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Characterization and Modeling
Capabllities

— About Nanolab




About Nanolab: Some Stats

— Government Agencies
— Industry Partners
— Compact Model Coalition (CMC)

Publications
®_0

2020 2019 2018 2017 2016 2015
o8&« Current Members
Books 1 1
Journal 16 14 20 19 18 9 - Postdoc -5

- Ph.D.-27
Conference 9 15 19 11 30 30 - Ten PhDs graduated
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About Nanolab: Collaborations
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About Nanolab: Areas of Research

SPICE/Compact Modeling

Strong collaboration with the industry in terms of model
development. Working closely with UC Berkeley to maintain
and develop the BSIM standard models. Out ASM-HEMT
model for GaN-HEMTs was recently recognized as an
industry standard by the Compact Model Coalition (CMC)

Nanolab, Indian Institute of Technology Kanpur




Hardware Capabilities |

Keysight Semiconductor Device Analyzer

(B1500A) Measurement capabilities:

IV, CV, pulse/ dynamic IVrange of 0.1fA-1A/ 05 puVv-200V
Evaluation of devices, materials, semiconductors,

active/ passive components

AC capacitance measurement in multifrequency from 1kHz to
5 MHz

Pulsed IV measurement min 10 ns gate pulse width with 2 ns
rise and fall times with 1 us current measurement resolution

Maury Microwaves/ AMCAD AM3221

Bipolar £25V/ 1A (gate) and high-voltage 250V/ 30A (drain)
models

Pulse widths down to 200ns

Synchronized pulsed S-parameter measurements
Connect systems in series for synchronizing 3+pulsed
channels

Long pulses into the tens and hundreds of seconds for
trapping and thermal characterization
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Hardware Capabilities |

Keysight ENA (E5S071C) 100KHz to 8.5 GHz Keysight PNA-X (N5244A) 10 MHz to 43.5 GHz

g_kF:Z4EO 4::/5605/ ﬁr?]/ 184/ 22 Cr;nHZt Ftast set High Frequency Device Characterization (Microwave
or &-port, ofm, S>-parameter test se Network Analyzer)

Improve accuracy, yield and margins with wide dynamic range 100Khz t0 8.5 GHz and 10 MHz to 435 GHz

130 dB, fast measurement speed 8ms and excellent ' : .

temperature stability 0.005 dB/ °C 2-port and 4-ports with two built-in sources
' High output power (+16 dBm)

Best dynamic accuracy:0.1dB compression with +15 dBm
input power at the receiver
Low noise floor of -111 dBm at 10 Hz IF bandwidth
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Hardware Capabillities Il|

Keysight Power Device Characterization System: B1505

Power device characterization up to 1500 A &10 kV

Medium current measurement with high voltage bias (e.g. 500 mA at 1200 V)

uQ on-resistance measurement capability

Accurate, sub-picoamp level, current measurement at high voltage bias

Fully automated Capacitance measurement at up to 3000 Vof DC bias

High power pulsed measurements down to 10 ps

High voltage/ high current fast switch option to characterize GaN current collapse effect
Fully automated thermal testing from -50 °C to +250 °C

Keysight N8975B Noise Figure Analyzer

Frequency range 10 MHz to 26.5 GHz in a one-box solution
Includes Spectrum Analyzer and IQ Analyzer (Basic) modes

SNS series noise source N4002A

U7227C 100 MHz to 26.5 GHz External USB Preamplifier included

Nanolab, Indian Institute of Technology Kanpur 10


https://www.keysight.com/main/redirector.jspx?action=ref&lc=eng&cc=IN&nfr=-536902736.1163265&ckey=1000003572:epsg:pro&cname=PRODUCT

Load Pull Characterization

Maury Load Pull
Characterization system

A fundamental passive load
pull system capable of
performing load pull
characterization up to 15W.
XT982GL01- 0.6 to 18 GHz
Load tuner

Plan to expand to a 3
harmonic hybrid load pull
system soon.
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EDA Capabilities

LL]
O
o
0

SIMULATORS

TCAD Atomistic Simulations

Quantum
Wise
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An introduction to ASM -HEMT

— About ASM-HEMT and its core
— Extraction flow




A brief history of HEMT models
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Various classes of compact models
T
(GaN HEMT)
N
(ASM-HEMT)

Physics Based

Charge Based
(MVSG)

| Advanced SPICEModel for GaN HEMTs (ASM-HEMT) |

www.iitk.ac.in/ asm
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http://www.iitk.ac.in/asm

ASM-HEMT Team

Prof. Yogesh Singh Chauhan Prof. Sourabh Khandelwal

Directors

Dr. Sudip Ghosh Dr. Aamir Ahsan b el A Dr. Avirup Dasgupta

Ahtisham Pampori Raghvendra Dangi
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ASM-HEMT: Summary

Electrostatics

Transport

Higher-order
Effects

r

L

Analytical Solution of
Schrodigers &Poisson’s

~\

J

r

SP-Based Current &
Charge Model

~\

2-DEG Charge, Ef,
Surface Potential

r

e

\.

Noise, Trapping, Self-
Heating, Field Plate

\

J
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-V, C-V, DIBL, Rd, Rs,
Vel. Sat., ...

DC, AC, Transient
Harmonic Sim .,
Noise, ..
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ASM-HEMT: Core Model

Core Model Parameters

Parameter Description Extracted Value
Vorr Cutoff Voltage —-2.86V
Nreacror Subthreshold Slope Factor 0.202
Creen SS Degradation Factor 0325171
Mo DIBL Parameter 0.117
U, Low Field Mobility 33.29 mm?/Vs
Ngoaccs AR 2DEG Density 1.9e + 17 /m?
Vsaraccs AR saturation velocity 157.6e + 3 cm/s
Rypo Thermal Resistance 22 Q

Real Device Effects Incorporated into the Model
Core drain current expression

PR N

[1]S.A. Ahsan et al., [IEEE J. Electron Devices Society,
Sep., [2017]
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Extraction Flow |

Set L, W, NF, Thar Extract LAMBDA, Improve
Device Dimensions VSAT, ETAfrom IDVD

Extract VOFF, NF, CDSCD,
ETA from log -IDVG, LINEAR Temperature Parameters
And Saturation

Extract UO, UA, UB and RDS Capacitance Modelin
from IDVG-LIN P J
Extract VSAT,
Improve ETA
From LINEAR IDVG

A

[1]S.A. Ahsan et al., [IEEE J. Electron Devices Society,
Sep., [2017]
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Extraction Flow II

g — V, (Extract Vopr, Npacror, Cpscp) 1y — V, (Extract Uy) I; — V4 (Extract Ngpaccs)
Iq — Vg (Extract Vsaraccs)

I; — V; (Extract Rryg)

1]S. A. Ahsanet al, MOS-AK Workshop, Shanghai, [2016]
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Extraction from Id -Vg curves

Start with I; —V; characteristics in the log scale
ETAO - DIBL Parameter
NFACTOR - Sub-threshold slope parameter

CDSCD - Captures the drain voltage dependence on the sub-
threshold slope.

VOFF - Cut-Off Voltage

I — V, characteristics in the linear scale
UO - Low field mobility

UA,UB - Mobility degradation parameters

PR N

[1]S.A. Ahsan et al., [IEEE J. Electron Devices Society,
Sep., [2017]
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Extraction from Id -\Vd curves

PR N

[1]S. A.Ahsan et al., IEEE J. Electron Devices Society,
Sep., [2017]

I; — V; characteristics
VSAT - Velocity saturation parameter
UA, UB - Mobility degradation parameters
Access Region Parameters extracted from [; — V; characteristics:
NSOACCS (D) — 2DEG density in the access region.
VSATACCS — Saturation velocity in the access region.
UOACCS (D) — Low field mobility in the access region.

UOACCS (D) independently tunes the access region resistance around
Vds = 0 and helps extract g, at that point.

Nanolab, Indian Institute of Technology Kanpur



Bias-dependent access region resistance model: Overview

PR N

[11S.Ghosh et al,, IEEE International Conference on
Electron Devices and Solid-State Circuits (EDSSC), [2016]

Nanolab, Indian Institute of Technology Kanpur

Nonlinear variation of source/ drain access

resistances with Ids extracted from TCAD
simulation and comparison with model.




Bias-dependent access region resistance model: Results

Effect of high access region resistance at high V.

>

Id - Vg and trans -conductance
for the Toshiba power HEMT. lds-Vds and reverse lds -Vds fitting with experimental data. The non -linear

Different slopes above Voff in Rs/d model shows correct behavior for the higher Vg curves in the Id -
gm-Vg: self-heating governs the Vd plot; the S-P based model can accurately capture the reverse output
first slope while velocity characteristics.
saturation in access region
affects second slope.

PR N

[11S.Ghosh et al,, IEEE International Conference on
Electron Devices and Solid-State Circuits (EDSSC), [2016]
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Bias-dependent access region resistance model: Temperature scaling

The temperature dependence of R ;. model is extremely important as it increases significantly
with increasing temperature

Temperature dependence of 2 -DEG charge
density in the drain or source side access
region;

Temperature dependence of Saturation
Velocity:

Temperature dependence of electron
Mobility:

PR N

[11S.Ghosh et al,, IEEE International Conference on
Electron Devices and Solid-State Circuits (EDSSC), [2016]
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ASM-HEMT: Temperature scaling results

ASM-HEMT features a robust temperature
scaling model which has been validated
across a broad range ofdevice

Id - Vd at 100°C

Id - Vd at -20°C

PR N

[11S.Ghosh et al,, IEEE International Conference on
Electron Devices and Solid-State Circuits (EDSSC), [2016]

temperatures.

Vorr.piaL(T)

Tdev

= Vorr,piBL — <TNOM —~ 1) . KT1 + TRAPVOFF

rveap + vofftrap

T AT
VSAT(T) = VSAT - ( de”)
TNOM

Nanolab, Indian Institute of Technology Kanpur

Id - Vg at 100°C

B Id - Vg at -20°C



Geometric Scaling |

Access Region Resistance Scaling

Nanolab, Indian Institute of Technology Kanpur



Geometric Scaling |l

Gate Current Scaling

Nanolab, Indian Institute of Technology Kanpur
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Modeling Power Devices using ASM -
HEMT

— Modeling DC
— Modeling field plates




Output
conductance
versus Vd

ASM-HEMT accurately
captures the IV
characteristics of a
power GalN HEMT
device.

Derivative of
output
conductance
versus vd

Nanolab, Indian Institute of Technology Kanpur

Modeling DC: Room Temperature Output Characteristics
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Modeling DC: Room Temperature Reverse Output Characteristics

Reverse Output
conductance
versus Vvd

00

Derivative of
reverse output
conductance
versus vd

00
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Modeling DC: Room Temperature Transfer Characteristics

vVd @ 0.1, 0.5, 1 and 10V

Vd@Ol,OS,lanleV 200_||||||||||| L — L —
10 1711 L L T 1 T 1 C S
| o[-
0.8 — Transconductance 5100__
B versus Vg E ¢
= [
B m50_—
0.6 — B
< [ -
s % a
0.4 —
0.2 — i
N w Derivative of
B = | transconductance
0% 4 2 0 2 4 versus Vg
Vg (V) [E+O]

salanlanlaml==Eoaln L L L L L L
5.0 4.5 -4.0 35 3.0 2.5 2.0
vg [E+0]
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Modeling DC: Room Temperature IV — Log Scale

Log (Id) - Vds (Vd>0) T=25C Log (Id) - Vds (Vd<0) T=25°C

Log (Id) - Vgs T=25°C

d (A)
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Modeling DC: Output Characteristics @ T=-20°C

L LU LT Ty
A1LILIL Dy
guss X,
L i

$
1] TOLULLLEDLT § e
t“;ﬁ‘}‘“m o '”’”"‘”’“’H
P i

Output Output
Characteristics conductance
@ -20°C versus Vd @ -20°C

Id (A)

The model scales accurately
to sub-zero temperatures.

Log Output Derivative of output
Characteristics conductance
@ -20°C versus Vd @ -20°C

Nanolab, Indian Institute of Technology Kanpur




Modeling DC: Reverse Output Characteristics @ T=-20°C

Vg from -12to 3V @ 0.5V step

Reverse Output Reverse Output
Characteristics conductance
@-20°C versus Vd @ -
20°C

The model scales accurately
to sub-zero temperatures.

Derivative of
reverse output

Log Output
Characteristics conductance
versus Vd @-

@-20°C 20°C

Nanolab, Indian Institute of Technology Kanpur



Modeling DC: Transfer Characteristics @ T=20°C

The model scales accurately
to sub-zero temperatures.

Id (mA)
Id (A)

Transfer Characteristics @ T=-20°C

Transfer Characteristics (Log) @

T=20°C
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Modeling DC: IV Characteristics @ T=100C

Transfer
Characteristics @
T=10CC

Id (mA)

................

The model can accurately capture high
temperature operation of the device.
This is particularly important for power
devices which generate a lot of heat.

Id (mA)

Transfer
Characteristics
(Log) @ T=100C

A
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e

Modeling DC: Reverse Output Characteristics @ T=150°C

Vg from -12to 3V @ 0.5V step

Reverse Output Reverse Output
Characteristics @ conductance versus
150°C Vd @ 150°C

A B RN AU B The model can accurately capture high
temperature operation of the device.

L T T T T T T This is particularly important for power
devices which generate a lot of heat.

RN

Log Output Derivative of reverse
Characteristics @ output conductance
150°C versus Vd @ 150°C

oo
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Modeling field plates: Structure

Field plates flatten out the peak in the electric field caused by the sudden
drop in potential at the gate edge. TCAD showing field fluctuations leading to
a distributed field inside the device.

gsfp
g
R Tl TZ T3 Rd
s Si di gpdi spdi d

A Gate Field Plate (GFP) and a Source Field Plate

(SFP) structure modeled as transistors in series.

PR N

[11S. A. Ahsan et al, IEEE Transactions on Electron
Devices (Special Issue), [2017]
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Modeling field plates: Trends w.r.t Drain Voltage

Terminal Capacitance: Terminal Capacitance: Reverse
Input side (Ciss) (Crss)

The plateaus in each capacitance curve
denote the switching -off of one of the
transistors in series as depicted in the

previous slide.

] ] ] Activation of different series
Terminal Capacitance: ) o ) :
) transistors with increasing drain
Output side ( Coss) : :
voltage at a fixed gate bias

PR N

[11S. A. Ahsan et al, IEEE Transactions on Electron
Devices (Special Issue), [2017]
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Field Plate Models: Trends w.r.t temperature

Terminal Capacitance:
Input side ( Ciss) with drain
voltage

Terminal Capacitance: Input
side (Ciss) with gate voltage

Increasing temperature shifts the threshold
voltage in the negative direction — leading to a
corresponding shift in the capacitance curves.

Terminal Capacitance: Terminal Capacitance:
Reverse (Crss) Output side ( Coss)

PR N

[11S. A. Ahsan et al, IEEE Transactions on Electron
Devices (Special Issue), [2017]
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Mixed mode TCAD circuit using ATLAS

— Schematic for Mixed-mode simulation using
the numerical GaN FP device generated in
Atlas.

The FRHEMT is put as the DUT with7 V and 0
V pulses of 1 MHz at gate.

The pulse has a pulse-width of 480 ns 20 ns
rise and fall times.

Supply voltage of 50 V is chosen to capture
the maximum effect of cross coupling
capacitances on switching transients while an
/nductive load is put at the drain.

PR N

[11S. A. Ahsan et al, IEEE Transactions on Electron
Devices (Special Issue), [2017]
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Voltage waveforms

The model accurately
predicts drain overshoots
due to LC ringing, Miller
plateaus due to accurate

Turn-on by switching applied gate signal from 7 ,0/’6’6//01‘/0/7 n shar/'ng of the Turn-off by switching applied gate signal fromQOVto 7V,
Vto 0V (FP vs no FP) . keeping applied drain voltage fixed at 50 V (FP vs No FP)
gate drive current to charge

Cgs and Cgd and the
associated gate -drain
charge, and the damping of
the oscillations.

Turn-on by switching applied gate signal from 7 Turn-off by switching applied gate signal fromQOVto 7V,
V to 0 V (Mixed-mode vs Model) keeping applied drain voltage fixed at 50 V (Mixed -mode
: vs Model)

[1]S. A.Ahsan et al., IEEE Transactions on Electron — ——
Devices (Special Issue), [2017]
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Current Waveforms

Turn-on by switching applied gate signal from 7 Vto 0 V

(Mixed-mode vs Model)

Comparison of modeled time -domain waveforms during turn -off
with and without cross -coupling and substrate capacitances.

Solid lines = Cross-Coupling(CC) and substrate model included
Dotted lines = CC and substrate model excluded.

Turn-off by switching applied gate signal from 0 Vto 7V,

keeping applied drain voltage fixed at 50 V (Mixed-mode
vs Model)

PR N

[11S. A. Ahsan et al, IEEE Transactions on Electron
Devices (Special Issue), [2017]
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Modeling RF Devices using ASM -HEMT

— Extracting DC Parameters
— RF Model Extraction




Extracting DC Parameters

g — V, (Extract Vopr, Npacror, Cpscp) 1y — V, (Extract Uy) I; — V4 (Extract Ngpaccs)
Iq — Vg (Extract Vsaraccs)

I; — V; (Extract Rryg)

PR N

[1]S. A.Ahsan et al., IEEE J. Electron Devices Society,
Sep., [2017]
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RF Model & Extraction |

Three step methodology
De-embed manifolds
Extract the intrinsic core model - Using low frequency Y-parameters
Extract Inductances - Using high frequency Y-parameters

Model

Core surface potential based PDK
Access region resistances included in core
Bus-inductances in extrinsics

— GMF

d;

Overlap

Manifolds

[ [

L , |

- Extrinsic I Cas_ar_:l_c . Cds_il__:l_c I
S M F I gs,i ’ DSO Im I

[ [

| |

s Ré ASM-GaN-HEMT,

e e e e e e e e e e o = -

Pad-level Small Signal Equivalent Circuit Model

PR N

[1]S.A. Ahsan et al., [IEEE J. Electron Devices Society,
Sep., [2017]

Nanolab, Indian Institute of Technology Kanpur
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RF Model & Extraction |l; Pad Parasttics

Manifolds/ Pads
— Used to probe the device RETRIMEEE
— Feed the signalto gate, drain &source bus-inductances for DME
— Measurements obtained using TRL Calibration
— Transmission line type model
— Reciprocal (may/ may not be symmetric)

— De-embedded using ‘deembed”s2p components in ADS
Y-parameters

for GMF
T —AM——AMN— T —— R,
Lywr Rymr | Ryur Lyur
Cxmr Cyur Cxmr Y-parameters
Loyr for SMF

Symmetric network used for GMF/ DMF Single port SMF network

A
[1]S.A. Ahsan et al., [IEEE J. Electron Devices Society,

Sep., [2017] Nanolab, Indian Institute of Technology Kanpur




RF Model & Extraction lll: Bus Inductances

Key Pointers

The effect of bus-inductances is ignored at low

frequencies (@ssumption)
[1] . : . :
Drain & Source access region resistances ignored from
hand analysis (not an assumption, it is an advantage)
Ignore some terms at low frequency (~ 10 GHz)
(assumption)
Very simple —only need to adjust overlap
capacitances &gate finger resistances (advantage)

[11l. Kwon et al,, IEEE Trans. Microw. Theory Techn,,
50 (6), [2002]
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Fitting core model parameters using ADS

Extract Csso

Jas dispersion handled by trap model

gm dispersion handled by trap model

PR .

[1]S.A. Ahsan et al., [IEEE J. Electron Devices Society,
Sep., [2017]
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Bus Inductance fitting

511 &SZZ (5\/) 512 &521 (5\/)

Resonant peaks due to interaction of

inductances with intrinsic capacitances

Si1 &5, (20V) Si2 &5:1 (20V) |

PR .

[1]S.A. Ahsan et al., [IEEE J. Electron Devices Society,
Sep., [2017]
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Large Signal HB Simulations

(yw) eung urelqg

Drain-Source Voltage (V)

T T | T ‘ T | T ‘ T ‘ T { T | T | T ‘ '100
20 40 60 80 100 120 140 160 180 200
Time (ps)

Drain Current (A)

—’0.2||||||||||||||||||||||||
0 5 10 15 20 25

Drain Voltage (V)

Time domain waveforms of drain voltage & current. Load line
contours spanning the IV plane

Harmonic balance drive -up characteristics showing Pout, PAE & Gain

PR N

[1]S. A.Ahsan et al., IEEE J. Electron Devices Society,
Sep., [2017]
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Validation — Real and Imaginary Loads

Fairly accurate in predicting the maxima for Pout & PAE

Pout & PAE against load resistance (real load)

Pout & PAE against load reactance (imaginary load)

PR N

[1]S. A.Ahsan et al., IEEE J. Electron Devices Society,
Sep., [2017]
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Load Pull simulations using ASM -HEMT

ADS Schematic for simulation of load -pull contours 22 dBm signal @ 10 GHz

Pout & PAE load pull contours for 200 mA/mm

Pout & PAE load pull contours for 10 mA/mm
A :

[1]S. A.Ahsan et al., IEEE J. Electron Devices Society,
Sep., [2017]
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Characterizing Self Heating and its
Modeling

— Self heating Model
— Characterization




Self- Heating Model

The self-heating circuit is defined in a
thermal discipline.

[ntrinsic Device AT For the thermal discipline, power is the
\ equivalent of “current”and temperature is
the equivalent of “voltage”

|.___|__I q g
T s

—  eTi t) Rw< Cw » .
: : Under these conditions, applying KCL
I----l--- p.. on the thermal subcircuit, we have:

diss
T = Tyoy + AT P(R,,) = Temp(Ren)
Pyiss = 1a X Vg th RTHO

: d
PR = 2 ) - T

Nanolab, Indian Institute of Technology Kanpur



Characterization

T = Tnoma + Ren X Pgissa lgs
Tnomz2 > Thoma

Tj2 = Tyomz2 + Rin X Pyiss2

At the intersection point:
T]]_ == sz
And P, = 0 (Pulsed at (0,0))

= Ripn= ATyom/APyiss

. DC @TNOM,l

With the ASM-HEMT model, the parameter . Pulsed (0,0) @ Twom »

RTHO is tuned till the simulated intersection

point overlaps with the measured intersection
point after thermal parameters like UTE, AT and Vds
KT1have been extracted.

Extracting Rth. Both curves are measured at the
same Vgs. The intersection point denotes a
common junction temperature.

[1] T.Peyretaillade et al,1997 IEEE MTT-S International
Microwave Symposium Digest, Denver, CO, USA, 1997.
doi: 10.1109/ MW SYM.1997.596619.
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Trapping models in ASM -HEMT

— Trapping Models in ASM-HEMT
— Extraction using pulsed measurements




Trapping Models in ASM -HEMT: TRAPMOD |

Key highlights

Dependent on drain voltage only
Bias-dependent and bias-independent options
Scales with signal power levels

Suitable for RF

Affects threshold voltage, DIBL, AR Resistance.

-+ Vcap 1
Irrap = F(Va) \ — * Vorr(Trap) = Vopr + (ATRAPVOFF + BTRAPVOFF - e Veap)
p— I
Rs(Trap) = R + (ATRAPRS + BTRAPRS - e Vear)
1 .
— — Ry (Trap) = Rp + (ATRAPRD + BTRAPRD - e Veap)

1
no(Trap) = ng + (ATRAPETAO + BTRAPETAOQ - e Vear)

Nanolab, Indian Institute of Technology Kanpur



Trapping Models in ASM -HEMT: TRAPMOD Il

Key highlights

Dependent on both gate and drain voltages
Modulates just the drain side access region resistance

Suitable for PIV simulation
Affects threshold voltage, DIBL, Subthreshold Slope,

AR Resistance.

Nanolab, Indian Institute of Technology Kanpur




Trapping Models in ASM -HEMT: TRAPMOD Il

Key highlights

Dependent on both gate and drain voltages

Modulates just the drain side access region resistance for
dynamic Ron

Suitable for simulating Power Devices

Incorporates temperature dependence.

Ry(Trap) = Rp +

VATRAP

V(trapl) < T oy
Tnom

>TALPHA
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Extraction using pulsed measurements

— Pulsed IV characterization in dual-pulse mode at a pulse
frequency of 1000 Hz with a duty-cycle 0f0.02 %is
performed under multiple quiescent drain and gate bias
conditions such that both the gate and the drain voltages
are pulsed simultaneously from the quiescent bias point.
The pulse width of 200 ns and the measurement window
of 40 ns within these 200 ns is short enough to ensure iso-
thermal and iso-dynamic measurement of the pulsed-IV

characteristics.

Pulsed-IV Scheme used to simulate the P-IV Characteristics

Pulsed - IV
chacteristics for
multiple quiescent
conditions — using
TRAPMOD I
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