ASM-HEMT: Compact Modeling of GaN HEMTs for High Frequency and High Power Applications

Dr. Yogesh S. Chauhan

Associate Professor

Nanolab, Department of Electrical Engineering

IIT Kanpur

Email: chauhan@iitk.ac.in

Homepage – http://home.iitk.ac.in/~chauhan/

Outline

- Overview of Compact Modeling
- GaN HEMT
- ASM-HEMT Model Overview
- Model Validation

Joint Development & Collaboration

Soitec

(intel)

TNL Norwegian University of **Science and Technology**

emn Institut d'Electronique, de Microélectronique et de Nanotechnologie **UMR CNRS 8520**

freescale™

ON Semiconductor®

semiconductor

QONYO Rayh

integrated_™

maxim

INSTRUMENTS

IXI

GI

TEXAS

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 3

PDK and Compact Model

Enablers of a silicon chip design

11/08/2017

Yogesh S. Chauhan, IIT Kanpur 5

Source: David HARAME at. al., IBM J. RES. & DEV. MARCH /MAY 2003

Goal of a PDK – The output of Enablement

Enablement PDKTechnology Innovation Key to Happy Designers!! Circuit Designers

FreeFoto.com

- Offer a circuit design environment that enables full exploitation of technology
	- Capture all device physics
	- Model impact of layout choices on device mean and variance
	- Include typical layout effects for simulation from schematic
	- Accurate modeling of layout effects for simulation from layout

Compact Modeling or SPICE Modeling

Medium of information exchange

- Good model should be
	- **Accurate:** Trustworthy simulations.
	- **Simple:** Parameter extraction is easy.
- \blacksquare Balance between accuracy and simplicity depends on end application
- Excellent Convergence
- Simulation Time ~µ*sec*
- Accuracy requirements
	- \sim 1% RMS error after fitting
- Example: BSIM6, BSIM-CMG

Industry Standard Compact Models

- Standardization Body Compact Model Coalition
- CMC Members EDA Vendors, Foundries, IDMs, Fabless, Research Institutions/Consortia
- CMC is by the industry and for the industry

GaN Properties

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 9

[U. K. Mishra *et al.*, Proc. IEEE, **96 (2)**, 287 (2008)]

GaN HEMT: Advantages

Polarization

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 11

[O. Ambacher *et al.*, JAP, **85 (6)**, 3222 (1999)]

GaN Wafers

- •**Sapphire (Al₂O₃)**
- \odot Semi-insulating
- \odot High growth temperatures
- \odot Relatively cheap

• **Silicon (Si)**

Low cost

- Large diameters
- Acceptable thermal conductivity
- Processing in standard silicon fabs

• **Silicon Carbide (SiC)**

- \odot High thermal conductivity
- \odot Low Lattice mismatch
- ☺ Low CTE mismatch
- Low thermal conductivity
- Lattice mismatch
- © CTE mismatch

 Lattice mismatch \odot CTE mismatch

- Highly costly
- \odot Smaller Wafers

TEM Image of GaN on Sapphire

[S. Huang, JJAP, 47 (10), 7998 (2008)]

 $\frac{11}{08}{2017}$ Yogesh S. Chauhan, IIT Kanpur [S. L. Selvaraj et al., Proc. DRC, $\frac{12}{33}$ (2012)] [U. K. Mishra et al., Proc. IEEE, 96 (2), 287-305 (2008)]

GaN HEMT Structure

AlGaN/GaN Hetero-structure

- The AlGaN/GaN hetero-structure is used to take advantage of the two dimensional electron gas (2-DEG)
- AlGaN/GaN materials create piezoelectric and spontaneous polarization effects using an un-doped hetero-interface

[J. P. Ibbetson *et al.*, APL, **77 (2)**, 250 (2000)]

Design Rules – Materials Perspective

- Thickness of the barrier 2DEG control
- Al Mole Fraction 2DEG Concentration
- Nucleation and Buffer Layer Dislocations
- Substrate Thermal Properties

GaN HEMT

Some interesting features of III- nitride system:

- Wide bandgap
- High 2-DEG charge density
- High electron mobility
- High breakdown voltage
- Excellent thermal conductivity
- High power density per mm of gate periphery
- GaN based HEMTs are able to operate in high frequency, high power as well as high temperature device applications

Switching applications

Modeling GaN!

Existing Models

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 20

[L. Dunleavy *et al.*, Microwave Magazine **11 (6)**, 82 (2010)]

Modeling Continued…

Angelov model

$$
g_m = g_{mpk} \left(1 - \tanh^2[p_{1m} (V_{gs} - V_k)] \right)
$$

\n
$$
I_{ds} = I_{pks} \left(1 + \tanh(\psi_p) \right) \tanh(\alpha V_{ds}) \left(1 + \lambda V_{ds} \right)
$$

\n
$$
\psi_p = P_{1m} \left(V_{gs} - V_{pk0} \right) + P_2 \left(V_{gs} - V_{pks} \right)^2 + P_3 \left(V_{gs} - V_{pksm} \right)^3
$$

\n
$$
C_{gs} = C_{gsp} + C_{gso} \left(1 + \tanh(\psi_1) \right) \left(1 + \tanh(\psi_2) \right)
$$

Angelov Model Deficiencies

- Emperical model with \sim 90 parameters
- Fails to capture non-linear behaviour and harmonic accuracy in power circuits
- Challenging to use for multiple device dimensions

0.02 gipss \$ **Sazu** GaN100, 0.01 0.005 0 4 4 4 4 5 SīC GaN

[I. Angelov *et al.*, IEEE T-MTT, **44 (10)**, 1664 (1996)] [I. Angelov *et al.*, IEEE T-MTT, **40 (12)**, 2258 (1992)]

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 21

Status of Compact Model – GaN HEMT

•ASM-HEMT model: Our model

•MIT Unified VS GaNFET (MVSG) model: MIT, Prof. D. Antoniadis

11/08/2017

Yogesh S. Chauhan, IIT Kanpur 22

Advantages of SP-Based Model

- Better Model Scalability
- •Device Insight
- •Better Statistical Behavior
- \bullet Accurate Charges and Capacitances
- \bullet Better Temperature Scalability
- Less number of parameters
- Easier parameter extraction
- Uses a single expression for all regions
- •Inherent Model Symmetry

ASM-HEMT Model Overview

Core Model

Assumptions: Surface-Potential Calculation

- •Quasi-constant electric field in the potential well (triangular well approximation)
- •Only the contribution of the first two sub-bands are important

$$
n_{s} = DV_{th} \left\{ \ln \left[exp\left(\frac{E_f - E_0}{V_{th}}\right) + 1 \right] + \ln \left[exp\left(\frac{E_f - E_1}{V_{th}}\right) + 1 \right] \right\}
$$

Quasi-Fermi-potential and SP

$$
E_{f,\text{unified}} = V_{\text{go}} - \frac{2V_{\text{th}} \ln \left(1 + e^{\frac{V_{\text{go}}}{2V_{\text{th}}}}\right)}{1/H(V_{\text{go},p}) + (C_g/qD)e^{\frac{-V_{\text{go}}}{2V_{\text{th}}}}}\n\begin{bmatrix}\nE_{f1} = E_{f,\text{unified}} - \frac{p}{q} \left(1 + \frac{pr}{2q^2}\right)\n\end{bmatrix}
$$

- Basic device equations are transcendental in nature
- We divide variation of E_f with V_g into regions to develop fully analytical expression
- Regional models are combined in one analytical expression
- No fitting parameters introduced, accuracy (order of nano-Volts)

11/08/2017

Yogesh S. Chauhan, IIT Kanpur 26

ASM-HEMT Model Overview

Drain-Current Model and Intrinsic Charges

- We apply the drift-diffusion framework for carrier transport
- •An analytical and continuous expression for the core drain-current is developed including the velocity-field relation and mobility degradation
- Core Drain Current Model:

 $\int I_d dx = \int \mu_{\text{eff}} W \tilde{Q}_{ch} d\psi$

 $\tilde{Q}_{ch} = V_{th} \frac{dQ_{ch}}{du} - Q_{ch}$

• Ward-Dutton Partitioning for S/D charges

• Capacitances are calculated as derivatives of the terminal charges: $C_{ii} = -dQ_i/dV_i$ (i≠j), C_{ii} =dQ_i/dV_i (i=j)

 $I_{\text{ds}} = \frac{\mu_{\text{eff}} C_g}{\sqrt{1 + \theta^2 \mu r_{\text{c}}^2}} \frac{W}{L} \left(V_{\text{go}} - \psi_m + V_{\text{th}} \right) \left(\psi_{\text{ds}} \right) \left(1 + \lambda V_{\text{ds}} \right) \qquad Q_{\text{g}} = \int_{0}^{L}$

$$
Q_g = \int_0^L W q n_s \left(V_g, V_x \right) dx
$$

 $Q_d = \int_{0}^{\infty} \frac{x}{L} W q n_s \left(V_g, V_x \right) dx$

• Velocity-Field relation and mobility-degradation:

$$
\psi_{ds} = \psi_d - \psi_s \qquad \psi_m = (\psi_d + \psi_s)/2 \qquad \theta_{sat} = \mu_{eff} / v_{sat} L
$$

$$
\mu_{eff} = \frac{\mu_{eff}}{1 + UA (V_{go} - \psi_m) + UB (V_{go} - \psi_m)^2}
$$

Yogesh S. Chauhan, IIT Kanpur λ is the CLM parameter 11/08/2017

 $Q_s = \int_0^L \left(1 - \frac{x}{L}\right) W q n_s \left(V_g, V_x\right) dx$

Temperature Dependence

$$
\mu_0(T) = U0 \cdot \left(\frac{T}{TNOM}\right)^{UTE} V_{sat}(T) = VSAT \cdot [1 + AT(T - TNOM)]
$$

\n
$$
V_{off}(T) = VOFF + KT1 \cdot \left(\frac{T}{TNOM} - 1\right) \qquad R_{source}(T) = \frac{R_{sc}(T)}{W \cdot NF} + R_{s,bias}(T)
$$

\n
$$
I_{sat,acc}(T) = W \cdot NF \cdot q_{s,acc}(T) \cdot V_{sat,accs}(T) \qquad R_{drain}(T) = \frac{R_{dc}(T)}{W \cdot NF} + R_{d,bias}(T)
$$

\n
$$
q_{s,acc}(T) = q \cdot n_{s0}(T)
$$

\n
$$
n_{s0}(T) = NSOACC \cdot \left(1 - KNSO \cdot \left(\frac{T}{TNOM} - 1\right)\right)
$$

\n
$$
V_{sat,accs}(T) = VSATACCS \cdot [1 + ATS(T - TNOM)] \qquad R_{dc}(T) = RDC \cdot \left(1 + KRDC\left(\frac{T}{TNOM} - 1\right)\right)
$$

$$
R_{s0}(T) = \frac{LSG}{W \cdot NF \cdot q_{s,acc}(T) \cdot \mu_{0,accs}(T)}
$$

$$
R_{d0}(T) = \frac{LDG}{W \cdot NF \cdot q_{s,acc}(T) \cdot \mu_{0,accd}(T)}
$$

$$
R_{s,bias}(T) = \frac{R_{s0}(T)}{\left[1 - \left(\frac{I_{ds}}{I_{sat,acc}(T)}\right)^{MEXPACCS}\right]^{\frac{1}{MEXPACCS}}}
$$

$$
R_{d,bias}(T) = \frac{R_{d0}(T)}{\left[1 - \left(\frac{I_{ds}}{I_{sat,acc}(T)}\right)^{MEXPACCD}\right]^{MEXPACCD}}
$$

11/08/2017

Yogesh S. Chauhan, III Nanpur 29

List of Main Parameters

- Physical Constants
- Simulation Conditions
- Device dimensions
- Physically-Linked Parameters

Importance of $R_{d/s}$ Model

- Aggressive lateral scaling of source-drain access regions improve the RF performance of GaN HEMT but at the cost of breakdown the RF performance of GaN HEMT but at the cost of breakdown
voltage (BV)
	- Too short L_{gd} increases electric field which is responsible for lowering of BV
	- Scaling of L_{gd} also affects the f_{max} due to increasing C_{gd} and g_{ds} of device
- As a trade-off, a short L_{gs} and optimized L_{gd} is required to achieve high f_T , f_{max} and BV altogether
- · In GaN HEMT, gate-to-drain/source access region works as nonlinear resistance $(R_{d/s})$ which limits maximum drain current
- Accurate model of $R_{d/s}$ is of great importance to predict the I_d and g_m for high power as well as high frequency GaN HEMTs

Nonlinear source/drain access region resistance model

simulation and comparison with model.

Fig. 3: (a) Ids-Vds, (b) g_{ds} and (c) reverse Ids-Vds fitting with experimental data. The non-linear $R_{s/d}$ model shows correct behavior for the higher Vg curves in the Id ‐ Vd plot; the S‐P based model can accurately capture the reverse output characteristics.

Modeling of Temperature dependence

The temperature dependence of $R_{d/s}$ model is extremely important as it increases significantly with increasing temperature

Temperature dependence of 2-DEG charge density in the drain or source side access region:

$$
n_{s0}(T) = NS0ACC \cdot \left(1 - KNS0 \cdot \left(\frac{T}{TNOM} - 1\right)\right)
$$

Temperature dependence of Saturation Velocity:

$$
V_{sat}(T) = VSATACCS \cdot [1 + ATS(T-TNOM)]
$$

Temperature dependence of electron Mobility:

$$
\mu_{acc}(T) = U0ACC \cdot \left(\frac{T}{TNOM}\right)^{UTEACC}
$$

Temperature Model Validation

Temperature Model Validation

Id‐Vg at three different temperatures 300, 365 and 425 K

Temperature Model Validation

• **Id-Vd at two different temperatures 300 and 573K**

Model Validation – IEMN France data

$Lg = 0.125 \mu m$, W=100 μ m

11/08/2017

Yogesh S. Chauhan, IIT Kanpur 39

Modeling of Field-Plates in HEMTs

Affects capacitance and breakdown behavior.

Field-Plate Capacitance Modeling

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 41

Appearance of fringing electric field between the vertical wall of the GFP and the 2-DEG_{SFP} causes the cross-coupling effect giving rise to the second plateau

Significant number of fringing field lines reach the GFP through the insulator stack in the absence of SFP causing more fringing capacitance

In the presence of the SFP, most of them end up at the SFP leading to a reduced fringing capacitance component in C_{gd}

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 42

Substrate Capacitance

$$
Vgs = -7 V \t Vds = 20 V
$$

- **(a) Field lines originating from the 2-DEG reach the** substrate electrode leading to the existence of C_{SUBD}
- **(b) whereas without substrate node, field lines from the drain side of the 2-DEG terminate at the 2-DEG on the source side through the GaN buffer**

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 43

Current Collapse

▶ On-state current temporarily reduced following off-state stress

- Also known as **dynamic** R_{on}
	- On-state resistance depends on recent history of device biasing

Current Collapse

▶ Device design and substrate composition can have a strong influence on the magnitude of current collapse (dynamic- R_{on} increase)

[O. Hilt et al., Proc. ISPSD 2012, 345 (2012)]

[S. DasGupta et al., Appl. Phys. Lett. 101 (24), 243506 (2012)] Stephen Sque - ESSDERC tutorial Sept. 2013 11/08/2017 Yogesh S. Chauhan, IIT Kanpur 45

Issues-Virtual-gate effect

▶ Off-state stress:

- Electrons from gate injected into trap states next to gate

▶ On-state after stress:

- Trapped electrons act like a negatively biased gate
- 2DEG partially depleted underneath \Rightarrow increased R_{on}
- ▶ Later (~seconds):
	- $-$ Electrons de-trap. 2DEG current restored

[R. Vetury *et al.*, Trans. Elec. Dev. **48 (3)**, 560 (2001)]

[R. Vetury *et al.*, Trans. Elec. Dev. 48 (3), 560 (2001)] Stephen Sque - ESSDERC tutorial Sept. 2013
[T. Mizutani *af 16]* [11] Yogesh S. Chauhan, IIT Kanpur 46

Issues-Buffer trapping

▶ Off-state stress:

- Electrons trapped in bulk (deep donors/acceptors?)
- ▶ On-state after stress:
	- Trapped electrons partially deplete the 2DEG above \Rightarrow increased R_{on}
- ▶ Later (~minutes): - Electrons de-trap,
	- 2DEG current restored

[M. J. Uren et al., Trans. Elec. Dev. 59 (12), 3327 (2012)] and refs. therein

[E. Kohn et al., Trans. Microw. Theory Tech. 51 (2), 634 (2003)] Stephen Sque - ESSDERC tutorial Sept. 2013 11/08/2017 Yogesh S. Chauhan, IIT Kanpur 47

Pulsed IV Measurements

Trap Model and Pulsed IV Scheme

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 49 The trapping effects are modeled with the help of two R-C sub-circuits. The generated trap voltages V_{trap1} and V_{trap2} are fed back into the model which update parameters like the cut-off voltage, subthreshold slope, source and drain-resistances to capture the effects of traps.

Modeling of Trapping effect

Traps in GaN HEMTs play huge role in determining the performance of the device, especially in high frequency operations

Switching Collapse Setup

Signal generator at gate terminal switches device from high negative stress voltage (Vgsq) to some value higher than Voff . Variable resistor is used to make device working in linear region of operation.

- \triangleright Waveform (i) is the input at the gate, which is switching the device from ON to OFF-state and vice versa. Waveform (ii) is the constant input applied at drain terminal via a variable resistor.
- \triangleright Waveform (iii) is showing the output drain current with time. The drain current is kept fixed at 0.3A with the help of variable resistor.
- \triangleright Waveform (iv) is the value of Vds which is equal to VDD when device is in OFF-state and becomes Von when device is in ON-state.
- \triangleright Waveform (iv) illustrates the fact that, as the device is turning ON, capacitor assumed for the trapstates start to discharge and due to reduction in depletion of 2-DEG, Von of the device recovers with

- \blacktriangleright Modeling of trapping effect by using RC network with different time constant. This RC network is contributing to drain-access region resistance as Rtrap (as a function of Vtrap) to capture the trapping effect on device ON-resistance (Ron)
- \blacktriangleright Model-Hardware correlation for pulsed I-V, Von data for 1, 5 and 10 kHz input applied at gate terminal for various Vds. Von is the value of Vds at which the value of drain current is 0.3A. As VDD is increasing, Ron of the device increases which results in switching collapse. Measured data is from Toshiba for CMC standardization.

Toshiba DC I-V Results for High Power HEMT

Room Temperature I‐V

11/08/2017

Yogesh S. Chauhan, IIT Kanpur 54

Reverse IdVd @ room temperature

Yogesh S. Chauhan, IIT Kanpur 55

Yogesh S. Chauhan, IIT Kanpur 56

11/08/2017

Yogesh S. Chauhan, IIT Kanpur 58

Rev IdVd @ T=150 C

Rev IdVd @ T=‐20 C

I‐V @ ‐20 deg C

I‐V @ ‐20 deg C

Log ‐Scale

Yogesh S. Chauhan, IIT Kanpur 62

11/08/2017

Yogesh S. Chauhan, IIT Kanpur **vg [E+0]** 63

Temperature Scaling

Yogesh S. Chauhan, IIT Kanpur 64

DC I-V Results of Multifinger RF HEMT

Lg = 125 nm, Wg = 10×90 μm, Lsg = 200 nm, Ldg = 1.7 μm

DC Parameter Extraction Flow

S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Physics‐based Multi‐bias RF Large‐Signal GaN HEMT Modeling and Parameter Extraction Flow", IEEE Journal of the Electron Devices Society, Sept. 2017.

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 66

FIGURE 4. (I) Two $R - C$ sub-circuits used for modeling trapping effects, one each for gate-lag and drain-lag. The voltages Vtrap1,2 are fed back into the compact model to update its key parameters as shown in (5). (II) The dual-pulsed scheme to do the pulsed-IV simulation.

FIGURE 5. Correlation between measured and modeled (a) Pulsed $I_d - V_g$ and (b) Pulsed $I_d - V_d$ characteristics using the trap model. Accurate fits are seen for multiple quiescent bias conditions ($V_{dq} = 5$, 20 V and $I_{dq} = 10$, 100 mA/mm), which is essential for the non-linear RF behavior of the model.

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 67

RF Measurements

S-Parameters

- Easy for high frequencies (hard to do open/short for Z/Y)
- Calculate other quantities
- Cascadable
- Transformation
- Compatibility with simulation tools

VNA Architecture

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 68

[Advanced Design System, Design Guide]

De-embedding

De-embedding : Negating effects of unwanted portion

"Real" DUT SP= Measured SP–Fixture Characteristic

De-embedding is ^a mathematical process that removes the effects of unwanted embedded portions of the structure in the measured data by subtracting their contribution.

[De-embedding Techniques in Advanced Design System, Agilent Manual] 11/08/2017 Yogesh S. Chauhan, IIT Kanpur 69

Device Layout and Manifolds

Equivalent Circuit Model at RF

FIGURE 7. Extracted SS - EC (a) Cgs (b) Cgd (c) gm and (d) g_{ds} for V_d = 5 V and 10 gate bias conditions. Parasitic capacitances are adjusted to values given in Table 2 to fit model and measured data for (a-b). A sufficiently broad frequency range (\approx 10 GHz) is observed for extraction for which frequency-independent behavior of SS - EC elements is seen after which inductive effects dominate.

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 72

S. A. Ahsan, ..,Y. S. Chauhan, IEEE Journal of the Electron Devices Society, Sept. 2017.
Impact of Gate Resistance

- Large resistors R_{gs} and R_{gd} Capture the differential gate resistance for current flowing through the gate-source and gate-drain Schottky diodes.
- Their inclusion significantly impacts the overall gate resistance (R_g) at low frequencies as shown in Fig.
- R_{sub} and C_{sub} Capture the substrate loss at the output port.

S-Parameters

- Frequency: $0.5 -$ 50 GHz
- 2 different drainbias conditions, with 10 different gate biases ($Id =$ 10 − 100 mA/mm)

Y-Parameters

- The peaks and dips and their bias dependence is a manifestation of the interaction between the intrinsic capacitances and the extrinsic inductances.
- The values of bus-inductances can be fine-tuned to fit the peaks/dips in measured and modeled extrinsic-level Yparameters.

RF Parameter Extraction Flow

Power Amplifier Design Goals

Load Pull Technique

Helps us:

- • Determine Optimum load impedance for maximum Pout and PAE performance
- •Matching networks
- •Understand tradeoffs!

[M. S. Hashmi *et. al*, *IEEE Instrum. Meas. Mag.*, **16 (2)**, Feb., (2013)] 11/08/2017 Yogesh S. Chauhan, IIT Kanpur 78

Load-Pull Schematic & Overlays

Load Pull Contours

FIGURE 12. (a) ADS schematic for simulating load-pull contours using the embedded model. Pad level parasitics in the form of 2-port S-parameter components are added. Right in the centre is the DUT which is governed by the ASM-GaN-HEMT PDK. (b-i) Discrete load-sweeps for POUT and PAE against real and imaginary loads for multiple bias conditions, at 10 GHz signal frequency. The model accurately predicts the Pout and PAE maxima as well as their mutual tradeoffs upon varying the load resistance/reactance.

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 80

Harmonic Balance Power Sweeps

Model Quality

Toshiba device Id and derivatives

Toshiba device

Intrinsic device (simulation)

Characterization and Parameter Extraction for RFMD RF 3931 Device

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 85

Summary

- Physics-based fully analytical model for the GaN **HEMTs**
- Excellent agreement with the measured data at different temperatures for different channel length devices
- Model is implemented in the **Verilog - A** code
- Tested on Agilent ADS, Synopsys HSPICE and Cadence's Spectre **simulators**
- In final phase of industry standardization at CMC

My Group and Nanolab

Current members – 30

- •Postdoc – 5
- • $Ph.D. - 17$
- • Three PhD graduated
	- – Postdocs in UC Berkeley and U. Bordeaux France

11/08/2017 Yogesh S. Chauhan, IIT Kanpur 87

GaN-HEMT Journal Publications

- 1. S. A. Ahsan, A. Pampori, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "A New Small-signal Parameter
Extraction Technique for large gate-periphery GaN HEMTs", in IEEE Microwave and Wireless Components
Letters, Vol. 27, Is
- 2. S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Physics-based Multi-bias RF Large-Signal GaN HEMT Modeling and Parameter Extraction Flow", in IEEE Journal of the Electron Devices Society, Vol. 5, Issue 5, Sept
- 3. S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Pole-Zero Approach to Analyze and Model the Kink in Gain-Frequency Plot of GaN HEMTs", IEEE Microwave and Wireless Components Letters, Vol. 27, Issue 3, Mar. 201
- 4. S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Analysis and Modeling of Cross-Coupling and Substrate Capacitance in GaN HEMTs for Power-Electronic Applications", IEEE Transactions on Electron Devices (Special
- 5. A. Dasgupta and Y. S. Chauhan, "Modeling of Induced Gate Thermal Noise in HEMTs", IEEE Microwave and Wireless Components Letters, Vol. 26, Issue 6, June 2016.
- 6. S. A. Ahsan, S. Ghosh, A. Dasgupta, K. Sharma, S. Khandelwal, and Y. S. Chauhan, "Capacitance Modeling in Dual Field Plate Power GaN HEMT for Accurate Switching Behaviour", IEEE Transactions on Electron Devices, Vol. 63
- 7. A. Dasgupta, S. Khandelwal, and Y. S. Chauhan, "Surface potential based Modeling of Thermal Noise for HEMT circuit simulation", IEEE Microwave and Wireless Components Letters, Vol. 25, Issue 6, June 2015.
- 8. S. Ghosh, A. Dasgupta, S. Khandelwal, S. Agnihotri, and Y. S. Chauhan, "Surface-Potential-Based Compact Modeling of Gate Current in AlGaN/GaN HEMTs", IEEE Transactions on Electron Devices, Vol. 62, Issue 2, Feb. 2015.
- 9. A. Dasgupta, S. Khandelwal, and Y. S. Chauhan, "Compact Modeling of Flicker Noise in HEMTs", IEEE Journal of Electron Devices Society, Vol. 2, Issue 6, Nov. 2014.
- 10. S. Khandelwal, C. Yadav, S. Agnihotri, Y. S. Chauhan, A. Curutchet, T. Zimmer, J.-C. Dejaeger, N. Defrance and T. A. Fjeldly, "A Robust Surface-Potential-Based Compact Model for GaN HEMT IC Design", IEEE
Transactions o
- 11. S. Khandelwal, Y. S. Chauhan, and T. A. Fjeldly, "Analytical Modeling of Surface-Potential and Intrinsic
Charges in AlGaN/GaN HEMT Devices", IEEE Transactions on Electron Devices, Vol 59, Issue 8, Oct. 2012.
^{Yogesh} S

GaN-HEMT Conference Publications

- 1. S. Khandelwal, S. Ghosh, S. A. Ahsan and Y. S. Chauhan, "Dependence of GaN HEMT AM/AM and AM/PM Non-Linearity on AlGaN Barrier Layer Thickness", IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia. Nov
- 2. S. A. Ahsan, S. Ghosh, S. Khandelwal and Y. S. Chauhan, "Surface-potential-based Gate-periphery-scalable Small-signal Model for GaN HEMTs", IEEE Compound Semiconductor IC Symposium (CSICS), Miami, USA, Oct. 2017.
- S. Ghosh, S. A. Ahsan, A. Dasgupta, S. Khandelwal, and Y. S. Chauhan, "GaN HEMT Modeling for Power and RF Applications using ASM-HEMT", IEEE International Conference on Emerging Electronics (ICEE), Mumbai, India,
- 4. S. Ghosh, A. Dasgupta, A. K. Dutta, S. Khandelwal, and Y. S. Chauhan, "Physics based Modeling of Gate Current including Fowler-Nordheim Tunneling in GaN HEMT", IEEE International Conference on Emerging Electronics
- 5. S. A. Ahsan, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Statistical Simulation for GaN HEMT Large Signal RF performance using a Physics-based Model", IEEE International Conference on Emerging Electronics (ICEE), Mumba
- 6. A. Dasgupta, S. Ghosh, S. A. Ahsan, S. Khandelwal, N. Defrance, and Y. S. Chauhan, "Modeling DC, RF and Noise behavior of GaN HEMTs using ASM-HEMT Compact Model", IEEE International Microwave and RF Conference (IMaRC).
- 7. S. A. Ahsan, S. Ghosh, A. Dasgupta, S. Khandelwal, and Y. S. Chauhan, "ASM-HEMT: Advanced SPICE Model for Gallium Nitride High Electron Mobility Transistors", International Conference of Young Researchers on Advanced
Ma
- 8. S. Ghosh, S. A. Ahsan, S. Khandelwal and Y. S. Chauhan, "Modeling of Source/Drain Access Resistances and their Temperature Dependence in GaN HEMTs", IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC),
- 9. S. A. Ahsan, S. Ghosh, S. Khandelwal and Y. S. Chauhan, "Modeling of Kink-Effect in RF Behaviour of GaN HEMTs using ASM-HEMT Model", IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong,
- 10. R. Nune, A. Anurag, S. Anand and Y. S. Chauhan, "Comparative Analysis of Power Density in Si MOSFET and GaN HEMT based Flyback Converters", IEEE International Conference on Compatibility and Power Electronics, Bydgoszc
- 11. S. Agnihotri, S. Ghosh, A. Dasgupta, A. Ahsan, S. Khandewal, and Y. S. Chauhan, "Modeling of Trapping Effects in GaN HEMTs", IEEE India Conference (INDICON), New Delhi, India, Dec. 2015.
- 12. S. Ghosh, S. Agnihotri, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, "Analysis and Modeling of Trapping Effects in RF GaN HEMTs under Pulsed Conditions", International Workshop on Physics of Semiconductor Devices (IW
- 13. S. Agnihotri, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "Impact of Gate Field Plate on DC, C-V, and Transient Characteristics of Gallium Nitride HEMTs", International Workshop on Physics of Semiconductor Devices (IWP
- 14. K. Sharma, S. Ghosh, A. Dasgupta, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, "Capacitance Analysis of Field Plated GaN HEMT", International Workshop on Physics of Semiconductor Devices (IWPSD), Bangalore, India, De
- 15. S. A. Ahsan, S. Ghosh, J. Bandarupalli, S. Khandelwal, and Y. S. Chauhan, "Physics based large signal modeling for RF performance of GaN HEMTs", International Workshop on Physics of Semiconductor Devices (IWPSD), Banga
- 16. S. Khandelwal, S. Ghosh, Y. S. Chauhan, B. Iniguez, T. A. Fjeldly and C. Hu, "Surface-Potential-Based RF Large Signal Model for Gallium Nitride HEMTs", IEEE Compound Semiconductor IC Symposium (CSICS), New Orleans, USA
- 17. S. A. Ahsan, S. Ghosh, K. Sharma, A. Dasgupta, S. Khandelwal, and Y. S. Chauhan, "Capacitance Modeling of a GaN HEMT with Gate and Source Field Plates", IEEE International Symposium on Compound Semiconductors (ISCS), S
- 18. A. Dasgupta and Y. S. Chauhan, "Surface Potential Based Modeling of Induced Gate Thermal Noise for HEMTs", IEEE International Symposium on Compound Semiconductors (ISCS), Santa Barbara, USA, June 2015.
- 19. S. Khandelwal, Y. S. Chauhan, B. Iniguez, and T. Fjeldly, "RF Large Signal Modeling of Gallium Nitride HEMTs with Surface-Potential Based ASM-HEMT Model", IEEE International Symposium on Compound Semiconductors (ISCS),
- 20. A. Dasgupta, S. Ghosh, S. Khandelwal, and Y. S. Chauhan, "ASM-HEMT: Compact model for GaN HEMTs", IEEE Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, June 2015.
- 21. K. Sharma, A. Dasgupta, S. Ghosh, S. A. Ahsan, S. Khandelwal, and Y. S. Chauhan, "Effect of Access Region and Field Plate on Capacitance behavior of GaN HEMT", IEEE Conference on Electron Devices and Solid-State Circui
- 22. S. Ghosh, K. Sharma, S. Khandelwal, S. Agnihotri, T. A. Fjeldly, F. M. Yigletu, B. Iniguez, and Y. S. Chauhan, "Modeling of Temperature Effects in a Surface-Potential Based ASM-HEMT model", IEEE International Conferenc
- 23. S. Agnihotri, S. Ghosh, A. Dasgupta, S. Khandewal, and Y. S. Chauhan, "A Surface Potential based Model for GaN HEMTs", IEEE PrimeAsia, Visakhapatnam, Dec. 2013. (Gold Leaf Certificate) 11/08/2017 Yogesh S. Chauhan, IIT Kanpur 89