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Components required for successful IC 
design

12/16/2020

D. L. Harame et. al.,“Design automation methodology and rf/analog modeling for rf CMOS and SiGe BiCMOS technologies”, 
IBM Journal of Research and Development, Vol. 47, No. 2/3, March/May 2003.

Circuit Simulator

Device design 
TCAD simulation

Fabrication
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SPICE and Device Compact Models
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Ron Rohrer
Special Issue on 40th Anniversary of SPICE

Prof. at UCB – SPICE 
designer (1925-2004)

Prof. at UCB/Emeritus Prof. at CMU –
CANCER designer which later led to 
SPICE development



Compact Model

• Compact Model is the medium of information 
exchange between foundry and designer.

• Compact Model must have
– Convergence on variety of conditions
– Fast
– Accuracy
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Compact Model Approaches for MOSFET
• Threshold Voltage based Models (e.g. BSIM3, BSIM4)

– Fully Analytical solution (easy to implement) – Fast 
– Currents expressed as functions of Voltages

– Different equations for 
• Sub-threshold and above-threshold
• Linear/saturation regions 
• Use interpolation function to get smooth current
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Compact Model Approaches for MOSFET

• Surface Potential based Models (e.g. ASM-HEMT, PSP, 
HiSim)

– Implicit equation is solved either iteratively or analytically
– Might be slower than threshold voltage based models

• Charge based Models (e.g. BSIM-BULK, BSIM-CMG)
– Solve for charge instead of surface potential
– No iterations
– Faster than Surface Potential based approach with similar 

accuracy in charge/current
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BSIM Family of Compact Device Models
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1990 20102000 20051995

BSIM1,2 BSIM3

BSIM4

BSIMSOI

BSIM5 BSIM-BULK
(Formerly BSIM6)

Bulk MOSFET

Silicon on Insulator 
MOSFET

New

BSIM: Berkeley Short-channel IGFET Model

BSIM-CMG
BSIM-IMG

Multi-Gate MOSFET



BSIM-BULK Description
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BSIM-BULK Developers
• Students –

– Ravi Goel, IIT Kanpur
– Chetan Gupta, IIT Kanpur
– Harshit Agarwal, IIT Kanpur
– S. Venugopalan, UCB
– M. A. Karim, UCB

• Professors –
– Yogesh S. Chauhan, IIT Kanpur
– Chenming Hu, UCB
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Charge based MOSFET model
• Next generation BSIM Bulk MOSFET model
• Charge based core derived from Poisson’s solution
• Physical effects (SCE, CLM etc.) taken from BSIM4
• Parameter names matched to BSIM4 parameters
• Gummel Symmetry (symmetric @ VDS=0)
• AC Symmetry

– Capacitances/derivatives are symmetric @VDS=0
• Continuous 

– From accumulation to strong inversion
– From linear to saturation 

• Physical Capacitance model
– Short channel CV–Velocity saturation & other effects

• No glitches – smooth current and capacitance behavior
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BSIM-BULK flow
1. Calculate pinch-off potential 

Ψp (function of Vg)

2. Calculate source and drain 
inversion charge density

3. Calculate drain current 
– Noise is calculated after 

inversion charge densities 
and ids is obtained

4. Calculate total gate drain 
source and body charge

12/16/2020 Yogesh Chauhan, IIT Kanpur 12

Fig: Solution of the core model



Core Model + Real effects
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Y. S. Chauhan et al., "BSIM6: Analog and RF Compact Model for Bulk MOSFET", IEEE 
Transactions on Electron Devices, Vol. 61, Issue 2, pp. 234-244, Feb. 2014. (Invited)

http://dx.doi.org/10.1109/TED.2013.2283084


Physics of BSIM6 Model
• Poisson’s solution for long channel MOSFET

• Inversion Charge linearization

• nq is the slope factor

• ΨP = ΨS, when Qi=0
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Physics of BSIM6 Model
• Using linearization approach and normalization

• No approximation to solve the charge equation

• Solved the charge equation using first & second order Newton-
Raphson technique to obtain analytical expression of qi
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Analytical expression of qi
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Guess for qi

First order Newton-raphson

Second order 
Newton-raphson

Simplified expression 
for qi<=e-80



Drain Current including Current saturation

• Drain-Source current
– Mobility model 
– Current saturation

• Using charge linearization & normalization
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Normalized Qi-VG & derivatives
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qi vs VG Error (%)

1st derivative

2nd derivative

3rd derivative

Red – Numerical Surf. Pot. model
Blue – BSIM6 model 



Normalized IDS-VGS & derivatives
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1st derivative

IDS vs VG

Error (%)

2nd derivative 3rd derivative

Red – Numerical Surf. Pot. model
Blue – BSIM6 model



Short Channel Effects

• Many of the short channel effects are included 
using threshold voltage shift (same as BSIM4)

12/16/2020 Yogesh Chauhan, IIT Kanpur 20



Mobility Model
• Mobility model adopted from BSIM4
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Saturation Voltage Vdsat

• Vds to Vdsat – BSIM4 formulation causes asymmetry in 
higher order derivatives 

• New Vdsat evaluation:
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Output conductance – CLM
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Adopted from BSIM4



Output conductance – DIBL Effect
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Adopted from BSIM4



IDS-VX Gummel Symmetry
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IDS vs VX
(VD=VX & VS=-VX)
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Harmonic Balance Simulation

• Accurate value of slope for all harmonics
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Slope=1

Slope=2
Slope=3

Slope=4 Slope=5



Global Extraction Procedure
• Single set of parameters for geometrical scaling
• Step by step approach needed
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Validation on Measured Data (Large device)
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IDVG @ VDS=50mV

IDVG @ VDS=50mV

gmVG @ VDS=50mV

IDVG in saturation

IDVG in saturation gmVG in saturation

IDVD
gdsVD IBVG for different VDS



Validation on Measured Data (Short device)
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IDVG @ VDS=50mV

IDVG @ VDS=50mV gmVG @ VDS=50mV

IDVG in saturation

IDVG in saturation

gmVG in saturation

IDVD gdsVD

IBVG for different VDS



Model Validation on Measurements
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W/L=10µm/0.07µm W/L=10µm/0.09µmW/L=10µm/0.08µm

W/L=10µm/0.1µm W/L=10µm/0.16µmW/L=10µm/0.12µm

W/L=10µm/0.24µm W/L=10µm/2µmW/L=10µm/0.5µm

IDSVGS at VDS=0.05V for different VBS

Geometrical Scaling



Model Validation on Measurements
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W/L=10µm/0.07µm W/L=10µm/0.09µmW/L=10µm/0.08µm

W/L=10µm/0.1µm W/L=10µm/0.16µmW/L=10µm/0.12µm

W/L=10µm/0.24µm W/L=10µm/2µmW/L=10µm/0.5µm

gmVGS at VDS=0.05V for different VBS

Geometrical Scaling



Model Validation on Measurements:
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W/L=10µm/0.07µm W/L=10µm/0.09µmW/L=10µm/0.08µm

W/L=10µm/0.1µm W/L=10µm/0.16µmW/L=10µm/0.12µm

W/L=10µm/0.24µm W/L=10µm/2µmW/L=10µm/0.5µm

IDSVDS at VBS=0V 

Geometrical Scaling



CV Model
• Physical Capacitance Model
• Poly-depletion & Quantum Mechanical Effect
• Channel Length Modulation
• Velocity Saturation Effect

• Charge conservation
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Physical Capacitance Model
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Bulk terminal

Source terminal

Drain terminal

Also available in CV Model
- PDE
- QME
- SCE



Normalized QG, QB and QS vs. VGS
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QB – Body Charge

12/16/2020



Normalized Capacitance
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Normalized to W*L*COX



Normalized Capacitance (No QME & PDE)
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CGG vs. VGS
CGD vs. VGS

CGS vs. VGS

VDS=0, 0.2, 0.5, 1VVDS=0, 0.2, 0.5, 1V

VDS=0, 0.2, 0.5, 1V
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Normalized CGG vs. VGS (with PDE only)
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Normalized to W*L*COX



QME model for Capacitance
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Charge centroid



Normalized CGG vs. VGS (with QME only)
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Normalized to W*L*COX



Normalized CGG vs. VGS (QME and PDE)
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Normalized to W*L*COX



Normalized Caps vs. VDS
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Normalized to W*L*COX



Capacitance Quality Test

43

CSG=CDG @VDS=0 CGD=CGS @VDS=0
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Junction capacitance model
• BSIM4 junction capacitance model causes asymmetry
• Updated junction capacitance model for AC symmetry 
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Transition 
point is at Vj=0

Transition 
point is at 
Vj=0.9V



Junction capacitance model
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• Symmetry problem using old Qj
• New model is infinitely 
differentiable @ VDS=0

BSIM6

BSIM4

BSIM6

BSIM4

BSIM6

BSIM4



AC Symmetry test 
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Capacitance & derivatives are symmetric

Ref. - C. McAndrew, IEEE TED, 2006



BSIM6 Validation – Gate Capacitance
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Cgg normalized to Cox.WL

PMOS NMOS



RF Validation
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Modeling of Self-Heating Effect

• Self Heating Effect is modeled by 
using Thermal Network

• Voltage at thermal node ‘ΔT’ is rise in 
temperature.

• This Voltage (ΔT) is added to the 
temperature variable in the model.
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Vt(T)        ∆Vt

vsat(T)       ∆v
µ(T)         ∆µ

IDS Power T
(IDSVDS) ...

ΔT

Ref.: BSIM-SOI Model



Self Heating Model – Quality Test
• Step 1: For transistor biased 

in saturation, sweep RTH 
(thermal resistance) with self 
heating ON, observe current 
and temperature.

• Step 2: Switch off self heating 
model, simulate the same 
circuit for temperature range 
obtained in step 1.

• Drain current obtained from 
both the steps should be same.
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Ref: G. Gildenblat, Compact Modeling: Principles, Techniques and Applications, Springer, 2010.



Self Heating Effect: Output Characteristics

• Drain current reduces in high power region.
– Negative ‘gds’
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Modeling of Gate Resistance and 
NQS in BSIM-BULK Model
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NQS(Non-Quasi-Static) Effect
In QS modeling: charge is a function 
of terminal voltages only.

𝑸𝑸 𝒕𝒕 = 𝑸𝑸(𝑽𝑽𝑮𝑮 𝒕𝒕 ,𝑽𝑽𝑫𝑫 𝒕𝒕 ,𝑽𝑽𝑺𝑺 𝒕𝒕 ,𝑽𝑽𝑩𝑩 𝒕𝒕 )

In NQS modeling: charge is a not only 
a function of terminal voltages but 
also an explicit function of time.

𝑸𝑸 𝒕𝒕 = 𝑸𝑸(𝑽𝑽𝑮𝑮 𝒕𝒕 ,𝑽𝑽𝑫𝑫 𝒕𝒕 ,𝑽𝑽𝑺𝑺 𝒕𝒕 ,𝑽𝑽𝑩𝑩 𝒕𝒕 , 𝒕𝒕)

• The onset frequency of NQS (fnqs) is typically around ≈ 𝒇𝒇𝒕𝒕
𝟑𝟑

.

5412/16/2020 Yogesh Chauhan, IIT Kanpur



NQS(Non-Quasi-Static) Effect
This is first order NQS model

𝟏𝟏
𝑹𝑹𝒊𝒊𝒊𝒊

= 𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝟏𝟏 � 𝐍𝐍𝐍𝐍 �
𝐈𝐈𝒅𝒅𝒅𝒅

𝑽𝑽𝒅𝒅𝒅𝒅𝒅𝒅𝒇𝒇𝒇𝒇
+ 𝑿𝑿𝑹𝑹𝑿𝑿𝑹𝑹𝑮𝑮𝑿𝑿 �

𝑾𝑾𝒅𝒅𝒇𝒇𝒇𝒇µ𝒅𝒅𝒇𝒇𝒇𝒇𝑿𝑿𝒐𝒐𝒐𝒐𝒅𝒅𝒇𝒇𝒇𝒇𝑽𝑽𝒕𝒕
𝑳𝑳𝒅𝒅𝒇𝒇𝒇𝒇

Rgeltd is used as the Gate Electrode Resistance

This approach has been there in the 
present BSIM-BULK model

Rii is the channel  reflected NQS resistance

 Segmentation model with segments ≥ 
17 can capture the NQS trend

 Increases the computational time
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NQS: Improved Model
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 Modeling of Channel RC Network
 Modeling of Gate Electrode RC Network

1
𝑅𝑅1

= 𝑋𝑋𝑅𝑅𝑋𝑋𝑅𝑅𝑋𝑋𝑋.
1
𝑅𝑅𝑐𝑐𝑐

1
𝑅𝑅2

= 𝑋𝑋𝑅𝑅𝑋𝑋𝑅𝑅𝑋𝑋𝑋.
1
𝑅𝑅𝑐𝑐𝑐

C2 = 𝑋𝑋𝑅𝑅𝑋𝑋𝑋𝑋𝑋𝑋.𝑋𝑋𝑋𝑋𝑋𝑋𝐶𝐶

where, 𝑿𝑿𝑹𝑹𝑿𝑿𝑹𝑹𝑮𝑮𝟏𝟏 = 𝟒𝟒𝟒𝟒,𝑿𝑿𝑹𝑹𝑿𝑿𝑹𝑹𝑮𝑮𝑿𝑿 = 𝟏𝟏𝑿𝑿𝟒𝟒
𝟕𝟕

,

𝑿𝑿𝑹𝑹𝑿𝑿𝑿𝑿𝑮𝑮 = 𝟒𝟒𝟒𝟒
𝑿𝑿𝟒𝟒

and 𝑿𝑿𝑮𝑮𝑿𝑿𝑿𝑿𝑮𝑮 = 𝟔𝟔
𝟓𝟓

𝑅𝑅1 = 𝑅𝑅𝑐𝑐𝑐
40

,𝑅𝑅2 = 7𝑅𝑅𝑐𝑐𝑐
120

,𝑅𝑅𝑅 = 𝑅𝑅𝑔𝑔
3

, C2 = 20COX
49

and C3 = 6𝐶𝐶𝑂𝑂𝑂𝑂
5

𝑅𝑅3 = 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and  𝑋𝑋3 = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋.𝑋𝑋𝐺𝐺𝐺𝐺

C. Gupta, N. Mohamed, H. Agarwal, R. Goel, C. Hu, and Y. S. Chauhan, "Accurate and Computationally Efficient 
Modeling of Nonquasi Static Effects in MOSFETs for Millimeter Wave Applications", IEEE Transactions on 
Electron Devices, Vol. 66, Issue 1, pp. 44-51, Jan. 2019.

https://doi.org/10.1109/TED.2018.2854671


NQS: Improved Model
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If we use 𝑿𝑿𝑹𝑹𝑿𝑿𝑹𝑹𝑮𝑮𝟏𝟏 = 𝟒𝟒𝟒𝟒,𝑿𝑿𝑹𝑹𝑿𝑿𝑹𝑹𝑮𝑮𝑿𝑿 = 𝟏𝟏𝑿𝑿𝟒𝟒
𝟕𝟕

, 𝑿𝑿𝑹𝑹𝑿𝑿𝑿𝑿𝑮𝑮 = 𝟒𝟒𝟒𝟒
𝑿𝑿𝟒𝟒

and 𝑿𝑿𝑮𝑮𝑿𝑿𝑿𝑿𝑮𝑮 = 𝟔𝟔
𝟓𝟓

 Gives the required NQS trend.
 Cannot give a good fitting at high frequency
 For 𝑉𝑉𝐷𝐷𝐷𝐷 ≠ 0 channel is tapered from source to drain
 Also have some layout effects in the actual fabricated device
 Fitting parameters can provide more flexibility



NQS: Improved Model
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 Increases the fitting flexibility
 Developed model involves assumptions

2D TCAD does not consider the impact of gate electrode distributed network on NQS



Improved Complete Model: TCAD 
Validation
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2D TCAD does not consider the impact of gate electrode distributed network on NQS



Improved Complete Model: Validation 
on Measured Data
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Large Signal Analysis
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Summary of BSIM-BULK
• Charge based physical compact model

– Physical effects & Parameter names matched to BSIM4  No 
new training required for engineers

– Smooth charge/current/capacitance & derivatives
• Model is symmetric and continuous around VDS=0

– Fulfills Gummel symmetry and AC symmetry
– Shows accurate slope for harmonic balance simulation

• BSIM4’s extraction methodology can be easily used for 
BSIM6  fast deployment & lower cost

• Rapid development
– From scratch to production level in two years!
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High Voltage MOSFET 
Modeling in BSIM-BULK

H. Agarwal, C. Gupta, R. Goel, P. Kushwaha, Y.-K. Lin, M.-Y. Kao, J.-P Duarte, H.-L. 
Chang, Y. S. Chauhan, S. Salahuddin, and C. Hu, "BSIM-HV: High Voltage MOSFET 
Model Including Quasi-Saturation and Self-Heating Effect", IEEE Transactions on 
Electron Devices, Vol. 66, Issue 10, pp. 4258-4263, Oct. 2019.

https://doi.org/10.1109/TED.2019.2933611


High Voltage MOSFET Model
• Wide application domain: Display, self-driving 

cars, etc.
• To withstand high voltage:
• Increase gate oxide thickness
• Add a drift region between drain/gate: prevents 

breakdown of gate oxide and breakdown of drain 
junction.
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High Voltage Devices: Overview



Physics of Drift Region
• Transport in the drift

𝐶𝐶𝑔𝑔𝑑𝑑 = 𝑄𝑄𝑔𝑔𝑑𝑑 ∗ 𝑣𝑣𝑔𝑔𝑑𝑑
𝐶𝐶𝑔𝑔𝑑𝑑 = 𝐶𝐶𝑔𝑔𝑑𝑑

• To support higher current, carrier velocity in the drift 
region increases

𝑽𝑽𝒈𝒈 ↑ → 𝐶𝐶𝑔𝑔𝑑𝑑 ↑→ 𝒗𝒗𝒅𝒅𝒅𝒅 ↑
• As the carrier velocity reaches the saturation velocity 

limit, the resistance of the drift region increases
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Physics of Drift Region
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𝐶𝐶𝑔𝑔𝑑𝑑 = 𝑊𝑊 ∗ 𝑄𝑄𝑔𝑔𝑑𝑑 ∗ 𝑣𝑣

= 𝑊𝑊 ∗ 𝑄𝑄𝑔𝑔𝑑𝑑 ∗ 𝜇𝜇 ∗
𝐸𝐸

1 + 𝐸𝐸/𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

Ids-Vds of 90V transistor

On integration,  

𝑅𝑅𝑔𝑔𝑑𝑑 =
𝑉𝑉𝑔𝑔𝑑𝑑
𝐶𝐶𝑔𝑔𝑑𝑑

=
𝑅𝑅𝑅

1 − 𝑅𝑅𝑅 ∗
𝐶𝐶𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝐿𝐿𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔

=
𝑅𝑅𝑅

1 − 𝐶𝐶𝑔𝑔𝑑𝑑
𝐶𝐶𝑔𝑔𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅𝑅 =
𝐿𝐿𝑔𝑔𝑑𝑑

𝑊𝑊 ∗ 𝜇𝜇 ∗ 𝑄𝑄𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔
𝐶𝐶𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑄𝑄𝑔𝑔𝑑𝑑 ∗ 𝑊𝑊 ∗ 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸



Compact Model Adoption
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Intrinsic Tx
Rdr,DRdr,S

𝐶𝐶𝑔𝑔𝑑𝑑,𝑑𝑑𝑚𝑚𝑔𝑔,𝐷𝐷 = 𝑞𝑞 ∗ 𝑁𝑁𝑁𝑁𝑅𝑅𝐶𝐶𝑁𝑁𝐸𝐸𝑁𝑁 ∗𝑊𝑊𝑔𝑔𝑑𝑑𝑑𝑑 ∗ 𝑉𝑉𝑁𝑁𝑅𝑅𝐶𝐶𝑁𝑁𝐸𝐸

𝑅𝑅𝑔𝑔𝑑𝑑,𝐷𝐷 =
𝑅𝑅𝑁𝑁𝐿𝐿𝑋𝑋𝑊𝑊

1 − 𝛿𝛿𝐻𝐻𝐻𝐻
𝐶𝐶𝑔𝑔𝑑𝑑

𝐶𝐶𝑔𝑔𝑑𝑑,𝑑𝑑𝑚𝑚𝑔𝑔,𝐷𝐷

𝑀𝑀𝐷𝐷𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀
1

𝑀𝑀𝐷𝐷𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀

RDLCW: Resistance of the Drain 
side at Low Current 

MDRIFT: Smoothing parameter 
for velocity saturation
VDRIFT: Saturation Velocity in the 
drift
NDRIFTD: Charge Density in the 
drift 

Source side parameters: RSLCW, NDRIFTS

δHV introduced for smoothness. Nominal value ~ 1 



Implementation in BSIM-BULK
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• Turn-key feature: Activates only when switch HVMOD is 
set to 1.

• Default value of HVMOD is 0 (HV feature turned-off)



Experimental 35V LDMOS

12/16/2020 Yogesh Chauhan, IIT Kanpur 69



Experimental 90V LDMOS
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Id-Vg  gm-Vg

Id-Vd

gds

Ron



Experimental 40V VDMOS
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Id-Vg Id-Vd

Lines: Model
Symbols: Exp. Data



Temperature Dependence
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T=25CT=-40C T=125C T=175C



Capacitances in HV Devices
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Two important differences as compared 
to low voltage transistor

• Presence of high series resistance

Presence of overlap region: Contributes bias dependent capacitance

𝑄𝑄𝑔𝑔 = 𝑓𝑓(𝑉𝑉𝑔𝑔,𝑉𝑉𝑔𝑔𝑑𝑑 ,𝑉𝑉𝑑𝑑 ,𝑉𝑉𝑏𝑏)

𝑑𝑑𝑄𝑄𝑔𝑔
𝑑𝑑𝑉𝑉𝑔𝑔

=
𝜕𝜕𝑄𝑄𝑔𝑔
𝜕𝜕𝑉𝑉𝑔𝑔

+
𝜕𝜕𝑄𝑄𝑔𝑔
𝜕𝜕𝑉𝑉𝑔𝑔𝑑𝑑

∗
𝑑𝑑𝑉𝑉𝑔𝑔𝑑𝑑
𝑑𝑑𝑉𝑉𝑔𝑔

𝑋𝑋𝑔𝑔𝑔𝑔 = 𝑋𝑋𝑔𝑔𝑔𝑔,𝑑𝑑 − 𝑋𝑋𝑔𝑔𝑔𝑔,𝑑𝑑 ∗
𝑑𝑑𝑉𝑉𝑔𝑔𝑑𝑑
𝑑𝑑𝑉𝑉𝑔𝑔



Charge Model
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Inversion

accumulation

𝑉𝑉𝑔𝑔𝑔𝑔𝑑𝑑 − 𝑉𝑉𝑑𝑑𝑏𝑏 = 𝜓𝜓𝑃𝑃 + 𝛾𝛾 ∗ 𝑒𝑒𝑃𝑃
−𝜓𝜓 + 𝜓𝜓𝑃𝑃 − 1 (Solved analytically)

𝑄𝑄𝐵𝐵,𝑔𝑔𝑑𝑑 = 𝑊𝑊 ∗ 𝐿𝐿𝑔𝑔𝑑𝑑1 ∗ 𝑋𝑛𝑛𝑞𝑞 ∗ 𝑋𝑋𝑜𝑜𝑚𝑚 ∗ 𝑉𝑉𝑔𝑔 ∗ (𝑉𝑉𝑔𝑔𝑔𝑔𝑑𝑑 − 𝑉𝑉𝑑𝑑𝑏𝑏 − 𝜓𝜓𝑑𝑑,𝑜𝑜𝑜𝑜 − 𝑋𝑛𝑛𝑞𝑞 ∗ 𝑞𝑞𝑔𝑔𝑑𝑑)

𝑄𝑄𝑀𝑀,𝑔𝑔𝑑𝑑 = 𝑊𝑊 ∗ 𝐿𝐿𝑔𝑔𝑑𝑑1 ∗ 𝑋𝑛𝑛𝑞𝑞 ∗ 𝑋𝑋𝑜𝑜𝑚𝑚 ∗ 𝑉𝑉𝑔𝑔 ∗ 𝑞𝑞𝑔𝑔𝑑𝑑



Model Implementation
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• Activate the model: Set HVCAP=1 along with HVMOD =1
• Default value of HVCAP is 0 



Model Implementation

Parameters introduced for the charge model:

VFBOV: Flat-band voltage of the drift region
LOVER: Length of the drift region
LOVERACC: Effective length in accumulation
NDR: Doping of the drift region
SLHV: Parameter and Flag for smoothing the 
capacitance
SLHV1: Parameter for smoothing the 
capacitance
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TCAD Validation
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W*Lch*Cox



TCAD Validation
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Cgd
Ldr1 = 1um
Ldr2 = 1um
Lch = 2um



Validation with Experimental Data-1
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Cgs vs Vgs Cgd vs Vds



Validation with Experimental Data
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Experimental data 2 Experimental data 3



Speed Test
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21 stage Ring Oscillator: 1000 cycles
100 points/cycle

Simulation time per cycle



Summary of High Voltage Model

• HV module is turned off-by default in BSIM-
BULK model.
– Default value of model selector HVMOD = 0
– Activate the HV feature by setting HVMOD=1

• Model captures the physics of high-voltage 
devices

• Excellent convergence in large circuit 
simulations
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