Negative Capacitance MOSFETs for Future Technology Nodes

Yogesh Singh Chauhan Nanolab, Department of Electrical Engineering IIT Kanpur, India Email: <u>chauhan@iitk.ac.in</u> Homepage – <u>http://home.iitk.ac.in/~chauhan/</u>

My Group and Nanolab

Current members – 30

- Postdoc -5
- Ph.D. 17
- Three PhD graduated
 - Postdocs in UC Berkeley and U. Bordeaux France

	2017	2016	2015	2014	2013	2012
Books	1		1			
lournal	20	18	9	5	3	3
Conference	8	30	30	8	4	6

Joint Development & Collaboration

NTNU Norwegian University of Science and Technology

Institut d'Electronique, de Microélectronique et de Nanotechnologie UMR CNRS 8520

Outline

- MOSFET and Scaling
- Negative Capacitance and Transistor
- Modeling of NC-FinFET
- Impact of Material Parameters
- Switching Delay and Energy
- Conclusion

Outline

- MOSFET and Scaling
- Negative Capacitance and Transistor
- Modeling of NC-FinFET
- Impact of Material Parameters
- Switching Delay and Energy
- Conclusion

Transistor – The Driving Force

Bulk MOSFET

• Drain current in MOSFET (ON operation) $I_{ON} = \mu \frac{W}{L} C_{ox} (V_{DD} - V_{TH})^2$

• Drain current in MOSFET (OFF operation)

$$I_{OFF} \propto 10^{\left(\frac{V_{GS} - V_{TH}}{S}\right)}$$

 $C_{ox} = \varepsilon_{ox}/t_{ox}$ = oxide cap. S – Subthreshold slope

- High I_{ON} ($\downarrow L$, $\uparrow Cox$, $\uparrow V_{DD}$ - V_{TH})
- Low I_{OFF} ($\uparrow V_{TH}$, $\uparrow S$)

Technology Scaling

- Each time the minimum 10 µm (1971) e.g. Intel 8008 line width is reduced, we say that a new *technology node* is introduced.
- Example: 90 nm, 65 nm, 45 nm
 - Numbers refer to the minimum metal line width.
 - Poly-Si gate length may be even smaller. 11/09/2017 10 nm 1970 1980 Stephylococcus aureus bacterium Yogesh S. Chauhan, IIT Kanpur

8

Technology Scaling

- Scaling At each new node, all geometrical features are reduced in size to 70% of the previous node.
- Reward Reduction of *circuit size by half*. (~50% reduction in area, i.e., $0.7 \times 0.7 = 0.49$.)
 - Twice number of circuits on each wafer
 - Cost per circuit is reduced significantly.
- Ultimately Scaling drives down the cost of ICs.

Scaling and Moore's Law

- Number of components per IC function will double every two years April 19, 1965 (Electronics Magazine)
- Shorthand for rapid technological change!

Moore's Law $It's not technology! \rightarrow It's economy.$

to such we als connected to a or automobiles, a ipment. The elecbe feasible today in the pro

The price per transistor on a chip has dropped dramatically since Intel was founded in 1968. Some people estimate that the price of a transistor is now about the same as that of one printed newspaper character. © 2005 Intel Corporation. All rights reserved

- Ways to Huge Profits
 - High performance and Low Cost
 - Achieved by making everything SMALLER

In 1978, a commercial flight between New York and Paris cost around \$900 and took seven hours. If the principles of Moore's Law had been applied to the airline industry the way they have to the semiconductor industry since 1978, that flight would now cost about a penny and take less than one second.

Yogesh S. Chauhan, IIT Kanpur

11/09/2017

Scaling Overview

Ohguro, @2017, ULSI Science and Technology 1997 S. Chauhan, IIT Kanpur

C. Wdep: Increase doping

Scaling and Innovations

Scaling For : Cost, Year of Shipment 2003 2005 2007 2010 2013 Speed and Power Technology Node (nm) 65 32 22 45 90 L_{σ} (nm) (HP/LSTP) 37/65 26/4522/37 16/2513/20New technology 1.2/1.90.9/1.60.9/1.4 $EOT_{e}(nm)$ (HP/LSTP) 1.9/2.81.8/2.5node every two year V_{DD}(V) (HP/LSTP) 1.0/1.11.0/1.00.9/0.91.2/1.21.1/1.11820 2200 I_{on} , HP (μ A/ μ m) 11001210 1500Channel length 0.61 0.840.37 I_{off} , HP (μ A/ μ m) 0.150.34reduction ~30% 465 540 540 540 I_{on} , LSTP ($\mu A/\mu m$) 440 2E-5 I_{off} , LSTP ($\mu A/\mu m$) 1E-5 1E-5 3E-5 3E-5 Innovations Strained Silicon Area reduction High-*k*/metal-gate ~50% Wet lithography New Structure

TABLE 7–1 • Scaling from 90 nm to 22 nm and innovations that enable the scaling.

HP: High-Performance technology. LSTP: Low Standby Power technology for portable applications. EOT_e: Equivalent electrical Oxide Thickness, i.e., equivalent T_{oxe} . I_{on} : NFET I_{on} . 11/09/2017 Yogesh S. Chauhan, IIT Kanpur C. Hu, Modern Semiconductor Devices for ICs

Technology Trend

Scaling Issues/Challenges

- V_{TH} not following scaling
- Current Scaling
 - Mobility is not constant
 - Velocity Saturation
 - Higher I_{off}
- Parasitic resistance and capacitance don't scale linearly
- Process variations
- Affordable Litography
- Heat dissipation and Cooling

IC industry for >40 years

- Closer distance between elements *Pitch*
 - *Faster* signal transfer and processing rate
- For the same Chip size (or cost), *more functionality*
- Use less energy (or *power*) for same function
- In the last 45 years since 1965
 Price of memory/logic gates has dropped 100 million times.
- Miniaturization is key to the improvements in *speed and power consumption* of ICs.

7 Yogesh S. Chauhan, IIT Kanpur Courtesy: Chenming Hu

Threshold Voltage Roll-Off

Energy band diagram from source to drain when Vgs=0V and Vgs=Vt. A-b long channel; c-d short channel.

Vt decreases at very small Lg. It determines the minimum acceptable Lg because loff is too large when Vt becomes too low or too sensitive to Lg.

11/09/2017

18

Ref. – Modern Semiconductor Devices for Integrated Circuits by Chenming C. Hu

Short Channel Effects

size

0.6

Gate Voltage, V_{gs} (V)

0.9

0.3

0.0

10

Making Oxide Thin is Not Enough

Gate cannot control the leakage current paths that are far from the gate.

Ref. – Y.-K. Lin et. al., "Modeling of Subsurface Leakage Current in Low VTH Short Channel MOSFET at Accumulation Bias", IEEE TED 2016. 11/09/2017 Yogesh S. Chauhan, IIT Kanpur

MOSFET in sub-22nm era FinFET FDSOI

New Transistor Grows in the Third Dimension

The new Intel transistor provides higher performance by increasing the conductive area between the source and drain regions of the chip, allowing more current to flow through.

The new transistor with its raised **fin** requires a smaller footprint, allowing more of them to fit in a computer chip. The new design can also reduce power consumption, yielding better battery life on devices.

NY Times

Traditional planar transistor

Source: Intel 11/09/2017

Soitec announces industrial readiness of complete Fully Depleted (FD) platform – Key to higher performance for mobile consumer devices

New platform enables planar FD technology, the only planar solution to sustain Moore's law

From the Semicon West trade show, San Francisco, July 12, 2010 – The Soitec Group (Euronext Paris), the world's leading supplier of engineered substrates for the microelectronics industry, announced today that the company is ready with the Ultra-Thin Buried Oxide (UTBOX) extension to its Ultra-Thin (UT) silicon-on-insulator (SOI) platform, thereby providing a robust substrate solution for chip designers tackling the performance, power and density challenges of mobile consumer devices. Fully Depleted (FD) planar body transistors are now recognized as the right path on the CMOS roadmap for the 22nm generation and beyond. With FD planar transistor technology on UTBOX wafers, chip designers can enhance their usual design flows and techniques. High-volume capacity is available for the 22nm node at Soitec's manufacturing sites in France and Singapore.

"Soitec is ready with the UTBOX wafers for planar FD architectures: the infrastructure, the process maturity, yield and the capacity are all in place to support demand," said Soitec president and chairman, André-Jacques Auberton-Hervé. "Industry leaders confirm that FD planar technology is the right choice for mobile consumer products, which need higher performance without compromising power. Our UTBOX offering shows the critical role our materials play as the starting point for energy-efficient, state-of-the-art electronics."

Eliminate Si Far from Gate

N. Lindert et al., DRC paper II.A.6, 2001

Challenges & Solutions

Power challenge

Scaling both the V_{DD} and V_T maintains same performance (I_{ON}) by keeping the overdrive ($V_{DD} - V_T$) constant.

Spectrum of Approaches to Analyzing Electronic System

The "Big Picture"

Compact Modeling or SPICE Modeling

Medium of information exchange

- Good model should be
 - Accurate: Trustworthy simulations.
 - Simple: Easy Parameter extraction.
- Balance between accuracy and simplicity depends on end application

- Excellent Convergence
- Simulation Time ~µ*sec*
- Accuracy requirements
 - ~ 1% RMS error after fitting
- Example: BSIM6, BSIM-CMG

Compact Model is Art Based on Science

Y. S. Chauhan et.al., "BSIM6: Analog and RF Compact Model for Bulk MOSFET," IEEE TED, 2014.11/09/2017Yogesh S. Chauhan, IIT Kanpur

BSIM Family of Compact Device Models

Outline

- MOSFET and Scaling
- Negative Capacitance and Transistor
- Modeling of NC-FinFET
- Impact of Material Parameters
- Switching Delay and Energy
- Conclusion

Subthreshold Swing

Capacitance Definition

- In general, insulator can be a non-linear dielectric whose capacitance density (per unit volume) can be defined as
- Definition 1: C_{ins} = \$\begin{pmatrix} \frac{\partial^2 G}{\partial P^2} \begin{pmatrix} -1 = inverse curvature of free energy density
 Definition 2: C_{ins} = \$\frac{\partial P}{\partial E}\$ = slope of the polarization vs electric field curve

where P = Polarization in dielectric, G = Free energy density and E = Externally applied electric field

- Two types of non-linear dielectrics:
 - Paraelectric : No polarization when electric field is removed. ۲
 - Ferroelectric : Two possible states of polarization when electric field is • removed.

Negative Capacitance Transistor

• What if insulator has a Negative Capacitance!

 $C_{ins} < 0 \text{ and } \frac{C_S}{C_{ins}} < 0, \text{ then } \left(1 + \frac{C_S}{C_{ins}}\right) < 1 \rightarrow S < 60 \text{mV/decade}$

• For a linear capacitor

- Energy
$$G = \frac{Q^2}{2C} \rightarrow$$
 Capacitance $C = \frac{1}{\frac{d^2G}{dO^2}} = \frac{1}{Curvature}$

- The same holds also for a non-linear capacitor.

Landau-Khalatnikov Theory of Non-Linear Dielectrics

- Free energy of a non-linear dielectric is given as $G = \alpha P^2 + \beta P^4 + \gamma P^6 - EP$
- In general, α and β can be +ve or –ve but γ is always +ve for stability reasons.
- Dynamics of G is given by $\delta \frac{dP}{dt} = -\frac{\partial G}{\partial P}$ • In the steady state, $\frac{dP}{dt} = 0 \rightarrow E = 2\alpha P + 4\beta P^3 + 6\gamma P^5$

For $\alpha > 0$ and at E = 0, there exit only one real root P = 0A Paraelectric Material

For $\alpha < 0$ and at E = 0, there exit three real roots

$$P = 0, \pm P_r$$
 where $P_r = \sqrt{\frac{\sqrt{\beta^2 - 3\alpha\gamma} - \beta}{3\gamma}}$

A Ferroelectric Material has a non-zero P at zero E.

Positive and Negative Capacitances

34

Negative Capacitance in Ferroelectric

S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano Letters, vol. 8, no. 2, pp. 405–410, 2008.

How to stabilize a Negative Canacitance?

• Add a positive dielectric capacitance in series such that total free energy of system has a minima in the negative capacitance regime of ferroelectric.

A. I. Khan et al., APL, vol. 99, no. 11, p. 113501, 2011

•
$$\frac{1}{C_{tot}} = \frac{1}{C_{FE}} + \frac{1}{C_{DE}} > 0$$

•
$$C_{DE} < |C_{FE}| \text{ and } C_{FE} < 0$$

•
$$C_{tot} = \frac{C_{DE} \cdot |C_{FE}|}{|C_{FE}| - C_{DE}} > 0$$

Yogesh S. Chauhan, IIT Kanpur

Ferroelectric-Dielectric Systems

A. I. Khan et al., APL, vol. 99, no. 11, p. 113501, 2011.

D. J. Appleby et al., Nano Letters, vol. 14, no.7, pp. 3864–3868, 2014.

Total Capacitance of Ferroelectric-dielectric hetro-structure becomes greater than the dielectric capacitance.

$$C_{tot} = \frac{C_{DE} \cdot |C_{FE}|}{|C_{FE}| - C_{DE}} > 0$$

Yogesh S. Chauhan, IIT Kanpur

Negative Capacitance FETs

 $PbZr_{0.52}Ti_{0.48}O3 FE with P(VDF_{0.75}-TrFE_{0.25})$ HfO₂ buffer interlayer Organic Polymer FE HfZrO FE CMOS compatible FE

S. Dasgupta et al., IEEE JESCDC, 2015.

J. Jo et al., Nano Letters, 2015

K.-S. Li et al., in IEEE IEDM, 2015.

Outline

- MOSFET and Scaling
- Negative Capacitance and Transistor
- Modeling of NC-FinFET
- Impact of Material Parameters
- Switching Delay and Energy
- Conclusion

Device Structure

Metal-ferroelectric-Metal-Insulator-Semiconductor (MFMIS)

- Metal internal gate provides an equipotential surface with a spatially constant V_{int}.
- Simplifies modeling as ferroelectric and baseline MOSFET can be considered as two separate circuit entities connected by a wire.

Experimental Calibration of L-K Model

Calibration of L-K with P-V_{fe} curve for Y-HfO2 with 3.6 mol% content of $YO_{1.5}[3]$

 $\alpha = -1.23 \times 10^9 \text{ m/F}$ $\beta = 3.28 \times 10^{10} \text{ m/F}$

 $\gamma = 0$ (2nd order phase transition)

[3] J. M["]uller et al., JAP, vol. 110, no. 11, pp. 114113, 2011.

Gibb's Energy, $G = \alpha P^2 + \beta P^4 + \gamma P^6 - EP$

Dynamics of G is given by

$$\delta \frac{dP}{dt} = -\frac{\partial G}{\partial P}$$

In the steady state, $\frac{dt}{dt} = 0$

$$E = \frac{V_{fe}}{t_{fe}} = 2\alpha P + 4\beta P^3 + 6\gamma P^5$$
$$P = Q - \varepsilon E \approx Q \text{ (Gate Charge)}$$

[1] Devonshire et al., The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 40, no. 309, pp. 1040–1063, 1949.

[2] Landau, L. D. & Khalatnikov, I. M. On the anomalous absorption of sound near a second order phase transition point. Dokl. Akad. Nauk **96**, 469472 (1954).

Calibration of Baseline FinFET

Calibration of baseline FinFET with 22 nm node FinFET.

BSIM-CMG model is used to model baseline FinFET.

Gate length (L) = 30nm, Fin height (Hfin) = 34nm Fin thickness (Tfin) = 8nm

C. Auth et al., in VLSIT, 2012, pp. 131–132.

Outline

- MOSFET and Scaling
- Negative Capacitance and Transistor
- Modeling of NC-FinFET
- Impact of Material Parameters
 - Impact of ferroelectric thickness
 - Ferroelectric Parameters Variation
- Switching Delay and Energy
- Conclusion

Capacitances and Voltage Amplification

 $|C_{fe}|$ and C_{int} increases the gain.

 $E = \frac{V_{fe}}{t_{fe}} = 2\alpha P + 4\beta P^3 + 6\gamma P^5$ $V_{fe} = t_{fe}(2\alpha P + 4\beta P^3 + 6\gamma P^5)$ $C_{fe} = \frac{\partial Q}{\partial V_{fe}} = \frac{1}{t_{fe}(2\alpha + 12\beta Q^2 + 30\gamma Q^4)}$ $\frac{1}{C_{int}} = \frac{1}{C_{ox}} + \frac{1}{C_S + C_{Drain} + C_{Source}}$

Internal Voltage Gain,

 $A_{V} = \frac{\partial V_{int}}{\partial V_{G}} = \frac{|C_{fe}|}{|C_{fe}| - C_{int}}$

Capacitance Matching

- Capacitance matching increases with t_{fe} which increases the gain.
- Hysteresis appears for $|C_{fe}| < Cint$ which is region of instability.
- Increase in V_D reduces the capacitance matching
 - Reduces gain.
 - Reduces width of hysteresis window.

$I_D - V_G$ Characteristics – SS region

- As t_{fe} increases
 - Capacitance matching is better
 - C_S and C_{ins} are better matched

$$S = \left(1 - \frac{c_S}{|c_{ins}|}\right).60 \,\mathrm{mV/dec}$$

• As $t_{fe} \uparrow \rightarrow SS \downarrow$

Yogesh S. Chauhan, IIT Kanpur

$I_D - V_G$ Characteristics – ON region

- As t_{fe} increases
 - Capacitance matching is better

$$A_{V} = \frac{\partial V_{int}}{\partial V_{G}} = \frac{|C_{fe}|}{|C_{fe}| - C_{int}}$$

• As gain increases, I_{ON} increases.

Note the significant improvement in I_{ON} compared to SS.

- NCFET is biased in negative capacitance region.
 Q_G or P is positive → V_{fe} is negative.
- $V_{DS} \uparrow \rightarrow Q_G \text{ or } P \downarrow \rightarrow |V_{fe}| \downarrow \rightarrow V_{int} = V_G + |V_{fe}| \downarrow \rightarrow A_V \downarrow \rightarrow Current reduces$

G. Pahwa, ..., Y. S. Chauhan, "Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and Negative Output Differential Resistance", IEEE TED, Dec. 2016.

Yogesh S. Chauhan, IIT Kanpur

$I_D - V_G$ Characteristics – High V_{DS}

- Hysteresis appears for $|C_{fe}| < C_{int}$ which is the region of instability.
- As t_{fe} increases

 SS reduces, I_{ON} increases.
 I_{OFF} reduces for high V_D.
- Width of hysteresis at larger thicknesses can be controlled with V_D.

• V_D reduces Q_G which, in turn reduces $V_{int} = V_G - V_{fe}$ in the negative capacitance region.

– Negative DIBL increases with t_{fe} due to increased V_{fe} drop.

V_{th} increases with V_D instead of decreasing.
 – Higher I_{ON} still lower I_{OFF}!

Optimum NC-FinFET

Low P_r and high E_c

- reduce $|C_{f_{P}}|$ which leads to improved capacitance matching and hence, a high gain.
- Low SS
- increase I_{ON} but reduce I_{OFF} due to a more negative DIBL \Rightarrow high I_{ON}/I_{OFF} .

$$C_{fe} = \frac{1}{t_{fe}(2\alpha + 12\beta Q^2)}$$

 P_r = Remnant Polarization

 $-\frac{3\sqrt{3}E_c}{P_r}$

 $E_{a} = Coercive Field$

 $\alpha =$

11/09/2017

 $=\frac{3\sqrt{3}E_c}{P_m^3}$

Outline

- MOSFET and Scaling
- Negative Capacitance and Transistor
- Modeling of NC-FinFET
- Impact of Material Parameters
- Switching Delay and Energy
- Conclusion

Intrinsic Delay

 $\mathsf{Delay}, \tau = \frac{\Delta Q_G}{I_{ON}}$ $\Delta Q_G = Q_G (V_G = V_D = V_{DD}) - Q_G (V_G = 0, V_D = V_{DD})$

- NC-FinFET driving NC-FinFET
 - For high V_{DD} , high I_{ON} advantage is limited by large amount of ΔQ_G to be driven.
 - Outperforms FinFET at low V_{DD}.
 - Minimum at V_{DD} ≈ 0.28 V corresponds to a sharp transition in Q_G.
 NC-FinFET driving FinFET load provides full advantage of NC-FinFET.

Yogesh S. Chauhan, IIT Kanpur

Power and Energy Delay Products

- NC-FinFET driving NC-FinFET shows advantage only for low V_{DD} .
- NC-FinFET driving FinFET load is the optimum choice.

Modeling of MFIS NCFET

Contrast with MFIMS structure:

- *P* and *V*_{int} vary spatially in longitudinal direction
- Better stability w.r.t. Leaky ferroelectric and domain formation

Issues with Existing Models^[1,2]: Implicit equations – tedious iterative numerical solutions

[1] H.-P. Chen, V. C. Lee, A. Ohoka, J. Xiang, and Y. Taur, "Modeling and design of ferroelectric MOSFETs," *IEEE Trans. Electron Devices*, vol. 58, no. 8, pp. 2401–2405, Aug. 2011.
[2] D. Jiménez, E. Miranda, and A. Godoy, "Analytic model for the surface potential and drain current in negative capacitance field-effect transistors," *IEEE Trans. Electron Devices*, vol. 57, no. 10, pp. 2405–2409, Oct. 2010. 11/09/2017 58

Explicit Modeling of Charge

$$V_{\rm fe} = Et_{\rm fe} = aQ_G + bQ_G^3$$

Voltage Balance:

$$V_G - V_{\text{FB}} = V_{\text{fe}} + \frac{Q_G}{C_{\text{ox}}} + \psi_S = a_{\text{eff}} Q_G + b Q_G^3 + \psi_S _$$

$$Q_G = \psi_G \text{ relation}^{[1]}$$

$$Q_G = \operatorname{sign}(\psi_S) \gamma C_{ox} \Big[\psi_S + V_t (e^{-\psi_S/V_t} - 1) \Big]$$

+
$$e^{-(2\phi_F + V_C)/V_t} (V_t e^{\psi_S/V_t} - \psi_S - V_t) \Big]^{1/2}$$

- \rightarrow Implicit equation in Q_G
- → Goal: Explicit Model with good initial guesses for each region of NCFET operation

Both the Q_G and its derivatives match well with implicit model

G. Pahwa, T. Dutta, A. Agarwal and Y. S. Chauhan, "Compact Model for Ferroelectric Negative Capacitance Transistor With MFIS Structure," in *IEEE Transactions on Electron Devices*, March 2017. 11/09/2017 Yogesh S. Chauhan, IIT Kanpur 59

Drain Current Model Validation

Against Full Implicit Calculations

G. Pahwa, T. Dutta, A. Agarwal and Y. S. Chauhan, "Compact Model for Ferroelectric Negative Capacitance Transistor With MFIS Structure," *IEEE Transactions on Electron Devices*, March 2017.

[1] M. H. Lee et al., in IEDM Tech. Dig., Dec. 2016, pp. 12.1.1–12.1.4. [2] M. H. Lee et al., in IEDM Tech. Dig., Dec. 2015, pp. 22.5.1–22.5.4.

60

MFIS Vs MFMIS

- MFIS excels MFMIS for low P_r ferroelectrics only.
- A smooth hysteresis behavior in MFIS compared to MFMIS.
- MFIS is more prone to hysteresis \rightarrow exhibits hysteresis at lower thicknesses compared to MFMIS.

G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Physical Insights on Negative Capacitance Transistors in Non-Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures", accepted in IEEE Transactions on Electron Devices, 2018. 11/09/2017

NC-FinFET based inverters

• Although the transistor characteristics show no Hysteresis, the VTCs of NC-FinFET inverters can still exhibit it due to the NDR region in the output characteristics.

T. Dutta, G. Pahwa, A. R. Trivedi, S. Sinha, A. Agarwal, and Y. S. Chauhan, "Performance Evaluation of 7 nm Node Negative Capacitance FinFET based SRAM", IEEE Electron Device Letters, Aug. 2017.

NC-FinFET based SRAM

- Read time: reduced due to the increased drive current
- Write time: slower due to the gate capacitance enhancement
- P_{avg} : NC-SRAM performs better with lower standby leakage only at small t_{fe} , taking advantage of the lower subthreshold currents

T. Dutta, G. Pahwa, A. R. Trivedi, S. Sinha, A. Agarwal, and Y. S. Chauhan, "Performance Evaluation of 7 nm Node Negative Capacitance FinFET based SRAM", IEEE Electron Device Letters, Aug. 2017. 11/09/2017 Yogesh S. Chauhan, IIT Kanpur 63

Impact of Process Variations

- Variability in I_{ON} , I_{OFF} , and V_t due to combined impact of variability in L_g , T_{fin} , H_{fin} , EOT, t_{fe} , E_c , and P_r
- I_{ON} : Improvement is non-monotonic with t_{fe}
- I_{OFF} : Decreases monotonically with t_{fe}
- V_t : Decreases monotonically with t_{fe}

T. Dutta, G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Impact of Process Variations on Negative Capacitance FinFET Devices and Circuits", accepted in IEEE Electron Device Letters, 2018.

Process Variation in Ring Oscillator

- The overall average delay variability in NC-FinFET based RO is lesser compared to the reference RO.
- The improvement is non-monotonic with nominal FE thickness scaling.

11-stage Ring-Oscillator: Variation in τ due to combined variation

T. Dutta, G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Impact of Process Variations on Negative Capacitance FinFET Devices and Circuits", accepted in IEEE Electron Device Letters, 2018.

Conclusion

- Maintaining I_{ON}/I_{OFF} is the biggest challenge in new technology nodes
- Negative capacitance FET is one of the best choice
 - Need to find sweet material (HfZrO₂)
 - Integration in conventional CMOS process remains a challenge (lot of progress)
 - Speed/Switching need more research

Relevant Publications

- G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Physical Insights on Negative Capacitance Transistors in Non-Hysteresis and Hysteresis Regimes: MFMIS vs MFIS Structures", accepted in IEEE Transactions on Electron Devices, 2018.
- T. Dutta, G. Pahwa, A. Agarwal, and Y. S. Chauhan, "Impact of Process Variations on Negative Capacitance FinFET Devices and Circuits", accepted in IEEE Electron Device Letters, 2018.
- T. Dutta, G. Pahwa, A. R. Trivedi, S. Sinha, A. Agarwal, and Y. S. Chauhan, "Performance Evaluation of 7 nm Node Negative Capacitance FinFET based SRAM", IEEE Electron Device Letters, Aug. 2017.
- G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Compact Model for Ferroelectric Negative Capacitance Transistor with MFIS Structure", IEEE Transactions on Electron Devices, Mar. 2017.
- G. Pahwa, ..., and Y. S. Chauhan, "Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and Negative Output Differential Resistance Part I, Model description", IEEE Transactions on Electron Devices, Dec. 2016.
- G. Pahwa, ..., and Y. S. Chauhan, "Analysis and Compact Modeling of Negative Capacitance Transistor with High ON-Current and Negative Output Differential Resistance Part II, Model validation", IEEE Transactions on Electron Devices, Dec. 2016.
- G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Energy-Delay Tradeoffs in Negative Capacitance FinFET based CMOS Circuits", IEEE ICEE, Dec. 2016. (Best Paper Award)
- G. Pahwa, T. Dutta, A. Agarwal, and Y. S. Chauhan, "Designing Energy Efficient and Hysteresis Free Negative Capacitance FinFET with Negative DIBL and 3.5X ION using Compact Modeling Approach", IEEE ESSDERC, Switzerland, Sept. 2016. (Invited)

Thank You