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My Group and Nanolab
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Current members – 30
• Postdoc – 5
• Ph.D. – 16 
• Seven PhD graduated

Device Characterization Lab
- Keysight B1500 IV/CV Parameter Analyzer
- Keysight B1505 High Power IV/CV Analyzer
- Maury’s Pulsed IV/RF for GaN HEMTs
- Keysight PNA-X 43.5GHz
- Load-Pull system 



Compact Modeling – Industrial Research

• Bulk MOSFET Modeling (DC to RF) – BSIM4 and BSIM-BULK (BSIM6)
• Partially Depleted SOI MOSFET Modeling (DC to RF) – BSIM-SOI
• Multigate MOSFET Modeling

• FinFET & Nanowire Transistor – BSIM-CMG
• Fully Depleted SOI (FDSOI) Transistor– BSIM-IMG

• High Voltage LDMOS Modeling – BSIM-HV
• GaN HEMT Modeling – ASM-HEMT
• DC, CV and RF Characterization

• All models are validated on measured data
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Joint Development & Collaboration
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Analyzing Electronic System
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Source: Xing Zhou, NTU



SPICE and Device Models
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Ron Rohrer
Special Issue on 40th Anniversary of SPICE



Device Model

• Good SPICE model should be
• Accurate 

• Produce trustworthy simulations
• Simple

• Simulation time is minimum
• Easy parameter extraction 

• Balance between accuracy and simplicity depends on end application

Creating a model that is both accurate and simple is by no means a 
simple task.

07/12/2018 Yogesh S. Chauhan, IIT Kanpur 8



Model Types

• Look Up Table

• Physical model generally does not have parameters but does not fit with 
data accurately.

• Empirical models are mathematical models written to reflect measured 
characteristics

• Angelov model for HEMT

• Compact SPICE models are the combination of physical and empirical 
methods.
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What is a Compact Model?
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Compact MOSFET Model

07/12/2018 Yogesh S. Chauhan, IIT Kanpur 11

Jds = f1(Vds,Vgs)

Cgs=f3(Vgd, Vgs)Cgd=f2(Vgd, Vgs)

Gate

Drain Source

Compact
Model

TCAD
Model



Compact model complexity
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I = V/R  is a compact model for a resistor

I = V/((qo+TCR*(T-25))*(L-dL)/(W-dW))
Add:  Geometric Scaling

Temperature Scaling



Compact model complexity
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I = V/R  is a compact model for a resistor

I = V/((qo+TCR*(VTR+T-25))*(L-dL)/(W-dW)
Jth = V*I    
Rth=Rth/(L*W)
Add:  Geometric Scaling

Temperature Scaling
Self Heating

RthJth
TR



Effective Dimensions
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Drawn dimensions
Poly after etch
Contact after etch
Current Flow

L
L1

Leff

L1 accounts for etch bias
Leff accounts for etch bias and 
spreading resistance

Weff  W
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PDK and Compact Model



Enablers of a silicon chip design
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Source: David HARAME at. al., IBM J. RES. & DEV. MARCH/MAY 2003



Goal of a PDK – The output of Enablement
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• Offer a circuit design environment that enables full 
exploitation of technology

• Capture all device physics
• Model impact of layout choices on device mean and variance
• Include typical layout effects for simulation from schematic
• Accurate modeling of layout effects for simulation from layout

Enablement PDK
Key to Happy Designers!!Technology Innovation Circuit Designers



Compact Modeling or SPICE Modeling
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• Excellent Convergence
• Simulation Time – ~µsec
• Accuracy requirements

• ~ 1% RMS error after fitting

• Example: BSIM-BULK, BSIM-
CMG, BSIM-IMG

Medium of 
information 
exchange

 Good model should be
 Accurate: Trustworthy simulations.
 Simple: Parameter extraction is
easy.

 Balance between accuracy and
simplicity depends on end application



Industry Standard Compact Models

• Standardization Body – Compact 
Model Coalition

• CMC Members – EDA Vendors, 
Foundries, IDMs, Fabless, 
Research Institutions/Consortia
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http://www.si2.org/cmc/



Compact Model Build

• Test site Specification
• Test site Layout
• Hardware build
• Measure data
• Fit to measured data
• Center model
• Test for convergence, physicality
• Model Process Variation
• Kit Integration
• Kit Test
• Release to customers
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Challenges in Compact Modeling
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Materials
(Si, Ge, III-V)

Physics
(Quantum Mechanics, Transport)

Maths/ 
Computer Sc.
(Compiler, Function speed, 

implementation, algorithms, 
smoothing, integration, PDE)

Electronics
(Circuit considerations –
Digital/Analog/RF/noise)

SPICE Model



Compact Model is Art Based on Science
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Core

Short Channel 
Effects

GIDL Current

Output 
Conductance

Mobility and  
Transport

Gate Current

Overlap 
Capacitances

Temperature 
Effects

Current 
Saturation

S/D Resistance 
Gate Resistance

Fringe 
Capacitances

Noise models

Impact Ionization 
Current

Non-Quasi-Static 
Effects

Self Heating

Parasitic 
Diode, BJT

Quantization

Substrate RC 
Network

Inversion Layer 
Thickness

Proximity Effects

Random Variations

Y. S. Chauhan et.al., “BSIM6: Analog and RF Compact Model for Bulk MOSFET,” IEEE TED, 2014.



BSIM Family of Compact Device Models
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BSIM: Berkeley Short-channel IGFET Model

1990 20102000 20051995

BSIM1,2 BSIM3

BSIM4

BSIMSOI

BSIM-CMG
BSIM-IMG

BSIM5 BSIM-BULK 
(BSIM6)

Conventional 
MOSFET

Silicon on Insulator 
MOSFET

Multi-Gate MOSFET



FinFET Modeling for IC Simulation and Design: 
Using the BSIM-CMG Standard
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Authors Chapters
Yogesh Singh Chauhan, IITK
Darsen D Lu, IBM
Navid Payvadosi, Intel
Juan Pablo Duarte, UCB
Sriramkumar Vanugopalan, 
Samsung
Sourabh Khandelwal, UCB
Ai Niknejad, UCB
Chenming Hu, UCB

1. FinFET- from Device Concept to Standard 
Compact Model
2. Analog/RF behavior of FinFET
3. Core Model for FinFETs
4. Channel Current and Real Device Effects
5. Leakage Currents
6. Charge, Capacitance and Non-Quasi-Static 
Effect
7. Parasitic Resistances and Capacitances
8. Noise
9. Junction Diode Current and Capacitance
10. Benchmark tests for Compact Models
11. BSIM-CMG Model Parameter Extraction
12. Temperature Effects
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Some Snapshots from recent work



Quantum Mechanical Effects

 Predictive model for confinement induced Vth shift due to band splitting 
present in the model

 Effective Width model that accounts for reduction in width for a triple / 
quadruple / surround gate structure
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Width reduction due to structural confinement of inversion 
charge. (Dotted lines represent the effective width perimeter)

BOX

S. Venugopalan et. al., IEEE TED, 2013

FinFET/Nanosheet Transistor



Modeling of III-V Channel DG-FETs
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• Conduction band nonparabolicity
• 2-D density of states 
• Quantum capacitance in low DOS materials
• Contribution of multiple subbands

C. Yadav et. al., Compact Modeling of Charge, Capacitance, and 
Drain Current in III-V Channel Double Gate FETs, IEEE TNANO, 2017.



Modeling of Quasi-ballistic Nanowire FETs
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Modeling of Long Channel Halo Implanted MOSFETs
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Part of BSIM-BULK 
(BSIM6) Model H. Agarwal et. al., "Anomalous Transconductance in Long Channel Halo 

Implanted MOSFETs: Analysis and Modeling", IEEE TED, Feb. 2017.



Modeling of TMD transistor
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• 2D density of state 
• Fermi–Dirac statistics
• Trapping effects

C. Yadav et. al. “Compact Modeling of Transition Metal Dichalcogenide based Thin body
Transistors and Circuit Validation”, IEEE TED, March 2017.



News (March 14, 2018)

• Our ASM-GaN-HEMT Model is industry standard SPICE Model for GaN 
HEMTs

• Download – http://iitk.ac.in/asm/
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http://www.si2.org/2018/03/14/gallium-nitride-models/

http://www.si2.org/cmc/



Media Coverage (April 11, 2018)
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GaN Attractions & Avenues
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Source: S. Levin, Tech. Rep., Power Petrov Group, [2013]

[1]

Size comparison of Si power MOSFET with GaN 
HEMT from EPC for same performance

Size comparison of RF HEMTs based on 
GaAs and GaN technologies from Qorvo

Industry players for power applications as of 2012

GaN

GaAs

Size Comparison



RF Market
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Power Transistor Market
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Source: Electronics Weekly



GaN Properties
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Device characteristics:
• High Breakdown Voltage (𝑉𝑉𝐵𝐵𝐵𝐵)
• Low ON Resistance (𝐵𝐵𝑂𝑂𝑂𝑂)



GaN HEMT
Some interesting features of  III-nitride 
system: 
• Wide bandgap
• High 2-DEG charge density
• High electron mobility 
• High breakdown voltage 
• Excellent thermal conductivity
• High power density per mm of gate periphery

• GaN HEMTs are able to operate in high 
frequency, high power as well as high 
temperature device applications
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High Power Switching applications
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[X. Huang, et al., IEEE TPEL, 29 (5), 2453 (2014)]

• Small terminal capacitances
• Less reverse recovery charge
• Power loss is low



GaN HEMT Structure
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GaN

AlGaN
Source DrainG

Substrate

Graded AlGaN to GaN

AlGaN Spacer Layer (UID)

Gate
Ti/Al/Ti/AuPt/AuTi/Al/Ti/Au

2DEG



AlGaN/GaN Hetero-structure

• The AlGaN/GaN hetero-structure is used to take advantage of the two 
dimensional electron gas (2-DEG)

• AlGaN/GaN materials create piezoelectric and spontaneous 
polarization effects using an un-doped hetero-interface
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Field Plates
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[W. Saito et al., IEEE TED, 50 (12), 2528 (2003)]

𝐶𝐶𝑔𝑔𝑔𝑔 and 𝐶𝐶𝑔𝑔𝑑𝑑

𝑬𝑬𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

Field Plated Structure

Distribution of 𝑬𝑬

[H Huang, et al., IEEE TPEL, 29 (5), 2164 (2014)]



Modeling GaN!
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Modeling Strategy

Existing Models



Modeling Continued…
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Angelov model 

[I. Angelov et al., IEEE T-MTT, 40 (12), 2258 (1992)] [I. Angelov et al., IEEE T-MTT, 44 (10), 1664 (1996)] 

Angelov Model Deficiencies

• Emperical model with ~ 90 parameters

• Fails to capture non-linear behaviour and 
harmonic accuracy in power circuits

• Challenging to use for multiple device 
dimensions



Status of Compact Model – GaN HEMT

07/12/2018 Yogesh S. Chauhan, IIT Kanpur 44

Compact Model
GaN-HEMT

Table-Based Physics BasedEmpirical

Threshold-
Voltage Based

Surface-
Potential Based

Advanced SPICE Model for GaN HEMT device

CMC candidate models for industry standardization
(Two models selected as industry standard)

•ASM-GaN model: Our Model (Y. S. Chauhan, IITK & S. Khandelwal, MQ)
•MIT MVSG model: MIT, Prof. D. Antoniadis

Five years of 
rigorous evaluation



Advantages of SP-Based Model

• Better Model Scalability
• Device Insight
• Better Statistical Behavior
• Accurate Charges and Capacitances
• Better Temperature Scalability
• Less number of parameters
• Easier parameter extraction
• Uses a single expression for  all regions
• Inherent Model Symmetry
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ASM-HEMT Model Overview
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Analytical Solution of 
Schrӧdiger’s & Poisson’s

SP-Based Id Ig & ChargeModel
Real Device effects included 

Noise Model, Trapping Effects
Model, Self-Heating

2-DEG Charge
Fermi-level (Ef),
Surface-potential (SP)

Accurate I-V and C-V
Physical parameters
DIBL, Rs, VS, ...

DC, AC, Transient
Harmonic Simulations,
Noise etc.



Core Model & Parameters
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Real Device Effects Incorporated into the Model

Self-Heating Effect

Core Model Parameters

Parameter Description Extracted Value
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 Cutoff Voltage −2.86 𝑉𝑉

𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹 Subthreshold Slope Factor 0.202

𝐶𝐶𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷 SS Degradation Factor 0.325 𝑉𝑉−1

𝜂𝜂0 DIBL Parameter 0.117

𝑈𝑈0 Low Field Mobility 33.29 𝑚𝑚𝑚𝑚2/𝑉𝑉𝑑𝑑

𝑂𝑂𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷 AR 2DEG Density 1.9𝑒𝑒 + 17 /𝑚𝑚2

𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷 AR saturation velocity 157.6𝑒𝑒 + 3 𝑐𝑐𝑚𝑚/𝑑𝑑

𝐵𝐵𝐹𝐹𝑇𝑇0 Thermal Resistance 22 Ω

Core drain current expression

Access Resistance Model



Model Parameter Extraction
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Set L, W, NF, Tbar
Device Dimensions

Obtain VOFF, NF, CDSCD,
ETA from log-IDVG, LINEAR

And Saturation

Obtain U0, UA, UB and RDS 
from IDVG-LIN

Obtain VSAT, Improve ETA
From LINEAR IDVG

Obtain LAMBDA, Improve
VSAT, ETA from IDVD

Temperature Parameters

Capacitance Modeling

Model Implemented in Verilog-A
Simulations performed in: ADS, 
Spectre, HSPICE

Parameter Extraction in ICCAP Software



DC-Parameter Extraction
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𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 , 𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹 ,𝐶𝐶𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑔𝑔 (Extract 𝑈𝑈0) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑂𝑂𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷)

𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷) 𝐼𝐼𝑑𝑑 − 𝑉𝑉𝑑𝑑 (Extract 𝐵𝐵𝐹𝐹𝑇𝑇0)
[1] S. A. Ahsan et al., MOS-AK Workshop, Shanghai, [2016]



Nonlinear source/drain access region 
resistance model
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Fig.: Nonlinear variation of source/ drain access 
resistances with Ids extracted from TCAD simulation 
and comparison with model.



Rd/s Model Validation with Measurement
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Different slopes in gm-Vg: self-heating 
governs the first slope while velocity 
saturation in access region affects 
second slope.

Fig.: (a) Ids-Vds, (b) gds and (c) reverse Ids-Vds fitting with experimental data. 
The non-linear Rs/d model shows correct behavior for the higher Vg curves in the 
Id - Vd plot.

Effect of high access region 
resistance at high Vg



Modeling of Temperature dependence
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Rd/s increases significantly with increase in temperature.
2-DEG charge density in the drain or source side 
access region:

Saturation Velocity:

Electron Mobility:



Modeling of Field-Plates in HEMTs
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Affects capacitance and breakdown behavior.



Current Collapse
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Source: Stephen Sque - ESSDERC tutorial Sept. 2013  

𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺

𝑉𝑉𝐷𝐷𝐺𝐺𝐺𝐺



Trap Model
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Pulse Width – 200 ns, 
Duty-cycle 0.02 %

Pulsed-IV Scheme used to simulate the P-IV Characteristics in IC-CAP

Pulsed – IV chacteristics for multiple quiescent conditions 
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DC I-V Results 
from Toshiba Power GaN Transistor



Room Temperature Id-Vd Plots
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Id-Vd

gds-Vd gds`-Vd

                                        

Forward Reverse

gds-Vd gds`-Vd



Room Temperature Id-Vg Plots
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Other temperatures
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IdVd @ -20 deg C
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Temperature Scaling
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Id
 (m

A)

Vd = 0.1, 0.5, 1 and 10V



RF Measurements
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S-Parameters
• Easy for high frequencies (hard to do 

open/short for Z/Y)
• Calculate other quantities
• Cascadable
• Transformation
• Compatibility with simulation tools

VNA Architecture



RF Model & Extraction (i)
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𝐿𝐿𝑥𝑥𝑔𝑔
𝑔𝑔

𝐿𝐿𝑥𝑥𝑔𝑔
𝑔𝑔

𝐿𝐿𝑥𝑥𝑑𝑑

𝑑𝑑

GMF

SMF

DMF

Extrinsic

Manifolds

Overlap

𝐶𝐶𝑔𝑔𝑔𝑔,𝑖𝑖
𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝐶𝐶𝑔𝑔𝑑𝑑,𝑖𝑖

𝑔𝑔𝑚𝑚

𝐵𝐵𝑔𝑔 𝐵𝐵𝑔𝑔

𝐵𝐵𝑑𝑑

𝑔𝑔𝑔𝑔𝑑𝑑

ASM-GaN-HEMT

𝑔𝑔𝑖𝑖
𝑑𝑑𝑖𝑖

𝑔𝑔𝑖𝑖

𝐶𝐶𝐷𝐷𝐷𝐷𝑂𝑂𝐶𝐶𝑑𝑑𝑔𝑔,𝑖𝑖

𝑔𝑔𝑖𝑖

𝑑𝑑𝑖𝑖

𝑔𝑔𝑖𝑖

𝑔𝑔𝑑𝑑
PDK

• Model
• Core surface potential based PDK
• Access region resistances included in core
• Bus-inductances in extrinsics

Pad-level Small Signal Equivalent Circuit Model

Device Layout



RF Parameter Extraction (ii)
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Extract 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

Extract 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂

𝑔𝑔𝑚𝑚 dispersion handled by trap model

𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂 𝐶𝐶𝐷𝐷𝐷𝐷𝑂𝑂
510 𝑓𝑓𝑓𝑓 165 𝑓𝑓𝑓𝑓 182 𝑓𝑓𝑓𝑓

[1] Q. Fan et al., Proc. IEEE, 98 (7), [2010] 𝑔𝑔𝑑𝑑𝑔𝑔 dispersion handled by trap model



RF Parameter Extraction (iii)
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𝐿𝐿𝑥𝑥𝑔𝑔 𝐿𝐿𝑥𝑥𝑔𝑔 𝐿𝐿𝑥𝑥𝑑𝑑
10.1 𝑝𝑝𝑝𝑝 −6.08 𝑝𝑝𝑝𝑝 8.25 𝑝𝑝𝑝𝑝

Resonant peaks due to interaction of inductances with intrinsic capacitances

𝐺𝐺11 & 𝐺𝐺22 (5V) 𝐺𝐺12 & 𝐺𝐺21 (5V)

𝐺𝐺11 & 𝐺𝐺22 (20V) 𝐺𝐺12 & 𝐺𝐺21 (20V)

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]



Power Amplifier Design Goals
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𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑖𝑖𝑖𝑖

𝑃𝑃𝑑𝑑𝑑𝑑
𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑓𝑓𝑓𝑓𝐺𝐺𝑐𝑐𝐺𝐺𝑒𝑒𝐺𝐺𝑐𝑐𝐸𝐸 =

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑑𝑑𝑑𝑑

𝑃𝑃𝑑𝑑𝑑𝑑

𝑃𝑃𝑑𝑑𝑖𝑖𝑔𝑔𝑔𝑔



Load Pull Technique
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Helps us:

• Determine Optimum load impedance for 
maximum Pout and PAE performance

• Matching networks
• Understand tradeoffs!

[M. S. Hashmi et. al, IEEE Instrum. Meas. Mag., 16 (2), Feb., (2013)] 



Large-Signal Model Validation
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ADS Schematic for simulation of load-pull contours 22 dBm signal @ 10 GHz

Pout & PAE load pull contours for 10 mA/mm Pout & PAE load pull contours for 100 mA/mm

[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]



Validation – Real & Imag Loads
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Pout & PAE against load resistance (real load)

Pout & PAE against load reactance (imaginary load)

• Fairly accurate in predicting the maxima for Pout & PAE
[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep. [2017]



Validation – Drive-up (HB)
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Harmonic balance drive-up characteristics showing Pout, PAE & Gain

Time domain waveforms of drain voltage & current. 
Load line contours spanning the IV plane

Frequency 10 mA/mm 100 mA/mm

𝑀𝑀𝐺𝐺𝑥𝑥.𝑃𝑃𝑃𝑃𝑃𝑃

𝑓𝑓0 22.46 + 𝑗𝑗𝑗𝑗.54 30.53 + 𝑗𝑗𝑗𝑗.35

𝑓𝑓1 40.61 − 𝑗𝑗9𝑗.39 37.32 − 𝑗𝑗𝑗𝑗.44

𝑓𝑓2 11.39 − 𝑗𝑗𝑗.07 14.77 + 𝑗𝑗𝑗𝑗.83

𝑀𝑀𝐺𝐺𝑥𝑥.𝑃𝑃𝑂𝑂𝑂𝑂𝐹𝐹

𝑓𝑓0 19.57 + 𝑗𝑗𝑗𝑗.83 19.57 + 𝑗𝑗𝑗𝑗.83

𝑓𝑓1 253.48 − 𝑗𝑗6𝑗.72 253.48 − 𝑗𝑗6𝑗.72

𝑓𝑓2 15.66 − 𝑗𝑗𝑗𝑗.21 15.66 − 𝑗𝑗𝑗𝑗.21
[1] S. A. Ahsan et al., IEEE J. Electron Devices Society, Sep., [2017]



Statistical Simulation using Model
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Model Element Description
𝑊𝑊 Width

𝐿𝐿 Length

𝐿𝐿𝐷𝐷𝐺𝐺,𝐷𝐷𝐺𝐺 Access region length

𝑇𝑇𝐵𝐵𝐹𝐹𝐹𝐹 AlGaN Barrier Thickness

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 Cutoff Voltage

𝑈𝑈0 Low Field Mobility

𝑂𝑂𝑂𝑂𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂𝐹𝐹 Subthreshold Slope Factor

𝜂𝜂0 DIBL Parameter

𝑂𝑂𝐷𝐷0𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷/𝐷𝐷 AR 2DEG Density

𝑉𝑉𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷/𝐷𝐷 AR saturation velocity

𝐵𝐵𝐹𝐹𝑇𝑇0 Thermal Resistance

𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 Trap Resistance

𝐶𝐶𝐺𝐺𝐷𝐷0 Gate-Source Overlap Cap.

𝐶𝐶𝐺𝐺𝐷𝐷0 Gate-Drain Overlap Cap.

𝐶𝐶𝐷𝐷𝐷𝐷0 Drain-Source Overlap Cap.

• The need for a statistical simulations
• Variation in device performance
• Obtain a production-level yield-oriented optimized 

circuit design

Sensitivity Analysis for Output power & PAE across key parameters

Parameter List

RC Circuit used for Trap Modeling

Pout PAE



Monte Carlo Simulation
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• Monte Carlo Controller
• Number of trials = 250
• Parameters included in simulation 
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂, 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂, 𝐶𝐶𝐺𝐺𝐷𝐷𝑂𝑂 & 𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇

Parameter 𝝁𝝁 𝝈𝝈%

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 −2.86 𝑉𝑉 1

𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 2.4 Ω 2

𝐶𝐶𝐺𝐺𝐷𝐷0 610 𝑓𝑓𝑓𝑓 2

𝐶𝐶𝐺𝐺𝐷𝐷0 225 𝑓𝑓𝑓𝑓 2

Mean & standard deviation values used 
for Monte Carlo Simulation 

Distribution of parameter values to carry out statistical simulation using Monte Carlo

𝐶𝐶𝐺𝐺𝐷𝐷0 𝐶𝐶𝐺𝐺𝐷𝐷0

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇

[1] S. A. Ahsan et al., Proc. IEEE Int. Conf. Emerging Electronics (ICEE), Mumbai, Dec. [2016]



Statistical Simulation Results
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Measured MeasuredModel Model



Summary

• Physics: Physics-based fully analytical model for the GaN HEMTs

• Accuracy: Excellent agreement with the measured data @T, W and L

• Flexibility: Model is implemented in the Verilog-A code 
• Will be soon available in major commercial simulators

• For industry: ASM-GaN has been selected as industry standard model 
at Si2-CMC
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