equation (65) is  

 

                ( ) (0)Atu t e u                                                                                               (77) 
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The total solution of equation (65) is 

 

( )

0
( ) (0) ( )

tAt A tu t e u e U d                                                                                        (78) 

 

 

The actual response is  

 

  -T Λ t T T Λ (t-τ) T -1q(t)=L U (e V L q(0)+e V L Q (t))                                                       (79) 

 

The velocity x  can be obtained from the equation (62). The mechanical impedance of the 

system is 

 

      
F(t)

Z(t)=
x(t)

                                                                                                               (80) 

                                          

 

4. Application on simple problem: 

 

In this section convergence of voltage is studied for a simple problem 
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Laminate Detail:  

Fiber: Glass Fiber, 

Matrix Material: Epoxy Resin, 

Mechanical Properties:  

Elastic modulus of laminate 

Ex = 28.45 GPa, 

Ey = 2.148 GPa, 

Figure1. Layout of composite plate with 
sensor   

Free 

Fixed Fixed 

Sensor layer 
(PVDF) 

Free 
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Gxy = 1.032 GPa, 

Major Poisson ratio ( vxy ) = 0.21, 

Density = 1670 kg/m3, 

Properties of PVDF: 

E = 63 GPa, 

Poisson ratio = 0.31, 

Density = 7500 kg/m3, 

Type of Laminate: Symmetric Laminate  

Number of Laminas = 4; 

Ply Thickness: 0.5 mm; 

Pvdf Thickness: 0.1 mm;  

Stacking sequence: [04] 

 

 

 

 

                                        Figure2. Convergence of voltage output  
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4. Ribbon reinforced composite and damage detection: 

 

Ribbon reinforced composite laminate are widely used in prosthetics–particularly 

in the field of orthodontics where canine-to-canine retention is carried out with the help 

of resin composite retainers reinforced with polyethylene/ Kevlar ribbons. There are 

certain advantages of using this type of composite in prosthetics:  

 

1. Ribbon reinforced composites can have high strength and stiffness in two 

directions, longitudinal and in-plane direction. Thus such composites can be 

nearly isotropic in the plane of a sheet exhibiting nearly equal strength in all 

directions while the aligned-fiber composites, which have poor transverse 

strength. 

 

2. They are less prone to crack and less care in handling. 

 

3. They tend to very resistant to puncture by sharp objects. 

 

4. Advantage of ribbon as reinforcement is that they can be packed in larger volume 

fractions than circular fibers. 

 

The volume fraction of ribbons, rV  is given by  

                                      
( )( )

r r
r

r m r m

W t
V

W W t t


 
= 

1

[1 ( / )][1 ( / )]m r m rW W t t 
               (81) 



 - 25 - 

Where rW  and rt  are respectively the width and thickness of the ribbons, mt  is the 

spacing between two layers of the ribbons, and mW  is the spacing between two ribbons in 

a layer                                         

The longitudinal modulus of ribbon composites, like that of the continuous-fiber 

composites, is also given by the rule of the mixtures as 

 

   L r r m mE E V E V                                                                                                         (82) 

                                                    

 

where rE  is the elastic modulus of ribbons. The in-plane transverse behavior of ribbon 

composites is analogous to the longitudinal behavior of aligned short-fiber composites. 

Therefore, the in-plane transverse modulus is given by the Halpin-Tsai equation as 

                                                            
1 (2 / )

1
T r r r r

m r

E W t V

E V








                                        (83)                               

Where             

                                                       
( / ) 1

( / ) 2( / )
r m

r
r m r r

E E

E E W t
 




                                                                              

                           

These structures typically work like a bridge between the canines. They are subjected 

to central loading as well as support yielding due to unequal movement of the bridged 

canines. However, due to the high strain in the laminate, the chances of delamination and 

laminate failures are quite high in such microstructure. 

 



 - 26 - 

Damage Detection: 

 

There are mainly two types of damage in composite either there is ply failure or 

delamination failure. For considering ply failure we have neglected the stiffness 

contribution of that region to total stiffness of the system. For delamination a simple 

mechanics is followed. The constitutive equation for a laminated composite is  

 

0N A B

M B D




     
    

     
                                                                                                     (84) 

 

For the upper part of the composite (i.e. above the delamination), the constitutive 

equation can be written as 

 

1 1 1 01

1 1 1 1

N A B

M B D




     
    

     
                                                                                                 (85) 

 

Where 01 0 1z     and 1  . 

 

Similarly, for the lower part of composite (i.e. below the delamination), the constitutive 

equation is  

 

2 2 2 02

2 2 2 2

N A B

M B D




     
    

     
                                                                                                 (86) 
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Where 02 0 2z     and 2  . 

 

At the interface edge  

 

1 2N N N                                                                                                                   (87) 

 

1 2M M M                                                                                                                  (88) 

 

Substituting equations (84 – 86) into equations (87-88), the new A, B and D matrix of 

delaminated composite is 

 

1 2 1 1 2 2 1 2

1 2 1 1 2 2 1 2

( ) ( )

( ) ( )

A A A z A z B BA B

B B B z B z D DB D

     
          

                                                                       (89) 

 

So, stiffness matrix for delamination case will be asymmetric.  

 

 

Delamination 

  1 

Z2 

N1+N2 
M1+M2 

2 
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                    Figure3. Delamination phenomena in composite plate 

 

 

 

 

Detail of Ribbon reinforced composite: 

 

The length of plate: lx=25mm; 

The width of plate: ly=1mm; 

The thickness of plate: h= 1mm; 

Fibre: Kevlar 

Matrix: Polyethylene 

The Elastic Properties: 

 
1

2 

3 
4 5

6

7
8

Free 

Free 

Spring 
Supported 

Spring 
Supported 

Figure4. Element Configuration (1)  

No. of plies: 4 
Angle of orientation 
90, 45, 0, -45 
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Er=62GPa; 

Em =0.889GPa; 

 

 

Wr=200  m; 

B=20 m; 

Wm=10 m; 

tr=10 m; 

tm=10 m ; 

Spring Constant =100N/m; 

Force given F(t) = 10(1+cos(wt))N 

 

 

 

Figure5. Voltage Profile for damage in element 1 and ply1 for configuration (1) 
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Figure6. Voltage Profile for damage in element 2 and ply1 for configuration (1) 

 

 

 

 

 

Figure7. Voltage Profile for damage in element 3 and ply1 for configuration (1) 
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Figure8. Voltage Profile for damage in element 4 and ply1 for configuration (1) 

 

 

 

 

 

 

Figure9. Voltage Profile for damage in element 5 and ply1 for configuration (1) 
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Figure10. Voltage Profile for damage in element 6 and ply1 for configuration (1) 

 

 

 

 

 

 

 

Figure11. Voltage Profile for damage in element 7 and ply1 for configuration (1) 
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Figure12. Voltage Profile for damage in element 8 and ply1 for configuration (1) 

 

 

 

 

 

                                                Figure13. Element Configuration (2) 
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 Figure14 Voltage Profile for damage in element 1and ply1 for configuration (2) 

 

 

 

Figure15. Voltage Profile for damage in element 2 and ply1 for configuration (2) 
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Figure16. Voltage Profile for damage in element 3 and ply1 for configuration (2) 

 

 

 

Figure17. Voltage Profile for damage in element 4 and ply1 for configuration (2) 
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Figure18. Voltage Profile for damage in element 5 and ply1 for configuration (2) 

 

 

 

 

Figure19. Voltage Profile for damage in element 6 and ply1 for configuration (2) 
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Figure20. Voltage Profile for damage in element 7 and ply1 for configuration (2) 

 

 

 

Figure21. Voltage Profile for damage in element 8 and ply1 for configuration (2) 
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Figure22. Voltage Profile for damage in element 1 and interface3 for (2) 

 

 

 

 

 

Figure23. Voltage Profile for damage in element 2 and interface 3 for (2) 
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Figure24. Voltage Profile for damage in element 3 and interface 3 for (2) 

 

 

 

 

Figure25. Voltage Profile for damage in element 4 and interface3 for (2) 
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Figure26. Voltage Profile for damage in element 5 and interface3 for (2) 

 

 

 

Figure27. Voltage Profile for damage in element 6 and interface 3 for (2) 
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Figure28. Voltage Profile for damage in element 7 and interface3for (2) 

 

 

 

Figure29. Voltage Profile for damage in element 8 and interface3for (2) 
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Figure30. Strain profile for damage in element 4, ply 1 and configuration (2) 

 

 

Since for the element configuration 1 the problem of mechanical impedance can be 

analysed for the quarter portion i.e. element 1 and 2 
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Figure31. Mechanical Impedance for healthy ply for configuration1 
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Figure32.  Mechanical Impedance for damage in element 1 and ply1 for configuration1 

 

 

Figure33. Mechanical Impedance for damage in element 2 and ply1 for configuration1 
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Figure34. Mechanical Impedance for damage in element 1 and ply2 for configuration1 
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Figure35. Mechanical Impedance for damage in element 2 and ply2 for configuration1 
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Figure36. Mechanical Impedance for damage in element 1 and ply3 for configuration1 

                                                                                       

 

Figure37. Mechanical Impedance for damage in element 2 and ply3 for configuration1 
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Figure38. Mechanical Impedance for damage in element 1 and ply4 for 

configuration1

 

Figure39. Mechanical Impedance for damage in element 2 and ply4 for configuration1 
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5. Conclusion: 

 

The voltage profile is compared both for healthy and damaged composite. The 

element configuration 1 is symmetric and in results we can see that the voltage decreases 

at the point of damage. The element configuration 2 is symmetric about it diagonal so 

results symmetry according to it. The voltage profile for damage in element 4 and 5 

shows some different result compare to other elements. One reason is that we are using 

only eight elements due to difficulty in attaching pvdf sensor and taking lots of result. 

The strain profile for damage in element 4 and configuration 2 is shown in figuire30 to 

convince the reader. 

  

 Voltage profile for delamination is showing unsymmetric behavior because the 

stiffness matrix is not symmetric. Figure 31 shows the mechanical impedance for healthy 

ply. In figures (31-39) it is compared with damaged composite. Here these results show a 

decrement in mechanical impedance when there is damage. Sine the stiffness of a body 

decreases when there is a damage, the velocity is going to increase and mechanical 

impedance is a ratio of force by velocity so it shows a decrement behaviour. 

 

 So, knowledge based database is created for ribbon reinforced composite for both 

ply failure and delamination. The results of dynamic analysis are expected to help in 

efficient damage diagnosis for these kinds of structures. 
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