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Spectrum of Approaches to Analyzing 
Electronic System
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SPICE and Device Models
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Ron Rohrer
Special Issue on 40th Anniversary of SPICE
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What is a Compact Model?
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Compact MOSFET Model
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Jds = f1(Vds,Vgs)

Cgs=f3(Vgd, Vgs)Cgd=f2(Vgd, Vgs)

Gate

Drain Source

Compact
Model

TCAD
Model
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Challenges in Compact Modeling
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Materials
(Si, Ge, III-V)

Physics
(Quantum Mechanics, Transport)

Maths/ 
Computer Sc.
(Compiler, Function speed, 

implementation, algorithms, 
smoothing, integration, PDE)

Electronics
(Circuit considerations –
Digital/Analog/RF/noise)
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BSIM Family of Compact Device Models
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BSIM: Berkeley Short-channel IGFET Model
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FinFET Modeling for IC Simulation and Design: 
Using the BSIM-CMG Standard

Authors Chapters
Yogesh Singh Chauhan, IITK
Darsen D Lu, IBM
Navid Payvadosi, Intel
Juan Pablo Duarte, UCB
Sriramkumar Vanugopalan, 
Samsung
Sourabh Khandelwal, UCB
Ai Niknejad, UCB
Chenming Hu, UCB

1. FinFET- from Device Concept to Standard 
Compact Model
2. Analog/RF behavior of FinFET
3. Core Model for FinFETs
4. Channel Current and Real Device Effects
5. Leakage Currents
6. Charge, Capacitance and Non-Quasi-Static 
Effect
7. Parasitic Resistances and Capacitances
8. Noise
9. Junction Diode Current and Capacitance
10. Benchmark tests for Compact Models
11. BSIM-CMG Model Parameter Extraction
12. Temperature Effects
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Some Snapshots from recent work
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Modeling of III-V Channel DG-FETs
• Conduction band nonparabolicity
• 2-D density of states 
• Quantum capacitance in low DOS materials
• Contribution of multiple subbands

Yogesh S. Chauhan, IIT Kanpur 13

C. Yadav et. al., Compact Modeling of Charge, Capacitance, and 
Drain Current in III-V Channel Double Gate FETs, IEEE TNANO, 2017.

09/18/2018



Modeling of Quasi-ballistic Nanowire FETs
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Modeling of TMD transistor
• 2D density of state 
• Fermi–Dirac statistics
• Trapping effects

Yogesh S. Chauhan, IIT Kanpur 15

C. Yadav et. al. “Compact Modeling of Transition Metal Dichalcogenide based Thin body Transistors and
Circuit Validation”, IEEE TED, March 2017.

09/18/2018



News (March 14, 2018)

• Our ASM-GaN-HEMT Model is industry 
standard SPICE Model for GaN HEMTs

• Download – http://iitk.ac.in/asm/
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http://www.si2.org/2018/03/14/gallium-nitride-models/

http://www.si2.org/cmc/
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Subthreshold Swing
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𝑆𝑆 =
𝜕𝜕𝑉𝑉𝐺𝐺

𝜕𝜕 log10 𝐼𝐼𝐷𝐷
=
𝜕𝜕𝑉𝑉𝐺𝐺
𝜕𝜕𝜓𝜓𝑆𝑆

𝜕𝜕𝜓𝜓𝑆𝑆
𝜕𝜕 log10 𝐼𝐼𝐷𝐷

= 1 +
𝐶𝐶𝑆𝑆
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

. 60mV/decade

• Amount of gate voltage required to 
change the current by 1-decade.

( )ds

GS

Id
dVS
log

=

As 𝟏𝟏 + 𝑪𝑪𝑺𝑺
𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊

≥ 𝟏𝟏, 𝑺𝑺 ≥ 𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔/𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

Cins



Capacitance Definition
• In general, insulator can be a non-linear dielectric whose capacitance 

density (per unit volume) can be defined as

• Definition 1: 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕2𝐺𝐺
𝜕𝜕𝑃𝑃2

−1
= inverse curvature of free energy density

• Definition 2: 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕

= slope of the polarization vs electric field curve

 Two types of non-linear dielectrics:

• Paraelectric : No polarization when electric field is removed.
• Ferroelectric : Two possible states of polarization when electric field is 

removed. 
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where 𝑃𝑃 = Polarization in dielectric, 𝐺𝐺 = Free energy density and 
𝐸𝐸 = Externally applied electric field



Negative Capacitance Transistor
• What if insulator has a Negative Capacitance!

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 < 0 and 𝐶𝐶𝑆𝑆
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

< 0, then 1 + 𝐶𝐶𝑆𝑆
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

< 1 𝑆𝑆 < 60mV/decade

• For a capacitor
– Energy 𝐺𝐺 = 𝑄𝑄2

2𝐶𝐶
 Capacitance 𝐶𝐶 = �

1
𝑑𝑑2𝐺𝐺
𝑑𝑑𝑄𝑄2

= 1/𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
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Energy landscape of ferroelectric 
materials.Ref. – S. Salahuddin et. al., Nano Letters, 2008. 𝑄𝑄 = 𝜖𝜖𝐸𝐸 + 𝑃𝑃 ≅ 𝑃𝑃

G



Landau-Khalatnikov Theory of Non-
Linear Dielectrics

• Free energy of a non-linear dielectric is given as
𝐺𝐺 = α𝑃𝑃2 + 𝛽𝛽𝑃𝑃4 + 𝛾𝛾𝑃𝑃6 − 𝐸𝐸𝑃𝑃

• In general, 𝛼𝛼 and 𝛽𝛽 can be +ve or –ve but 𝛾𝛾 is always +ve
for stability reasons.

• Dynamics of G is given by 𝛿𝛿 𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝐺𝐺
𝜕𝜕𝑃𝑃

• In the steady state, 𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 0 𝐸𝐸 = 2α𝑃𝑃 + 4𝛽𝛽𝑃𝑃3 + 6𝛾𝛾𝑃𝑃5

09/18/2018 Yogesh S. Chauhan, IIT Kanpur 21

For α > 0 and at 𝐸𝐸 = 0, 
there exit only one real root

𝑃𝑃 = 0
A Paraelectric Material

𝑃𝑃 = 0, ± 𝑃𝑃𝑟𝑟 where 𝑃𝑃𝑟𝑟 = 𝛽𝛽2−3𝛼𝛼𝛼𝛼−𝛽𝛽
3𝛼𝛼

For α < 0 and at 𝐸𝐸 = 0,  there exit three real roots

A Ferroelectric Material has a non-zero P at zero E.

δ = Polarization 
damping factor



Positive and Negative Capacitances
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Paraelectric
A Positive Capacitor 

Ferroelectric
A Conditionally Negative Capacitor 

Only one solution 
at 𝐸𝐸 = 0

Three possible solutions 
at 𝐸𝐸 = 0

𝑃𝑃 = 0 is not possible in a
isolated Ferroelectric due 

to maxima of energy or a 
negative capacitance

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 =
𝜕𝜕2𝐺𝐺
𝜕𝜕𝑃𝑃2

−1

=
𝜕𝜕𝑃𝑃
𝜕𝜕𝐸𝐸

< 0



Negative Capacitance in Ferroelectric
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-ve slope region can be stabilized 
if  

𝐶𝐶𝐺𝐺𝐺𝐺 =
1

−|𝐶𝐶𝑓𝑓𝑓𝑓|
+

1
𝐶𝐶𝑆𝑆

−1

> 0

or,
|𝐶𝐶𝑓𝑓𝑓𝑓| > 𝐶𝐶𝑆𝑆

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑓𝑓𝑓𝑓

S. Salahuddin and S. Datta, “Use of negative capacitance to provide voltage amplification for low 
power nanoscale devices,” Nano Letters, vol. 8, no. 2, pp. 405–410, 2008.

Pr

-Pr

Ec-Ec



How to stabilize a Negative Capacitance?

• Add a positive dielectric 
capacitance in series such that total 
free energy of system has a minima 
in the negative capacitance regime 
of ferroelectric.

• 1
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡

= 1
𝐶𝐶𝐹𝐹𝐹𝐹

+ 1
𝐶𝐶𝐷𝐷𝐹𝐹

> 0

• 𝐶𝐶𝐷𝐷𝜕𝜕 < |𝐶𝐶𝐹𝐹𝜕𝜕| and 𝐶𝐶𝐹𝐹𝜕𝜕< 0

• 𝐶𝐶𝑑𝑑𝑡𝑡𝑑𝑑 = 𝐶𝐶𝐷𝐷𝐹𝐹.|𝐶𝐶𝐹𝐹𝐹𝐹|
|𝐶𝐶𝐹𝐹𝐹𝐹|−𝐶𝐶𝐷𝐷𝐹𝐹

> 0

09/18/2018 Yogesh S. Chauhan, IIT Kanpur 24

A. I. Khan et al., APL, vol. 99, no. 11, p. 113501, 2011



Ferroelectric-Dielectric Systems
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A. I. Khan et al., APL, vol. 99, no. 11, p. 113501, 2011. D. J. Appleby et al., Nano Letters, vol. 14, no.7, 
pp. 3864–3868, 2014.

Total Capacitance of Ferroelectric-dielectric hetro-structure becomes
greater than the dielectric capacitance.

𝐶𝐶𝑑𝑑𝑡𝑡𝑑𝑑 =
𝐶𝐶𝐷𝐷𝜕𝜕 . |𝐶𝐶𝐹𝐹𝜕𝜕|

|𝐶𝐶𝐹𝐹𝜕𝜕| − 𝐶𝐶𝐷𝐷𝜕𝜕
> 0



Negative Capacitance FETs
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PbZr0.52Ti0.48O3 FE with 
HfO2 buffer interlayer

P(VDF0.75-TrFE0.25) 
Organic Polymer FE

HfZrO FE
CMOS compatible FE

K.-S. Li et al., in IEEE IEDM, 2015.S. Dasgupta et al., IEEE 
JESCDC, 2015.

J. Jo et al., Nano Letters,  2015
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Device Structure

• Metal internal gate provides an equipotential surface
with a spatially constant Vint.

• Simplifies modeling as ferroelectric and baseline
MOSFET can be considered as two separate circuit
entities connected by a wire.

09/18/2018 Yogesh S. Chauhan, IIT Kanpur 28

Metal-ferroelectric-Metal-Insulator-Semiconductor (MFMIS)



Experimental Calibration of L-K Model
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𝛿𝛿
𝑑𝑑𝑃𝑃
𝑑𝑑𝐶𝐶

= −
𝜕𝜕𝐺𝐺
𝜕𝜕𝑃𝑃

Dynamics of G is given by

In the steady state, 𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

= 0

𝐸𝐸 =
𝑉𝑉𝑓𝑓𝑓𝑓
𝐶𝐶𝑓𝑓𝑓𝑓

= 2α𝑃𝑃 + 4𝛽𝛽𝑃𝑃3 + 6𝛾𝛾𝑃𝑃5

Gibb’s Energy, 
𝐺𝐺 = α𝑃𝑃2 + 𝛽𝛽𝑃𝑃4 + 𝛾𝛾𝑃𝑃6 − 𝐸𝐸𝑃𝑃

α = −1.23 × 109 m/F
𝛽𝛽 = 3.28 × 1010 m/F
𝛾𝛾 = 0 (2nd order phase transition)

Calibration of L-K with P-Vfe curve for Y-
HfO2 with 3.6 mol% content of YO1.5[3]

[3] J. M¨uller et al., JAP, vol. 110, no. 11, pp. 114113, 2011.

[1] Devonshire et al., The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, vol. 40, no. 309, pp.
1040–1063, 1949.

[2] Landau, L. D. & Khalatnikov, I. M. On the anomalous absorption
of sound near a second order phase transition point. Dokl. Akad.
Nauk 96, 469472 (1954).

𝑃𝑃 = 𝑄𝑄 − 𝜀𝜀𝐸𝐸 ≈ 𝑄𝑄 (Gate Charge)



Calibration of Baseline FinFET
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Calibration of baseline FinFET with 
22 nm node FinFET.

BSIM-CMG model is used to 
model baseline FinFET. 

Gate length (L) = 30nm, 
Fin height (Hfin) = 34nm
Fin thickness (Tfin) = 8nm

C. Auth et al., in VLSIT, 2012, pp. 131–132.



Complete Modeling Flowchart
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Landau-Khalatnikov Model of ferroelectric
Verilog-A Code

BSIM-CMG Model of FinFET
Verilog-A Code

𝑉𝑉𝑖𝑖𝑖𝑖𝑑𝑑 = 𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑓𝑓𝑓𝑓

𝑉𝑉𝐺𝐺

𝑄𝑄𝐺𝐺

𝐼𝐼𝐷𝐷

𝐸𝐸 =
𝑉𝑉𝑓𝑓𝑓𝑓
𝐶𝐶𝑓𝑓𝑓𝑓

= 2α𝑃𝑃 + 4𝛽𝛽𝑃𝑃3 + 6𝛾𝛾𝑃𝑃5

𝑃𝑃 = 𝑄𝑄 − 𝜀𝜀𝐸𝐸 ≈ 𝑄𝑄 (Gate Charge)



Capacitances and Voltage Amplification
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𝐶𝐶𝑓𝑓𝑓𝑓 =
𝜕𝜕𝑄𝑄
𝜕𝜕𝑉𝑉𝑓𝑓𝑓𝑓

=
1

𝐶𝐶𝑓𝑓𝑓𝑓 2𝛼𝛼 + 12𝛽𝛽𝑄𝑄2 + 30𝛾𝛾𝑄𝑄4

𝑉𝑉𝑓𝑓𝑓𝑓 = 𝐶𝐶𝑓𝑓𝑓𝑓 2α𝑃𝑃 + 4𝛽𝛽𝑃𝑃3 + 6𝛾𝛾𝑃𝑃5

Internal Voltage Gain,

𝐴𝐴𝑉𝑉 =
𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖𝑑𝑑
𝜕𝜕𝑉𝑉𝐺𝐺

=
|𝐶𝐶𝑓𝑓𝑓𝑓|

𝐶𝐶𝑓𝑓𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑑𝑑

1
𝐶𝐶𝑖𝑖𝑖𝑖𝑑𝑑

=
1
𝐶𝐶𝑡𝑡𝑜𝑜

+
1

𝐶𝐶𝑆𝑆 + 𝐶𝐶𝐷𝐷𝑟𝑟𝐷𝐷𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑆𝑆𝑡𝑡𝑜𝑜𝑟𝑟𝑜𝑜𝑓𝑓

Capacitance matching between 
|Cfe| and Cint increases the gain.

𝐸𝐸 =
𝑉𝑉𝑓𝑓𝑓𝑓
𝐶𝐶𝑓𝑓𝑓𝑓

= 2α𝑃𝑃 + 4𝛽𝛽𝑃𝑃3 + 6𝛾𝛾𝑃𝑃5



Capacitance Matching

• Capacitance matching increases with tfe which increases the gain.
• Hysteresis appears for |Cfe| < Cint which is region of instability.

• Increase in VD reduces the capacitance matching
– Reduces gain.
– Reduces width of hysteresis window.
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ID-VG Characteristics – SS region
• As tfe increases

– Capacitance matching is 
better

– CS and Cins are better 
matched

𝑆𝑆 = 1 − 𝐶𝐶𝑆𝑆
|𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖|

. 60mV/dec

• As tfe↑  SS↓
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ID-VG Characteristics – ON region
• As tfe increases

– Capacitance matching is 
better

𝐴𝐴𝑉𝑉 =
𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖𝑑𝑑
𝜕𝜕𝑉𝑉𝐺𝐺

=
|𝐶𝐶𝑓𝑓𝑓𝑓|

𝐶𝐶𝑓𝑓𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑑𝑑

• As gain increases, ION
increases.
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Note the significant improvement in ION compared to SS.



ID-VG Experimental Demonstration
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SSmin=55mv/decSSmin=58mv/dec

K. S. Li et al., in IEEE IEDM , 2015M. H. Lee et al., in IEEE JEDS, July 2015.

J. Zhou et al., in IEEE IEDM, 2016. D. Kwon et al., in IEEE EDL, 2018 Jing Li et al., in IEEE EDL, 2018



ID-VD Characteristics

• NCFET is biased in negative capacitance region.
– QG or P is positive  Vfe is negative.

• VDS↑  QG or P↓ |Vfe| ↓ Vint=VG+|Vfe| ↓AV ↓  Current 
reduces

09/18/2018 Yogesh S. Chauhan, IIT Kanpur 37

G. Pahwa, …, Y. S. Chauhan, “Analysis and Compact Modeling of Negative Capacitance Transistor with High 
ON-Current and Negative Output Differential Resistance”, IEEE TED, Dec. 2016.

FE material is different.



Negative DIBL

• VD reduces QG which, in turn reduces 𝑉𝑉𝑖𝑖𝑖𝑖𝑑𝑑 = 𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑓𝑓𝑓𝑓
in the negative capacitance region.
– Negative DIBL increases with tfe due to increased Vfe drop.

• Vth increases with VD instead of decreasing.
– Higher ION still lower IOFF!
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ID-VG Characteristics – High VDS

• Hysteresis appears for |Cfe| < 
Cint which is the region of 
instability.

• As tfe increases 
– SS reduces, ION increases.
– IOFF reduces for high VD.

• Width of hysteresis at larger 
thicknesses can be controlled 
with VD.
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Negative Output Differential 
Resistance

40

G. Pahwa et al.,” IEEE TED, Dec. 2016

J. Zhou et al., IEDM 2016J. Zhou et al., IEEE, JEDS, 2018

Mengwei Si et al., Nature Nanotechnology, 2018

09/18/2018 Yogesh S. Chauhan, IIT Kanpur



Optimum NC-FinFET
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 Same ION as 22 nm node FinFET.

 Steeper SS of 58.2 mV/decade.

 VDD reduction by 0.4 V.

 IOFF reduction by 83 %.



Ferroelectric Parameters Variation
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If 𝛾𝛾 = 0,

α = −
3 3𝐸𝐸𝑜𝑜
𝑃𝑃𝑟𝑟

𝛽𝛽 =
3 3𝐸𝐸𝑜𝑜
𝑃𝑃𝑟𝑟3

𝑃𝑃𝑟𝑟 = Remnant Polarization
𝐸𝐸𝑜𝑜 = Coercive Field

D. Ricinschi et al., JPCM, vol. 10, no. 2, p. 477, 1998.

𝐶𝐶𝑓𝑓𝑓𝑓 =
1

𝐶𝐶𝑓𝑓𝑓𝑓 2𝛼𝛼 + 12𝛽𝛽𝑄𝑄2

 Low Pr and high Ec
• reduce |Cfe| which leads to 

improved capacitance matching  
and hence, a high gain.

• Low SS
• increase ION but reduce IOFF due to a 

more negative DIBL ⇒ high ION/IOFF. 
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• Negative Capacitance and Transistor

• Modeling of NC-FinFET

• Impact of Material Parameters

• Switching Delay and Energy

• Conclusion
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Intrinsic Delay

• NC-FinFET driving NC-FinFET
• For high VDD, high ION advantage is 

limited by large amount of  Δ𝑄𝑄𝐺𝐺 to be 
driven.

• Outperforms FinFET at low VDD.

• Minimum at 𝑉𝑉𝐷𝐷𝐷𝐷 ≈ 0.28 V corresponds 
to a sharp transition in QG.

• NC-FinFET driving FinFET load 
provides full advantage of NC-FinFET.
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Delay, τ = Δ𝑄𝑄𝐺𝐺
𝐼𝐼𝑂𝑂𝑂𝑂

Δ𝑄𝑄𝐺𝐺 = 𝑄𝑄𝐺𝐺 𝑉𝑉𝐺𝐺 = 𝑉𝑉𝐷𝐷 = 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑄𝑄𝐺𝐺 𝑉𝑉𝐺𝐺 = 0,𝑉𝑉𝐷𝐷 = 𝑉𝑉𝐷𝐷𝐷𝐷



Power and Energy Delay Products

• NC-FinFET driving NC-FinFET shows advantage only for 
low VDD.

• NC-FinFET driving FinFET load is the optimum choice.
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𝑃𝑃𝑃𝑃𝑃𝑃 = Δ𝑄𝑄𝐺𝐺 .𝑉𝑉𝐷𝐷𝐷𝐷 𝐸𝐸𝑃𝑃𝑃𝑃 =
Δ𝑄𝑄𝐺𝐺 2𝑉𝑉𝐷𝐷𝐷𝐷
𝐼𝐼𝑂𝑂𝑂𝑂



Modeling of MFIS NCFET
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• P and Vint vary spatially in longitudinal 
direction

• Better stability w.r.t. Leaky ferroelectric 
and domain formation

Issues with Existing Models[1,2]:
Implicit equations – tedious                
iterative numerical solutions

Contrast with MFIMS structure:

[1] H.-P. Chen, V. C. Lee, A. Ohoka, J. Xiang, and Y. Taur, “Modeling and design of ferroelectric MOSFETs,” IEEE Trans. Electron Devices, 
vol. 58, no. 8, pp. 2401–2405, Aug. 2011.
[2] D. Jiménez, E. Miranda, and A. Godoy, “Analytic model for the surface potential and drain current in negative capacitance field-effect 
transistors,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2405–2409, Oct. 2010.



Explicit Modeling of Charge
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Voltage Balance:

 Implicit equation in 
 Goal: Explicit Model with good initial guesses

for each region of NCFET operation

Both the QG and its derivatives match 
well with implicit model

G. Pahwa, T. Dutta, A. Agarwal and Y. S. Chauhan, "Compact Model for Ferroelectric Negative 
Capacitance Transistor With MFIS Structure," in IEEE Transactions on Electron Devices, March 2017.



Drain Current Model Validation
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Against Full Implicit Calculations

Against Experimental Data

[1] M. H. Lee et al., in IEDM Tech. Dig., Dec. 2016, pp. 12.1.1–12.1.4. [2] M. H. Lee et al., in IEDM Tech. Dig., Dec. 2015, pp. 22.5.1–22.5.4.

G. Pahwa, T. Dutta, A. Agarwal and Y. S. Chauhan, "Compact 
Model for Ferroelectric Negative Capacitance Transistor With 
MFIS Structure," IEEE Transactions on Electron Devices, 
March 2017.



MFIS Vs MFMIS
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• MFIS excels MFMIS for low Pr ferroelectrics only.
• A smooth hysteresis behavior in MFIS compared to MFMIS.
• MFIS is more prone to hysteresis → exhibits hysteresis at lower thicknesses 

compared to MFMIS.

G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Physical Insights on Negative Capacitance Transistors 
in Non-Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures", accepted in IEEE Transactions on 
Electron Devices, 2018.



Compact Modeling of MFIS GAA-
NCFET
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Voltage Balance:

Radial Dependence in Ferroelectric Parameter:

Mobile Charge Density:

Implicit Equation in β:

 Goal: Explicit Model for β with good initial guess valid in all region of NCFET 
operation which will be used for further calculation of drain current and terminal 
charges.

(Ignored in others work)



Drain Current Model Validation
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Against Full Implicit Calculations

A. D. Gaidhane, G. Pahwa, A. Verma, and Y. S. Chauhan, "Compact Modeling of Drain Current, 
Charges and Capacitances in Long Channel Gate-All-Around Negative Capacitance MFIS Transistor", 
accepted in IEEE Transactions on Electron Devices, 2018.

• In contrast to bulk-NCFETs
• Multi-gate NCFETs with an undoped body exhibit same IOFF and Vth due

to absence of bulk charges.
• GAA-NCFET characteristics show different bias dependence due to the

absence of bulk charge.



Terminal Charges in GAA-NCFET
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• Peak in the gate capacitance is observed where the best capacitance matching
occurs between the internal FET and the ferroelectric layer.

• For high VDS, the QG for GAA-NCFET is saturates to (4/5)th of the maximum
value (at Vds = 0) in contrast to conventional devices for which it saturates to
(2/3)rd of the maximum value.



Quantum Mechanical Effect in GAA-
NCFET
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A. D. Gaidhane, G. Pahwa, A. Verma, and Y. S. Chauhan, "Compact Modeling of Drain Current, 
Charges and Capacitances in Long Channel Gate-All-Around Negative Capacitance MFIS Transistor", 
accepted in IEEE Transactions on Electron Devices, 2018.

• The QME results in an increase in the effective oxide thickness of the internal
FET which eventually diminishes the benefits achievable from NC effect for
the particular value of ferroelectric thickness.



Modeling of overlap capacitance in 
GAA-NCFET

09/18/2018 Yogesh S. Chauhan, IIT Kanpur 54
54

A. D. Gaidhane, G. Pahwa, A. Verma, and Y. S. Chauhan, "Compact Modeling of Drain Current, 
Charges and Capacitances in Long Channel Gate-All-Around Negative Capacitance MFIS Transistor", 
accepted in IEEE Transactions on Electron Devices, 2018.

• Overlap region can be modeled as MFMIS capacitor  

• Total overlap capacitance

• In MFMIS structure, due to the presence of internal metal gate the parasitic
capacitances directly add up to the internal FET capacitance which strongly affects
capacitance matching between the internal FET and the ferroelectric layer along the
channel.



MFMIS Vs MFIS
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G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Physical Insights on Negative Capacitance Transistors in Non-
Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures", IEEE Transactions on Electron Devices, Vol. 65, Issue 3, 
Mar. 2018.



Comparing ID-VG and ID-VD
Characteristics (long channel)
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• MFIS excels MFMIS for low Pr ferroelectrics only, in long channel NCFETs.



Hysteresis Behavior
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• Continuous switching of dipoles from source to drain results in a smooth hysteresis 
behavior in MFIS compared to MFMIS where dipoles behave in unison.

• Source end dipole switches, first, owing to its least hysteresis threshold.
• Non-zero drain bias disturbs capacitance matching in MFMIS resulting in a 

delayed onset of hysteresis.
• MFIS is more prone to hysteresis → exhibits hysteresis at lower thicknesses 

compared to MFMIS.
G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Physical Insights on Negative Capacitance Transistors in Non-
Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures", IEEE Transactions on Electron Devices, Vol. 65, Issue 3, 
Mar. 2018.



MFMIS vs MFIS: Short Channel 
Effects
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OFF Regime (low VD)
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NCFETs exhibit reverse trends in Vt
and SS with scaling except for very 
small lengths.

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance 
Transistors: MFMIS Versus MFIS Structures", submitted to IEEE Transactions on Electron Devices.

2D Numerical Simulation Results

Pr=0.1213 µC/cm2 EC=1MV/cm    tfe=8nm



Reverse Vt Shift with Scaling 
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• Coupling of inner fringing electric field to the ferroelectric increases with scaling, which 
increases the voltage drop across ferroelectric and hence, the conduction barrier height.

• In MFIS, fringing effect remains localized to channel edges only  Halo Like barriers.
• In MFMIS, internal metal extends this effect to the entire channel  larger Vt than MFIS.
G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance Transistors: MFMIS 
Versus MFIS Structures", accepted in IEEE Transactions on Electron Devices.



OFF Regime (high VDS): Negative DIBL
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• Negative DIBL effect increases with Scaling.
• More pronounced in MFMIS than MFIS.

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance Transistors: 
MFMIS Versus MFIS Structures", submitted to IEEE Transactions on Electron Devices.



ON Regime
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• Drain side charge pinches-off earlier in MFIS than MFMIS due to strong localized drain 
to channel coupling  lower VDSat of MFIS results in lower IDS.

• However, internal metal in MFMIS helps VDS impact to easily reach source side QIS ↓
 Larger NDR effect in MFMIS than MFIS.

• In long channel, MFMIS excels MFIS, however, for short channels vice-versa is true due 
to substantial NDR effect in former.

High Pr=0.1213 µC/cm2



Does polarization damping really limit operating 
frequency of  NC-FinFET based circuits?
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• Ring Oscillators with NC-FinFET can operate at frequencies similar to FinFET
but at a lower active power[1].

• Another theoretical study predicted intrinsic delay due to polarization damping in 
NCFET to be very small (270 fs)[2].

Recent Demonstration by Global Foundries on 14nm NC-FinFET

[1] Krivokapic, Z. et al., 
IEDM 2017

[2] Chatterjee, K., Rosner, A. J. & Salahuddin, IEEE Electron Device Letters 38, 1328–1330 (2017).



NC-FinFET based inverters
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• Although the transistor characteristics show no Hysteresis, 
the VTCs of NC-FinFET inverters can still exhibit it due to 
the NDR region in the output characteristics.

T. Dutta, G. Pahwa, A. R. Trivedi, S. Sinha, A. Agarwal, and Y. S. Chauhan, "Performance Evaluation of 7 
nm Node Negative Capacitance FinFET based SRAM", IEEE Electron Device Letters, Aug. 2017.
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Effects of NCFET on standard cells: 
7nm FinFET standard cell library

• Increasing tfe – larger Av in transistors (i.e., steeper slope and higher ON 
current)  Delay of cells become smaller.
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Effects of NCFET on standard cells: 
7nm FinFET standard cell library

• Increase in tfe leads to an increase in the total cells’ capacitance which further 
increases internal power of the cells. 

• Same baseline performance (i.e., frequency) can be achieved at a lower 
voltage, which leads to quadratic saving in dynamic power and exponential 
saving in stand-by power, thus, compensating the side effect of NCFET with 
respect to power.



Effects of NCFET on future processor 
design
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(a) What is the frequency increase due to NCFET under the same voltage 
constraint? 

(b) What is the frequency increase under the same (i.e., baseline) power density 
constraint?

(c) What is the minimum operating voltage along with the achieved power 
reduction under the same (i.e., baseline) performance (i.e., frequency) 
constraint?

H. Amrouch, G. Pahwa, A. D. Gaidhane, J. Henkel, and Y. S. Chauhan, "Negative Capacitance 
Transistor to Address the Fundamental Limitations in Technology Scaling: Processor 
Performance", under revision in IEEE Access, 2018.



NC-FinFET RF Performance
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• Baseline Technology: 10 nm node RF FinFET
• RF Parameters extraction using BSIM-CMG model
• BSIM CMG coupled with L-K for NC-FinFET analysis

R. Singh, K. Aditya, S. S. Parihar, Y. S. Chauhan, R. Vega, T. B. Hook, and A. Dixit, "Evaluation of 
10nm Bulk FinFET RF Performance - Conventional vs. NC-FinFET", IEEE Electron Device Letters, 
Aug. 2018.



NC-FinFET RF Performance
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• Current gain (∝ �𝑔𝑔𝑚𝑚
𝐶𝐶𝑔𝑔𝑔𝑔) is almost independent of 𝐶𝐶𝑓𝑓𝑓𝑓 as both the 𝑔𝑔𝑚𝑚 and 𝐶𝐶𝑔𝑔𝑔𝑔

increase with 𝐶𝐶𝑓𝑓𝑓𝑓 almost at a constant rate.
• Cut-off frequency (𝑓𝑓𝑇𝑇) remains identical for both the Baseline and NC-

FinFET.
• Temperature rise and Power consumption due to self-heating increase with 𝐶𝐶𝑓𝑓𝑓𝑓

as 𝐼𝐼𝑑𝑑 increases. Reduce 𝑉𝑉𝑑𝑑𝑑𝑑 to achieve energy efficient performance.
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NC-FinFET RF Performance

• 𝑔𝑔𝑑𝑑𝑖𝑖 and self heating (∆𝐺𝐺𝑆𝑆𝑆𝑆𝜕𝜕 ∝ 𝑔𝑔𝑑𝑑𝑖𝑖 𝑓𝑓 − 𝑔𝑔𝑑𝑑𝑖𝑖 𝑑𝑑𝑑𝑑 ) both increase with 𝐶𝐶𝑓𝑓𝑓𝑓 due to 
increased capacitance matching between 𝐶𝐶𝑓𝑓𝑓𝑓 and 𝐶𝐶𝑖𝑖𝑖𝑖𝑑𝑑 .

where

• Voltage gain (𝐴𝐴𝑉𝑉 = ⁄𝑔𝑔𝑚𝑚 𝑔𝑔𝑑𝑑𝑖𝑖 = ⁄𝐶𝐶𝑓𝑓𝑓𝑓 𝐶𝐶𝐺𝐺𝐷𝐷𝐼𝐼) decreases with 𝐶𝐶𝑓𝑓𝑓𝑓 due to decrease in 
𝐶𝐶𝑓𝑓𝑓𝑓 .

• Maximum oscillation frequency (𝑓𝑓𝑚𝑚𝐷𝐷𝑜𝑜) also reduces with 𝐶𝐶𝑓𝑓𝑓𝑓 which can be 
compensated by reducing 𝑉𝑉𝑑𝑑𝑑𝑑.   



Impact of Process Variations
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• Variability in ION, IOFF, and Vt due to combined impact 
of variability in Lg, Tfin, Hfin, EOT, tfe, Ec, and Pr

• ION: Improvement is non-monotonic with tfe
• IOFF: Decreases monotonically with tfe
• Vt: Decreases monotonically with tfe

T. Dutta, G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Impact of Process Variations on Negative Capacitance 
FinFET Devices and Circuits", IEEE Electron Device Letters, 2018.



Conclusion

• Maintaining ION/IOFF is the biggest challenge in 
new technology nodes

• Negative capacitance FET is one of the best 
choice
– Need to find sweet material (HfZrO2?)
– Integration in conventional CMOS process 

remains a challenge (lot of progress)
• Compact (SPICE) Models are ready for circuit 

evaluation
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Relevant Publications from Our group
• "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and MFMIS

Transistors: Part I - Subthreshold Behavior ", under revision in IEEE TED.
• "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and MFMIS

Transistors: Part II - Above-Threshold Behavior “, under revision in IEEE TED.
• "Compact Modeling of Drain Current, Charges and Capacitances in Long Channel Gate-All-

Around Negative Capacitance MFIS Transistor", IEEE TED, May 2018.
• "Physical Insights on Negative Capacitance Transistors in Non-Hysteresis and Hysteresis Regimes:

MFMIS vs MFIS Structures", IEEE TED, Mar. 2018.
• "Impact of Process Variations on Negative Capacitance FinFET Devices and Circuits", IEEE EDL,

Jan. 2018.
• "Performance Evaluation of 7 nm Node Negative Capacitance FinFET based SRAM", IEEE EDL,

Aug. 2017.
• "Compact Model for Ferroelectric Negative Capacitance Transistor with MFIS Structure", IEEE

TED, Mar. 2017.
• "Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and

Negative Output Differential Resistance - Part I, Model description", IEEE TED, Dec. 2016.
• "Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and

Negative Output Differential Resistance - Part II, Model validation", IEEE TED, Dec. 2016.
• "Energy-Delay Tradeoffs in Negative Capacitance FinFET based CMOS Circuits", IEEE ICEE,

Dec. 2016. (Best Paper Award)
• "Designing Energy Efficient and Hysteresis Free Negative Capacitance FinFET with Negative

DIBL and 3.5X ION using Compact Modeling Approach", IEEE ESSDERC, Switzerland, Sept.
2016. (Invited)
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Thank You
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