IPv6: An Introduction

Dheeraj Sanghi

dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj

- Problems with IPv4
- Basic IPv6 Protocol
- IPv6 features
 - Auto-configuration, QoS, Security, Mobility

IIT Kanpur

Transition Plans

May 2005

Internet Protocol

Transports a datagram from source host to destination, possibly via several intermediate nodes ("routers")

Service is:

- Unreliable: Losses, duplicates, out-of-order delivery
- Best effort: Packets not discarded capriciously, delivery failure not necessarily reported
- Connectionless: Each packet is treated independently

May 2005

IIT Kanpur

IP Datagram Header 16 TOTAL LENGTH HLEN TOS VERS IDENTIFICATION FRAGMENT OFFSET FLAG TTL PROTOCOL CHECKSUM SOURCE ADDRESS DESTINATION ADDRESS OPTIONS (if any) + PADDING May 2005 IIT Kanpur

Problems with IPv4: Limited Address Space

- IPv4 has 32 bit addresses.
- Flat addressing (only netid + hostid with "fixed" boundaries)
- Results in inefficient use of address space.
- Class B addresses are almost over.
- Addresses will exhaust in the next 5 years.
- IPv4 is victim of its own success.

May 2005

IIT Kanp

Problems with IPv4: Routing Table Explosion

- IP does not permit route aggregation (limited supernetting possible with new routers)
- Mostly only class C addresses remain
- Number of networks is increasing very fast (number of routes to be advertised goes up)
- Very high routing overhead
 - lot more memory needed for routing table
 - lot more bandwidth to pass routing information
 - lot more processing needed to compute routes

IIT Kanpu

3

Problems with IPv4: Header Limitations

- Maximum header length is 60 octets. (*Restricts options*)
- Maximum packet length is 64K octets. (Do we need more than that ?)
- ID for fragments is 16 bits. Repeats every 65537th packet. (Will two packets in the network have same ID?)
- Variable size header. (Slower processing at routers.)
- No ordering of options.
 (All routers need to look at all options.)

May 2005

IIT Kanpur

Problems with IPv4: Other Limitations

IIT Kanpur

- Lack of quality-of-service support.
 Only an 8-bit ToS field, which is hardly used.
 - Problem for multimedia services.
- No support for security at IP layer.
- Mobility support is limited.

May 2005

IP Address Extension

- Strict monitoring of IP address assignment
- Private IP addresses for intranets
 - Only class C or a part of class C to an organization
 - Encourage use of proxy services
 - Application level proxies
 - Network Address Translation (NAT)
- Remaining class A addresses may use CIDR
- Reserved addresses may be assigned

But these will only postpone address exhaustion. They do not address problems like QoS, mobility, security.

May 2005

IIT Kanpur

Physicial Characteristic Structure Physicia Characteristic Structure Physicial Cha

IPng Criteria

- Support for mobile nodes
- Support for quality-of-service
- Provide security at IP layer
- Extensible
- Auto-configuration (plug-and--play)
- Straight-forward transition plan from IPv4
- Minimal changes to upper layer protocols

May 2005

10

8

IPv6: Distinctive Features

- Header format simplification
- Expanded routing and addressing capabilities
- Improved support for extensions and options
- Flow labeling (for QoS) capability
- Auto-configuration and Neighbour discovery
- Authentication and privacy capabilities
- Simple transition from IPv4

	Address Types			IPv6 Addresses	
Unicast Multicast Anycast	Address for a single interface. Identifier for a set of interfaces. Packet is sent to <u>all</u> these interfa Identifier for a set of interfaces. Packet is sent to the <u>nearest</u> one	ces.	 128-b Multip Provid Addree forma Follow IPv IPv Inv site 	it addresses le addresses can be assigned to a ler-based hierarchy to be used in sses should have 64-bit interface t ving special addresses are defined 4-mapped 4-compatible clocal Elocal	n interface the beginning IDs in EUI-64 :
May 2005	IIT Kanpur	14	May 2005	IIT Kanpur	15

IPv6 Routing

- Hierarchical addresses are to be used.
- Initially only provider-based hierarchy will be used.
- Longest prefix match routing to be used. (Same as IPv4 routing under CIDR.)
- OSPF, RIP, IDRP, ISIS, etc., will continue as is (except 128-bit addresses).
- Easy renumbering should be possible.
- Provider selection possible with <u>anycast</u> groups.

May 2005

IIT Kanpur

1

QoS Capabilities

- Protocol aids QoS support, not provide it.
- Flow labels
 - To identify packets needing same quality-of-service
 - 20-bit label decided by source
 - Flow classifier: Flow label + Source/Destination addresses
 - Zero if no special requirement
 - Uniformly distributed between 1 and FFFFFF
- Traffic class
 - 8-bit value

May 2005

- Routers allowed to modify this field

IIT Kanpur

IPv6: Security Issues

-			~
– –	rovu	sion	tor

- Authentication header
 - Guarantees authenticity and integrity of data
- Encryption header Ensures confidentiality and privacy
- Encryption modes:
 - Transport mode
 - Tunnel mode
- Independent of key management algorithm.
- Security implementation is mandatory requirement in IPv6.

IIT Kanpur

18

20

Mobility Support in IPv6

- Mobile computers are becoming commonplace.
- Mobile IPv6 allows a node to move from one link to another without changing the address.
- Movement can be heterogeneous, i.e., node can move from an Ethernet link to a cellular packet network.
- Mobility support in IPv6 is more efficient than mobility support in IPv4.
- There are also proposals for supporting micro-mobility.

	May 2005	IIT Kanpur	19
_			

Operation of Mobile IPv6

- Mobile node is always addressable by its home address
- Home link is the link to which mobile nodes home address is bound.
- When attached to home link, packets are routed conventionally.
- When the node moves to foreign links, it gets a care-of address.
- Binding is an association between a home address and a care-of address.

May 2005

IIT Kanpur

Mobile node uses a Home Address option to tell the

Communicating nodes can cache the bindings and

• They use **Binding Request** destination option to

A mobile node can send a Binding Update to a

communicating node which is using its home address

The communicating node should acknowledge it with

communicate with the mobile node directly.

other nodes its original address.

a Binding Acknowledgement.

learn the current binding.

as destination address.

- Care-of address is obtained using auto-configuration mechanisms of neighbour discovery.
- Mobile node, when away, registers its binding with a router on the home link called home-agent.
- Binding update and Binding Ack destination options are used for this purpose.
- Home agent uses proxy neighbour discovery to intercept packets destined for the mobile node.
- It then tunnels the packet to mobile node's care-of address.
- Mobile node when away uses its care-of address for communication.

May 2005

IIT Kanpu

21

Neighbour Discovery

- Router Discovery determines set of routers on the link.
- Prefix Discovery set of on-link address prefixes.
- Parameter Discovery to learn link parameters such as link MTU, or internet parameters like hop limit, etc.
- Address Auto-configuration address prefixes that can be used for automatically configuring interface address.
- Address resolution IP to link-layer address mapping.
- Duplicate Address Detection.
- Route Redirect inform of a better first hop node to reach a particular destination.

IIT Kanpu

22

Mav 2005

Neighbour Discovery Operation (contd..)

- Neighbour Solicitation
 - To request link-layer address of neighbour
 - Also used for Duplicate Address Detection
- Neighbour Advertisement
 - Sent in response to NS
 - May be sent without solicitation to announce change in link-layer address
- Redirect used to inform hosts of a better first hop for a destination.

May 2005

IIT Kanpur

Address Auto-configuration

The problem

- System bootstrap ("plug and play")
- Address renumbering

Addressing Possibilities

Manual	Address configured by hand	
Autonomous	Host creates address with no external interaction (e.g., link local)	
Semi-autonomous	Host creates address by combining a priori information and some external information	
Stateless Server	Host queries a server, and gets an address Server does not maintain a state.	
Stateful Server	Host queries a server, and gets an address Server maintains a state.	
May 2005	IIT Kanpur	27

Auto-configuration in IPv6

- Link-local prefix concatenated with 64-bit MAC address. (Autonomous mode)
- Prefix advertised by router concatenated with 64-bit MAC address. (Semi-autonomous mode.)
- DHCPng (for server modes)
 - Can provide a permanent address (stateless mode)
 - Provide an address from a group of addresses, and keep track of this allocation (stateful mode)
 - Can provide additional network specific information.
 - Can register nodes in DNS.

May 2005

IIT Kanpur

26

Address Renumbering

- To migrate to a new address
 - change of provider
 - change in network architecture
- Methods
 - router adds a new prefix in RA, and informs that the old prefix is no longer valid.
 - When DHCP lease runs out, assign a new address to node.
 - DHCPng can ask nodes to release their addresses.
- Requires DNS update. DHCPng can update DNS for clients.
- Existing conversations may continue if the old address continues to be valid for some time.

Upper Layer Issues

- Minor changes in TCP
 - Maximum segment size should be based on Path MTU.
 - The packet size computation should take into account larger size of IP header(s).
 - Pseudo-header for checksum is different.
- UDP checksum computation is now mandatory.
- Most application protocol specifications are independent of TCP/IP - hence no change.
- FTP protocol exchanges IPv4 addresses hence needs to be changed.

May 2005	
----------	--

IIT Kanpur

- Payload length is 32 bits.

May 2005

- Payload length is not copied from IPv6 header. (Extension headers should not be counted.)
- Next header field of last extension header is used in place of protocol.

IIT Kanpur

 UDP packets must also have checksum. (Since no IP checksum now.)

Chang	es in Other Protoco	ls	Tran	sition to IPv6: Design Goa	I
 ICMPv6 Rate limiting fea Timer based Bandwidth bas IGMP, ARP merg Larger part of of DNS AAAA type for IF A6 type: recursiv Queries that do to do processing 	ture added sed fending packet is included 2v6 addresses ve definition of IP address additional section processing for both 'A' and 'AAAA' type	g are redefined e records	 No "flag" Incremen Minimum Interoper Let sites Basic mig Dual st Transla 	day. ntal upgrade and deployment. upgrade dependencies. rability of IPv4 and IPv6 nodes. transition at their own pace. gration tools tack and tunneling ation	
May 2005	IIT Kanpur	32	May 2005	IIT Kanpur	33

30

Transition Mechanisms: Dual Stack

- New nodes support both IPv4 and IPv6.
- Upgrading from IPv4 to v4/v6 does not break anything.
- Same transport layer and application above both.
- Provides complete interoperability with IPv4 nodes.

May 2005

Transition Mechanism: Tunnels

- Tunnel IPv6 packets across IPv4 topology.
- Configured tunnels:
 - Explicitly configured tunnel endpoints.
 - Router to router, host to router.
- Automatic tunnels:
 - Automatic address resolution using embedded IPv4 address (like IPv4-compatible address).
 - Host to host, router to host

May 2005

Transition mechanism: Translation

- This will allow communication between IPv6 only hosts and IPv4 only hosts.
- A typical translator consists of two components:
 - translation between IPv4 and IPv6 packets.
 - Address mapping between IPv4 and IPv6
- For translation, three technologies are available:
 - header conversion
 - transport relay
 - application proxy

May 2005

IIT Kanpur

36

38

May 2005

Transition Plan for Internet

- Maintain complete V4 routing till addresses last.
- Upgrade V4 routers to dual stack.
- Incrementally build up V6 backbone routing system.
 Use v6-over-v4 tunnels to construct 6bone.
 - Grow like Mbone (multicast backbone).
- De-activate tunnels as soon as underlying path upgraded to V6.

May 2005 IIT Kanpur 37

Transition Options for User Sites

- Incrementally upgrade V4 hosts to dual V4/V6
- Use IPv4-compatible addresses with existing IPv4 address assignments
 - Host-to-host automatic tunneling over IPv4
- Upgrade routers to IPv6.
 - Hosts may require native IPv6 addresses
 - DNS upgrade is needed before hosts get IPv6 addresses
- Connect IPv6 router to an IPv6-enabled ISP.
- Install translators like NAT-PT or SIIT.

May 2005

IIT Kanpur

IIT Kanpur

39