Socket Programming

Kameswari Chebrolu
Dept. of Electrical Engineering, IIT Kanpur

Background

Demultiplexing

* Convert host-to-host packet delivery service into
a process-to-process communication channel

{ Application} { ApplicationJ { ApplicationJ

demultiplexed

process process process
0 16 31 A A A
SrcPort DstPort Ports
Length Checksum - -
Queues +-----| p— b --———-
\
Packets \ /

Transport

|

Packets arrive

Byte Ordering

* Two types of “Byte ordering”

- Network Byte Order: High-order byte of the number is
stored in memory at the lowest address

- Host Byte Order: Low-order byte of the number is
stored in memory at the lowest address

- Network stack (TCP/IP) expects Network Byte Order

* Conversions:

— htons() - Host to Network Short
— htonl() - Host to Network Long
— ntohs() - Network to Host Short
— ntohl() - Network to Host Long

What is a socket?

* Socket: An interface between an application
process and transport layer

- The application process can send/receive messages
to/from another application process (local or
remote)via a socket

* In Unix jargon, a socket is a file descriptor — an
integer associated with an open file

* Types of Sockets: Internet Sockets, unix sockets,
X.25 sockets etc

- Internet sockets characterized by IP Address (4 bytes),
port number (2 bytes)

User Space

Kernel Space

Socket Description

Server

Process

Transport

Network

Link

Physical

Internet
A

Client

Process

Transport

Network

Link

Physical

User Space

Kernel Space

Encapsulation

Application |g o Application
Data
Transport |4 o Transport
TH] Data
Asynchronous routed path Asynchronous routed path
Network [* ™ Network [* ® Network
PH] TH | Data PH] TH | Data
DataLink ¢ Asynchronous reliable bit pipe | Demiing g Asynchronous reliable bit pipe | Data Link
Control Control Control
2 FH| PH | TH | Data i FH| PH | TH | Data il
Synchronous unreliable bit pipe Synchronous unreliable bit pipe
Physical |g—" TOTEe e e L pysica
Interface Interface Interface
Physical Link Physical Link
End Node Subnet Node End Node

Each layer just looks at its own header

Types of Internet Sockets

* Stream Sockets (SOCK_STREAM)

— Connection oriented

- Rely on TCP to provide reliable two-way connected
communication

* Datagram Sockets (SOCK_DGRAM)

- Rely on UDP
— Connection is unreliable

socket() -- Get the file descriptor

* int socket(int domain, int type, int protocol);

— domain should be set to PF_INET
- type can be SOCK_STREAM or SOCK_DGRAM

- set protocol to 0 to have socket choose the correct
protocol based on type

- socket() returns a socket descriptor for use in later
system calls or -1 on error

int socktd;
sockfd = socket (PF_INET, SOCK_STREAM, 0);

Socket Structures
* struct sockaddr: Holds socket address information

for many types of sockets

struct sockaddr {
unsigned short sa_family; //address family AF_xxx
unsigned short sa_data[14]; //14 bytes of protocol addr

}
* struct sockaddr_in: A parallel structure that makes
it easy to reference elements of the socket address

struct sockaddr_in {

short 1nt sin_famuly; // setto AF_INET
unsigned short int Sin_port; // Port number
struct in_addr sin_addr; /[Internet address
unsigned char sin_zero[8]; //set to all zeros

}
* sin_port and sin_addr must be in Network Byte

Order

Dealing with IP Addresses

° struct 1n_addr {
unsigned long s_addr; // that's a 32-bit long, or 4 bytes

I
* int inet_aton(const char *cp, struct in_addr *inp);
struct sockaddr_in my_addr;
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(MYPORT);
inet_aton(*10.0.0.5”,&(my_addr.sin_addr));
memset(&(my_addr.sin_zero),\0',8);

— inet_aton() gives non-zero on success; zero on failure

* To convert binary IP to string: inet_noa()
printf(“%s”,inet_ntoa(my_addr.sin_addr));

bind() - what port am | on?

* Used to associate a socket with a port on the local
machine

— The port number is used by the kernel to match an
incoming packet to a process

* int bind(int sockfd, struct sockaddr *my_addr, int addrlen)

- sockfd is the socket descriptor returned by socket()

— my_addr is pointer to struct sockaddr that contains
information about your IP address and port

— addrlen is set to sizeof(struct sockaddr)
— returns -1 on error

— my_addr.sin_port = 0; //choose an unused port at
random

— my_addr.sin_addr.s_addr = INADDR_ANY:; //luse my IP
adr

Example
int sockfd;

struct sockaddr_in my_addr;
sockfd = socket(PF_INET, SOCK_STREAM, 0);
my_addr.sin_family = AF_INET; // host byte order

my_addr.sin_port = htons(MYPORT); // short, network byte
order

my_addr.sin_addr.s_addr = inet_addr("172.28.44.57");
memset(&(my_addr.sin_zero), \0', 8); // zero the rest of the struct

bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct
sockaddr));

/% Code needs error checking. Don't forget to do that ****** /

connect() - Hello!

* Connects to a remote host

* int connect(int sockfd, struct sockaddr *serv_addr, int
addrlen)

- sockfd is the socket descriptor returned by socket()

- serv_addr is pointer to struct sockaddr that
contains information on destination IP address and

port
— addrlen is set to sizeof(struct sockaddr)
— returns -1 on error
* No need to bind(), kernel will choose a port

Example

#define DEST_IP "172.28.44.57"
#define DEST_PORT 5000

main(){
int sockfd;
struct sockaddr_in dest_addr; // will hold the destination addr
sockfd = socket(PF_INET, SOCK_STREAM, 0);
dest_addr.sin_family = AF_INET; // host byte order

dest_addr.sin_port = htons(DEST_PORT); // network byte
order

dest_addr.sin_addr.s_addr = inet_addr(DEST_IP);

memset(&(dest_addr.sin_zero), \0', 8); // zero the rest of the
struct connect(sockfd, (struct sockaddr *)&dest_addr,
sizeof(struct sockaddr));

/7'(7'(7'\‘7'\‘7'\‘*7'(Don't forget error Checking 7'\‘7'(7'\‘7'(7'\‘7'\‘7'(7'\‘/

listen() - Call me please!
* Waits for incoming connections

* int listen(int sockfd, int backlog):

- sockfd is the socket file descriptor returned by
socket()

- backlog is the number of connections allowed on
the incoming queue

= listen() returns -1 on error
- Need to call bind() before you can listen()

* socket()
* bind()

* listen()
* accept()

accept() - Thank you for calling !

* accept() gets the pending connection on the
port you are listen()ing on

* int accept(int sockfd, void *addr, int *addrlen);
- sockfd is the listening socket descriptor

- information about incoming connection is stored in
addr which is a pointer to a local struct sockaddr_in

— addrlen is set to sizeof(struct sockaddr_in)

— accept returns a new socket file descriptor to use
for this accepted connection and -1 on error

#inc
#Inc
#Inc
#Iinc

ud
ud
ud

ud

Example

e <string.h>

e <sys/types.h>
e <sys/socket.h>
e <netinet/in.h>

#define MYPORT 3490 //the port users will be connecting to
#define BACKLOG 10 // pending connections queue will hold

main(){

int sockfd, new_fd; // listen on sock_fd, new connection on
new_fd

struct sockaddr_in my_addr; // my address information

struct sockaddr_in their_addr; // connector's address information
Int sin_size;

sockfd = socket(PF_INET, SOCK_STREAM, 0);

Cont...

my_addr.sin_family = AF_INET; // host byte order

my_addr.sin_port = htons(MYPORT); // short, network byte
order

my_addr.sin_addr.s_addr = INADDR_ANY:; // auto-fill with my IP
memset(&(my_addr.sin_zero), \0', 8); // zero the rest of the struct
// don't forget your error checking for these calls:

bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct
sockaddr));

listen(sockfd, BACKLOG);
sin_size = sizeof(struct sockaddr_in);

new_fd = accept(sockfd, (struct sockaddr *)&their_addr,
&sin_size);

send() and recv() - Let's talk!
* The two functions are for communicating over
stream sockets or connected datagram sockets.
* int send(int sockfd, const void *msg, int len, int
flags);

- sockfd is the socket descriptor you want to send data to
(returned by socket() or got from accept())

- msg is a pointer to the data you want to send
- len is the length of that data in bytes
- set flags to O for now

- sent() returns the number of bytes actually sent (may
be less than the number you told it to send) or -1 on
error

send() and recv() - Let's talk!
* int recv(int sockfd, void *buf, int len, int flags);
- sockfd is the socket descriptor to read from
- buf is the buffer to read the information into
— len is the maximum length of the buffer
- set flags to O for now

- recv() returns the number of bytes actually read into
the buffer or -1 on error

- If recv() returns 0, the remote side has closed
connection on you

sendto() and recvfrom() - DGRAM
style

* int sendto(int sockfd, const void *msg, int len, int
flags, const struct sockaddr *to, int tolen);

- tois a pointer to a struct sockaddr which contains the
destination IP and port

- tolen is sizeof(struct sockaddr)

* int recvfrom(int sockfd, void *buf, int len, int flags,
struct sockaddr *from, int *fromlen);

- from is a pointer to a local struct sockaddr that will be
filled with IP address and port of the originating
machine

— fromlen will contain length of address stored in from

close() - Bye Bye!

* int close(int sockfd);

- Closes connection corresponding to the socket
descriptor and frees the socket descriptor

- Will prevent any more sends and recvs

Connection Oriented Protocol

Server Client

‘ socket() I
Lrlbindo %“(_)I

‘ listen() I<—‘ connect() I
!
accept() I

reev0_ [Csend0_J
I I

‘ close() I ‘ close() I

Connectionless Protocol

Server Client

‘ socket() I
‘ bind() I ‘ socket() I

‘ bind() I

v v
recvirom() I<— sendto() I
sendto() I—' recvfrom() I

Y

‘ close() I ‘ close() I

Miscellaneous Routines

* int getpeername(int sockfd, struct sockaddr
*addr, int *addrlen);

- Will tell who is at the other end of a connected
stream socket and store that info in addr

* int gethostname(char *hostname, size_t size);

- Will get the name of the computer your program is
running on and store that info in hostname

Miscellaneous Routines
* struct hostent *gethostbyname(const char

*name);
struct hostent {
char *h_name; //official name of host

char **h_aliases; //alternate names for the host

int h_addrtype; //usually AF_NET

int h_length; //length of the address in bytes

char **h_addr_list; //array of network addresses for the host

}
#define h_addr h_addr_list[O]

* Example Usage:

struct hostent *h;

h = gethostbyname(“www.1itk.ac.in”);

printf(“Host name : %s \n”, h->h_name);

printf(“IP Address: %s\n” inet_ntoa(*((struct in_addr *)h->h_addr)));

http://www.iitk.ac.in/

Advanced Topics

* Blocking

* Select

* Handling partial sends
* Signal handlers

* Threading

Summary

* Sockets help application process to communicate
with each other using standard Unix file
descriptors

* Two types of Internet sockets: SOCK_STREAM
and SOCK_DGRAM

* Many routines exist to help ease the process of
communication

References
* Books:

= Unix Network Programming, volumes 1-2 by W.
Richard Stevens.

- TCP/IP lllustrated, volumes 1-3 by W. Richard
Stevens and Gary R. Wright

* Web Resources:

- Beej's Guide to Network Programming
* www.ecst.csuchico.edu/~beej/guide/net/

