Physical Insights into the Operation of Negative Capacitance Transistors

Yogesh S. Chauhan Professor Nanolab, Department of Electrical Engineering IIT Kanpur, India Email: <u>chauhan@iitk.ac.in</u> Homepage – <u>http://home.iitk.ac.in/~chauhan/</u>

My Group and Nanolab

Current members – 38

- Postdoc -5
- Ph.D. 27
- Ten PhD graduated

SPACE
Advanced Modeling for Computer-Advanced Modeling for Computer-
DEVICES INSTRUMENTS
Orm 👾 Synopsys" cādence"
KEYSIGHT
Graphics (Infineon 57 IEM

	2020	2019	2018	2017	2016
Books		1			
Journal	16	14	20	19	18
Conference	11	15	19	11	30

- ENA (100k-8.5GHz), PNA-X 43.5GHz
- Keysight B1500, B1505
- Load Pull, NFA

Yogesh Chauhan, IIT Kanpur

Nanolab@IITK: From Theory to Applications

<u>Theory</u>

Materials Atomistic Sim. Semiconductors Transport

Applications

Fabrication Characterization SPICE Models Circuit Design

Joint Development & Collaboration

What is a Compact Model?

Compact MOSFET Model

TCAD Model

Compact Modeling or SPICE Modeling

Medium of information exchange

- Good model should be
 - Accurate: Trustworthy simulations.
 - Simple: Parameter extraction is easy.
- Balance between accuracy and simplicity depends on end application

- Excellent Convergence
- Simulation Time ~µsec
- Accuracy requirements
 - ~ 1% RMS error after fitting
- Example: BSIM-BULK, BSIM-CMG, BSIM-IMG

Industry Standard Compact Models

• Standardization Body – Compact Model Coalition

• CMC Members – EDA Vendors, Foundries, IDMs, Fabless, Research Institutions/Consortia

http://www.si2.org/cmc/

Challenges in Compact Modeling

Some Snapshots from recent work

BSIM Family of Compact Device Models

Modeling of TMD transistor

- 2D density of state
- Fermi–Dirac statistics

V_{de} =1.0V

WSe, NFET, L = 6.2µm

Symbol: Experimental Data

Solid Line: Model with Trap

Dash Line: Model w/o Trap

0.0

-0.5

 $V_{fg}(V)$

l_{ds} (μΑ/μm)

0.5

1E-3

1E-5

1E-7

-0.8

-0.4

0.0

• Trapping effects

V_{ds} =0.05V

-1.0

V_{ds} =0.05V

• V_{ds} = 1.0V

0.8

MoS, NFET, L = 2µm

Symbol: Experimental Data

Solid Line: Model with Trap

Dash Line: Model w/o Trap

1.2

1.6

2.0

 $V_{in}(V)$

C. Yadav et. al. "Compact Modeling of Transition Metal Dichalcogenide based Thin body Transistors and Circuit Validation", IEEE TED, March 2017.

 $V_{fq}(V)$

100

10

(mµ/km) 0.1 – 0.01

1E-3

1E-4

-1.5

Yogesh Chauhan, IIT Kanpur

0.4

Modeling of III-V Channel DG-FETs

- Conduction band nonparabolicity
- 2-D density of states
- Quantum capacitance in low DOS materials
- Contribution of multiple subbands

Source

at gate, drain and source terminals, respectively.

Vg

Oxide

III-V channel

Oxide

y V_g Fig. 1. Schematic of III-V channel double-gate field effect transistor (DGFET) used in the study where V_s , V_d and V_s denotes the applied voltage

Vd

Drain

C. Yadav et. al., Compact Modeling of Charge, Capacitance, and Drain Current in III-V Channel Double Gate FETs, IEEE TNANO, 2017.

Modeling of Quasi-ballistic Nanowire FETs

A. Dasgupta et al., "An Improved Model for Quasi-Ballistic Transport in MOSFETs", IEEE TED, Jul. 2017. 12/21/2020 Yogesh Chauhan, IIT Kanpur

14

1.0

0.4

0.5

A. Dasgupta et al., "Unified Compact Model for Nanowire Transistors including Quantum Effects and Quasi-ballistic Transport", IEEE TED, Apr. 2017.

IMT PhaseFET Including Hysteresis and Multidomain Switching

Fig. 1. (a) Graphical representation of a PhaseFET with an insulatormetal PTM at the source. (b) Schematic of a PhaseFET used for the simulations in this paper [4], [8], [9].

A. Dasgupta, A. Verma, and Y. S. Chauhan, "Analysis and Compact Modeling of Insulator-Metal-Transition Material based PhaseFET Including Hysteresis and Multi-12/21/2020 domain Switching", IEEE TED, Jan. 2019.

Fig. 3. Effective free energy illustrating the two real solutions to (1) in the form of the two stable minima (blue symbols) at low temperatures. With increasing temperature, the system exhibits only one stable minima (red symbol), giving rise to a switching behavior as shown in Fig. 2.

Fig.6. Experimental data along with model prediction for -V characteristics of 100- μ m wide VO₂ resistors of different lengths, such as L = 20, 16, 12, 8, and 1 μ m, at T = 60 °C [17]. The self-heating model captures the variation of device temperature with applied voltage and current flow, enabling accurate modeling of the device behavior. Parameter values are listed in Table 1.

FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard

FinFET Modeling for IC Simulation & Design

Using the BSIM-CMG Standard

Yogesh Singh Chauhan Darsen Lu Sriramkumar Venugopalan Sourabh Khandelwal Juan Pablo Duarte Navid Paydavosi Ali Niknejad Chenming Hu

Chapters

- 1. FinFET- from Device Concept to Standard Compact Model
- 2. Analog/RF behavior of FinFET
- 3. Core Model for FinFETs
- 4. Channel Current and Real Device Effects
- 5. Leakage Currents
- 6. Charge, Capacitance and Non-Quasi-Static Effect
- 7. Parasitic Resistances and Capacitances
- 8. Noise
- 9. Junction Diode Current and Capacitance
- 10. Benchmark tests for Compact Models
- 11. BSIM-CMG Model Parameter Extraction
- 12. Temperature Effects

hauh<mark>an, IIT Kanpur</mark>

Industry Standard FDSOI Compact Model BSIM-IMG for IC Design

INDUSTRY STANDARD FDSOI COMPACT MODEL BSIM-IMG FOR IC DESIGN

Edited by

CHENMING HU, SOURABH KHANDELWAL YOGESH SINGH CHAUHAN, THOMAS MCKAY JOSEF WATTS, JUAN PABLO DUARTE PRAGYA KUSHWAHA AND HARSHIT AGARWAL

Chapters

- 1. Fully Depleted Silicon on Oxide Transistor and Compact Model
- 2. Core Model for Independent Multigate MOSFETs
- 3. Channel Current Model With Real Device Effects in BSIM-IMG
- 4. Leakage Current and Thermal Effects
- 5. Model for Terminal Charges and Capacitances in BSIM-IMG
- 6. Parameter Extraction With BSIM-IMG Compact Model
- 7. Testing BSIM-IMG Model Quality
- 8. High-Frequency and Noise Models in BSIM-IMG

Yogesh Chauhan, IIT Kanpur

News (March 2018)

- Our <u>ASM-GaN-HEMT Model</u> is world's first industry standard SPICE Model for GaN HEMTs
- Download http://iitk.ac.in/asm/

Si2 Approves IC Design Simulation Standards for Gallium Nitride Devices

March 14, 2018 / 0 Comments / in Compact Model, Frontpage /

Si2 Approves Two IC Design Simulation Standards for Fast-Growing Gallium Nitride Market

Compact Model Coalition Models Expected to Reduce Costs, Speed Time-to-Market

http://www.si2.org/cmc/

http://www.si2.org/2018/03/14/gallium-nitride-models/ 12/21/2020 Yogesh Chauhan, IIT Kanpur

Secure Communication

Outline

- Motivation
- Understanding Negative Capacitance
- Experimental realization of Negative Capacitance
- NCFETs: Modeling and Analysis
- MFIS vs MFMIS configurations
 - Long Channel
 - Short Channel
- Performance of NCFET based Circuits
- Conclusion

FeFET for Neuromorphic Computing

- 1. M. Jerry *et al.*, "Ferroelectric FET analog synapse for acceleration of deep neural network training," *2017 IEEE International Electron Devices Meeting (IEDM)*, San Francisco, CA, 2017, pp. 6.2.1-6.2.4, doi: 10.1109/IEDM.2017.8268338.
- 2. X. Sun, P. Wang, K. Ni, S. Datta and S. Yu, "Exploiting Hybrid Precision for Training and Inference: A 2T-1FeFET Based Analog Synaptic Weight Cell," *2018 IEEE International Electron Devices Meeting (IEDM)*, San Francisco, CA, 2018, pp. 3.1.1-3.1.4, doi: 10.1109/IEDM.2018.8614611.
- 3. C. Chen *et al.*, "Bio-Inspired Neurons Based on Novel Leaky-FeFET with Ultra-Low Hardware Cost and Advanced Functionality for All-Ferroelectric Neural Network," *2019 Symposium on VLSI Technology*, Kyoto, Japan, 2019, pp. T136-T137, doi: 10.23919/VLSIT.2019.8776495.
- 4. J. Luo *et al.*, "Capacitor-less Stochastic Leaky-FeFET Neuron of Both Excitatory and Inhibitory Connections for SNN with Reduced Hardware Cost," *2019 IEEE International Electron Devices Meeting (IEDM)*, San Francisco, CA, USA, 2019, pp. 6.4.1-6.4.4, doi: 10.1109/IEDM19573.2019.8993535.
- 5. S. Dutta *et al.*, "Biologically Plausible Ferroelectric Quasi-Leaky Integrate and Fire Neuron," *2019 Symposium on VLSI Technology*, Kyoto, Japan, 2019, pp. T140-T141, doi: 10.23919/VLSIT.2019.8776487.
- 6. Z. Wang, S. Khandelwal and A. I. Khan, "Ferroelectric Oscillators and Their Coupled Networks," in *IEEE Electron Device Letters*, vol. 38, no. 11, pp. 1614-1617, Nov. 2017, doi: 10.1109/LED.2017.2754138.
- 7. Z. Wang and A. I. Khan, "Ferroelectric Relaxation Oscillators and Spiking Neurons," in *IEEE Journal on Exploratory Solid-State Computational Devices and Circuits*, vol. 5, no. 2, pp. 151-157, Dec. 2019, doi: 10.1109/JXCDC.2019.2928769.
- 8. Y. Fang, J. Gomez, Z. Wang, S. Datta, A. I. Khan and A. Raychowdhury, "Neuro-Mimetic Dynamics of a Ferroelectric FET-Based Spiking Neuron," in *IEEE Electron Device Letters*, vol. 40, no. 7, pp. 1213-1216, July 2019, doi: 10.1109/LED.2019.2914882.
- 9. Y. Fang, Z. Wang, J. Gomez, S. Datta, A. I. Khan and A. Raychowdhury, "A Swarm Optimization Solver Based on Ferroelectric Spiking Neural Networks" in *Frontiers in Neuroscience*, 2019, doi: 10.3389/fnins.2019.00855.

Scaling both the V_{DD} and V_{T} maintains same performance (I_{ON}) by keeping the overdrive ($V_{DD} - V_{T}$) constant.

A.M. Ionescu, H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches", *Nature* 479, 329 (2011)

12/21/2020

Power challenge

$$I_{ON} = \mu \frac{W}{L} C_{ox} (V_{DD} - V_{TH})^{2}$$

$$I_{OFF} \propto 10^{\left(\frac{-V_{TH}}{SS}\right)}$$

$$P = C_L V_{DD}^{2} \alpha f + I_{leakage} V_{DD} + P_{SC}$$

A. M. Ionescu, Kathy Boucart, "Tunnel FET or Ferroelectric FET to achieve a sub-60mV/decade switch", *IEDM 2009*.

Yogesh Chauhan, IIT Kanpur

Subthreshold Swing

Capacitance Definition

- In general, insulator can be a non-linear dielectric whose capacitance density (per unit volume) can be defined as
- 1: C_{ins} = \$\begin{pmatrix} \frac{\partial^2 G}{\partial P^2} \begin{pmatrix} -1 \\ = \text{ inverse curvature of free energy density} \\ = 2: C_{ins} = \frac{\partial P}{\partial E} = \text{ slope of the polarization vs electric field curve} \end{pmatrix}\$

P = Polarization in dielectric, G = Free energy density, E = Externally applied electric field

- Two types of non-linear dielectrics:
 - Paraelectric : No polarization when electric field is removed.
 - Ferroelectric : Two possible states of polarization when electric field is removed.

Capacitance Definition

Charge-Voltage Relation

$$C = \frac{dQ}{dV}$$

If $C < 0 \rightarrow \text{As } V \downarrow$, Q \uparrow

More Definitions

Capacitance of a general dielectric:

G = Free energy density

Linear capacitor: Parabolic, $G = \frac{Q^2}{2C}$

Non-linear capacitor: e.g. Ferroelectric

G

Negative Capacitance Transistor

• What if insulator has a Negative Capacitance!

$$C_{ins} < 0 \text{ and } \frac{C_S}{C_{ins}} < 0, \text{ then } \left(1 + \frac{C_S}{C_{ins}}\right) < 1 \rightarrow S < 60 \text{mV/decade}$$

• For a capacitor

- Energy
$$G = \frac{Q^2}{2C} \rightarrow$$
 Capacitance $C = \frac{1}{\frac{d^2G}{dQ^2}} = \frac{1}{Curvature}$

Para- and Ferro-electric Materials

•Paraelectric : No polarization when electric field is removed.

•Ferroelectric : Two possible states of polarization when electric field is removed –Spontaneous/Remnant Polarization.

Paraelectric

Ferroelectric

Ferroelectricity

Requirements:

- Spontaneous electric polarization: Non-Centrosymmetricity (for crystalline materials)
- Reversible polarization state by the application of electric field
- e.g. Lead titanate PbTiO₃, HZO

 [1] K. M. Rabe, C. H. Ahn, and J.-M. Triscone, Eds., *Physics of Ferroelectrics: A Modern Perspective*, vol. 105. Berlin, Germany: Springer, 2007.

 [2] A.I. Khan? Negative Capacitance for Ultra-low Power Comparing ClPhD thesis, University of California at Berkeley, 2015.

 27

Paraelectric to Ferroelectric Phase Transition

Landau-Khalatnikov Theory of Non-Linear Dielectrics

- Free energy of a non-linear dielectric is given as $G = \alpha P^2 + \beta P^4 + \gamma P^6 - EP$
- In general, α and β can be +ve or -ve but γ is always +ve for stability reasons.
- Dynamics of G is given by $\delta \frac{dP}{dt} = -\frac{\partial G}{\partial P}$ • In the steady state, $\frac{dP}{dt} = 0 \rightarrow E = 2\alpha P + 4\beta P^3 + 6\gamma P^5$

For $\alpha > 0$ and at E = 0, there exit only one real root P = 0A Paraelectric Material

For $\alpha < 0$ and at E = 0, there exit three real roots

$$P = 0, \pm P_r$$
 where $P_r = \sqrt{\frac{\sqrt{\beta^2 - 3\alpha\gamma} - \beta}{3\gamma}}$

A Ferroelectric Material has a non-zero P at zero E.

Assumptions

Free energy of a non-linear dielectric $G = \alpha P^2 + \beta P^4 + \gamma P^6 - EP$

- Polarization and Electric field are uniaxial. (perpendicular to electrodes)
- Polarization and Electric field magnitudes are uniform throughout the ferroelectric.
- Piezo-electricity is ignored.

L-K explanation of Phase Transition For E = 0, $G = \alpha P^2 + \beta P^4 + \gamma P^6$ and $\alpha = \alpha_0 (T - T_0), \alpha_0 > 0$ Paraelectric Material Ferroelectric Material E = 0 $\alpha > 0$ E = 0 $\alpha < 0$ Note, P = 0 has a maximum. Negative Curvature Not possible in an isolated ferroelectric. P P $0 = 2\alpha P + 4\beta P^3 + 6\gamma P^5$ $0 = 2\alpha P + 4\beta P^3 + 6\gamma P^5$ • $\alpha > 0$ i.e. for T > T₀; at E = 0, $\alpha < 0$ i.e. for T < T_o; at E = 0, there exists only one real root, there exist three real roots P = 0 $P=0,\pm P_r$ where i.e. No polarization when $P_r = \sqrt{\frac{\sqrt{\beta^2 - 3\alpha\gamma - \beta}}{3\alpha}}$ electric field is removed [P = 0 at E = 0]Two possible states of polarization when electric field is removed.

[1] K. M. Rabe, C.H. Ahn, and J.-M. Triscone, Eds., Physics of Ferebelectrics: TAModern Perspective, vol. 105. Berlin, Germany: Springer, 2007.

Positive and Negative Capacitances

Three possible solutions at E = 0

P = 0 is not possible in a isolated Ferroelectric due to maxima of energy or a negative capacitance

32

Application of Electric Field

 $G = \alpha P^2 + \beta P^4 + \gamma P^6 - EP$ $E = 2\alpha P + 4\beta P^3 + 6\gamma P^5$

Paraelectric [A Positive Capacitor]

K. M. Rabe, C. H. Ahn, and J.-M. Triscone, Eds., *Physics of Ferroelectrics: A Modern Perspective*, vol. 105. Berlin, Germany: Springer, 2007.
 A.I. Khan, *ONegative Capacitance for Ultra-low Power Comparing* ClPhD thesis, University of California at Berkeley, 2015.

How to stabilize a Negative Capacitance?

Add a positive dielectric capacitance in series such that total free energy of system has a minima in the negative capacitance regime of ferroelectric.

 $C_{tot} = \frac{C_d \cdot |C_f|}{|C_f| - C_d} > 0$ Yogesh Chauhan, III Kanpur C_d

 $|C_f| > C_d$

 $C_{tot} > C_d$

$$Q \approx P_f \approx P_d$$

$$\Longrightarrow \frac{\partial^2 G}{\partial Q^2} = \frac{\partial^2 G_f}{\partial Q^2} + \frac{\partial^2 G_d}{\partial Q^2}$$

Negative Capacitance in Ferroelectric

S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano Letters, vol. 8, no. 2, pp. 405–410, 2008.

How to stabilize a Negative Capacitance?

• Add a positive dielectric capacitance in series such that total free energy of system has a minima in the negative capacitance regime of ferroelectric.

A. I. Khan et al., APL, vol. 99, no. 11, p. 113501, 2011

•
$$\frac{1}{C_{tot}} = \frac{1}{C_{FE}} + \frac{1}{C_{DE}} > 0$$

• $C_{DE} < |C_{FE}|$ and $C_{FE} < 0$
• $C_{tot} = \frac{C_{DE} \cdot |C_{FE}|}{|C_{FE}| - C_{DE}} > 0$

Yogesh Chauhan, IIT Kanpur
Ferroelectric-Dielectric Systems

A. I. Khan et al., APL, vol. 99, no. 11, p. 113501, 2011.

D. J. Appleby et al., Nano Letters, vol. 14, no.7, pp. 3864–3868, 2014.

Total Capacitance of Ferroelectric-dielectric hetro-structure becomes greater than the dielectric capacitance.

$$C_{tot} = \frac{C_{DE} \cdot |C_{FE}|}{|C_{FE}| - C_{DE}} > 0$$

Yogesh Chauhan, IIT Kanpur

Ferroelectric-Resistor System

A2h Khan et al., "Negative capacitance in a ferroelectric capacitor," Nature Mater., vol. 14, no. 2, pp. 182-186, 2015.

First ever demonstration of S-curve

Ref. – Thomas Mikolajick et al., "Unveiling the double-well energy landscape in a ferroelectric layer", Nature, Jan. 2019. 12/21/2020 Yogesh Chauhan, IIT Kanpur 40

Negative Capacitance FETs

 $PbZr_{0.52}Ti_{0.48}O3$ FE with P(HfO₂ buffer interlayer O

P(VDF_{0.75}-TrFE_{0.25}) Organic Polymer FE

HfZrO FE CMOS compatible FE

S. Dasgupta et al., IEEE JESCDC, 2015.

J. Jo et al., Nano Letters, 2015

K.-S. Li et al., in IEEE IEDM, 2015.

NCFET Structures

MFMIS Structure

MFIS Structure

Metal Ferroelectric Metal Insulator Semiconductor

NC-FinFET (FE: Hf_{0.42}Zr_{0.58}O₂) Lg = 30 nm [Li et al. IEDM '15]

Metal Ferroelectric Insulator Semiconductor

13 mV/decade

Lg = 10 μm

[Dasqupta et al., IEEE JESCDC, '15]

52 mV/decade $t_{fe} = 1.5 \text{ nm}$ [Lee et al., IEDM '16]

46 mV/decade [Rusu et al. IEDM '10] 12/21/2020

Yogesh Chauhan, IIT Kanpur

MFMIS NCFET Modeling

MFMIS Structures

- Metal internal gate \rightarrow equipotential surface with a spatially constant V_{int} .
- Ferroelectric and baseline MOSFET can be considered as two separate circuit entities connected by a wire → Simplified modeling

Device Structure

Metal-ferroelectric-Metal-Insulator-Semiconductor (MFMIS)

- Metal internal gate provides an equipotential surface with a spatially constant V_{int}.
- Simplifies modeling as ferroelectric and baseline MOSFET can be considered as two separate circuit entities connected by a wire.

Experimental Calibration of L-K Model

Calibration of L-K with P-V_{fe} curve for Y-HfO2 with 3.6 mol% content of $YO_{1.5}[3]$

 $\alpha = -1.23 \times 10^9 \text{ m/F}$ $\beta = 3.28 \times 10^{10} \text{ m/F}$

 $\gamma = 0$ (2nd order phase transition)

[3] J. M["]uller et al., JAP, vol. 110, no. 11, pp. 114113, 2011.

Gibb's Energy,

 $G = \alpha P^2 + \beta P^4 + \gamma P^6 - EP$

Dynamics of G is given by

$$\delta \frac{dP}{dt} = -\frac{\partial G}{\partial P}$$

In the steady state, $\frac{dP}{dt} = 0$

$$E = \frac{V_{fe}}{t_{fe}} = 2\alpha P + 4\beta P^3 + 6\gamma P^5$$
$$P = Q - \varepsilon E \approx Q \text{ (Gate Charge)}$$

[1] Devonshire et al., The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 40, no. 309, pp. 1040–1063, 1949.

[2] Landau, L. D. & Khalatnikov, I. M. On the anomalous absorption of sound near a second order phase transition point. Dokl. Akad. Nauk **96**, 469472 (1954).

Calibration of Baseline FinFET

Calibration of baseline FinFET with 22 nm node FinFET.

BSIM-CMG model is used to model baseline FinFET.

Gate length (L) = 30nm, Fin height (Hfin) = 34nm Fin thickness (Tfin) = 8nm

C. Auth et al., in VLSIT, 2012, pp. 131–132.

Capacitances and Voltage Amplification

$$E = \frac{V_{fe}}{t_{fe}} = 2\alpha P + 4\beta P^3 + 6\gamma P^5$$
$$V_{fe} = t_{fe}(2\alpha P + 4\beta P^3 + 6\gamma P^5)$$
$$C_{fe} = \frac{\partial Q}{\partial V_{fe}} = \frac{1}{t_{fe}(2\alpha + 12\beta Q^2 + 30\gamma Q^4)}$$
$$\frac{1}{C_{int}} = \frac{1}{C_{ox}} + \frac{1}{C_S + C_{Drain} + C_{Source}}$$

Internal Voltage Gain,

 $A_{V} = \frac{\partial V_{int}}{\partial V_{G}} = \frac{|C_{fe}|}{|C_{fe}| - C_{int}}$

Capacitance matching between $|C_{fe}|$ and C_{int} increases the gain.

Capacitance Matching

- Capacitance matching increases with t_{fe} which increases the gain.
- Hysteresis appears for $|C_{fe}| < Cint$ which is region of instability.
- Increase in V_D reduces the capacitance matching
 - Reduces gain.
 - Reduces width of hysteresis window.

I_D-V_G Characteristics – SS region

- As t_{fe} increases
 - Capacitance matching is better
 - C_S and C_{ins} are better matched

$$S = \left(1 - \frac{c_S}{|c_{ins}|}\right).60 \,\mathrm{mV/dec}$$

• As $t_{fe} \uparrow \rightarrow SS \downarrow$

$I_D - V_G$ Characteristics – ON region

- As t_{fe} increases
 - Capacitance matching is better

$$A_{V} = \frac{\partial V_{int}}{\partial V_{G}} = \frac{|C_{fe}|}{|C_{fe}| - C_{int}}$$

• As gain increases, I_{ON} increases.

Note the significant improvement in I_{ON} compared to SS.

I_D-V_G Experimental Demonstration

M. H. Lee et al., in IEEE JEDS, July 2015.

J. Zhou et al., in IEEE IEDM, 2016.

D. Kwon et al., in IEEE EDL, 2018

Jing Li et al., in IEEE EDL, 2018

- NCFET is biased in negative capacitance region.
 Q_G or P is positive → V_{fe} is negative.
- $V_{DS} \uparrow \rightarrow Q_G \text{ or } P \downarrow \rightarrow |V_{fe}| \downarrow \rightarrow V_{int} = V_G + |V_{fe}| \downarrow \rightarrow A_V \downarrow \rightarrow Current reduces$

G. Pahwa, ..., Y. S. Chauhan, "Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and Negative Output Differential Resistance", IEEE TED, Dec. 2016.

Yogesh Chauhan, IIT Kanpur

Experimental Demonstration

• V_D reduces Q_G which, in turn reduces $V_{int} = V_G - V_{fe}$ in the negative capacitance region.

- Negative DIBL increases with t_{fe} due to increased V_{fe} drop.

V_{th} increases with V_D instead of decreasing.
 – Higher I_{ON} still lower I_{OFF}!

Negative DIBL/DIBR Effect

G. Pahwa et al., IEEE Eur. Solid-State Device Res. Conf. (ESSDERC), Sep. 2016, pp. 41-46.

15

 V_{D} increases

12/21/2020

5

x-coordinate (nm)

10

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.4

-0.6 -0.7

-5

M. Si et al., *Nature Nanotechnol.*, vol. 13, pp. 24–28, 2018.

V_{th} increases with V_D instead of decreasing. Higher I_{ON} still lower I_{OFF}!
 Negative DIBL increases with t_{fe} due to increased V_{fe} drop.

Yogesh Chauhan, IIT Kanpur

$I_D - V_G$ Characteristics – High V_{DS}

- Hysteresis appears for $|C_{fe}| < C_{int}$ which is the region of instability.
- As t_{fe} increases

 SS reduces, I_{ON} increases.
 I_{OFF} reduces for high V_D.
- Width of hysteresis at larger thicknesses can be controlled with V_D.

Negative Output Differential Resistance

G. Pahwa et al.," IEEE TED, Dec. 2016

Mengwei Si et al., Nature Nanotechnology, 2018

J. Zhou et al., IEEE, JEDS, 2018

J. Zhou et al., IEDM 2016

Optimum NC-FinFET

- Same I_{ON} as 22 nm node FinFET.
- Steeper SS of 58.2 mV/decade.
- V_{DD} reduction by 0.4 V.
- I_{OFF} reduction by 83 %.

G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "<u>Designing Energy Efficient and Hysteresis Free Negative Capacitance</u> <u>FinFET with Negative DIBL and 3.5X ION using Compact Modeling Approach</u>", IEEE European Solid-State Device Research Conference (ESSDERC), Lausanne, Switzerland, Sept. 2016. (Invited)

If
$$\gamma = 0$$
,

12/21/2020

$$\alpha = -\frac{3\sqrt{3}E_c}{P_r} \quad \beta = \frac{3\sqrt{3}E_c}{P_r^3}$$

 $P_r = \text{Remnant Polarization}$ E_c = Coercive Field

$$C_{fe} = \frac{1}{t_{fe}(2\alpha + 12\beta Q^2)}$$

Low P_r and high E_c

- reduce |C_{fe}| which leads to improved capacitance matching and hence, a high gain.
- Low SS
- increase I_{ON} but reduce I_{OFF} due to a more negative DIBL \Rightarrow high I_{ON}/I_{OFF} .

Intrinsic Delay

 $\mathsf{Delay}, \tau = \frac{\Delta Q_G}{I_{ON}}$ $\Delta Q_G = Q_G (V_G = V_D = V_{DD}) - Q_G (V_G = 0, V_D = V_{DD})$

- NC-FinFET driving NC-FinFET
 - For high V_{DD} , high I_{ON} advantage is limited by large amount of ΔQ_G to be driven.
 - Outperforms FinFET at low V_{DD}.
 - Minimum at V_{DD} ≈ 0.28 V corresponds to a sharp transition in Q_G.
 NC-FinFET driving FinFET load provides full advantage of NC-FinFET.

Power and Energy Delay Products

- NC-FinFET driving NC-FinFET shows advantage only for low V_{DD} .
- NC-FinFET driving FinFET load is the optimum choice.

Modeling of MFIS NCFET

х

x = 0

 $V_{int}(x)$

G

O

M

FE

OX

D

x = L

Contrast with MFIMS structure:

• Better stability w.r.t. Leaky ferroelectric and domain formation

Issues with Existing Models^[1,2]: Implicit equations – tedious iterative numerical solutions

[1] H.-P. Chen, V. C. Lee, A. Ohoka, J. Xiang, and Y. Taur, "Modeling and design of ferroelectric MOSFETs," *IEEE Trans. Electron Devices*, vol. 58, no. 8, pp. 2401–2405, Aug. 2011.
[2] D. Jiménez, E. Miranda, and A. Godoy, "Analytic model for the surface potential and drain current in negative capacitance field-effect transistors," *IEEE Trans. Electron Devices*, vol. 57, no. 10, pp. 2405–2409, Oct. 2010. 12/21/2020 Yogesh Chauhan, IIT Kanpur 63

Explicit Modeling of Charge

$$V_{\rm fe} = Et_{\rm fe} = aQ_G + bQ_G^3$$

Voltage Balance:

$$V_G - V_{FB} = V_{fe} + \frac{Q_G}{C_{ox}} + \psi_S = a_{eff} Q_G + b Q_G^3 + \psi_S$$
$$Q_G - \psi_S \text{ relation}^{[1]}$$
$$Q_G = \operatorname{sign}(\psi_S) \gamma C_{ox} \Big[\psi_S + V_t (e^{-\psi_S/V_t} - 1) \Big]$$

+
$$e^{-(2\phi_F + V_C)/V_t} (V_t e^{\psi_S/V_t} - \psi_S - V_t) \Big]^{1/2}$$

- \rightarrow Implicit equation in Q_G
- → Goal: Explicit Model with good initial guesses for each region of NCFET operation

Both the Q_G and its derivatives match well with implicit model

G. Pahwa, T. Dutta, A. Agarwal and Y. S. Chauhan, "Compact Model for Ferroelectric Negative Capacitance Transistor With MFIS Structure," in *IEEE Transactions on Electron Devices*, March 2017. 12/21/2020 Yogesh Chauhan, IIT Kanpur 64

Drain Current Model Validation

Against Full Implicit Calculations

G. Pahwa, T. Dutta, A. Agarwal and Y. S. Chauhan, "Compact Model for Ferroelectric Negative Capacitance Transistor With MFIS Structure," *IEEE Transactions on Electron Devices*, March 2017.

[1] M. H. Lee et al., in IEDM Tech. Dig., Dec. 2016, pp. 12.1.1–12.1.4. [2] M. H. Lee et al., in IEDM Tech. Dig., Dec. 2015, pp. 22.5.1–22.5.4.

65

MFIS Vs MFMIS

- MFIS excels MFMIS for low P_r ferroelectrics only.
- A smooth hysteresis behavior in MFIS compared to MFMIS.
- MFIS is more prone to hysteresis → exhibits hysteresis at lower thicknesses compared to MFMIS.

G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Physical Insights on Negative Capacitance Transistors in Non-Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures", IEEE Transactions on Electron Devices, Vol. 65, Issue 3, pp. 867-873, March 2018. 12/21/2020 Yogesh Chauhan, IIT Kanpur 66

Compact Modeling of MFIS GAA-NCFET

$$V_{\rm fe} = a_0 Q + b_0 Q^3$$

Radial Dependence in Ferroelectric Parameter: (Ignored in others work) $a_0 = 2aR \ln[1 + t_{fe}/(R + t_{ins})]$

$$b_0 = 2bR^3 [1/(R + t_{\rm ins})^2 - 1/(R + t_{\rm ins} + t_{\rm fe})^2]$$

Mobile Charge Density:

$$Q = \varepsilon_{\rm si} \left(\frac{d\psi}{d\rho} \right) \Big|_{\rho=R} = \left(\frac{2\varepsilon_{\rm si}}{R} \right) \left(\frac{2kT}{q} \right) \left(\frac{\beta^2}{1-\beta^2} \right)$$

Voltage Balance:

 $V_g - \Delta \phi - \psi_s = (a_0 + 1/C_{\text{ins}})Q + b_0 Q^3$

$$V_{g}$$
Gate
Ferroelectric
Insulator
$$V_{s}$$

$$V_{s}$$

$$V_{s}$$

$$V_{s}$$

$$V_{s}$$

$$V_{s}$$

$$V_{g}$$

$$V_{g}$$

$$V_{g}$$

$$V_{g}$$

$$V_{g}$$

$$V_{g}$$

$$V_{g}$$

$$n(\beta) - \ln(1 - \beta^2) + m\left(\frac{\beta^2}{1 - \beta^2}\right) + n\left(\frac{\beta^2}{1 - \beta^2}\right)^3 - G = 0$$

→ Goal: Explicit Model for β with good initial guess valid in all region of NCFET operation which will be used for further calculation of drain current and terminal charges.

Implicit Equation in β :

Drain Current Model Validation

Against Full Implicit Calculations

- In contrast to bulk-NCFETs
 - Multi-gate NCFETs with an undoped body exhibit same I_{OFF} and V_{th} due to absence of bulk charges.
 - GAA-NCFET characteristics show different bias dependence due to the absence of bulk charge.

A. D. Gaidhane, G. Pahwa, A. Verma, and Y. S. Chauhan, "Compact Modeling of Drain Current, Charges and Capacitances in Long Channel Gate-All-Around Negative Capacitance MFIS Transistor", IEEE Transactions on Electron Devices, Vol. 65, Issue 5, pp. 2024-2032, May 2018.

12/21/2020

Terminal Charges in GAA-NCFET

- Peak in the gate capacitance is observed where the best capacitance matching occurs between the internal FET and the ferroelectric layer.
- For high V_{DS} , the Q_G for GAA-NCFET is saturates to $(4/5)^{th}$ of the maximum value (at Vds = 0) in contrast to conventional devices for which it saturates to $(2/3)^{rd}$ of the maximum value.

MFMIS Vs MFIS

G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "*Physical Insights on Negative Capacitance Transistors in Non-Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures*", IEEE Transactions on Electron Devices, Vol. 65, Issue 3, Mar. 2018.

12/21/2020

Yogesh Chauhan, IIT Kanpur

Comparing $I_D - V_G$ and $I_D - V_D$ Characteristics (long channel)

• MFIS excels MFMIS for low P_r ferroelectrics only, in long channel NCFETs.

Understanding different trends with P_r

- Total current in ON regime ≈ drift current = inversion charge * horizontal electric field
- For high P_r, charge is higher for MFIS, but electric field in channel is low due to a decreasing V_{int} profile from source to drain, which results in lower current than MFMIS.
- For low P_r, charge is lower for MFIS, but electric field in channel is high due to a increasing V_{int} profile from source to drain, which results in higher current than MFMIS.

G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "*Physical Insights on Negative Capacitance Transistors in Non-Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures*", IEEE Transactions on Electron Devices, Vol. 65, Issue 3, Mar. 2018.

12/21/2020
Hysteresis Behavior

- Continuous switching of dipoles from source to drain results in a smooth hysteresis behavior in MFIS compared to MFMIS where dipoles behave in unison.
- Source end dipole switches, first, owing to its least hysteresis threshold.
- Non-zero drain bias disturbs capacitance matching in MFMIS resulting in a delayed onset of hysteresis.
- MFIS is more prone to hysteresis → exhibits hysteresis at lower thicknesses compared to MFMIS.

G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "*Physical Insights on Negative Capacitance Transistors in Non-Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures*", IEEE Transactions on Electron Devices, Vol. 65, Issue 3, Mar. 2018.

12/21/2020

MFMIS vs MFIS: Short Channel Effects

OFF Regime (low V_D)

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and MFMISTransistors: Subthreshold Behavior", IEEE Transactions on Electron Devices, Vol. 65, Issue 11, pp. 5130-5136, Nov. 2018.12/21/2020Yogesh Chauhan, IIT Kanpur75

Reverse V_t Shift with Scaling

- Coupling of inner fringing electric field to the ferroelectric increases with scaling, which increases the voltage drop across ferroelectric and hence, the conduction barrier height.
- In MFIS, fringing effect remains localized to channel edges only \rightarrow Halo Like barriers.

In MFMIS, internal metal extends this effect to the entire channel → larger V_t than MFIS.
 G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and MFMIS
 Transistors: Subthreshold Behavior", IEEE Transactions on Electron Devices, Vol. 65, Issue 11, pp. 5130-5136, Nov. 2018.
 12/21/2020 Yogesh Chauhan, IIT Kanpur 76

Reverse SS trends with Scaling

 $L \downarrow, \frac{C_{int}}{|C_{fe}|} \uparrow, A_{fe} \uparrow, m \downarrow, A_{eff} \uparrow, SS \downarrow \text{(except for very small lengths where G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative$ *m*dominates). Capacitance MFIS and MFMIS Transistors: Subthreshold Behavior", IEEE TED, Nov. 2018.12/21/2020 Yogesh Chauhan, IIT Kanpur 77

Impact of Spacer Permittivity

Increasing the spacer permittivity enhances the outer fringing electric field, which leads to a rise in Vt and reduction in SS and DIBL.

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "*Numerical Investigation of Short-Channel Effects in Negative Capacitance MFIS and MFMIS Transistors: Subthreshold Behavior*", in IEEE Transactions on Electron Devices, vol. 65, no. 11, pp. 5130–5136, Nov. 2018.

12/21/2020

OFF Regime (high V_{DS}): Negative DIBL

- Negative DIBL effect increases with Scaling.
- More pronounced in MFMIS than MFIS.

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and MFMIS Transistors: Subthreshold Behavior", IEEE Transactions on Electron Devices, Vol. 65, Issue 11, pp. 5130-5136, Nov. 2018.

Impact of S/D doping

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short-Channel Effects in Negative Capacitance MFIS and MFMIS Transistors: Subthreshold Behavior", in IEEE Transactions on Electron Devices, vol. 65, no. 11, pp. 5130–5136, Nov. 2018.
 12/21/2020 Yogesh Chauhan, IIT Kanpur 80

ON Regime: Potential and field distribution

- The internal floating metal gate maintains a uniform electrical field distribution throughout the ferroelectric and a uniform potential (Vint) at ferroelectric-oxide interface.
- In the MFIS, however, electric field distribution and Vint at the interface are non-uniform.

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and MEMIS Transistors: Above-Threshold Behavior", IEEE Transactions on Electron Devices, Vol. 66, Issue 3, pp. 1591–1598, Mar. 2019.

ON Regime: Electrical Characteristics

- Drain side charge pinches-off earlier in MFIS than MFMIS due to strong localized drain to channel coupling \rightarrow lower V_{DSat} of MFIS results in lower I_{DS}.
- However, internal metal in MFMIS helps V_{DS} impact to easily reach source side $\rightarrow Q_{IS} \downarrow \rightarrow \Delta Q_{IS}$ Larger NDR effect in MFMIS than MFIS.
- In long channel, MFMIS excels MFIS, however, for short channels vice-versa is true due to substantial NDR effect in former for iso-V_{FB} case only.

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and ⁸² MFMIS Transistors; Above-Threshold Behavior", IEEE Transactions on Electron Devices, Vol. 66, Issue 3, pp. 1591–1598, Mar. 2019

ON Regime: Impact of Spacers

G. Pahwa et al., IEEE Transactions on Electron Devices, 2019.

Without Spacers: Inner Fringing Only With Spacers: Inner + Outer Fringing

$$A_V = \frac{\partial V_{int}}{\partial V_G} = \frac{|C_{fe}|}{|C_{fe}| - C_{int}}$$

- C_{int} increases with scaling in NCFETs with spacers due to outer fringing capacitances→increases gain.
- For W/O spacers, V_{int} decreases due to absence of outer fringing, uncompensated drain side inner fringing, and increased drain to channel coupling.
 83

Impact of Quantum Mechanical Effects

• The QME results in an increase in the effective oxide thickness of the internal FET which eventually diminishes the benefits achievable from NC effect for the particular value of ferroelectric thickness.

A. D. Gaidhane, G. Pahwa, A. Verma, and Y. S. Chauhan, "Compact Modeling of Drain Current, Charges and Capacitances in Long Channel Gate-All-Around Negative Capacitance MFIS Transistor", IEEE Transactions on Electron Devices, Vol. 65, Issue 5, pp. 2024-2032, May 2018.

G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and MFMIS Transistors? Above-Threshold Behavior", IEEE Transactions of Electron Devices, Vol. 66, Issue 3, pp. 1591–1598, Mar. 2019.

Impact of Ferroelectric Thickness

- NC influence decreases with t_{fe} which also starts to homogenise the internal gate potential.
- Thus, relative difference
 between MFIS and MFMIS
 diminishes as t_{fe} is decreased.

A. D. Gaidhane, G. Pahwa, A. Verma, and Y. S. Chauhan, "Compact Modeling of Drain Current, Charges and Capacitances in Long Channel Gate-All-Around Negative Capacitance MFIS Transistor", IEEE Transactions on Electron Devices, Vol. 65, Issue 5, pp. 2024-2032, May 2018. 12/21/2020 Yogesh Chauhan, IIT Kanpur

Does polarization damping really limit operating frequency of NC-FinFET based circuits?

Recent Demonstration by Global Foundries on 14nm NC-FinFET

[1] Krivokapic, Z. et al., IEDM 2017

Fig. 13: Active power of FO3 inverter RO vs. effective SS for V_{dd} =1.05V.

- Ring Oscillators with NC-FinFET can operate at frequencies similar to FinFET but at a lower active power^[1].
- Another theoretical study predicted intrinsic delay due to polarization damping in NCFET to be very small (270 fs)^[2].

[2] Chatterjee, K., Rosner, A. J. & Salahuddin, IEEE Electron Device Letters 38, 1328–1330 (2017).

NC-FinFET based inverters

• Although the transistor characteristics show no Hysteresis, the VTCs of NC-FinFET inverters can still exhibit it due to the NDR region in the output characteristics.

T. Dutta, G. Pahwa, A. R. Trivedi, S. Sinha, A. Agarwal, and Y. S. Chauhan, "Performance Evaluation of 7 nm Node Negative Capacitance FinFET based SRAM", IEEE Electron Device Letters, Vol. 38, Issue 8, pp. 1161-1164, Aug. 2017.

NC-FinFET based SRAM

- Read time: reduced due to the increased drive current
- Write time: slower due to the gate capacitance enhancement
- P_{avg} : NC-SRAM performs better with lower standby leakage only at small t_{fe} , taking advantage of the lower subthreshold currents

T. Dutta, G. Pahwa, A. R. Trivedi, S. Sinha, A. Agarwal, and Y. S. Chauhan, "Performance Evaluation of 7 nm Node Negative Capacitance FinFET based SRAM", IEEE Electron Device Letters, Vol. 38, Issue 8, pp. 1161-1164, Aug. 2017.

Effects of NCFET on standard cells: 7nm FinFET standard cell library

Increasing t_{fe} – larger A_v in transistors (i.e., steeper slope and higher ON current) → Delay of cells become smaller.

H. Amrouch, G. Pahwa, A. D. Gaidhane, J. Henkel, and Y. S. Chauhan, "Negative Capacitance Transistor to Address the Fundamental Limitations in Technology Scaling: Processor Performance", IEEE Access, Vol. 6, Issue 1, pp. 52754-52765, Oct. 2018.

Effects of NCFET on standard cells: 7nm FinFET standard cell library

Using a ferroelectric with 1nm, 2nm, 3nm and 4nm thickness provides a speedup of around 15%, 30%, 40% and 45% respectively, in the delay of gates at the operating voltage of 0.7V.

• Quantifying the relative delay decrease/improvement of cells within the 7nm FinFET standard cell library due to NCFET at $V_{DD} = 0.7V$.

Effects of NCFET on standard cells: 7nm FinFET standard cell library

- Increase in t_{fe} leads to an increase in the total cells' capacitance which further increases internal power of the cells.
- Same baseline performance (i.e., frequency) can be achieved at a lower voltage, which leads to quadratic saving in dynamic power and exponential saving in stand-by power, thus, compensating the side effect of NCFET with respect to power.

Effects of NCFET on future processor design

TFE1: 1nm ferroelectric, TFE2: 2nm ferroelectric, TFE3: 3nm ferroelectric, TFE4: 4nm ferroelectric

- (a) What is the frequency increase due to NCFET under the same voltage constraint?
- (b) What is the frequency increase under the same (i.e., baseline) power density constraint?
- (c) What is the minimum operating voltage along with the achieved power reduction under the same (i.e., baseline) performance (i.e., frequency) constraint?

H. Amrouch, G. Pahwa, A. D. Gaidhane, J. Henkel, and Y. S. Chauhan, "Negative Capacitance Transistor to Address the Fundamental Limitations in Technology Scaling: Processor Performance", IEEE Access, Vol. 6, Issue 1, pp. 52754-52765, Oct. 2018.

NC-FinFET based Processor Performance

• NCFET with ferroelectric thickness more than 1nm leads to a noticeable temperature reduction, due to the decrease in the on-chip power density.

NC-FinFET based Processor Performance

Energy harvesting and IOT

• Under very small power budgets harvested from body heat, NCFET technology enables the processor to operate at around 42-127% higher frequency compared to the conventional FinFET technology.

NC-FinFET RF Performance

- Baseline Technology: 10 nm node RF FinFET
- RF Parameters extraction using BSIM-CMG model
- BSIM CMG coupled with L-K for NC-FinFET analysis

R. Singh, K. Aditya, S. S. Parihar, Y. S. Chauhan, R. Vega, T. B. Hook, and A. Dixit, "Evaluation of 10nm Bulk FinFET RF Performance - Conventional vs. NC-FinFET", IEEE Electron Device Letters, Aug. 2018. ^{12/21/2020} 95

NC-FinFET RF Performance

- Current gain ($\propto \frac{g_m}{C_{gg}}$) is almost independent of t_{fe} as both the g_m and C_{gg} increase with t_{fe} almost at a constant rate.
 - Cut-off frequency (f_T) remains identical for both the Baseline and NC-FinFET.
- Temperature rise and Power consumption due to self-heating increase with t_{fe} as I_d increases. Reduce V_{dd} to achieve energy efficient performance.

NC-FinFET RF Performance

• g_{ds} and self heating ($\Delta G_{SHE} \propto g_{ds}(f) - g_{ds}(dc)$) both increase with t_{fe} due to increased capacitance matching between C_{fe} and C_{int} .

$$g_{ds} = \frac{\partial I_{ds}}{\partial V_{ds}} = \frac{\partial I_{ds}}{\partial V_{int}} * \frac{\partial V_{int}}{\partial V_{ds}} = g_m^{int} * A_V^D \quad \text{where} \quad A_V^D = \frac{-C_{GDI}}{|C_{fe}| - C_{int}}$$

- Voltage gain $(A_V = g_m/g_{ds} = C_{fe}/C_{GDI})$ decreases with t_{fe} due to decrease in C_{fe} .
- Maximum oscillation frequency (f_{max}) also reduces with t_{fe} which can be compensated by reducing V_{dd} .

12/21/2020

Yogesh Chauhan, IIT Kanpur

Impact of Process Variations

- Variability in I_{ON} , I_{OFF} , and V_t due to combined impact of variability in L_g , T_{fin} , H_{fin} , EOT, t_{fe} , E_c , and P_r
- I_{ON} : Improvement is non-monotonic with t_{fe}
- I_{OFF} : Decreases monotonically with t_{fe}
- V_t : Decreases monotonically with t_{fe}

T. Dutta, G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Impact of Process Variations on Negative Capacitance FinFET Devices and Circuits", IEEE Electron Device Letters, Vol. 39, Issue 1, pp. 147-150, Jan. 2018.

Process Variation in Ring Oscillator

- The overall average delay variability in NC-FinFET based RO is lesser compared to the reference RO.
- The improvement is non-monotonic with nominal FE thickness scaling.

11-stage Ring-Oscillator: Variation in τ due to combined variation

T. Dutta, G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Impact of Process Variations on Negative Capacitance FinFET Devices and Circuits", IEEE Electron Device Letters, Vol. 39, Issue 1, pp. 147-150, Jan. 2018.

Open Questions

- Is NC a static or transient phenomenon?
- Physical explanation of NC effect
- Second order effects
 - Impact of grain boundaries and their sizes
 - Impact of multi-domain effects
 - Impact of traps
 - Impact of FE thickness
 - Reliability
- Impact of NDR/NDIBL on circuits

Conclusion

- Maintaining I_{ON}/I_{OFF} is the biggest challenge in new technology nodes
- Negative capacitance FET is one of the best choice
 - Need to find sweet material (HfZrO₂?)
 - Integration in conventional CMOS process remains a challenge (lot of progress)
- Compact (SPICE) Models are ready for circuit evaluation

Relevant Publications from our group

- G. Pahwa, A. Gaidhane, A. Agarwal, and Y. S. Chauhan, "Assessing Negative Capacitance Drain Extended Technology for High Voltage Switching and Analog Applications", IEEE Transactions on Electron Devices, 2021.
- O. Prakash, A. Gupta, G. Pahwa, Y. S. Chauhan, and H. Amrouch, "On the Critical Role of Ferroelectric Thickness for Negative Capacitance Transistor Optimization", IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Chengdu, China, Mar. 2021.
- J. Knechtel, S. Patnaik, M. Nabeel, M. Ashraf, Y. S. Chauhan, J. Henkel, O. Sinanoglu, and H. Amrouch, "Power Side-Channel Attacks in Negative Capacitance Transistor (NCFET)", IEEE Micro, Vol. 40, Issue 6, Nov.-Dec. 2020.
- O. Prakash, G. Pahwa, Y. S. Chauhan and H. Amrouch, "Impact of Interface Traps on Negative Capacitance Transistor: Device and Circuit Reliability", IEEE Journal of Electron Devices Society, Vol. 8, Nov. 2020.
- K. Nandan, C. Yadav, P. Rastogi, A. T.-Lopez, A. M.-Sanchez, E. G. Marin, F. G. Ruiz, S. Bhowmick, and Y. S. Chauhan, "Compact Modeling of Multi-layered MoS2 FETs including Negative Capacitance Effect", IEEE Journal of Electron Devices Society, Vol. 8, Nov. 2020.
- A. D. Gaidhane, G. Pahwa, A. Dasgupta, A. Verma, and Y. S. Chauhan, "Compact Modeling of Surface Potential, Drain Current and Terminal Charges in Negative Capacitance Nanosheet FET including Quasi-Ballistic Transport", IEEE Journal of Electron Devices Society, Vol. 8, Nov. 2020.
- N. Pandey and Y. S. Chauhan, "Analytical Modeling of Short Channel Effects in MFIS Negative Capacitance FET including Quantum Confinement Effects", IEEE Transactions on Electron Devices, Vol. 67, Issue 11, Nov. 2020.
- D. Rajasekharan, P. Kushwaha, and Y. S. Chauhan, "Associative Processing using Negative Capacitance FDSOI Transistor for Pattern Recognition", Microelectronics Journal, Vol. 104, art. no. 104877, Oct. 2020.
- H. Amrouch, G. Pahwa, A. D. Gaidhane, C. K. Dabhi, F. Klemme, O. Prakash and Y. S. Chauhan, "Impact of Variability on Processor Performance in Negative Capacitance FinFET Technology", IEEE Transactions on Circuits and Systems I, Vol. 67, Issue 9, Sep. 2020.
- C. K. Dabhi, S. S. Parihar, A. Dasgupta, and Y. S. Chauhan, "Compact Modeling of Negative-Capacitance FDSOI FETs for Circuit Simulations", IEEE Transactions on Electron Devices, Vol. 67, Issue 7, July 2020.
- F. Bellando, C. K. Dabhi, A. Saeidi, C. Gastaldi, Y. S. Chauhan, and A. M. Ionescu, "Subthermionic Negative Capacitance Ion Sensitive Field-Effect Transistor", Applied Physics Letters, Vol. 116, Issue 17, April 2020.
- A. D. Gaidhane, G. Pahwa, A. Verma, and Y. S. Chauhan, "Gate Induced Drain Leakage in Negative Capacitance FinFETs", IEEE Transactions on Electron Devices, Vol. 67, Issue 3, March 2020.
- F. Klemme, Y. Chauhan, J. Henkel, and H. Amrouch, "Cell Library Characterization using Machine Learning for Design Technology Co-Optimization", IEEE International Conference on Computer-Aided Design (ICCAD), Paris, France, Nov. 2020.
- G. Bajpai, A. Gupta, O. Prakash, G. Pahwa, J. Henkel, Y. S. Chauhan, and H. Amrouch, "Impact of Radiation on Negative Capacitance FinFET", IEEE International Reliability Physics Symposium (IRPS), Grapevine-Texas, USA, Mar.-Apr. 2020. 12/21/2020 Yogesh Chauhan, IIT Kanpur 102

Relevant Publications from our group

- A. D. Gaidhane, G. Pahwa, A. Dasgupta, A. Verma, and Y. S. Chauhan, "Compact Modeling of Negative Capacitance Nanosheet FET including Quasi-Ballistic Transport", IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Penang, Malaysia, Mar. 2020.
- O. Prakash, A. Gupta, G. Pahwa, J. Henkel, Y. S. Chauhan and H. Amrouch, "Impact of Interface Traps Induced Degradation on Negative Capacitance FinFET", IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Penang, Malaysia, Mar. 2020.
- H. Amrouch, V. M. Van Santen, G. Pahwa, Y. S. Chauhan, J. Henkel, "NCFET to Rescue Technology Scaling: Opportunities and Challenges", IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, Jan. 2020.
- H. Amrouch, S. Salamin, G. Pahwa, A. D. Gaidhane, J. Henkel, and Y. S. Chauhan, "Unveiling the Impact of IR-drop on Performance Gain in NCFET-based Processors", IEEE Transactions on Electron Devices, Vol. 66, Issue 7, pp. 3215-3223, July 2019.
- G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Numerical Investigation of Short Channel Effects in Negative Capacitance MFIS and MFMIS Transistors: Above-Threshold Behavior", IEEE Transactions on Electron Devices, Vol. 66, Issue 3, pp. 1591–1598, Mar. 2019.
- G. Pahwa, A. Agarwal and Y. S. Chauhan, "Evaluating Negative Capacitance Technology for RF MOS Varactors", IEEE SOI–3D– Subthreshold Microelectronics Technology Unified Conference (S3S), San Francisco, USA, Oct. 2019.
- K. Sharma, A. D. Gaidhane and Y. S. Chauhan, "Performance Enhancement of 4T-IFGC DRAM in 7nm NC-FinFET Technology Node", IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), San Francisco, USA, Oct. 2019.
- H. Amrouch, G. Pahwa, J. Henkel and Y. S. Chauhan, "NCFET-Aware Voltage Scaling", IEEE International Symposium on Low Power Electronics and Design (ISLPED), Lausanne, Switzerland, July 2019.
- M. Rapp, H. Amrouch, S. Salamin, G. Pahwa, J. Henkel and Y. S. Chauhan, "Performance, Power and Cooling Trade-Offs with NCFETbased Many-Cores", IEEE Design Automation Conference (DAC), Las Vegas, USA, June 2019.
- A. D. Gaidhane, G. Pahwa, A. Verma, and Y. S. Chauhan, "Modeling of Inner Fringing Charges and Short Channel Effects in Negative Capacitance MFIS Transistor", IEEE Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, Mar. 2019.
- G. Pahwa, A. Agarwal and Y. S. Chauhan, "Numerical Investigation of Short-Channel Effects in Negative Capacitance MFIS and MFMIS Transistors: Above Threshold Behavior," in IEEE Transactions on Electron Devices, 2019.
- A.D. Gaidhane, G. Pahwa and Y.S. Chauhan, "Modeling of Inner Fringing Charges and Short Channel Effects in Negative Capacitance MFIS Transistor", accepted in Electron Devices Technology and Manufacturing (EDTM), 2019.
- G. Pahwa, A. Agarwal and Y. S. Chauhan, "Numerical Investigation of Short-Channel Effects in Negative Capacitance MFIS and MFMIS Transistors: Subthreshold Behavior," in IEEE Transactions on Electron Devices, Nov. 2018.
- Karishma Qureshi, G. Pahwa and Y.S. Chauhan, "Impact of Linear Intergranular Variation in Remnant Polarization on Negative Capacitance Field Effect Transistor", ICEE, 2018.

Relevant Publications from Our group

- A.D. Gaidhane, G. Pahwa and Y.S. Chauhan, "Compact Modeling of Drain Current in Double Gate Negative Capacitance MFIS Transistor", ICEE, 2018.
- H. Amrouch, G. Pahwa, A. D. Gaidhane, J. Henkel and Y. S. Chauhan, "Negative Capacitance Transistor to Address the Fundamental Limitations in Technology Scaling: Processor Performance," IEEE Access, Sep. 2018.
- A.D. Gaidhane, G. Pahwa, A. Verma, Y. S. Chauhan, "Compact Modeling of Drain Current, Charges, and Capacitances in Long-Channel Gate-All-Around Negative Capacitance MFIS Transistor," IEEE Transactions on Electron Devices, May 2018.
- G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Physical Insights on Negative Capacitance Transistors in Non-Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures", IEEE Transactions on Electron Devices, Mar. 2018.
- T. Dutta, G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Impact of Process Variations on Negative Capacitance FinFET Devices and Circuits", IEEE Electron Device Letters, Jan. 2018.
- T. Dutta, G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Performance Evaluation of 7 nm Node Negative Capacitance FinFET based SRAM", IEEE Electron Device Letters, Aug. 2017.
- G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan,"Compact Model for Ferroelectric Negative Capacitance Transistor with MFIS Structure", IEEE Transactions on Electron Devices, Mar. 2017.
- G. Pahwa, T. Dutta, A. Agarwal, S. Khandelwal, S. Salahuddin, C. Hu, and Y. S. Chauhan, "Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and Negative Output Differential Resistance Part I, Model description", IEEE Transactions on Electron Devices, Dec. 2016.
- G. Pahwa, T. Dutta, A. Agarwal, S. Khandelwal, S. Salahuddin, C. Hu, and Y. S. Chauhan, "Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and Negative Output Differential Resistance Part II, Model validation", IEEE Transactions on Electron Devices, Dec. 2016.
- G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Energy-Delay Tradeoffs in Negative Capacitance FinFET based CMOS Circuits", IEEE ICEE, Dec. 2016. (Best Paper Award)
- G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Designing Energy Efficient and Hysteresis Free Negative Capacitance FinFET with Negative DIBL and 3.5X ION using Compact Modeling Approach", IEEE ESSDERC, Switzerland, Sept. 2016. (Invited)
- G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Compact Modeling of Negative Capacitance Transistor with Experimental Validation", IWPSD, Dec. 2015. 12/21/2020 Yogesh Chauhan, IIT Kanpur 104

Thank You