

A Highly Scalable High Voltage MOSFET Model

Yogesh Singh Chauhan, Costin Anghel, Francois Krummenacher, Adrian Mihai Ionescu and Michel Declercq

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Renaud Gillon, Bart Desoete, Steven Frere

AMI Semiconductor, Belgium

Outline Outline

- Motivation why new HV MOSFET Model
- Device Architecture and Modeling Strategy
	- Core Low Voltage EKV MOSFET Model
	- Analytical bias dependent drift resistance
	- \bullet Strategy for charge evaluation based on V_K
- Validation and Results
	- Most of the results on VDMOS
	- Some results on LDMOS
- Conclusion

Outline Outline

- Motivation why new HV MOSFET Model
- Device Architecture and Modeling Strategy
	- Core Low Voltage EKV MOSFET Model
	- Analytical bias dependent drift resistance
	- \bullet Strategy for charge evaluation based on V_K
- Validation and Results
	- Most of the results on VDMOS
	- Some results on LDMOS
- Conclusion

Motivation

- Robust HV Model for circuit simulators
- Analytical & Physical Compact Model
- •Accuracy in DC & AC
- Small number of parameters: EKV!
- Scaling with physical & electrical parameters
- Convergence and Speed
- Open Source

•*General* **HV-MOS Model?**

Outline Outline

- Motivation why new HV MOSFET Model
- Device Architecture and Modeling Strategy
	- Core Low Voltage EKV MOSFET Model
	- Analytical bias dependent drift resistance
	- \bullet Strategy for charge evaluation based on V_K
- Validation and Results
	- Most of the results on VDMOS
	- Some results on LDMOS
- Conclusion

General HV MOSFETModeling Strategy

• **EKV Model**

- **Physically based parameters**
- **Less parameters than BSIM**

Device Architectures

Main EKV Parameters

Modeling Strategy

Modeling Strategy

- Drift part mainly affects the linear region of the output characteristics.
- \bullet Delayed transition between linear and saturation regime at high V_{G} velocity saturation in the drift

Scalable Drift Resistance

Modeling of Self Heating Effect

• External Temperature Node

Ref: C. Anghel et al., "Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETs", IEEE Electron Device Lett., 141 - 143, 2004

AC Modeling

• Charges in MOSFET and Drift region

$$
Q_G = Q_{EKV} + Q_{Drift} = Q_S + Q_K + Q_B + Q_{Drift}
$$

$$
Q_{Drift} = (V_G - V_{FB} - \psi_s) . W . L_{DR} . C_{ox}
$$

Assumptions

• $\mathcal{Y}_\mathcal{S}$ varies linearly across accumulation charge sheet

AC Modeling

V K behavior

• As mentioned earlier, Drift does not affect the transistor characteristics in saturation.

 \bullet $\lor_{\sf K}$ obtained from Spice is valid for linear region. Many models use interpolation function for smooth V_K from linear to saturation.

Normalized reverse Current

t
$$
i_r = [\ln(1 + e^{\frac{v_p - v_k}{2}})]^2
$$

Normalized charge density at $\rm V_{\rm K}$ (EKV)

 $q_k = \sqrt{i_r} + 0.25 - 0.5$

Normalized $v_k^{}$ (EKV)

$$
v_k = \frac{V_K}{U_T} = v_p - (2.q_k + \ln(q_k))
$$

Ref: J.-M. Sallese et al., "Inversion charge lineariazation in MOSFET modeling and rigorous derivation of the EKV compact model", Solid-State Electronics,pp. 677-683, 2003

$\mathbf{V}_\mathbf{K}$ vs. $\mathbf{V}_\mathbf{G}$ and $\mathbf{V}_\mathbf{D}$ for VDMOS

 \bullet V_K – Important parameter for design of HV-MOS

 \bullet Trend matches with device simulation and also reported with literature

Ref: C.H. Kreuzer et al., "Physically based description of quasi-saturation region of vertical DMOS power transistors", IEDM,pp. 489 - 492, 1996

Outline Outline

- Motivation why new HV MOSFET Model
- Device Architecture and Modeling Strategy
	- Core Low Voltage EKV MOSFET Model
	- Analytical bias dependent drift resistance
	- \bullet Strategy for charge evaluation based on V_K
- Validation and Results
	- Most of the results on VDMOS
	- Some results on LDMOS
- Conclusion

T ransfer Characteristics (I_D-V_G)

- Weak inversion to Strong inversion transition
- Subthreshold slope correctly matched
- Good accuracy

(red - model & blue - measurement)

Transconductance for V_D=0.1-0.5V ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

- Subthreshold slope correctly matched
- descending slope drift resistance

(red - model & blue - measurement)

Output Characteristics

- Linear region correctly modeled by drift resistance.
- Self Heating Effect
- \bullet Peaks on g_{ds}

(red - model & blue - measurement)

C_{GD} and C_{GS}+C_{GB} vs V_G
V_D=0-3V

•Modeling of Non-uniform doping in intrinsic MOS (Chauhan et al. in *IEDM 2006*)

Width Scaling in VDMOS

•Increase in Current and transconductance with Width

(red - model & black - measurement)

• R_{ON} , \blacksquare - N_F \blacksquare for drain all-around-device due to current spreading at finger edges

Outline Outline

- Motivation why new HV MOSFET Model
- Device Architecture and Modeling Strategy
	- Core Low Voltage EKV MOSFET Model
	- Analytical bias dependent drift resistance
	- \bullet Strategy for charge evaluation based on V_K
- Validation and Results
	- Most of the results on VDMOS
	- Some results on LDMOS
- Conclusion

Model Validation on 40V LDMOS ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Transfer Characteristics

Output Characteristics

Drift Length Scaling : 100V LDMOS

Conclusion

- An HV-EKV MOSFET model proposed
- \bullet Main number of parameters - 24
- \bullet Good performance in DC and AC operations
	- Error (*I_{DS}*) ~ 10%
	- –Error (*gm*) ~ 10%
	- Error (*Capacitance*) ~ 25%
- Tested for transient operations
- \bullet Model validated on industrial devices
- \bullet Excellent convergence and scalability
- \bullet Self-Heating effect included – No ill convergence
- \bullet Implemented in *Verilog-A* – Platform independent
- •Tested on *ELDO*, *SABER*, Spectre, *UltraSim* simulators
- \bullet Model has been accepted for evaluation as a candidate for LDMOS standardization by *CMC*

Acknowledgements

Christian Maier, Heinisch Holger *Robert Bosch, Germany* Andre Baguenier Desormeaux *Cadence Design Systems, France* Benoit Bakeroot *University of Gent, Belgium* P. Joris*AMI Semiconductor, Belgium* J.-M. Sallesse, N. Hefyene, A.S. Roy, S. Samala

EPFL, Switzerland

Funded by European Commission project "ROBUSPIC "Website- http://www-g.eng.cam.ac.uk/robuspic/

