Analysis and Modeling of Lateral Non-Uniform Doping in High-Voltage MOSFETs

<u>Y. S. Chauhan¹</u>, F. Krummenacher¹, C. Anghel¹, R. Gillon², B. Bakeroot³, M. Declercq¹, and A. M. Ionescu¹

¹Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

²AMI Semiconductor, Belgium

³University of Gent, Belgium

11th Dec. 2006

Outline

- High Voltage device architectures
- Impact of Lateral non-uniform doping on device characteristics
- Model description
- Model validation
 - VDMOS shown in this presentation
 - LDMOS shown in the paper
- Conclusion

IEDM, San Francisco, USA

Device Architectures

• LDMOS :

IEDM, San Francisco, USA

11th Dec. 2006

• VDMOS :

Difference between Conventional MOS and Lateral Asymmetric MOS (LAMOS)

- LAMOS –higher C_{GD}
- Drift region in high voltage MOS decreases C_{GD}
- The peak in C_{GD} of LAMOS effect of lateral doping IEDM, San Francisco, USA 11th Dec. 2006 Y.S. Chauhan

Difference between Conventional MOS and Lateral Asymmetric MOS (LAMOS)

- LAMOS –higher C_{GD}
- Drift region in high voltage MOS decreases $\rm C_{GD}$
- The peak in C_{GD} of LAMOS effect of lateral doping

IEDM, San Francisco, USA

Impact of different Doping gradients on device characteristics

- Higher gradient higher current
- Higher gradient higher saturation voltage

11th Dec. 2006

Contd.- Impact of different Doping gradients on device characteristics

- Higher doping gradient
 - Higher C_{GD} and lower C_{GS} in strong inversion
 - Rising slope decreases
 - Peak on C_{GD} increases

IEDM, San Francisco, USA

Modeling of LAMOS

$$I_{D} = I_{Drift} + I_{Diff} = \mu W \left(-Q_{i} \frac{d\Psi_{s}}{dx} + U_{T} \frac{dQ_{i}}{dx} \right)$$
Q_i: explicit fun. of x
Nonlinear
Ordinary Diff. Eq. $\Longrightarrow \frac{dq}{d\xi} = -\frac{i_{ds} + \rho_{v} \left(i_{ds} \frac{\delta_{sat}}{2} - q \right) \frac{d\Psi_{p}}{d\xi}}{\rho_{v} \left(1 + 2q - \delta_{sat} i_{ds} \right)}$

$$\xrightarrow{\text{Assume}} \frac{d\Psi_{p}}{d\xi} = \Delta \Psi_{p} = \text{constant}$$

$$\boxed{\text{Drain Current}}$$

$$\boxed{\sum \Delta \Psi_{p} = 2(q_{d} - q_{s}) + \left(1 + \frac{2i_{ds}}{\rho_{v} \Delta \Psi_{p}} \right) \ln \left[\frac{q_{d} - i_{ds} \left(\frac{1}{\rho_{v} \Delta \Psi_{p}} + \frac{\delta_{sat}}{2} \right)}{q_{s} - i_{ds} \left(\frac{1}{\rho_{v} \Delta \Psi_{p}} + \frac{\delta_{sat}}{2} \right)} \right]}$$

IEDM, San Francisco, USA

Modeling of Self Heating Effect

• External Temperature Node

Ref: C. Anghel et al., "Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETs", IEEE Electron Device Lett., 141 - 143, 2004

IEDM, San Francisco, USA

Model Validation on 50V VDMOS

Transfer Characteristics (I_D-V_G)

- Weak inversion to Strong inversion transition
- Subthreshold slope correctly matched
- Good accuracy

IEDM, San Francisco, USA

Transconductance for $V_D = 0.1 - 0.5V$

IEDM, San Francisco, USA

Output Characteristics

IEDM, San Francisco, USA

• Rising Slope & Peaks – effect of lateral non-uniform doping

• Sharp decrease – effect of drift region (good modeling of drift region or V_K must)

IEDM, San Francisco, USA

Gate-to-Source and Gate-to-Body Capacitances $C_{GS} + C_{GB} vs V_{G}$ 2.0 $V_{D} = 5V$ C_{GS} + C_B)/WL_{COX} Measurement Model COOCOOCOOCOOCO V_D =0V 0.0 -3 -2 -1 2 0 3 $V_{G}(V)$

- Peaks effect of lateral non-uniform doping
- Sharp decrease and shift of peaks effect of drift region

IEDM, San Francisco, USA

11th Dec. 2006

 Peaks and shift of peaks – little contribution from lateral non-uniform doping and greater contribution from drift region

IEDM, San Francisco, USA

Partioning Scheme in LAMOS

- Drain & Source charge: do NOT exist! (Philips IEDM'04) •
- • Solve continuity & transport eq. (Philips IEDM'04)
- Capacitance implementation in simulators: Charge conservation problem!
- Use proposed partioning scheme or even WD to get $Q_D \& Q_s$: Theoretically incorrect but still solves the problem at the moment for industry
- Some novel solution?

Conclusion

- Modeling of lateral non-uniform doping in HV-MOSFET
- Complex capacitance behavior of HV-MOS explained using numerical simulations : lateral doping and drift effects
- Peaks and shift of peaks in capacitances with bias correctly modeled : Major improvement over state of the art HV-MOS models
- Self-Heating and Impact-Ionization effect included
- Very good performance in DC and transient operations
- Model validated on advanced HV devices 50 VDMOS and 40V LDMOS

Acknowledgements

Christian Maier, Heinisch Holger Robert Bosch, Germany

Andre Baguenier Desormeaux Cadence Design Systems, France

B. Desoete AMI Semiconductor, Belgium

J.-M. Sallesse, A.S. Roy

EPFL, Switzerland

Funded by European Commission project **"ROBUSPIC"**

Website- http://www-g.eng.cam.ac.uk/robuspic/

IEDM, San Francisco, USA

11th Dec. 2006

18