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Motivation

• Robust HV Model for circuit simulators
• Analytical & Physical Compact Model
• Accuracy in DC & AC
• Small number of parameters: EKV!
• Scaling with physical & electrical parameters
• Convergence and Speed
• Open Source

• General HV-MOS Model?
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General HV MOSFET
Modeling Strategy

VG

VS

VB
VK

VD

RDrift (VD,VG)

EKV MOSFET Model 

(constant doping)

• EKV Model

• Physically based parameters

• Less parameters than BSIM

Intrinsic drain potential
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Device Architectures

• VDMOS :
VDmax=50V,  VGmax=3.3V

• LDMOS :
VDmax=40-100V,  VGmax=13V

• Most of the available models 
use macro-models for HV 
devices with thick oxide.
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Main EKV Parameters

F/m2Oxide Cap. per unit areaCOX

mChannel WidthW
mChannel LengthL

-Channel Length ModulationLAMBDA
V/mLongitudinal Critical FieldUCRIT
V/mMobility Reduction CoefficientE0

VBulk Fermi PotentialPHI
V1/2Body Effect ParameterGAMMA

cm2/VsLow Field mobilityU0
VLong-channel Threshold VoltageVT0

UnitsDescriptionName
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Modeling Strategy

• Drift Resistance expression

constantDriftR R= =
Drift0

 R
(1 . )Drift

Acc G
R

Vθ
=

+

(red - model & blue - measurement)

Accumulation in Drift
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0

1

2

3

4

0 1 2 3

VG (V)

ID
 (m

A
)

VD=0.1V

VD=0.5V

0

1

2

3

4

0 1 2 3

VG (V)

ID
 (m

A
)

VD=0.1V

VD=0.5VLow VD



ESSDERC, Montreux, Switzerland 20th Sept. 2006 10Y.S. Chauhan

Modeling Strategy
• Drift part mainly affects the linear region of the output characteristics.

• Delayed transition between linear and saturation regime at high VG - velocity 
saturation in the drift
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Scalable Drift Resistance
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+ : Drain-on-sides

- : Drain all-around
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Modeling of Self Heating Effect

Rth – Thermal Resistance

Cth – Thermal Capacitance

PD=IDS.VDS
VGS

VDS

IDS

ΔT
µ(T), VT(T)

• External Temperature Node
Ref:  C. Anghel et al., “Self-heating characterization and extraction method for thermal resistance and 
capacitance in HV MOSFETs”, IEEE Electron Device Lett., 141 - 143, 2004
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AC Modeling

( ). . .Drift G FB s DR oxQ V V W L Cψ= − −

G EKV Drift S K B DriftQ Q Q Q Q Q Q= + = + + +

Assumptions

• ΨS varies linearly across accumulation charge sheet

• Charges in MOSFET and Drift region
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AC Modeling

0.25 0.5k rq i= + −

VK behavior

(2. ln( ))K
k p k k

T

V
v v q q

U
= = − +

Normalized charge density at VK (EKV)

Normalized vk (EKV)

22[ln(1 )]
p kv v

ri e
−

= +Normalized reverse Current

Ref:  J.-M. Sallese et al., “Inversion charge lineariazation in MOSFET modeling and rigorous derivation 
of the EKV compact model”, Solid-State Electronics,pp. 677-683, 2003

• As mentioned earlier, Drift does not affect the  transistor 
characteristics in saturation.

• VK obtained from Spice is valid for linear region. Many models use
interpolation function for smooth VK from linear to saturation.
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VK vs. VG and VD for VDMOS

• Trend matches with device simulation and also reported with literature
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Ref:  C.H. Kreuzer et al., “Physically based description of quasi-saturation region of vertical DMOS 
power transistors”, IEDM,pp. 489 - 492, 1996

• VK – Important parameter for design of HV-MOS
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Model Validation on 50V VDMOS
Transfer Characteristics (ID-VG)

VD=0.1 to 0.5V

• Weak inversion to Strong inversion transition 

• Subthreshold slope correctly matched

• Good accuracy
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Transconductance for VD=0.1-0.5V

• Subthreshold slope correctly matched

• descending slope – drift resistance
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Output Characteristics

• Linear region correctly modeled by drift resistance.

• Self Heating Effect

• Peaks on gds
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Self-Heating Impact-Ionization
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CGD and CGS+CGB vs VG
VD=0-3V
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Interpolation function used in drift 
(to be improved)

Lateral Doping in the channel

•Modeling of Non-uniform doping in intrinsic MOS (Chauhan et al. in IEDM 2006)



ESSDERC, Montreux, Switzerland 20th Sept. 2006 21Y.S. Chauhan

Temperature Scaling in VDMOS
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Width Scaling in VDMOS
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•Increase in Current and transconductance with Width
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RON Scaling with number of fingers in 
VDMOS
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• RON - NF for drain all-around-device due to current 
spreading at finger edges
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Model Validation on 40V LDMOS

Transfer Characteristics
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Model Validation on 40V LDMOS

Output Characteristics

Effect of drift 
resistance Self-Heating 

Effect

Impact-Ionization 
Effect
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Drift Length Scaling : 100V LDMOS
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Conclusion

• An HV-EKV MOSFET model proposed
• Main number of parameters - 24
• Good performance in DC and AC operations 

– Error (IDS) ~ 10%
– Error (gm) ~ 10%
– Error (Capacitance) ~ 25%

• Tested for transient operations
• Model validated on industrial devices
• Excellent convergence and scalability
• Self-Heating effect included – No ill convergence
• Implemented in Verilog-A – Platform independent 
• Tested on ELDO, SABER, Spectre, UltraSim simulators
• Model has been accepted for evaluation as a candidate for LDMOS 

standardization by CMC
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