Mathematical Methods in Engineering and Science

[http://home.iitk.ac.in/~ dasgupta/MathCourse]

Bhaskar Dasgupta dasgupta@iitk.ac.in

An Applied Mathematics course for graduate and senior undergraduate students and also for rising researchers.

Textbook: Dasgupta B., App. Math. Meth. (Pearson Education 2006, 2007). http://home.iitk.ac.in/~ dasgupta/MathBook

Applied
 Mathematical Methods

Preliminary Background

Matrices and Linear Transformations

Operational Fundamentals of Linear Algebra

Systems of Linear Equations

Gauss Elimination Family of Methods

Special Systems and Special Methods

Numerical Aspects in Linear Systems

Eigenvalues and Eigenvectors

Diagonalization and Similarity Transformations

Jacobi and Givens Rotation Methods

Householder Transformation and Tridiagonal Matrices

QR Decomposition Method

Eigenvalue Problem of General Matrices

Singular Value Decomposition

Vector Spaces: Fundamental Concepts*

Mathematical Methods in Engineering and Science
Contents III
Topics in Multivariate Calculus

Vector Analysis: Curves and Surfaces

Scalar and Vector Fields

Polynomial Equations

Solution of Nonlinear Equations and Systems

Optimization: Introduction

Multivariate Optimization

Methods of Nonlinear Optimization*

Constrained Optimization

Linear and Quadratic Programming Problems*

Interpolation and Approximation

Basic Methods of Numerical Integration

Advanced Topics in Numerical Integration*

Numerical Solution of Ordinary Differential Equations

ODE Solutions: Advanced Issues

Existence and Uniqueness Theory

Mathematical Methods in Engineering and Science
Contents V
First Order Ordinary Differential Equations

Second Order Linear Homogeneous ODE's

Second Order Linear Non-Homogeneous ODE's

Higher Order Linear ODE's

Laplace Transforms

ODE Systems

Stability of Dynamic Systems

Series Solutions and Special Functions

Mathematical Methods in Engineering and Science
Contents VI
Sturm-Liouville Theory

Fourier Series and Integrals

Fourier Transforms

Minimax Approximation*

Partial Differential Equations

Analytic Functions

Integrals in the Complex Plane

Singularities of Complex Functions

Mathematical Methods in Engineering and Science
Contents VII
Variational Calculus*

Epilogue

Selected References

Preliminary Background

Theme of the Course
Course Contents
Sources for More Detailed Study
Logistic Strategy
Expected Background

Mathematical Methods in Engineering and Science

To develop a firm mathematical background necesed exary for graduate studies and research

- a fast-paced recapitulation of UG mathematics
- extension with supplementary advanced ideas for a mature and forward orientation
- exposure and highlighting of interconnections

To pre-empt needs of the future challenges

- trade-off between sufficient and reasonable
- target mid-spectrum majority of students

Notable beneficiaries (at two ends)

- would-be researchers in analytical/computational areas
- students who are till now somewhat afraid of mathematics

Mathematical Methods in Engineering and Science
Preliminary Background

- Applied linear algebra
- Multivariate calculus and vector calculus
- Numerical methods
- Differential equations ++
- Complex analysis

Sources for More Detailed Study

If you have the time, need and interest, then you may consult

- individual books on individual topics;
- another "umbrella" volume, like Kreyszig, McQuarrie, O’Neil or Wylie and Barrett;
- a good book of numerical analysis or scientific computing, like Acton, Heath, Hildebrand, Krishnamurthy and Sen, Press et al, Stoer and Bulirsch;
- friends, in joint-study groups.

Mathematical Methods in Engineering and Science
Preliminary Background

- Study in the given sequence, to the extent possible.
- Do not read mathematics.
- Study in the given sequence, to the extent possible.
- Do not read mathematics.
- Use lots of pen and paper.

Read "mathematics books" and do mathematics.

- Study in the given sequence, to the extent possible.
- Do not read mathematics.
- Use lots of pen and paper. Read "mathematics books" and do mathematics.
- Exercises are must.
- Use as many methods as you can think of, certainly including the one which is recommended.
- Consult the Appendix after you work out the solution. Follow the comments, interpretations and suggested extensions.
- Think. Get excited. Discuss. Bore everybody in your known circles.
- Not enough time to attempt all? Want a selection?
- Study in the given sequence, to the extent possible.
- Do not read mathematics.
- Use lots of pen and paper.

Read "mathematics books" and do mathematics.

- Exercises are must.
- Use as many methods as you can think of, certainly including the one which is recommended.
- Consult the Appendix after you work out the solution. Follow the comments, interpretations and suggested extensions.
- Think. Get excited. Discuss. Bore everybody in your known circles.
- Not enough time to attempt all? Want a selection?
- Program implementation is needed in algorithmic exercises.
- Master a programming environment.
- Use mathematical/numerical library/software.

Take a MATLAB tutorial session?

Logistic SStrategy

Theme of the Course
Course Contents
Sources for More Detailed Study Logistic Strategy
Expected Background

Tutorial Plan

Chapter	Selection	Tutorial	Chapter	Selection	Tutorial
2	2,3	3	26	1,2,4,6	4
3	2,4,5,6	4,5	27	1,2,3,4	3,4
4	1,2,4,5,7	4,5	28	2,5,6	6
5	1,4,5	4	29	1,2,5,6	6
6	1,2,4,7	4	30	1,2,3,4,5	4
7	1,2,3,4	2	31	1,2	1(d)
8	1,2,3,4,6	4	32	1,3,5,7	7
9	1,2,4	4	33	1,2,3,7,8	8
10	2,3,4	4	34	1,3,5,6	5
11	2,4,5	5	35	1,3,4	3
12	1,3	3	36	1,2,4	4
13	1,2	1	37	1	1(c)
14	2,4,5,6,7	4	38	1,2,3,4,5	5
15	6,7	7	39	2,3,4,5	4
16	2,3,4,8	8	40	1,2,4,5	4
17	1,2,3,6	6	41	1,3,6,8	8
18	1,2,3,6,7	3	42	1,3,6	6
19	1,3,4,6	6	43	2,3,4	3
20	1,2,3	2	44	1,2,4,7,9,10	7,10
21	1,2,5,7,8	7	45	1,2,3,4,7,9	4,9
22	1,2,3,4,5,6	3,4	46	1,2,5,7	7
23	1,2,3	3	47	1,2,3,5,8,9,10	9,10
24	1,2,3,4,5,6	1	48	1,2,4,5	5
25	1,2,3,4,5	5			

- moderate background of undergraduate mathematics
- firm understanding of school mathematics and undergraduate calculus

Take the preliminary test.

Grade yourself sincerely.
[p 3, App. Math. Meth.]
[p 4, App. Math. Meth.]

Preliminary Background

- moderate background of undergraduate mathematics
- firm understanding of school mathematics and undergraduate calculus

Take the preliminary test.

Grade yourself sincerely.
[p 3, App. Math. Meth.]
[p 4, App. Math. Meth.]

Prerequisite Problem Sets*
[p 4-8, App. Math. Meth.]

- Put in effort, keep pace.
- Stress concept as well as problem-solving.
- Follow methods diligently.
- Ensure background skills.

Necessary Exercises: Prerequisite problem sets ??

Matrices and Linear Transformations
Matrices
Geometry and Algebra Linear Transformations
Matrix Terminology

Mathematical Methods in Engineering and Science
Matrices and Linear Transformations

Question: What is a "matrix"?

Mathematical Methods in Engineering and Science
Matrices and Linear Transformations

Question: What is a "matrix"? Answers:

- a rectangular array of numbers/elements ?

Question: What is a "matrix"? Answers:

- a rectangular array of numbers/elements ?
- a mapping $f: M \times N \rightarrow F$, where $M=\{1,2,3, \cdots, m\}$, $N=\{1,2,3, \cdots, n\}$ and F is the set of real numbers or complex numbers ?

Question: What is a "matrix"?
Answers:

- a rectangular array of numbers/elements ?
- a mapping $f: M \times N \rightarrow F$, where $M=\{1,2,3, \cdots, m\}$, $N=\{1,2,3, \cdots, n\}$ and F is the set of real numbers or complex numbers ?

Question: What does a matrix do?

Matrices and Linear Transformations

Question: What is a "matrix"?
Answers:

- a rectangular array of numbers/elements ?
- a mapping $f: M \times N \rightarrow F$, where $M=\{1,2,3, \cdots, m\}$, $N=\{1,2,3, \cdots, n\}$ and F is the set of real numbers or complex numbers ?

Question: What does a matrix do?
Explore: With an $m \times n$ matrix \mathbf{A},

$$
\left.\begin{array}{rccc}
y_{1} & = & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
y_{2} & = & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots & \vdots & \vdots & \vdots \\
y_{m} & = & a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right\} \quad \text { or } \quad \mathbf{A} \mathbf{x}=\mathbf{y}
$$

Consider these definitions:

- $y=f(x)$
- $y=f(\mathbf{x})=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
- $y_{k}=f_{k}(\mathbf{x})=f_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad k=1,2, \cdots, m$
- $\mathbf{y}=\mathbf{f}(\mathbf{x})$

Consider these definitions:

- $y=f(x)$
- $y=f(\mathbf{x})=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
- $y_{k}=f_{k}(\mathbf{x})=f_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad k=1,2, \cdots, m$
- $\mathbf{y}=\mathbf{f}(\mathbf{x})$
- $y=A x$

Consider these definitions:

- $y=f(x)$
- $y=f(\mathbf{x})=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
$y_{k}=f_{k}(\mathbf{x})=f_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad k=1,2, \cdots, m$
- $\mathbf{y}=\mathbf{f}(\mathbf{x})$
- $\mathbf{y}=\mathbf{A x}$

Further Answer:
A matrix is the definition of a linear vector function of a vector variable.

Consider these definitions:

- $y=f(x)$
- $y=f(\mathbf{x})=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
$y_{k}=f_{k}(\mathbf{x})=f_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad k=1,2, \cdots, m$
- $\mathbf{y}=\mathbf{f}(\mathbf{x})$
- $y=A x$

Further Answer:

A matrix is the definition of a linear vector function of a vector variable.

Caution: Matrices do not define vector functions whose components are of the form

$$
y_{k}=a_{k 0}+a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n} .
$$

Matrices

Consider these definitions:

- $y=f(x)$
- $y=f(\mathbf{x})=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
$y_{k}=f_{k}(\mathbf{x})=f_{k}\left(x_{1}, x_{2}, \cdots, x_{n}\right), \quad k=1,2, \cdots, m$
- $\mathbf{y}=\mathbf{f}(\mathbf{x})$
- $y=A x$

Further Answer:
A matrix is the definition of a linear vector function of a vector variable.
Anything deeper?

Caution: Matrices do not define vector functions whose components are of the form

$$
y_{k}=a_{k 0}+a_{k 1} x_{1}+a_{k 2} x_{2}+\cdots+a_{k n} x_{n} .
$$

Geometry and Algebra

Let vector $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ denote a point $\left(\begin{array}{ll}\text { Matrix Terminology } \\ \left.x_{1}, x_{2}, x_{3}\right)\end{array}\right.$ in 3 -dimensional space in frame of reference $O X_{1} X_{2} X_{3}$.
Example: With $m=2$ and $n=3$,

$$
\left.\begin{array}{l}
y_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
y_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}
\end{array}\right\}
$$

Plot y_{1} and y_{2} in the $O Y_{1} Y_{2}$ plane.

Geometry and Algebra

Let vector $\mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ denote a point $\left(\begin{array}{ll}\text { Matrix Terminology } \\ \left.x_{1}, x_{2}, x_{3}\right)\end{array}\right.$ in 3 -dimensional space in frame of reference $O X_{1} X_{2} X_{3}$.
Example: With $m=2$ and $n=3$,

$$
\left.\begin{array}{l}
y_{1}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \\
y_{2}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}
\end{array}\right\}
$$

Plot y_{1} and y_{2} in the $O Y_{1} Y_{2}$ plane.

Figure: Linear transformation: schematic illustration
What is matrix A doing?

Operating on point \mathbf{x} in R^{3}, matrix \mathbf{A} transforms it to \mathbf{y} in R^{2}.

Point \mathbf{y} is the image of point \mathbf{x} under the mapping defined by matrix \mathbf{A}.

Operating on point \mathbf{x} in R^{3}, matrix \mathbf{A} transforms it to \mathbf{y} in R^{2}.

Point \mathbf{y} is the image of point \mathbf{x} under the mapping defined by matrix \mathbf{A}.

Note domain R^{3}, co-domain R^{2} with reference to the ilgure and verify that $\mathbf{A}: R^{3} \rightarrow R^{2}$ fulfils the requirements of a mapping, by definition.

Geometry and Algebra

Operating on point \mathbf{x} in R^{3}, matrix \mathbf{A} transforms it to \mathbf{y} in R^{2}.

Point \mathbf{y} is the image of point \mathbf{x} under the mapping defined by matrix \mathbf{A}.

Note domain R^{3}, co-domain R^{2} with reference to the ilgure and verify that $\mathbf{A}: R^{3} \rightarrow R^{2}$ fulfils the requirements of a mapping, by definition.

A matrix gives a definition of a linear transformation from one vector space to another.

Matrices and Linear Transformations

Operate \mathbf{A} on a large number of points $\mathbf{x}_{i} \in R^{3}$. Obtain corresponding images $\mathbf{y}_{i} \in R^{2}$.

The linear transformation represented by A implies the totality of these correspondences.

Matrices and Linear Transformations

Operate \mathbf{A} on a large number of points $\mathbf{x}_{i} \in R^{3}$. Obtain corresponding images $\mathbf{y}_{i} \in R^{2}$.

The linear transformation represented by A implies the totality of these correspondences.

We decide to use a different frame of reference $O X_{1}^{\prime} X_{2}^{\prime} X_{3}^{\prime}$ for R^{3}. [And, possibly $O Y_{1}^{\prime} Y_{2}^{\prime}$ for R^{2} at the same time.]

Coordinates change, i.e. \mathbf{x}_{i} changes to \mathbf{x}_{i}^{\prime} (and possibly \mathbf{y}_{i} to \mathbf{y}_{i}^{\prime}). Now, we need a different matrix, say \mathbf{A}^{\prime}, to get back the correspondence as $\mathbf{y}^{\prime}=\mathbf{A}^{\prime} \mathbf{x}^{\prime}$.

Matrices and Linear Transformations

Operate \mathbf{A} on a large number of points $\mathbf{x}_{i} \in R^{3}$. Obtain corresponding images $\mathbf{y}_{i} \in R^{2}$.

The linear transformation represented by A implies the totality of these correspondences.

We decide to use a different frame of reference $O X_{1}^{\prime} X_{2}^{\prime} X_{3}^{\prime}$ for R^{3}. [And, possibly $O Y_{1}^{\prime} Y_{2}^{\prime}$ for R^{2} at the same time.]

Coordinates change, i.e. \mathbf{x}_{i} changes to \mathbf{x}_{i}^{\prime} (and possibly \mathbf{y}_{i} to \mathbf{y}_{i}^{\prime}). Now, we need a different matrix, say \mathbf{A}^{\prime}, to get back the correspondence as $\mathbf{y}^{\prime}=\mathbf{A}^{\prime} \mathbf{x}^{\prime}$.

> A matrix: just one description.

Question: How to get the new matrix \mathbf{A}^{\prime} ?

Matrix Terminology

- Matrix product
- Transpose
- Conjugate transpose
- Symmetric and skew-symmetric matrices
- Hermitian and skew-Hermitian matrices
- Determinant of a square matrix
- Inverse of a square matrix
- Adjoint of a square matrix
-
- A matrix defines a linear transformation from one vector space to another.
- Matrix representation of a linear transformation depends on the selected bases (or frames of reference) of the source and target spaces.

Important: Revise matrix algebra basics as necessary tools.

Necessary Exercises: 2,3

Operational Fundamentals of Linear Algebra Range and Null Space: Rank and Nullity
Basis
Change of Basis
Elementary Transformations

athematical Methods in Engineering and Science Operational Fundamentals of Linear Algebra

Range and Null Space: Rank and Nullitucyand Null Space: Rank and Nullity
Change of Basis
Elementary Transformations
Consider $\mathbf{A} \in R^{m \times n}$ as a mapping

$$
\mathbf{A}: R^{n} \rightarrow R^{m}, \quad \mathbf{A x}=\mathbf{y}, \quad \mathbf{x} \in R^{n}, \quad \mathbf{y} \in R^{m} .
$$

athematical Methods in Engineering and Science

Range and Null Space: Rank and Nultiltye ${ }^{\text {and Null Space: Rank and Nullity }}$
 Change of Basis

Elementary Transformations
Consider $\mathbf{A} \in R^{m \times n}$ as a mapping

$$
\mathbf{A}: R^{n} \rightarrow R^{m}, \quad \mathbf{A} \mathbf{x}=\mathbf{y}, \quad \mathbf{x} \in R^{n}, \quad \mathbf{y} \in R^{m} .
$$

Observations

1. Every $\mathbf{x} \in R^{n}$ has an image $\mathbf{y} \in R^{m}$, but every $\mathbf{y} \in R^{m}$ need not have a pre-image in R^{n}.

Range (or range space) as subset/subspace of co-domain: containing images of all $\mathbf{x} \in R^{n}$.

athematical Methods in Engineering and Science

Range and Null Space: Rank and Nultility end Nul Space: Rank and Nullity

Consider $\mathbf{A} \in R^{m \times n}$ as a mapping
$\mathbf{A}: R^{n} \rightarrow R^{m}$,
$A x=y$,
$\mathbf{x} \in R^{n}$,
$\mathbf{y} \in R^{m}$.

Observations

1. Every $\mathbf{x} \in R^{n}$ has an image $\mathbf{y} \in R^{m}$, but every $\mathbf{y} \in R^{m}$ need not have a pre-image in R^{n}.

Range (or range space) as subset/subspace of co-domain: containing images of all $\mathbf{x} \in R^{n}$.
2. Image of $\mathbf{x} \in R^{n}$ in R^{m} is unique, but pre-image of $\mathbf{y} \in R^{m}$ need not be.
It may be non-existent, unique or infinitely many.
Null space as subset/subspace of domain:
containing pre-images of only $\mathbf{0} \in R^{m}$.

Mathematical Methods in Engineering and Science Operational Fundamentals of Linear Algebra Range and Null Space: Rank and Nullitugy and Null Space: Rank and Nullity

Figure: Range and null space: schematic representation

Mathematical Methods in Engineering and Science
Range and Null Space: Rank and Nultiteye and Null Space: Rank and Nullity

Figure: Range and null space: schematic representation
Question: What is the dimension of a vector space?

Mathematical Methods in Engineering and Science Operational Fundamentals of Linear Algebra

Range and Null Space: Rank and Nultitizy and Nul Space: Rank and Nullity

Figure: Range and null space: schematic representation
Question: What is the dimension of a vector space? Linear dependence and independence: Vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{r}$ in a vector space are called linearly independent if

$$
k_{1} \mathbf{x}_{1}+k_{2} \mathbf{x}_{2}+\cdots+k_{r} \mathbf{x}_{r}=\mathbf{0} \quad \Rightarrow \quad k_{1}=k_{2}=\cdots=k_{r}=0 .
$$

athematical Methods in Engineering and Science

Range and Null Space: Rank and Nultiltyeynd Null Space: Rank and Nullity

Figure: Range and null space: schematic representation
Question: What is the dimension of a vector space? Linear dependence and independence: Vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{r}$ in a vector space are called linearly independent if

$$
k_{1} \mathbf{x}_{1}+k_{2} \mathbf{x}_{2}+\cdots+k_{r} \mathbf{x}_{r}=\mathbf{0} \quad \Rightarrow \quad k_{1}=k_{2}=\cdots=k_{r}=0 .
$$

$$
\begin{aligned}
\operatorname{Range}(\mathbf{A}) & =\left\{\mathbf{y}: \mathbf{y}=\mathbf{A} \mathbf{x}, \quad \mathbf{x} \in R^{n}\right\} \\
\operatorname{Null}(\mathbf{A}) & =\left\{\mathbf{x}: \mathbf{x} \in R^{n}, \quad \mathbf{A} \mathbf{x}=\mathbf{0}\right\} \\
\operatorname{Rank}(\mathbf{A}) & =\operatorname{dim} \operatorname{Range}(\mathbf{A}) \\
\operatorname{Nullity}(\mathbf{A}) & =\operatorname{dim} \operatorname{Null}(\mathbf{A})
\end{aligned}
$$

Take a set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{r}$ in a vector space.
Question: Given a vector \mathbf{v} in the vector space, can we describe it as

$$
\mathbf{v}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r}=\mathbf{V} \mathbf{k},
$$

where $\mathbf{V}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r}\end{array}\right]$ and $\mathbf{k}=\left[\begin{array}{llll}k_{1} & k_{2} & \cdots & k_{r}\end{array}\right]^{T}$?

Take a set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{r}$ in a vector space.
Question: Given a vector \mathbf{v} in the vector space, can we describe it as

$$
\mathbf{v}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r}=\mathbf{V} \mathbf{k},
$$

where $\mathbf{V}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r}\end{array}\right]$ and $\mathbf{k}=\left[\begin{array}{llll}k_{1} & k_{2} & \cdots & k_{r}\end{array}\right]^{T}$?
Answer: Not necessarily.

Take a set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{r}$ in a vector space.
Question: Given a vector \mathbf{v} in the vector space, can we describe it as

$$
\mathbf{v}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r}=\mathbf{V} \mathbf{k},
$$

where $\mathbf{V}=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r}\end{array}\right]$ and $\mathbf{k}=\left[\begin{array}{llll}k_{1} & k_{2} & \cdots & k_{r}\end{array}\right]^{T}$?
Answer: Not necessarily.
Span, denoted as $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{r}\right\rangle$: the subspace described/generated by a set of vectors.

Basis:
A basis of a vector space is composed of an ordered minimal set of vectors spanning the entire space.

The basis for an n-dimensional space will have exactly n members, all linearly independent.

Operational Fundamentals of Linear Algebra

Orthogonal basis: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ with

$$
\mathbf{v}_{j}^{T} \mathbf{v}_{k}=0 \quad \forall j \neq k
$$

Orthonormal basis:

$$
\mathbf{v}_{j}^{T} \mathbf{v}_{k}=\delta_{j k}=\left\{\begin{array}{lll}
0 & \text { if } & j \neq k \\
1 & \text { if } & j=k
\end{array}\right.
$$

Orthogonal basis: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ with

$$
\mathbf{v}_{j}^{T} \mathbf{v}_{k}=0 \quad \forall j \neq k
$$

Orthonormal basis:

$$
\mathbf{v}_{j}^{T} \mathbf{v}_{k}=\delta_{j k}=\left\{\begin{array}{lll}
0 & \text { if } & j \neq k \\
1 & \text { if } & j=k
\end{array}\right.
$$

Members of an orthonormal basis form an orthogonal matrix. Properties of an orthogonal matrix:

$$
\begin{aligned}
\mathbf{V}^{-1} & =\mathbf{V}^{T} \text { or } \mathbf{V} \mathbf{V}^{T}=\mathbf{I}, \quad \text { and } \\
\operatorname{det} \mathbf{V} & =+1 \text { or }-1,
\end{aligned}
$$

Orthogonal basis: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ with

$$
\mathbf{v}_{j}^{T} \mathbf{v}_{k}=0 \quad \forall j \neq k
$$

Orthonormal basis:

$$
\mathbf{v}_{j}^{T} \mathbf{v}_{k}=\delta_{j k}=\left\{\begin{array}{lll}
0 & \text { if } & j \neq k \\
1 & \text { if } & j=k
\end{array}\right.
$$

Members of an orthonormal basis form an orthogonal matrix. Properties of an orthogonal matrix:

$$
\begin{aligned}
\mathbf{V}^{-1} & =\mathbf{V}^{T} \text { or } \mathbf{V} \mathbf{V}^{T}=\mathbf{I}, \quad \text { and } \\
\operatorname{det} \mathbf{V} & =+1 \text { or }-1,
\end{aligned}
$$

Natural basis:

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \cdots, \quad \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

Change of Basis

Operational Fundamentals of Linear Algebra

Suppose \mathbf{x} represents a vector (point) in $R^{n=1}$ in in somemen fasis.
Question: If we change over to a new basis $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \cdots, \mathbf{c}_{n}\right\}$, how does the representation of a vector change?

Change of Basis

Operational Fundamentals of Linear Algebra

Question: If we change over to a new basis $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \cdots, \mathbf{c}_{n}\right\}$, how does the representation of a vector change?

$$
\begin{aligned}
\mathbf{x} & =\bar{x}_{1} \mathbf{c}_{1}+\bar{x}_{2} \mathbf{c}_{2}+\cdots+\bar{x}_{n} \mathbf{c}_{n} \\
& =\left[\begin{array}{llll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n}
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\vdots \\
\bar{x}_{n}
\end{array}\right] .
\end{aligned}
$$

Operational Fundamentals of Linear Algebra

Suppose x represents a vector (point) in $R^{R=}$ il in sontrye formation
Question: If we change over to a new basis $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \cdots, \mathbf{c}_{n}\right\}$, how does the representation of a vector change?

$$
\begin{aligned}
\mathbf{x} & =\bar{x}_{1} \mathbf{c}_{1}+\bar{x}_{2} \mathbf{c}_{2}+\cdots+\bar{x}_{n} \mathbf{c}_{n} \\
& =\left[\begin{array}{llll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n}
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\vdots \\
\bar{x}_{n}
\end{array}\right] .
\end{aligned}
$$

With $\mathbf{C}=\left[\begin{array}{llll}\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n}\end{array}\right]$, new to old coordinates: $\mathbf{C} \overline{\mathbf{x}}=\mathbf{x}$ and old to new coordinates: $\overline{\mathbf{x}}=\mathbf{C}^{-1} \mathbf{x}$.

Note: Matrix C is invertible. How?

Change of Basis

Suppose x represents a vector (point) in R^{n-1} in in some bisis.
Question: If we change over to a new basis $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \cdots, \mathbf{c}_{n}\right\}$, how does the representation of a vector change?

$$
\begin{aligned}
\mathbf{x} & =\bar{x}_{1} \mathbf{c}_{1}+\bar{x}_{2} \mathbf{c}_{2}+\cdots+\bar{x}_{n} \mathbf{c}_{n} \\
& =\left[\begin{array}{llll}
\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n}
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\vdots \\
\bar{x}_{n}
\end{array}\right] .
\end{aligned}
$$

With $\mathbf{C}=\left[\begin{array}{llll}\mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n}\end{array}\right]$, new to old coordinates: $\mathbf{C} \overline{\mathbf{x}}=\mathbf{x}$ and old to new coordinates: $\overline{\mathbf{x}}=\mathbf{C}^{-1} \mathbf{x}$.

Note: Matrix C is invertible. How?
Special case with C orthogonal: orthogonal coordinate transformation.

Mathematical Methods in Engineering and Science

Change of Basis

Range and Null Space: Rank and Nullity
Basis
Change of Basis
Elementary Transformations
Question: And, how does basis change affect the representation of a linear transformation?

Change of Basis

Operational Fundamentals of Linear Algebra

Question: And, how does basis change affect the representation of a linear transformation?

Consider the mapping $\quad \mathbf{A}: R^{n} \rightarrow R^{m}, \quad \mathbf{A x}=\mathbf{y}$.
Change the basis of the domain through $\mathbf{P} \in R^{n \times n}$ and that of the co-domain through $\mathbf{Q} \in R^{m \times m}$.

Change of Basis

Question: And, how does basis change affect the representation of a linear transformation?

Consider the mapping $\quad \mathbf{A}: R^{n} \rightarrow R^{m}, \quad \mathbf{A x}=\mathbf{y}$.
Change the basis of the domain through $\mathbf{P} \in R^{n \times n}$ and that of the co-domain through $\mathbf{Q} \in R^{m \times m}$.

New and old vector representations are related as

$$
\mathbf{P} \overline{\mathbf{x}}=\mathbf{x} \quad \text { and } \quad \mathbf{Q} \overline{\mathbf{y}}=\mathbf{y} .
$$

Then, $\mathbf{A x}=\mathbf{y} \Rightarrow \overline{\mathbf{A}} \overline{\mathbf{x}}=\overline{\mathbf{y}}$, with

$$
\overline{\mathbf{A}}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{P}
$$

Change of Basis

Question: And, how does basis change affect the representation of a linear transformation?

Consider the mapping $\quad \mathbf{A}: R^{n} \rightarrow R^{m}, \quad \mathbf{A x}=\mathbf{y}$.
Change the basis of the domain through $\mathbf{P} \in R^{n \times n}$ and that of the co-domain through $\mathbf{Q} \in R^{m \times m}$.

New and old vector representations are related as

$$
\mathbf{P} \overline{\mathbf{x}}=\mathbf{x} \quad \text { and } \quad \mathbf{Q} \overline{\mathbf{y}}=\mathbf{y} .
$$

Then, $\mathbf{A} \mathbf{x}=\mathbf{y} \Rightarrow \overline{\mathbf{A}} \overline{\mathbf{x}}=\overline{\mathbf{y}}$, with

$$
\overline{\mathbf{A}}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{P}
$$

Special case: $m=n$ and $\mathbf{P}=\mathbf{Q}$ gives a similarity transformation

$$
\overline{\mathbf{A}}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}
$$

Elementary Transformations

Operational Fundamentals of Linear Algebra

Observation: Certain reorganizations of equations in a system have no effect on the solution(s).

Observation: Certain reorganizations of equations in a system have no effect on the solution(s).

Elementary Row Transformations:

1. interchange of two rows,
2. scaling of a row, and
3. addition of a scalar multiple of a row to another.

Elementary Transformations

Observation: Certain reorganizations of equations in a system have no effect on the solution(s).

Elementary Row Transformations:

1. interchange of two rows,
2. scaling of a row, and
3. addition of a scalar multiple of a row to another.

Elementary Column Transformations: Similar operations with columns, equivalent to a corresponding shuffling of the variables (unknowns).

thematical Methods in Engineering and Science

Equivalence of matrices: An elementary transformation defines an equivalence relation between two matrices.
Reduction to normal form:

$$
\mathbf{A}_{N}=\left[\begin{array}{ll}
\mathbf{I}_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]
$$

Rank invariance: Elementary transformations do not alter the rank of a matrix.

Elementary transformation as matrix multiplication:
an elementary row transformation on a matrix is equivalent to a pre-multiplication with an elementary matrix, obtained through the same row transformation on the identity matrix (of appropriate size).

Similarly, an elementary column transformation is equivalent to post-multiplication with the corresponding elementary matrix.

Operational Fundamentals of Linear Algebra

- Concepts of range and null space of a linear transformation.
- Effects of change of basis on representations of vectors and linear transformations.
- Elementary transformations as tools to modify (simplify) systems of (simultaneous) linear equations.

Necessary Exercises: 2,4,5,6

Systems of Linear Equations
Nature of Solutions
Basic Idea of Solution Methodology
Homogeneous Systems
Pivoting
Partitioning and Block Operations

Mathematical Methods in Engineering and Science
Systems of Linear Equations
Nature of Solutions
$\mathbf{A x}=\mathbf{b}$

Mathematical Methods in Engineering and Science
Systems of Linear Equations
Nature of Solutions
$\mathbf{A x}=\mathbf{b}$
Coefficient matrix: \mathbf{A}, augmented matrix: $[\mathbf{A} \mid \mathbf{b}]$.

Mathematical Methods in Engineering and Science
Systems of Linear Equations
Nature of Solutions

$\mathbf{A x}=\mathbf{b}$

Coefficient matrix: \mathbf{A}, augmented matrix: $[\mathbf{A} \mid \mathbf{b}]$. Existence of solutions or consistency:

$$
\begin{aligned}
\mathbf{A} \mathbf{x}=\mathbf{b} & \text { has a solution } \\
\Leftrightarrow & \mathbf{b} \in \operatorname{Range}(\mathbf{A}) \\
\Leftrightarrow & \operatorname{Rank}(\mathbf{A})=\operatorname{Rank}([\mathbf{A} \mid \mathbf{b}])
\end{aligned}
$$

$A X=0$

Coefficient matrix: \mathbf{A}, augmented matrix: $[\mathbf{A} \mid \mathbf{b}]$. Existence of solutions or consistency:

$$
\begin{aligned}
\mathbf{A x}=\mathbf{b} & \text { has a solution } \\
\Leftrightarrow & \mathbf{b} \in \operatorname{Range}(\mathbf{A}) \\
\Leftrightarrow & \operatorname{Rank}(\mathbf{A})=\operatorname{Rank}([\mathbf{A} \mid \mathbf{b}])
\end{aligned}
$$

Uniqueness of solutions:

$$
\begin{aligned}
\operatorname{Rank}(\mathbf{A}) & =\operatorname{Rank}([\mathbf{A} \mid \mathbf{b}])=n \\
& \Leftrightarrow \operatorname{Solution} \text { of } \mathbf{A} \mathbf{x}=\mathbf{b} \text { is unique. } \\
& \Leftrightarrow \mathbf{A x}=\mathbf{0} \text { has only the trivial (zero) solution. }
\end{aligned}
$$

Nature of Solutions

$\mathbf{A x}=\mathbf{b}$

Coefficient matrix: \mathbf{A}, augmented matrix: $[\mathbf{A} \mid \mathbf{b}]$.
Existence of solutions or consistency:

$$
\begin{aligned}
\mathbf{A x}=\mathbf{b} & \text { has a solution } \\
\Leftrightarrow & \mathbf{b} \in \operatorname{Range}(\mathbf{A}) \\
\Leftrightarrow & \operatorname{Rank}(\mathbf{A})=\operatorname{Rank}([\mathbf{A} \mid \mathbf{b}])
\end{aligned}
$$

Uniqueness of solutions:

$$
\begin{aligned}
\operatorname{Rank}(\mathbf{A}) & =\operatorname{Rank}([\mathbf{A} \mid \mathbf{b}])=n \\
& \Leftrightarrow \operatorname{Solution} \text { of } \mathbf{A} \mathbf{x}=\mathbf{b} \text { is unique. } \\
& \Leftrightarrow \mathbf{A x}=\mathbf{0} \text { has only the trivial (zero) solution. }
\end{aligned}
$$

Infinite solutions: For $\operatorname{Rank}(\mathbf{A})=\operatorname{Rank}([\mathbf{A} \mid \mathbf{b}])=k<n$, solution

$$
\mathbf{x}=\overline{\mathbf{x}}+\mathbf{x}_{N}, \quad \text { with } \quad \mathbf{A} \overline{\mathbf{x}}=\mathbf{b} \quad \text { and } \quad \mathbf{x}_{N} \in \operatorname{Null}(\mathbf{A})
$$

Basic Idea of Solution Methodology

To diagnose the non-existence of a solution, To determine the unique solution, or
To describe infinite solutions;
decouple the equations using elementary transformations.

Basic Idea of Solution Methodology

To diagnose the non-existence of a solution,
To determine the unique solution, or
To describe infinite solutions;
decouple the equations using elementary transformations.
For solving $\mathbf{A x}=\mathbf{b}$, apply suitable elementary row transformations on both sides, leading to

$$
\begin{aligned}
\mathbf{R}_{q} \mathbf{R}_{q-1} \cdots \mathbf{R}_{2} \mathbf{R}_{1} \mathbf{A} \mathbf{x} & =\mathbf{R}_{q} \mathbf{R}_{q-1} \cdots \mathbf{R}_{2} \mathbf{R}_{1} \mathbf{b} \\
\text { or, } \quad[\mathbf{R A}] \mathbf{x} & =\mathbf{R} \mathbf{b}
\end{aligned}
$$

such that matrix $[\mathbf{R A}]$ is greatly simplified.
In the best case, with complete reduction, $\mathbf{R A}=\mathbf{I}_{n}$, and components of \mathbf{x} can be read off from $\mathbf{R b}$.

Basic Idea of Solution Methodology

To diagnose the non-existence of a solution,
To determine the unique solution, or
To describe infinite solutions;
decouple the equations using elementary transformations.
For solving $\mathbf{A x}=\mathbf{b}$, apply suitable elementary row transformations on both sides, leading to

$$
\begin{aligned}
\mathbf{R}_{q} \mathbf{R}_{q-1} \cdots \mathbf{R}_{2} \mathbf{R}_{1} \mathbf{A} \mathbf{x} & =\mathbf{R}_{q} \mathbf{R}_{q-1} \cdots \mathbf{R}_{2} \mathbf{R}_{1} \mathbf{b} \\
\text { or, } \quad[\mathbf{R A}] \mathbf{x} & =\mathbf{R} \mathbf{b}
\end{aligned}
$$

such that matrix $[\mathbf{R A}]$ is greatly simplified.
In the best case, with complete reduction, $\mathbf{R A}=\mathbf{I}_{n}$, and components of \mathbf{x} can be read off from $\mathbf{R b}$.

For inverting matrix \mathbf{A}, treat $\mathbf{A A}^{-1}=\mathbf{I}_{n}$ similarly.

athematical Methods in Engineering and Science
 Homogeneous Systems

Systems of Linear Equations

To solve $\mathbf{A x}=\mathbf{0}$ or to describe $\operatorname{Null}(\mathbf{A})$, apply a series of elementary row transformations on \mathbf{A} to reduce it to the $\tilde{\mathbf{A}}$,
the row-reduced echelon form or RREF.

Homogeneous Systems

To solve $\mathbf{A x}=\mathbf{0}$ or to describe $\operatorname{Null}(\mathbf{A})$, apply a series of elementary row transformations on \mathbf{A} to reduce it to the $\tilde{\mathbf{A}}$,
the row-reduced echelon form or RREF.
Features of RREF:

1. The first non-zero entry in any row is a ' 1 ', the leading ' 1 '.
2. In the same column as the leading ' 1 ', other entries are zero.
3. Non-zero entries in a lower row appear later.

Homogeneous Systems

To solve $\mathbf{A x}=\mathbf{0}$ or to describe $\operatorname{Null}(\mathbf{A})$, apply a series of elementary row transformations on \mathbf{A} to reduce it to the $\tilde{\mathbf{A}}$, the row-reduced echelon form or RREF.
Features of RREF:

1. The first non-zero entry in any row is a ' 1 ', the leading ' 1 '.
2. In the same column as the leading ' 1 ', other entries are zero.
3. Non-zero entries in a lower row appear later.

Variables corresponding to columns having leading ' 1 's are expressed in terms of the remaining variables.

Homogeneous Systems

To solve $\mathbf{A x}=\mathbf{0}$ or to describe $\operatorname{Null}(\mathbf{A})$, apply a series of elementary row transformations on \mathbf{A} to reduce it to the $\tilde{\mathbf{A}}$, the row-reduced echelon form or RREF.
Features of RREF:

1. The first non-zero entry in any row is a ' 1 ', the leading ' 1 '.
2. In the same column as the leading ' 1 ', other entries are zero.
3. Non-zero entries in a lower row appear later.

Variables corresponding to columns having leading ' 1 's are expressed in terms of the remaining variables.

Solution of $\mathbf{A x}=\mathbf{0}: \quad \mathbf{x}=\left[\begin{array}{llll}\mathbf{z}_{1} & \mathbf{z}_{2} & \cdots & \mathbf{z}_{n-k}\end{array}\right]\left[\begin{array}{c}u_{1} \\ u_{2} \\ \cdots \\ u_{n-k}\end{array}\right]$
Basis of $\operatorname{Null}(\mathbf{A}):\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \cdots, \mathbf{z}_{n-k}\right\}$

Attempt:

To get ' 1 ' at diagonal (or leading) position, with '0' elsewhere. Key step: division by the diagonal (or leading) entry.

Attempt:

To get ' 1 ' at diagonal (or leading) position, with '0' elsewhere. Key step: division by the diagonal (or leading) entry.
Consider

Cannot divide by zero. Should not divide by δ.

Attempt:

To get ' 1 ' at diagonal (or leading) position, with '0' elsewhere.
Key step: division by the diagonal (or leading) entry.
Consider

$$
\overline{\mathbf{A}}=\left[\begin{array}{cccccc}
\mathbf{I}_{k} & . & . & . & . & \cdot \\
\cdot & \delta & . & . & . & \cdot \\
. & \cdot & . & . & \text { BIG } & \cdot \\
. & \mathrm{big} & . & . & . & \cdot \\
. & \cdot & . & . & . & \cdot \\
. & . & . & . & . & .
\end{array}\right] .
$$

Cannot divide by zero. Should not divide by δ.

- partial pivoting: row interchange to get 'big' in place of δ
- complete pivoting: row and column interchanges to get 'BIG' in place of δ

Attempt:

To get '1' at diagonal (or leading) position, with '0' elsewhere.
Key step: division by the diagonal (or leading) entry.
Consider

Cannot divide by zero. Should not divide by δ.

- partial pivoting: row interchange to get 'big' in place of δ
- complete pivoting: row and column interchanges to get 'BIG' in place of δ

Complete pivoting does not give a huge advantage over partial pivoting, but requires maintaining of variable permutation for later unscrambling.

Partitioning and Block Operations

Equation $\mathbf{A x}=\mathbf{y}$ can be written as

$$
\left[\begin{array}{lll}
\mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} \\
\mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\mathbf{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right]
$$

with $\mathbf{x}_{1}, \mathbf{x}_{2}$ etc being themselves vectors (or matrices).

- For a valid partitioning, block sizes should be consistent.
- Elementary transformations can be applied over blocks.
- Block operations can be computationally economical at times.
- Conceptually, different blocks of contributions/equations can be assembled for mathematical modelling of complicated coupled systems.
- Solution(s) of $\mathbf{A x}=\mathbf{b}$ may be non-existent, unique or infinitely many.
- Complete solution can be described by composing a particular solution with the null space of \mathbf{A}.
- Null space basis can be obtained conveniently from the row-reduced echelon form of \mathbf{A}.
- For a strategy of solution, pivoting is an important step.

Necessary Exercises: 1,2,4,5,7

Gauss Elimination Family of Methods
Gauss-Jordan Elimination Gaussian Elimination with Back-Substitution LU Decomposition

Mathematical Methods in Engineering and Science
Gauss Elimination Family of Methods

Task: Solve $\mathbf{A x}=\mathbf{b}_{1}, \mathbf{A} \mathbf{x}=\mathbf{b}_{2}$ and $\mathbf{A} \mathbf{x}=\mathbf{b}_{3}$; find \mathbf{A}^{-1} and evaluate $\mathbf{A}^{-1} \mathbf{B}$, where $\mathbf{A} \in R^{n \times n}$ and $\mathbf{B} \in R^{n \times p}$.

Gauss-Jordan Elimination

Gauss Elimination Family of Methods

Task: Solve $\mathbf{A x}=\mathbf{b}_{1}, \mathbf{A} \mathbf{x}=\mathbf{b}_{2}$ and $\mathbf{A} \mathbf{x}=\mathbf{b}_{3}$; find \mathbf{A}^{-1} and evaluate $\mathbf{A}^{-1} \mathbf{B}$, where $\mathbf{A} \in R^{n \times n}$ and $\mathbf{B} \in R^{n \times p}$.
Assemble $\quad \mathbf{C}=\left[\begin{array}{llllll}\mathbf{A} & \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{I}_{n} & \mathbf{B}\end{array}\right] \in R^{n \times(2 n+3+p)}$ and follow the algoritim.

Gauss-Jordan Elimination

Gauss Elimination Family of Methods

Task: Solve $\mathbf{A x}=\mathbf{b}_{1}, \mathbf{A} \mathbf{x}=\mathbf{b}_{2}$ and $\mathbf{A} \mathbf{x}=\mathbf{b}_{3}$; find \mathbf{A}^{-1} and evaluate $\mathbf{A}^{-1} \mathbf{B}$, where $\mathbf{A} \in R^{n \times n}$ and $\mathbf{B} \in R^{n \times p}$.
Assemble $\quad \mathbf{C}=\left[\begin{array}{llllll}\mathbf{A} & \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{I}_{n} & \mathbf{B}\end{array}\right] \in R^{n \times(2 n+3+p)}$ and follow the algorithm

Collect solutions from the result

$$
\mathbf{C} \longrightarrow \tilde{\mathbf{C}}=\left[\begin{array}{llllll}
\mathbf{I}_{n} & \mathbf{A}^{-1} \mathbf{b}_{1} & \mathbf{A}^{-1} \mathbf{b}_{2} & \mathbf{A}^{-1} \mathbf{b}_{3} & \mathbf{A}^{-1} & \mathbf{A}^{-1} \mathbf{B}
\end{array}\right] .
$$

Gauss-Jordan Elimination

Task: Solve $\mathbf{A x}=\mathbf{b}_{1}, \mathbf{A} \mathbf{x}=\mathbf{b}_{2}$ and $\mathbf{A} \mathbf{x}=\mathbf{b}_{3}$; find \mathbf{A}^{-1} and evaluate $\mathbf{A}^{-1} \mathbf{B}$, where $\mathbf{A} \in R^{n \times n}$ and $\mathbf{B} \in R^{n \times p}$.
Assemble $\quad \mathbf{C}=\left[\begin{array}{llllll}\mathbf{A} & \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3} & \mathbf{I}_{n} & \mathbf{B}\end{array}\right] \in R^{n \times(2 n+3+p)}$ and follow the algorithm

Collect solutions from the result

$$
\mathbf{C} \longrightarrow \tilde{\mathbf{C}}=\left[\begin{array}{llllll}
\mathbf{I}_{n} & \mathbf{A}^{-1} \mathbf{b}_{1} & \mathbf{A}^{-1} \mathbf{b}_{2} & \mathbf{A}^{-1} \mathbf{b}_{3} & \mathbf{A}^{-1} & \mathbf{A}^{-1} \mathbf{B}
\end{array}\right] .
$$

Remarks:

- Premature termination: matrix A singular - decision?
- If you use complete pivoting, unscramble permutation.
- Identity matrix in both \mathbf{C} and $\tilde{\mathbf{C}}$? Store \mathbf{A}^{-1} 'in place'.
- For evaluating $\mathbf{A}^{-1} \mathbf{b}$, do not develop \mathbf{A}^{-1}.
- Gauss-Jordan elimination an overkill? Want something cheaper?

Gauss-Jordan Elimination

Gauss-Jordan Algorithm

- $\Delta=1$
- For $k=1,2,3, \cdots,(n-1)$

1. Pivot : identify $/$ such that $\left|c_{l k}\right|=\max \left|c_{j k}\right|$ for $k \leq j \leq n$.

If $c_{l k}=0$, then $\Delta=0$ and exit.
Else, interchange row k and row I.
2. $\Delta \longleftarrow c_{k k} \Delta$, Divide row k by $c_{k k}$.
3. Subtract $c_{j k}$ times row k from row $j, \forall j \neq k$.

- $\Delta \longleftarrow c_{n n} \Delta$

If $c_{n n}=0$, then exit.
Else, divide row n by $c_{n n}$.

In case of non-singular \mathbf{A}, delault termination

This outline is for partial pivoting.

Mathematical Methods in Engineering and Science
Gauss Elimination Family of Methods

Gaussian Elimination with Back-Substititition hation with Back-suststution

Gaussian elimination:

$$
\begin{aligned}
& \mathbf{A x}=\mathbf{b} \\
& \longrightarrow \tilde{\mathbf{A}} \mathbf{x}=\tilde{\mathbf{b}} \\
& \text { or, }\left[\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
& a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
& & \ddots & \vdots \\
& & & a_{n n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right]
\end{aligned}
$$

athematical Methods in Engineering and Science
Gauss Elimination Family of Methods

Gaussian elimination:

$$
\begin{aligned}
& \\
& \begin{aligned}
& \mathbf{A x}=\mathbf{b} \\
& \longrightarrow \\
& \text { or } \mathbf{A}=\tilde{\mathbf{b}} \\
& {\left[\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
& a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
& & \ddots & \vdots \\
& & & a_{n n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right]
\end{aligned}
$$

Back-substitutions:

$$
\begin{aligned}
& x_{n}=b_{n}^{\prime} / a_{n n}^{\prime}, \\
& x_{i}=\frac{1}{a_{i i}^{\prime}}\left[b_{i}^{\prime}-\sum_{j=i+1}^{n} a_{i j}^{\prime} x_{j}\right] \text { for } i=n-1, n-2, \cdots, 2,1
\end{aligned}
$$

athematical Methods in Engineering and Science

Gaussian Elimination with Back-Substititition hation with Back-susstitution

Gaussian elimination:

$$
\begin{aligned}
& \mathbf{A x}=\mathbf{b} \\
& \longrightarrow \tilde{\mathbf{A}} \mathbf{x}=\tilde{\mathbf{b}} \\
& \text { or, }\left[\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
& a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
& & \ddots & \vdots \\
& & & a_{n n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right]
\end{aligned}
$$

Back-substitutions:

$$
\begin{aligned}
& x_{n}=b_{n}^{\prime} / a_{n n}^{\prime}, \\
& x_{i}=\frac{1}{a_{i i}^{\prime}}\left[b_{i}^{\prime}-\sum_{j=i+1}^{n} a_{i j}^{\prime} x_{j}\right] \text { for } i=n-1, n-2, \cdots, 2,1
\end{aligned}
$$

Remarks

- Computational cost half compared to G-J elimination.
- Like G-J elimination, prior knowledge of RHS needed.

Mathematical Methods in Engineering and Science

Gauss Elimination Family of Methods

Gaussian Elimination with Back-Substitidtion hation wion Back-substitution Anatomy of the Gaussian elimination:
The process of Gaussian elimination (with no pivoting) leads to

$$
\mathbf{U}=\mathbf{R}_{q} \mathbf{R}_{q-1} \cdots \mathbf{R}_{2} \mathbf{R}_{1} \mathbf{A}=\mathbf{R} \mathbf{A} .
$$

athematical Methods in Engineering and Science

Gauss Elimination Family of Methods
Gaussian Elimination with Back-Substitititien hation with Back-sustitution Anatomy of the Gaussian elimination:
The process of Gaussian elimination (with no pivoting) leads to

$$
\mathbf{U}=\mathbf{R}_{q} \mathbf{R}_{q-1} \cdots \mathbf{R}_{2} \mathbf{R}_{1} \mathbf{A}=\mathbf{R} \mathbf{A} .
$$

The steps given by

$$
\text { for } \begin{aligned}
k= & 1,2,3, \cdots,(n-1) \\
& j \text {-th row } \longleftarrow j \text {-th row }-\frac{a_{j k}}{a_{k k}} \times k \text {-th row for } \\
& j=k+1, k+2, \cdots, n
\end{aligned}
$$

involve elementary matrices

$$
\left.\mathbf{R}_{k}\right|_{k=1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 0 & \cdots & 0 \\
-\frac{a_{31}}{a_{11}} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{a_{n 1}}{a_{11}} & 0 & 0 & \cdots & 1
\end{array}\right] \text { etc. }
$$

athematical Methods in Engineering and Science

Gaussian Elimination with Back-Substituittab hation with Back-sustitution

Anatomy of the Gaussian elimination:

The process of Gaussian elimination (with no pivoting) leads to

$$
\mathbf{U}=\mathbf{R}_{q} \mathbf{R}_{q-1} \cdots \mathbf{R}_{2} \mathbf{R}_{1} \mathbf{A}=\mathbf{R} \mathbf{A}
$$

The steps given by

$$
\begin{aligned}
\text { for } k= & 1,2,3, \cdots,(n-1) \\
& j \text {-th row } \longleftarrow j \text {-th row }-\frac{a_{j k}}{a_{k k}} \times k \text {-th row for } \\
& j=k+1, k+2, \cdots, n
\end{aligned}
$$

involve elementary matrices

$$
\left.\mathbf{R}_{k}\right|_{k=1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 0 & \cdots & 0 \\
-\frac{a_{31}}{a_{11}} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{a_{n 1}}{a_{11}} & 0 & 0 & \cdots & 1
\end{array}\right] \text { etc. }
$$

With $\mathbf{L}=\mathbf{R}^{-1}, \quad \mathbf{A}=\mathbf{L U}$.

Mathematical Methods in Engineering and Science
Gauss Elimination Family of Methods
LU Decomposition

Mathematical Methods in Engineering and Science
Gauss Elimination Family of Methods

Mathematical Methods in Engineering and Science
LU Decomposition
A square matrix with non-zero leading minors is LU-decomposable.
No reference to a right-hand-side (RHS) vector!
To solve $\mathbf{A x}=\mathbf{b}$, denote $\mathbf{y}=\mathbf{U x}$ and split as

$$
\begin{aligned}
\mathbf{A x}=\mathbf{b} & \Rightarrow \mathbf{L U} \mathbf{x}=\mathbf{b} \\
& \Rightarrow \mathbf{L} \mathbf{y}=\mathbf{b} \quad \text { and } \quad \mathbf{U} \mathbf{x}=\mathbf{y} .
\end{aligned}
$$

LU Decomposition
A square matrix with non-zero leading minors is LU-decomposable.
No reference to a right-hand-side (RHS) vector!
To solve $\mathbf{A x}=\mathbf{b}$, denote $\mathbf{y}=\mathbf{U x}$ and split as

$$
\begin{aligned}
\mathbf{A} \mathbf{x}=\mathbf{b} & \Rightarrow \mathbf{L U} \mathbf{x}=\mathbf{b} \\
& \Rightarrow \mathbf{L} \mathbf{y}=\mathbf{b} \quad \text { and } \quad \mathbf{U} \mathbf{x}=\mathbf{y} .
\end{aligned}
$$

Forward substitutions:

$$
y_{i}=\frac{1}{l_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} l_{i j} y_{j}\right) \quad \text { for } i=1,2,3, \cdots, n
$$

Back-substitutions:

$$
x_{i}=\frac{1}{u_{i i}}\left(y_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) \quad \text { for } i=n, n-1, n-2, \cdots, 1
$$

Mathematical Methods in Engineering and Science
Gauss Elimination Family of Methods
LU Decomposition $\quad \begin{aligned} & \text { Gauss-Jordan Elimination } \\ & \text { Gaussian Elimination with Back-Substitution }\end{aligned}$
LU Decomposition
Question: How to LU-decompose a given matrix?

Question: How to LU-decompose a given matrix?

$$
\mathbf{L}=\left[\begin{array}{ccccc}
I_{11} & 0 & 0 & \cdots & 0 \\
I_{21} & I_{22} & 0 & \cdots & 0 \\
I_{31} & I_{32} & I_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
I_{n 1} & I_{n 2} & I_{n 3} & \cdots & I_{n n}
\end{array}\right] \text { and } \mathbf{U}=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \cdots & u_{1 n} \\
0 & u_{22} & u_{23} & \cdots & u_{2 n} \\
0 & 0 & u_{33} & \cdots & u_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & u_{n n}
\end{array}\right]
$$

LU Decomposition
Question: How to LU-decompose a given matrix?
$\mathbf{L}=\left[\begin{array}{ccccc}I_{11} & 0 & 0 & \cdots & 0 \\ I_{21} & I_{22} & 0 & \cdots & 0 \\ I_{31} & l_{32} & l_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ I_{n 1} & I_{n 2} & I_{n 3} & \cdots & I_{n n}\end{array}\right] \quad$ and $\mathbf{U}=\left[\begin{array}{ccccc}u_{11} & u_{12} & u_{13} & \cdots & u_{1 n} \\ 0 & u_{22} & u_{23} & \cdots & u_{2 n} \\ 0 & 0 & u_{33} & \cdots & u_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & u_{n n}\end{array}\right]$
Elements of the product give

$$
\begin{aligned}
& \sum_{k=1}^{i} l_{i k} u_{k j}=a_{i j} \quad \text { for } \quad i \leq j, \\
& \text { and } \quad \sum_{k=1}^{j} l_{i k} u_{k j}=a_{i j} \quad \text { for } \quad i>j .
\end{aligned}
$$

n^{2} equations in $n^{2}+n$ unknowns: choice of n unknowns

Doolittle's algorithm

- Choose $l_{i i}=1$
- For $j=1,2,3, \cdots, n$

1. $u_{i j}=a_{i j}-\sum_{k=1}^{i-1} l_{i k} u_{k j}$ for $1 \leq i \leq j$
2. $l_{i j}=\frac{1}{u_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} l_{i k} u_{k j}\right)$ for $i>j$

Doolittle's algorithm

- Choose $I_{i i}=1$
- For $j=1,2,3, \cdots, n$

$$
\begin{aligned}
& \text { 1. } u_{i j}=a_{i j}-\sum_{k=1}^{i-1} l_{i k} u_{k j} \text { for } \quad 1 \leq i \leq j \\
& \text { 2. } l_{i j}=\frac{1}{u_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} l_{i k} u_{k j}\right) \text { for } \quad i>j
\end{aligned}
$$

Evaluation proceeds in column order of the matrix (for storage)

$$
\mathbf{A}^{*}=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \cdots & u_{1 n} \\
I_{21} & u_{22} & u_{23} & \cdots & u_{2 n} \\
I_{31} & I_{32} & u_{33} & \cdots & u_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
I_{n 1} & I_{n 2} & I_{n 3} & \cdots & u_{n n}
\end{array}\right]
$$

Mathematical Methods in Engineering and Science

Question: What about matrices which are not LU-decomposable?
Question: What about pivoting?

Gauss Elimination Family of Methods

Question: What about matrices which are not LU-decomposable?
Question: What about pivoting?
Consider the non-singular matrix

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21}=? & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11}=0 & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right] .
$$

Question: What about matrices which are not LU-decomposable?
Question: What about pivoting?
Consider the non-singular matrix

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
I_{21}=? & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11}=0 & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right] .
$$

LU-decompose a permutation of its rows

$$
\begin{aligned}
{\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 1 & 2 \\
2 & 1 & 3
\end{array}\right] } & =\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 2 \\
0 & 1 & 2 \\
2 & 1 & 3
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{2}{3} & \frac{1}{3} & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Question: What about matrices which are not LU-decomposable?
Question: What about pivoting?
Consider the non-singular matrix

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21}=? & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11}=0 & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right] .
$$

LU-decompose a permutation of its rows

$$
\begin{aligned}
{\left[\begin{array}{lll}
0 & 1 & 2 \\
3 & 1 & 2 \\
2 & 1 & 3
\end{array}\right] } & =\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 2 \\
0 & 1 & 2 \\
2 & 1 & 3
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{2}{3} & \frac{1}{3} & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

In this PLU decomposition, permutation \mathbf{P} is recorded in a vector.

Gauss Elimination Family of Methods

For invertible coefficient matrices, use

- Gauss-Jordan elimination for large number of RHS vectors available all together and also for matrix inversion,
- Gaussian elimination with back-substitution for small number of RHS vectors available together,
- LU decomposition method to develop and maintain factors to be used as and when RHS vectors are available.
Pivoting is almost necessary (without further special structure).

Necessary Exercises: 1,4,5

Special Systems and Special Methods

Quadratic Forms, Symmetry and Positive Definiteness Cholesky Decomposition Sparse Systems*

Mathematical Methods in Engineering and Science
Special Systems and Special Methods

Sparse Systems*
Quadratic form

$$
q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

Mathematical Methods in Engineering and Science
Special Systems and Special Methods

Sparse Systems*
Quadratic form

$$
q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

defined with respect to a symmetric matrix.

Quadratic form

$$
q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

defined with respect to a symmetric matrix.
Quadratic form $q(\mathbf{x})$, equivalently matrix \mathbf{A}, is called positive definite (p.d.) when

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0 \quad \forall \mathbf{x} \neq \mathbf{0}
$$

Mathematical Methods in Engineering and Science

Quadratic form

$$
q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

defined with respect to a symmetric matrix.
Quadratic form $q(\mathbf{x})$, equivalently matrix \mathbf{A}, is called positive definite (p.d.) when

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0 \quad \forall \mathbf{x} \neq \mathbf{0}
$$

and positive semi-definite (p.s.d.) when

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0 \quad \forall \mathbf{x} \neq \mathbf{0}
$$

Mathematical Methods in Engineering and Science

Quadratic form

$$
q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

defined with respect to a symmetric matrix.
Quadratic form $q(\mathbf{x})$, equivalently matrix \mathbf{A}, is called positive definite (p.d.) when

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0 \quad \forall \mathbf{x} \neq \mathbf{0}
$$

and positive semi-definite (p.s.d.) when

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0 \quad \forall \mathbf{x} \neq \mathbf{0}
$$

Sylvester's criteria:

$$
a_{11} \geq 0, \quad\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \geq 0, \quad \cdots, \quad \operatorname{det} \mathbf{A} \geq 0
$$

i.e. all leading minors non-negative, for p.s.d.

If $\mathbf{A} \in R^{n \times n}$ is symmetric and positive definite, then there exists a non-singular lower triangular matrix $\mathbf{L} \in R^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{L L}^{T} .
$$

If $\mathbf{A} \in R^{n \times n}$ is symmetric and positive definite, then there exists a non-singular lower triangular matrix $\mathbf{L} \in R^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{L L}^{T} .
$$

Algorithm For $i=1,2,3, \cdots, n$

- $L_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} L_{i k}^{2}}$
- $L_{j i}=\frac{1}{L_{i i}}\left(a_{j i}-\sum_{k=1}^{i-1} L_{j k} L_{i k}\right) \quad$ for $\quad i<j \leq n$

If $\mathbf{A} \in R^{n \times n}$ is symmetric and positive definite, then there exists a non-singular lower triangular matrix $\mathbf{L} \in R^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{L L}^{T}
$$

Algorithm For $i=1,2,3, \cdots, n$

- $L_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} L_{i k}^{2}}$
- $L_{j i}=\frac{1}{L_{i i}}\left(a_{j i}-\sum_{k=1}^{i-1} L_{j k} L_{i k}\right) \quad$ for $\quad i<j \leq n$

For solving $\mathbf{A x}=\mathbf{b}$,
Forward substitutions: $\mathbf{L y}=\mathbf{b}$
Back-substitutions: $\mathbf{L}^{T} \mathbf{x}=\mathbf{y}$

Cholesky Decomposition

If $\mathbf{A} \in R^{n \times n}$ is symmetric and positive definite, then there exists a non-singular lower triangular matrix $\mathbf{L} \in R^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{L L}^{T}
$$

Algorithm For $i=1,2,3, \cdots, n$

- $L_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} L_{i k}^{2}}$
- $L_{j i}=\frac{1}{L_{i i}}\left(a_{j i}-\sum_{k=1}^{i-1} L_{j k} L_{i k}\right) \quad$ for $\quad i<j \leq n$

For solving $\mathbf{A x}=\mathbf{b}$,
Forward substitutions: $\mathbf{L y}=\mathbf{b}$
Back-substitutions: $\mathbf{L}^{T} \mathbf{x}=\mathbf{y}$
Remarks

- Test of positive definiteness.
- Stable algorithm: no pivoting necessary!
- Economy of space and time.
- What is a sparse matrix?
- Bandedness and bandwidth
- Efficient storage and processing
- Updates
- Sherman-Morrison formula

$$
\left(\mathbf{A}+\mathbf{u} \mathbf{v}^{\top}\right)^{-1}=\mathbf{A}^{-1}-\frac{\left(\mathbf{A}^{-1} \mathbf{u}\right)\left(\mathbf{v}^{\top} \mathbf{A}^{-1}\right)}{1+\mathbf{v}^{\top} \mathbf{A}^{-1} \mathbf{u}}
$$

- Woodbury formula
- Conjugate gradient method
- efficiently implemented matrix-vector products
- Concepts and criteria of positive definiteness and positive semi-definiteness
- Cholesky decomposition method in symmetric positive definite systems
- Nature of sparsity and its exploitation

Necessary Exercises: 1,2,4,7

Numerical Aspects in Linear Systems
Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Iterative Methods

Mathematical Methods in Engineering and Science

Norms and Condition Numbers
Norm of a vector: a measure of size

Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Iterative Methods

- Euclidean norm or 2-norm

$$
\|\mathbf{x}\|=\|\mathbf{x}\|_{2}=\left[x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right]^{\frac{1}{2}}=\sqrt{\mathbf{x}^{T} \mathbf{x}}
$$

Mathematical Methods in Engineering and Science

Norms and Condition Numbers
Norm of a vector: a measure of size

Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Iterative Methods

- Euclidean norm or 2-norm

$$
\|\mathbf{x}\|=\|\mathbf{x}\|_{2}=\left[x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right]^{\frac{1}{2}}=\sqrt{\mathbf{x}^{T} \mathbf{x}}
$$

- The p-norm

$$
\|\mathbf{x}\|_{p}=\left[\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right]^{\frac{1}{p}}
$$

Norms and Condition Numbers
Nethod in Engineering and Sience
Norm of a vector: a measure of size

Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Iterative Methods

- Euclidean norm or 2-norm

$$
\|\mathbf{x}\|=\|\mathbf{x}\|_{2}=\left[x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right]^{\frac{1}{2}}=\sqrt{\mathbf{x}^{T} \mathbf{x}}
$$

- The p-norm

$$
\|\mathbf{x}\|_{p}=\left[\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right]^{\frac{1}{p}}
$$

- The 1-norm: $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$
- The ∞-norm:

$$
\|\mathbf{x}\|_{\infty}=\lim _{p \rightarrow \infty}\left[\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right]^{\frac{1}{p}}=\max _{j}\left|x_{j}\right|
$$

Norms and Condition Numbers
Northal meth in Enineering and sience
Norm of a vector: a measure of size

Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Iterative Methods

- Euclidean norm or 2-norm

$$
\|\mathbf{x}\|=\|\mathbf{x}\|_{2}=\left[x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right]^{\frac{1}{2}}=\sqrt{\mathbf{x}^{T} \mathbf{x}}
$$

- The p-norm

$$
\|\mathbf{x}\|_{p}=\left[\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right]^{\frac{1}{p}}
$$

- The 1-norm: $\|\mathbf{x}\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$
- The ∞-norm:

$$
\|\mathbf{x}\|_{\infty}=\lim _{p \rightarrow \infty}\left[\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right]^{\frac{1}{p}}=\max _{j}\left|x_{j}\right|
$$

- Weighted norm

$$
\|x\|_{w}=\sqrt{x^{T} \mathbf{W x}}
$$

where weight matrix \mathbf{W} is symmetric and positive definite.

athematical Methods in Engineering and Science
 Norms and Condition Numbers

Numerical Aspects in Linear Systems
Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Norm of a matrix: magnitude or scale of the transformation

Norms and Condition Numbers

Norm of a matrix: magnitude or scale of the transformation
Matrix norm (induced by a vector norm) is given by the largest magnification it can produce on a vector

$$
\|\mathbf{A}\|=\max _{\mathbf{x}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}=\max _{\|\mathbf{x}\|=1}\|\mathbf{A} \mathbf{x}\|
$$

Norms and Condition Numbers

Norm of a matrix: magnitude or scale of the transformation
Matrix norm (induced by a vector norm) is given by the largest magnification it can produce on a vector

$$
\|\mathbf{A}\|=\max _{\mathbf{x}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}=\max _{\|\mathbf{x}\|=1}\|\mathbf{A} \mathbf{x}\|
$$

Direct consequence: $\|\mathbf{A x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|$

Norms and Condition Numbers

Norm of a matrix: magnitude or scale of the transformation
Matrix norm (induced by a vector norm) is given by the largest magnification it can produce on a vector

$$
\|\mathbf{A}\|=\max _{\mathbf{x}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}=\max _{\|\mathbf{x}\|=1}\|\mathbf{A} \mathbf{x}\|
$$

Direct consequence: $\|\mathbf{A} \mathbf{x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|$
Index of closeness to singularity: Condition number

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|, \quad 1 \leq \kappa(\mathbf{A}) \leq \infty
$$

Norms and Condition Numbers

Norm of a matrix: magnitude or scale of the transformation
Matrix norm (induced by a vector norm) is given by the largest magnification it can produce on a vector

$$
\|\mathbf{A}\|=\max _{\mathbf{x}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}=\max _{\|\mathbf{x}\|=1}\|\mathbf{A} \mathbf{x}\|
$$

Direct consequence: $\|\mathbf{A x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|$
Index of closeness to singularity: Condition number

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|, \quad 1 \leq \kappa(\mathbf{A}) \leq \infty
$$

** Isotropic, well-conditioned, ill-conditioned and singular matrices

Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Iterative Methods

$$
\begin{aligned}
0.9999 x_{1} & - & 1.0001 x_{2} & =1 \\
x_{1} & - & x_{2} & =1+\epsilon
\end{aligned}
$$

Solution: $x_{1}=\frac{10001 \epsilon+1}{2}, x_{2}=\frac{9999 \epsilon-1}{2}$

$0.9999 x_{1}$	-	$1.0001 x_{2}$	$=1$
x_{1}	-	x_{2}	$=1+\epsilon$

Solution: $x_{1}=\frac{10001 \epsilon+1}{2}, x_{2}=\frac{9999 \epsilon-1}{2}$

- sensitive to small changes in the RHS
- insensitive to error in a guess

$0.9999 x_{1}$	-	$1.0001 x_{2}$	$=1$
x_{1}	-	x_{2}	$=1+\epsilon$

Solution: $x_{1}=\frac{10001 \epsilon+1}{2}, x_{2}=\frac{9999 \epsilon-1}{2}$

- sensitive to small changes in the RHS
- insensitive to error in a guess
- See Illustration

For the system $\mathbf{A x}=\mathbf{b}$, solution is $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ and

$$
\delta \mathbf{x}=\mathbf{A}^{-1} \delta \mathbf{b}-\mathbf{A}^{-1} \delta \mathbf{A} \mathbf{x}
$$

III-conditioning and Sensitivity

$$
0.9999 x_{1}-1.0001 x_{2}=1
$$

$$
x_{1}-\quad x_{2}=1+\epsilon
$$

Solution: $x_{1}=\frac{10001 \epsilon+1}{2}, x_{2}=\frac{9999 \epsilon-1}{2}$

- sensitive to small changes in the RHS
- insensitive to error in a guess
- See IIIustration

For the system $\mathbf{A} \mathbf{x}=\mathbf{b}$, solution is $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ and

$$
\delta \mathbf{x}=\mathbf{A}^{-1} \delta \mathbf{b}-\mathbf{A}^{-1} \delta \mathbf{A} \mathbf{x}
$$

If the matrix \mathbf{A} is exactly known, then

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}=\kappa(\mathbf{A}) \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

III-conditioning and Sensitivity

$$
\begin{aligned}
0.9999 x_{1} & - & 1.0001 x_{2} & =1 \\
x_{1} & - & x_{2} & =1+\epsilon
\end{aligned}
$$

Solution: $x_{1}=\frac{10001 \epsilon+1}{2}, x_{2}=\frac{9999 \epsilon-1}{2}$

- sensitive to small changes in the RHS
- insensitive to error in a guess

For the system $\mathbf{A x}=\mathbf{b}$, solution is $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ and

$$
\delta \mathbf{x}=\mathbf{A}^{-1} \delta \mathbf{b}-\mathbf{A}^{-1} \delta \mathbf{A} \mathbf{x}
$$

If the matrix \mathbf{A} is exactly known, then

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}=\kappa(\mathbf{A}) \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

If the RHS is known exactly, then

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}=\kappa(\mathbf{A}) \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}
$$

Mathematical Methods in Engineering and Science

III-conditioning and Sensitivity

(a) Reference system

(c) Guess validation

Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions

(b) Parallel shift

(d) Singularity

Figure: III-conditioning: a geometric perspective

Consider $\mathbf{A x}=\mathbf{b}$ with $\mathbf{A} \in R^{m \times n}$ and $\operatorname{Rank}(\mathbf{A}) \mathbf{A}^{\text {dity-Robust Solution }}$

$$
\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b} \Rightarrow \mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

Rectangular Systems

$$
\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b} \Rightarrow \mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

Square of error norm

$$
\begin{aligned}
U(\mathbf{x}) & =\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}=\frac{1}{2}(\mathbf{A} \mathbf{x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}) \\
& =\frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{b}+\frac{1}{2} \mathbf{b}^{T} \mathbf{b}
\end{aligned}
$$

Least square error solution:

$$
\frac{\partial U}{\partial \mathbf{x}}=\mathbf{A}^{T} \mathbf{A} \mathbf{x}-\mathbf{A}^{T} \mathbf{b}=\mathbf{0}
$$

Rectangular Systems

Consider $\mathbf{A x}=\mathbf{b}$ with $\mathbf{A} \in R^{m \times n}$ and $\operatorname{Rank}(\mathbf{A})^{\text {ment }}$

$$
\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b} \Rightarrow \mathbf{x}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

Square of error norm

$$
\begin{aligned}
U(\mathbf{x}) & =\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}=\frac{1}{2}(\mathbf{A} \mathbf{x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}) \\
& =\frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{b}+\frac{1}{2} \mathbf{b}^{T} \mathbf{b}
\end{aligned}
$$

Least square error solution:

$$
\frac{\partial U}{\partial \mathbf{x}}=\mathbf{A}^{T} \mathbf{A} \mathbf{x}-\mathbf{A}^{T} \mathbf{b}=\mathbf{0}
$$

Pseudoinverse or Moore-Penrose inverse or left-inverse

$$
\mathbf{A}^{\#}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}
$$

Mathematical Methods in Engineering and Science
Rectangular Systems
Norms and Condition Numbers
III-conditioning and Sensitivity
Rectangular Systems

Rectangular Systems
Numerical Aspects in Linear Systems
 Look for $\boldsymbol{\lambda} \in R^{m}$ that satisfies $\mathbf{A}^{\top} \boldsymbol{\lambda}=\mathbf{x}$ and

$$
\mathbf{A A}^{T} \boldsymbol{\lambda}=\mathbf{b}
$$

Solution

$$
\mathbf{x}=\mathbf{A}^{T} \boldsymbol{\lambda}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{b}
$$

Rectangular Systems

Norms and Condition Numbers
 Look for $\boldsymbol{\lambda} \in R^{m}$ that satisfies $\mathbf{A}^{T} \boldsymbol{\lambda}=\mathbf{x}$ and

$$
\mathbf{A A}^{T} \boldsymbol{\lambda}=\mathbf{b}
$$

Solution

$$
\mathbf{x}=\mathbf{A}^{T} \boldsymbol{\lambda}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{b}
$$

Consider the problem

$$
\text { minimize } U(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{x} \quad \text { subject to } \mathbf{A} \mathbf{x}=\mathbf{b} .
$$

Rectangular Systems

Consider $\mathbf{A x}=\mathbf{b}$ with $\mathbf{A} \in R^{m \times n}$ and $\operatorname{Rank}(\mathbf{A})^{\text {U }}$) Look for $\boldsymbol{\lambda} \in R^{m}$ that satisfies $\mathbf{A}^{T} \boldsymbol{\lambda}=\mathbf{x}$ and

$$
\mathbf{A A}^{T} \boldsymbol{\lambda}=\mathbf{b}
$$

Solution

$$
\mathbf{x}=\mathbf{A}^{T} \boldsymbol{\lambda}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{b}
$$

Consider the problem

$$
\text { minimize } U(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{x} \quad \text { subject to } \mathbf{A} \mathbf{x}=\mathbf{b}
$$

Extremum of the Lagrangian $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda})=\frac{1}{2} \mathbf{x}^{T} \mathbf{x}-\boldsymbol{\lambda}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})$ is given by

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{x}}=\mathbf{0}, \frac{\partial \mathcal{L}}{\partial \boldsymbol{\lambda}}=\mathbf{0} \Rightarrow \mathbf{x}=\mathbf{A}^{T} \boldsymbol{\lambda}, \mathbf{A} \mathbf{x}=\mathbf{b} .
$$

Solution $\mathbf{x}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{b}$ gives foot of the perpendicular on the solution 'plane' and the pseudoinverse

$$
\mathbf{A}^{\#}=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}
$$

here is a rioht-inversel

III-posed problems: Tikhonov regularization' ${ }^{\text {rative Methods }}$

- recipe for any linear system ($m>n, m=n$ or $m<n$), with any condition!

III-posed problems: Tikhonov regularization ${ }^{\text {rative Methods }}$

- recipe for any linear system ($m>n, m=n$ or $m<n$), with any condition!
$\mathbf{A x}=\mathbf{b}$ may have conflict: form $\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b}$.

Singularity-Robust Solutions

III-posed problems: Tikhonov regularization ${ }^{\text {rative Methods }}$

- recipe for any linear system ($m>n, m=n$ or $m<n$), with any condition!
$\mathbf{A x}=\mathbf{b}$ may have conflict: form $\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}$.
$\mathbf{A}^{T} \mathbf{A}$ may be ill-conditioned: rig the system as

$$
\left(\mathbf{A}^{T} \mathbf{A}+\nu^{2} \mathbf{I}_{n}\right) \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

Coefficient matrix: symmetric and positive definite!

Singularity-Robust Solutions

III-posed problems: Tikhonov regularization' ${ }^{\text {rative Methods }}$

- recipe for any linear system ($m>n, m=n$ or $m<n$), with any condition!
$\mathbf{A x}=\mathbf{b}$ may have conflict: form $\mathbf{A}^{\top} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}$.
$\mathbf{A}^{T} \mathbf{A}$ may be ill-conditioned: rig the system as

$$
\left(\mathbf{A}^{T} \mathbf{A}+\nu^{2} \mathbf{I}_{n}\right) \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

Coefficient matrix: symmetric and positive definite!
The idea: Immunize the system, paying a small price.

Singularity-Robust Solutions

III-posed problems: Tikhonov regularization' ${ }^{\text {rative Methods }}$

- recipe for any linear system ($m>n, m=n$ or $m<n$), with any condition!
$\mathbf{A x}=\mathbf{b}$ may have conflict: form $\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{\top} \mathbf{b}$.
$\mathbf{A}^{T} \mathbf{A}$ may be ill-conditioned: rig the system as

$$
\left(\mathbf{A}^{T} \mathbf{A}+\nu^{2} \mathbf{I}_{n}\right) \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

Coefficient matrix: symmetric and positive definite!
The idea: Immunize the system, paying a small price. Issues:

- The choice of ν ?

Singularity-Robust Solutions

III-posed problems: Tikhonov regularization ${ }^{\text {rative Methods }}$

- recipe for any linear system ($m>n, m=n$ or $m<n$), with any condition!
$\mathbf{A x}=\mathbf{b}$ may have conflict: form $\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b}$.
$\mathbf{A}^{T} \mathbf{A}$ may be ill-conditioned: rig the system as

$$
\left(\mathbf{A}^{T} \mathbf{A}+\nu^{2} \mathbf{I}_{n}\right) \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

Coefficient matrix: symmetric and positive definite!
The idea: Immunize the system, paying a small price.
Issues:

- The choice of ν ?
- When $m<n$, computational advantage by

$$
\left(\mathbf{A} \mathbf{A}^{T}+\nu^{2} \mathbf{I}_{m}\right) \boldsymbol{\lambda}=\mathbf{b}, \quad \mathbf{x}=\mathbf{A}^{T} \boldsymbol{\lambda}
$$

Iterative Methods

Jacobi's iteration method:

$$
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}^{(k)}\right) \text { for } i=1,2,3, \cdots, n .
$$

Iterative Methods

Jacobi's iteration method:

$$
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}^{(k)}\right) \text { for } i=1,2,3, \cdots, n .
$$

Gauss-Seidel method:

$$
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right) \text { for } i=1,2,3, \cdots, n .
$$

Jacobi's iteration method:

$$
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1, j \neq i}^{n} a_{i j} x_{j}^{(k)}\right) \text { for } i=1,2,3, \cdots, n .
$$

Gauss-Seidel method:
$x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k+1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k)}\right)$ for $i=1,2,3, \cdots, n$.

The category of relaxation methods: diagonal dominance and availability of good initial approximations

- Solutions are unreliable when the coefficient matrix is ill-conditioned.
- Finding pseudoinverse of a full-rank matrix is 'easy'.
- Tikhonov regularization provides singularity-robust solutions.
- Iterative methods may have an edge in certain situations!

Necessary Exercises: 1,2,3,4

Eigenvalues and Eigenvectors

Eigenvalue Problem
Generalized Eigenvalue Problem Some Basic Theoretical Results
Power Method

Mathematical Methods in Engineering and Science
Eigenvalues and Eigenvectors

- mapped to scalar multiples, i.e. undergo pure scaling

Eigenvalue Problem

- mapped to scalar multiples, i.e. undergo pure scaling

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

Eigenvector (v) and eigenvalue (λ): eigenpair (λ, \mathbf{v})

Mathematical Methods in Engineering and Science
Eigenvalues and Eigenvectors

Eigenvalue Problem

- mapped to scalar multiples, i.e. undergo pure scaling

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

Eigenvector (v) and eigenvalue (λ): eigenpair (λ, \mathbf{v})
algebraic eigenvalue problem

Eigenvalue Problem

In mapping $\mathbf{A}: R^{n} \rightarrow R^{n}$, special vectors of matrix $\mathbf{A} \in R^{n \times n}$

- mapped to scalar multiples, i.e. undergo pure scaling

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

Eigenvector (v) and eigenvalue (λ): eigenpair (λ, \mathbf{v}) algebraic eigenvalue problem

$$
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0}
$$

For non-trivial (non-zero) solution \mathbf{v},

$$
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=0
$$

Characteristic equation: characteristic polynomial: n roots

- n eigenvalues - for each, find eigenvector(s)

Eigenvalue Problem

In mapping $\mathbf{A}: R^{n} \rightarrow R^{n}$, special vectors of matrix $\mathbf{A} \in R^{n \times n}$

- mapped to scalar multiples, i.e. undergo pure scaling

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

Eigenvector (v) and eigenvalue (λ): eigenpair (λ, \mathbf{v})
algebraic eigenvalue problem

$$
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0}
$$

For non-trivial (non-zero) solution \mathbf{v},

$$
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=0
$$

Characteristic equation: characteristic polynomial: n roots

- n eigenvalues - for each, find eigenvector(s)

Multiplicity of an eigenvalue: algebraic and geometric

Eigenvalue Problem

In mapping $\mathbf{A}: R^{n} \rightarrow R^{n}$, special vectors of matrix $\mathbf{A} \in R^{n \times n}$

- mapped to scalar multiples, i.e. undergo pure scaling

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

Eigenvector (v) and eigenvalue (λ): eigenpair (λ, \mathbf{v})
algebraic eigenvalue problem

$$
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v}=\mathbf{0}
$$

For non-trivial (non-zero) solution \mathbf{v},

$$
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=0
$$

Characteristic equation: characteristic polynomial: n roots

- n eigenvalues - for each, find eigenvector(s)

Multiplicity of an eigenvalue: algebraic and geometric Multiplicity mismatch: diagonalizable and defective matrices

Mathematial Merthods in Engineering and Science
Generalized Eigenvalue Problem
Eigenvalues and Eigenvectors

1-dof mass-spring system: $m \ddot{x}+k x=0$
Natural frequency of vibration: $\omega_{n}=\sqrt{\frac{k}{m}}$

Generalized Eigenvalue Problem

1-dof mass-spring system: $m \ddot{x}+k x=0$
Natural frequency of vibration: $\omega_{n}=\sqrt{\frac{k}{m}}$
Free vibration of n-dof system:

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{0},
$$

Natural frequencies and corresponding modes?

Generalized Eigenvalue Problem

1-dof mass-spring system: $m \ddot{x}+k x=0$
Natural frequency of vibration: $\omega_{n}=\sqrt{\frac{k}{m}}$
Free vibration of n -dof system:

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{0}
$$

Natural frequencies and corresponding modes? Assuming a vibration mode $\mathbf{x}=\boldsymbol{\Phi} \sin (\omega t+\alpha)$,

$$
\left(-\omega^{2} \mathbf{M} \boldsymbol{\Phi}+\mathbf{K} \boldsymbol{\Phi}\right) \sin (\omega t+\alpha)=\mathbf{0} \Rightarrow \mathbf{K} \boldsymbol{\Phi}=\omega^{2} \mathbf{M} \boldsymbol{\Phi}
$$

Generalized Eigenvalue Problem

1-dof mass-spring system: $m \ddot{x}+k x=0$
Natural frequency of vibration: $\omega_{n}=\sqrt{\frac{k}{m}}$
Free vibration of n-dof system:

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{0}
$$

Natural frequencies and corresponding modes? Assuming a vibration mode $\mathbf{x}=\boldsymbol{\Phi} \sin (\omega t+\alpha)$,

$$
\left(-\omega^{2} \mathbf{M} \boldsymbol{\Phi}+\mathbf{K} \boldsymbol{\Phi}\right) \sin (\omega t+\alpha)=\mathbf{0} \Rightarrow \mathbf{K} \boldsymbol{\Phi}=\omega^{2} \mathbf{M} \boldsymbol{\Phi}
$$

Reduce as $\left(\mathbf{M}^{-1} \mathbf{K}\right) \boldsymbol{\Phi}=\omega^{2} \boldsymbol{\Phi}$? Why is it not a good idea?

Generalized Eigenvalue Problem

1-dof mass-spring system: $m \ddot{x}+k x=0$
Natural frequency of vibration: $\omega_{n}=\sqrt{\frac{k}{m}}$
Free vibration of n-dof system:

$$
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K} \mathbf{x}=\mathbf{0}
$$

Natural frequencies and corresponding modes? Assuming a vibration mode $\mathbf{x}=\boldsymbol{\Phi} \sin (\omega t+\alpha)$,

$$
\left(-\omega^{2} \mathbf{M} \boldsymbol{\Phi}+\mathbf{K} \boldsymbol{\Phi}\right) \sin (\omega t+\alpha)=\mathbf{0} \Rightarrow \mathbf{K} \boldsymbol{\Phi}=\omega^{2} \mathbf{M} \boldsymbol{\Phi}
$$

Reduce as $\left(\mathbf{M}^{-1} \mathbf{K}\right) \boldsymbol{\Phi}=\omega^{2} \boldsymbol{\Phi}$? Why is it not a good idea?
K symmetric, M symmetric and positive definite!!
With $\mathbf{M}=\mathbf{L} \mathbf{L}^{T}, \tilde{\boldsymbol{\Phi}}=\mathbf{L}^{T} \boldsymbol{\Phi}$ and $\tilde{\mathbf{K}}=\mathbf{L}^{-1} \mathbf{K} \mathbf{L}^{-T}$,

$$
\tilde{\mathbf{K}} \tilde{\boldsymbol{\Phi}}=\omega^{2} \tilde{\boldsymbol{\Phi}}
$$

Eigenvalues and Eigenvectors

Eigenvalues of transpose

Eigenvalues of \mathbf{A}^{T} are the same as those of \mathbf{A}.
Caution: Eigenvectors of \mathbf{A} and \mathbf{A}^{T} need not be same.

Eigenvalues and Eigenvectors

Eigenvalues of transpose

Eigenvalues of \mathbf{A}^{T} are the same as those of \mathbf{A}.
Caution: Eigenvectors of \mathbf{A} and \mathbf{A}^{T} need not be same.
Diagonal and block diagonal matrices
Eigenvalues of a diagonal matrix are its diagonal entries.
Corresponding eigenvectors: natural basis members ($\mathbf{e}_{1}, \mathbf{e}_{2}$ etc).

Eigenvalues of transpose
Eigenvalues of \mathbf{A}^{T} are the same as those of \mathbf{A}.
Caution: Eigenvectors of \mathbf{A} and \mathbf{A}^{T} need not be same.
Diagonal and block diagonal matrices
Eigenvalues of a diagonal matrix are its diagonal entries.
Corresponding eigenvectors: natural basis members ($\mathbf{e}_{1}, \mathbf{e}_{2}$ etc).
Eigenvalues of a block diagonal matrix: those of diagonal blocks.
Eigenvectors: coordinate extensions of individual eigenvectors.
With $\left(\lambda_{2}, \mathbf{v}_{2}\right)$ as eigenpair of block \mathbf{A}_{2},

$$
\mathbf{A v}_{2}=\left[\begin{array}{ccc}
\mathbf{A}_{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{A}_{\mathbf{3}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{v}_{2} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{A}_{2} \mathbf{v}_{2} \\
\mathbf{0}
\end{array}\right]=\lambda_{2}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{v}_{2} \\
\mathbf{0}
\end{array}\right]
$$

Mathematical Methods in Engineering and science
Some Basic Theoretical Result
Eigenvalues and Eigenvectors

Triangular and block triangular matrices
Eigenvalues of a triangular matrix are its diagonal entries.

Triangular and block triangular matrices Eigenvalues of a triangular matrix are its diagonal entries.
Eigenvalues of a block triangular matrix are the collection of eigenvalues of its diagonal blocks.

Some Basic Theoretical Results

Triangular and block triangular matrices

Eigenvalues of a triangular matrix are its diagonal entries.
Eigenvalues of a block triangular matrix are the collection of eigenvalues of its diagonal blocks.

Take

$$
\mathbf{H}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right], \quad \mathbf{A} \in R^{r \times r} \quad \text { and } \mathbf{C} \in R^{s \times s}
$$

Some Basic Theoretical Results

Triangular and block triangular matrices ${ }^{\text {power Method }}$
Eigenvalues of a triangular matrix are its diagonal entries.
Eigenvalues of a block triangular matrix are the collection of eigenvalues of its diagonal blocks.

Take

$$
\mathbf{H}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right], \quad \mathbf{A} \in R^{r \times r} \text { and } \mathbf{C} \in R^{s \times s}
$$

If $\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$, then

$$
\mathbf{H}\left[\begin{array}{l}
\mathbf{v} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{A} \mathbf{v} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{c}
\lambda \mathbf{v} \\
\mathbf{0}
\end{array}\right]=\lambda\left[\begin{array}{l}
\mathbf{v} \\
\mathbf{0}
\end{array}\right]
$$

Triangular and block triangular matrices
Eigenvalues of a triangular matrix are its diagonal entries.
Eigenvalues of a block triangular matrix are the collection of eigenvalues of its diagonal blocks.

Take

$$
\mathbf{H}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right], \quad \mathbf{A} \in R^{r \times r} \quad \text { and } \mathbf{C} \in R^{s \times s}
$$

If $\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$, then

$$
\mathbf{H}\left[\begin{array}{l}
\mathbf{v} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{A} \mathbf{v} \\
\mathbf{0}
\end{array}\right]=\left[\begin{array}{c}
\lambda \mathbf{v} \\
\mathbf{0}
\end{array}\right]=\lambda\left[\begin{array}{l}
\mathbf{v} \\
\mathbf{0}
\end{array}\right]
$$

If μ is an eigenvalue of \mathbf{C}, then it is also an eigenvalue of \mathbf{C}^{T} and

$$
\mathbf{C}^{T} \mathbf{w}=\mu \mathbf{w} \Rightarrow \mathbf{H}^{T}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{w}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}^{T} & \mathbf{0} \\
\mathbf{B}^{T} & \mathbf{C}^{T}
\end{array}\right]\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{w}
\end{array}\right]=\mu\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{w}
\end{array}\right]
$$

Eigenvalues and Eigenvectors

Shift theorem

Eigenvectors of $\mathbf{A}+\mu \mathbf{I}$ are the same as those of \mathbf{A}.
Eigenvalues: shifted by μ.

Some Basic Theoretical Results

Shift theorem

Eigenvectors of $\mathbf{A}+\mu \mathbf{I}$ are the same as those of \mathbf{A}.
Eigenvalues: shifted by μ.

Deflation

For a symmetric matrix \mathbf{A}, with mutually orthogonal eigenvectors, having $\left(\lambda_{j}, \mathbf{v}_{j}\right)$ as an eigenpair,

$$
\mathbf{B}=\mathbf{A}-\lambda_{j} \frac{\mathbf{v}_{j} \mathbf{v}_{j}^{T}}{\mathbf{v}_{j}^{T} \mathbf{v}_{j}}
$$

has the same eigenstructure as \mathbf{A}, except that the eigenvalue corresponding to \mathbf{v}_{j} is zero.

Eigenvalues and Eigenvectors

Eigenspace

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are eigenvectors of \mathbf{A} corresponding to the same eigenvalue λ, then

$$
\text { eigenspace: } \left.<\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\rangle
$$

Eigenvalues and Eigenvectors

Eigenspace

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are eigenvectors of \mathbf{A} corresponding to the same eigenvalue λ, then

$$
\text { eigenspace: } \left.<\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\rangle
$$

Similarity transformation

$\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}$: same transformation expressed in new basis.

Some Basic Theoretical Results

Eigenspace
If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are eigenvectors of \mathbf{A} corresponding to the same eigenvalue λ, then

```
eigenspace: < v}\mp@subsup{\mathbf{v}}{1}{},\mp@subsup{\mathbf{v}}{2}{},\cdots,\mp@subsup{\mathbf{v}}{k}{}
```


Similarity transformation

$\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}$: same transformation expressed in new basis.

$$
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\operatorname{det} \mathbf{S}^{-1} \operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) \operatorname{det} \mathbf{S}=\operatorname{det}(\lambda \mathbf{I}-\mathbf{B})
$$

Same characteristic polynomial!

Some Basic Theoretical Results

Eigenspace

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are eigenvectors of \mathbf{A} corresponding to the same eigenvalue λ, then

$$
\text { eigenspace: } \left.<\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\rangle
$$

Similarity transformation

$\mathbf{B}=\mathbf{S}^{-1} \mathbf{A S}$: same transformation expressed in new basis.

$$
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\operatorname{det} \mathbf{S}^{-1} \operatorname{det}(\lambda \mathbf{I}-\mathbf{A}) \operatorname{det} \mathbf{S}=\operatorname{det}(\lambda \mathbf{I}-\mathbf{B})
$$

Same characteristic polynomial!
Eigenvalues are the property of a linear transformation, not of the basis.

An eigenvector \mathbf{v} of \mathbf{A} transforms to $\mathbf{S}^{-1} \mathbf{v}$, as the corresponding eigenvector of \mathbf{B}.

Mathematical Methods in Engineering and Science
Eigenvalues and Eigenvectors
Power Method
Consider matrix \mathbf{A} with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and a full set of n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.

Matematiar Metods in Engineer
Power Method
Eigenvalues and Eigenvectors

Consider matrix \mathbf{A} with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and a full set of n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.
For vector $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}$,
$\mathbf{A}^{p} \mathbf{x}=\lambda_{1}^{p}\left[\alpha_{1} \mathbf{v}_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{p} \alpha_{2} \mathbf{v}_{2}+\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{p} \alpha_{3} \mathbf{v}_{3}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{p} \alpha_{n} \mathbf{v}_{n}\right]$

Power Method

Eigenvalues and Eigenvectors

Consider matrix \mathbf{A} with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and a full set of n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.
For vector $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}$,
$\mathbf{A}^{p} \mathbf{x}=\lambda_{1}^{p}\left[\alpha_{1} \mathbf{v}_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{p} \alpha_{2} \mathbf{v}_{2}+\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{p} \alpha_{3} \mathbf{v}_{3}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{p} \alpha_{n} \mathbf{v}_{n}\right]$
As $p \rightarrow \infty, \quad \mathbf{A}^{p} \mathbf{x} \rightarrow \lambda_{1}^{p} \alpha_{1} \mathbf{v}_{1}$, and

Power Method

Consider matrix \mathbf{A} with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and a full set of n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.
For vector $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}$,
$\mathbf{A}^{p} \mathbf{x}=\lambda_{1}^{p}\left[\alpha_{1} \mathbf{v}_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{p} \alpha_{2} \mathbf{v}_{2}+\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{p} \alpha_{3} \mathbf{v}_{3}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{p} \alpha_{n} \mathbf{v}_{n}\right]$
As $p \rightarrow \infty, \quad \mathbf{A}^{p} \mathbf{x} \rightarrow \lambda_{1}^{p} \alpha_{1} \mathbf{v}_{1}$, and

$$
\lambda_{1}=\lim _{p \rightarrow \infty} \frac{\left(\mathbf{A}^{p} \mathbf{x}\right)_{r}}{\left(\mathbf{A}^{p-1} \mathbf{x}\right)_{r}}, \quad r=1,2,3, \cdots, n
$$

Power Method

Consider matrix \mathbf{A} with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and a full set of n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.
For vector $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}$,
$\mathbf{A}^{p} \mathbf{x}=\lambda_{1}^{p}\left[\alpha_{1} \mathbf{v}_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{p} \alpha_{2} \mathbf{v}_{2}+\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{p} \alpha_{3} \mathbf{v}_{3}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{p} \alpha_{n} \mathbf{v}_{n}\right]$
As $p \rightarrow \infty, \quad \mathbf{A}^{p} \mathbf{x} \rightarrow \lambda_{1}^{p} \alpha_{1} \mathbf{v}_{1}$, and

$$
\lambda_{1}=\lim _{p \rightarrow \infty} \frac{\left(\mathbf{A}^{p} \mathbf{x}\right)_{r}}{\left(\mathbf{A}^{p-1} \mathbf{x}\right)_{r}}, \quad r=1,2,3, \cdots, n .
$$

At convergence, n ratios will be the same.

Power Method
Eigenvalues and Eigenvectors

Consider matrix \mathbf{A} with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and a full set of n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$.
For vector $\mathbf{x}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}$,
$\mathbf{A}^{p} \mathbf{x}=\lambda_{1}^{p}\left[\alpha_{1} \mathbf{v}_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{p} \alpha_{2} \mathbf{v}_{2}+\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{p} \alpha_{3} \mathbf{v}_{3}+\cdots+\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{p} \alpha_{n} \mathbf{v}_{n}\right]$
As $p \rightarrow \infty, \quad \mathbf{A}^{p} \mathbf{x} \rightarrow \lambda_{1}^{p} \alpha_{1} \mathbf{v}_{1}$, and

$$
\lambda_{1}=\lim _{p \rightarrow \infty} \frac{\left(\mathbf{A}^{p} \mathbf{x}\right)_{r}}{\left(\mathbf{A}^{p-1} \mathbf{x}\right)_{r}}, \quad r=1,2,3, \cdots, n .
$$

At convergence, n ratios will be the same.
Question: How to find the least magnitude eigenvalue?

Eigenvalues and Eigenvectors

- Meaning and context of the algebraic eigenvalue problem
- Fundamental deductions and vital relationships
- Power method as an inexpensive procedure to determine extremal magnitude eigenvalues

Necessary Exercises: 1,2,3,4,6

Diagonalization and Similarity Transformations

Diagonalizability
Canonical Forms
Symmetric Matrices
Similarity Transformations

Diagonalization and Similarity Transformations
Diagonalizability
Canonical Forms
Symmetric Matrices
Similarity Transformations
Consider $\mathbf{A} \in R^{n \times n}$, having n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$; with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$.

Diagonalizability

Diagonalizability
Canonical Forms
Symmetric Matrices
Similarity Transformations

Consider $\mathbf{A} \in R^{n \times n}$, having n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$; with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$.

$$
\left.\begin{array}{rl}
\mathbf{A S}= & \mathbf{A}\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2} & \cdots
\end{array} \lambda_{n} \mathbf{v}_{n}\right.
\end{array}\right]
$$

Consider $\mathbf{A} \in R^{n \times n}$, having n eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$; with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$.

$$
\left.\begin{array}{rl}
\mathbf{A S}= & \mathbf{A}\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\lambda_{1} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2} & \cdots
\end{array} \lambda_{n} \mathbf{v}_{n}\right.
\end{array}\right]
$$

Diagonalization: The process of changing the basis of a linear transformation so that its new matrix representation is diagonal, i.e. so that it is decoupled among its coordinates.

Mathematical Methods in Engineering and Science
Diagonalization and Similarity Transformations
Diagonalizability

Diagonalizability:

A matrix having a complete set of n linearly independent eigenvectors is diagonalizable.

Diagonalization and Similarity Transformations

Diagonalizability:

A matrix having a complete set of n linearly independent eigenvectors is diagonalizable.

Existence of a complete set of eigenvectors:
A diagonalizable matrix possesses a complete set of n linearly independent eigenvectors.

Diagonalizability:

A matrix having a complete set of n linearly independent eigenvectors is diagonalizable.

Existence of a complete set of eigenvectors:

A diagonalizable matrix possesses a complete set of n linearly independent eigenvectors.

- All distinct eigenvalues implies diagonalizability.
- But, diagonalizability does not imply distinct eigenvalues!
- However, a lack of diagonalizability certainly implies a multiplicity mismatch.
- Jordan canonical form (JCF)
- Diagonal (canonical) form
- Triangular (canonical) form

Dordan canonical form (JCF)

- Diagonal (canonical) form
- Triangular (canonical) form

Other convenient forms

- Tridiagonal form
- Hessenberg form

Mathematical Methods in Engineering and Science
Diagonalization and Similarity Transformations
Canonical Forms

Jordan canonical form (JCF): composed ofillordan blocks

$$
\mathbf{J}=\left[\begin{array}{llll}
\mathbf{J}_{1} & & & \\
& \mathbf{J}_{2} & & \\
& & \ddots & \\
& & & \mathbf{J}_{k}
\end{array}\right], \quad \mathbf{J}_{r}=\left[\begin{array}{lllll}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \lambda & \ddots & \\
& & & \ddots & 1 \\
& & & & \lambda
\end{array}\right]
$$

Mathematical Methods in Engineering and Science
Diagonalization and Similarity Transformations
Canonical Forms

Jordan canonical form (JCF): composed ofillordan blocks

$$
\mathbf{J}=\left[\begin{array}{llll}
\mathbf{J}_{1} & & & \\
& \mathbf{J}_{2} & & \\
& & \ddots & \\
& & & \mathbf{J}_{k}
\end{array}\right], \quad \mathbf{J}_{r}=\left[\begin{array}{lllll}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \lambda & \ddots & \\
& & & \ddots & 1 \\
& & & & \lambda
\end{array}\right]
$$

The key equation $\mathbf{A S}=\mathbf{S J}$ in extended form gives

$$
\mathbf{A}\left[\begin{array}{lll}
\cdots & \mathbf{S}_{r} & \cdots
\end{array}\right]=\left[\begin{array}{lll}
\cdots & \mathbf{S}_{r} & \cdots
\end{array}\right]\left[\begin{array}{lll}
\ddots & & \\
& & \mathbf{J}_{r} \\
& & \ddots
\end{array}\right],
$$

where Jordan block \mathbf{J}_{r} is associated with the subspace of

$$
\mathbf{S}_{r}=\left[\begin{array}{llll}
\mathbf{v} & \mathbf{w}_{2} & \mathbf{w}_{3} & \cdots
\end{array}\right]
$$

Mathematical Methods in Engineering and Science

Canonical Forms
Equating blocks as $\mathbf{A S}_{r}=\mathbf{S}_{r} \mathbf{J}_{r}$ gives

Diagonalizability
Canonical Forms
Symmetric Matrices
Similarity Transformations
$\left[\begin{array}{llll}\mathbf{A v} & \mathbf{A} \mathbf{w}_{2} & \mathbf{A} \mathbf{w}_{3} & \cdots\end{array}\right]=\left[\begin{array}{llll}\mathbf{v} & \mathbf{w}_{2} & \mathbf{w}_{3} & \cdots\end{array}\right]\left[\begin{array}{cccc}\lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & \ddots\end{array}\right]$

Canonical Forms

Equating blocks as $\mathbf{A S} \mathbf{S}_{r}=\mathbf{S}_{r} \mathbf{J}_{r}$ gives
$\left[\begin{array}{llll}\mathbf{A v} & \mathbf{A} \mathbf{w}_{2} & \mathbf{A} \mathbf{w}_{3} & \cdots\end{array}\right]=\left[\begin{array}{llll}\mathbf{v} & \mathbf{w}_{2} & \mathbf{w}_{3} & \cdots\end{array}\right]\left[\begin{array}{cccc}\lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & \ddots \\ & & & \ddots\end{array}\right]$
Columnwise equality leads to
$\mathbf{A} \mathbf{v}=\lambda \mathbf{v}, \quad \mathbf{A} \mathbf{w}_{2}=\mathbf{v}+\lambda \mathbf{w}_{2}, \quad \mathbf{A} \mathbf{w}_{3}=\mathbf{w}_{2}+\lambda \mathbf{w}_{3}, \cdots$

Canonical Forms
Equating blocks as $\mathbf{A S}_{r}=\mathbf{S}_{r} \mathbf{J}_{r}$ gives
$\left[\begin{array}{llll}\mathbf{A} \mathbf{v} & \mathbf{A} \mathbf{w}_{2} & \mathbf{A} \mathbf{w}_{3} & \cdots\end{array}\right]=\left[\begin{array}{llll}\mathbf{v} & \mathbf{w}_{2} & \mathbf{w}_{3} & \cdots\end{array}\right]\left[\begin{array}{llll}\lambda & 1 & & \\ & \lambda & 1 & \\ & & \lambda & \ddots \\ & & & \ddots\end{array}\right]$
Columnwise equality leads to

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}, \quad \mathbf{A} \mathbf{w}_{2}=\mathbf{v}+\lambda \mathbf{w}_{2}, \quad \mathbf{A} \mathbf{w}_{3}=\mathbf{w}_{2}+\lambda \mathbf{w}_{3}, \quad \cdots
$$

Generalized eigenvectors $\mathbf{w}_{2}, \mathbf{w}_{3}$ etc:

$$
\begin{array}{rll}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}, & & \\
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}_{2}=\mathbf{v} & \text { and } & (\mathbf{A}-\lambda \mathbf{I})^{2} \mathbf{w}_{2}=\mathbf{0}, \\
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}_{3}=\mathbf{w}_{2} & \text { and } \quad & (\mathbf{A}-\lambda \mathbf{I})^{3} \mathbf{w}_{3}=\mathbf{0},
\end{array}
$$

Diagonal form

- Special case of Jordan form, with each Jordan block of 1×1 size
- Matrix is diagonalizable
- Similarity transformation matrix \mathbf{S} is composed of n linearly independent eigenvectors as columns
- None of the eigenvectors admits any generalized eigenvector
- Equal geometric and algebraic multiplicities for every eigenvalue

Mathematical Methods in Engineering and Science
Canonical Forms

Triangular form
Triangularization: Change of basis of a linear tranformation so as to get its matrix in the triangular form

Triangular form

Triangularization: Change of basis of a linear tranformation so as to get its matrix in the triangular form

- For real eigenvalues, always possible to accomplish with orthogonal similarity transformation
- Always possible to accomplish with unitary similarity transformation, with complex arithmetic
- Determination of eigenvalues

Triangular form

Triangularization: Change of basis of a linear tranformation so as to get its matrix in the triangular form

- For real eigenvalues, always possible to accomplish with orthogonal similarity transformation
- Always possible to accomplish with unitary similarity transformation, with complex arithmetic
- Determination of eigenvalues

Note: The case of complex eigenvalues: 2×2 real diagonal block

$$
\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right] \sim\left[\begin{array}{cc}
\alpha+i \beta & 0 \\
0 & \alpha-i \beta
\end{array}\right]
$$

Diagonalization and Similarity Transformations

Forms that can be obtained with pre-determined number of arithmetic operations (without iteration):
Tridiagonal form: non-zero entries only in the (leading) diagonal, sub-diagonal and super-diagonal

- useful for symmetric matrices

Forms that can be obtained with pre-determined number of arithmetic operations (without iteration):
Tridiagonal form: non-zero entries only in the (leading) diagonal, sub-diagonal and super-diagonal

- useful for symmetric matrices

Hessenberg form: A slight generalization of a triangular matrix

$$
\mathbf{H}_{u}=\left[\begin{array}{cccccc}
* & * & * & \cdots & * & * \\
* & * & * & \cdots & * & * \\
& * & * & \cdots & * & * \\
& & \ddots & \ddots & \vdots & \vdots \\
& & & \ddots & \ddots & \vdots \\
& & & & * & *
\end{array}\right]
$$

Forms that can be obtained with pre-determined number of arithmetic operations (without iteration):
Tridiagonal form: non-zero entries only in the (leading) diagonal, sub-diagonal and super-diagonal

- useful for symmetric matrices

Hessenberg form: A slight generalization of a triangular matrix

$$
\mathbf{H}_{u}=\left[\begin{array}{cccccc}
* & * & * & \cdots & * & * \\
* & * & * & \cdots & * & * \\
& * & * & \cdots & * & * \\
& & \ddots & \ddots & \vdots & \vdots \\
& & & \ddots & \ddots & \vdots \\
& & & & * & *
\end{array}\right]
$$

Note: Tridiagonal and Hessenberg forms do not fall in the category of canonical forms.

Mathematical Methods in Engineering and Science

Symmetric Matrices

A real symmetric matrix has all real eigenvalues and is diagonalizable through an orthogonal similarity transformation.

Mathematical Methods in Engineering and Science

Symmetric Matrices

A real symmetric matrix has all real eigenvalues and is diagonalizable through an orthogonal similarity transformation.

- Eigenvalues must be real.

Similar results for complex Hermitian matrices.

Mathematical Methods in Engineering and Science

Symmetric Matrices

A real symmetric matrix has all real eigenvalues and is diagonalizable through an orthogonal similarity transformation.

- Eigenvalues must be real.
- A complete set of eigenvectors exists.

Similar results for complex Hermitian matrices.

Mathematical Methods in Engineering and Science

Symmetric Matrices

A real symmetric matrix has all real eigenvalues and is diagonalizable through an orthogonal similarity transformation.

- Eigenvalues must be real.

A complete set of eigenvectors exists.
D Eigenvectors corresponding to distinct eigenvalues are necessarily orthogonal.

Similar results for complex Hermitian matrices.

Mathematical Methods in Engineering and Science

Symmetric Matrices

A real symmetric matrix has all real eigenvalues and is diagonalizable through an orthogonal similarity transformation.

- Eigenvalues must be real.

D A complete set of eigenvectors exists.

- Eigenvectors corresponding to distinct eigenvalues are necessarily orthogonal.
Corresponding to repeated eigenvalues, orthogonal eigenvectors are available.

Similar results for complex Hermitian matrices.

A real symmetric matrix has all real eigenvalues and is diagonalizable through an orthogonal similarity transformation.

- Eigenvalues must be real.

D A complete set of eigenvectors exists.

- Eigenvectors corresponding to distinct eigenvalues are necessarily orthogonal.
Corresponding to repeated eigenvalues, orthogonal eigenvectors are available.

In all cases of a symmetric matrix, we can form an orthogonal matrix \mathbf{V}, such that $\mathbf{V}^{T} \mathbf{A} \mathbf{V}=\Lambda$ is a real diagonal matrix.
curther, $\mathbf{A}=\mathbf{V} \wedge \mathbf{V}^{\top}$.
Similar results for complex Hermitian matrices.

Mathematical Methods in Engineering and Science
Diagonalization and Similarity Transformations

Symmetric Matrices

Proposition: Eigenvalues of a real symmetric matrix must be real.

Mathematical Methods in Engineering and Science

Symmetric Matrices

Proposition: Eigenvalues of a real symmetric matrix must be real.
Take $\mathbf{A} \in R^{n \times n}$ such that $\mathbf{A}=\mathbf{A}^{T}$, with eigenvalue $\lambda=h+i k$.

$$
k=0 \text { and } \lambda=h
$$

Mathematical Methods in Engineering and Science
Symmetric Matrices
Diagonalization and Similarity Transformations

Proposition: Eigenvalues of a real symmetric matrix must be real.
Take $\mathbf{A} \in R^{n \times n}$ such that $\mathbf{A}=\mathbf{A}^{T}$, with eigenvalue $\lambda=h+i k$.
Since $\lambda \mathbf{I}-\mathbf{A}$ is singular, so is

$$
\begin{aligned}
\mathbf{B} & =(\lambda \mathbf{I}-\mathbf{A})(\bar{\lambda} \mathbf{l}-\mathbf{A})=(h \mathbf{l}-\mathbf{A}+i k \mathbf{l})(h \mathbf{l}-\mathbf{A}-i k \mathbf{l}) \\
& =(h \mathbf{I}-\mathbf{A})^{2}+k^{2} \mathbf{l}
\end{aligned}
$$

$$
k=0 \text { and } \lambda=h
$$

Mathematical Methods in Engineering and Science
Symmetric Matrices

Proposition: Eigenvalues of a real symmetric matrix must be real.
Take $\mathbf{A} \in R^{n \times n}$ such that $\mathbf{A}=\mathbf{A}^{T}$, with eigenvalue $\lambda=h+i k$.
Since $\lambda \mathbf{I}-\mathbf{A}$ is singular, so is

$$
\begin{aligned}
\mathbf{B} & =(\lambda \mathbf{I}-\mathbf{A})(\bar{\lambda} \mathbf{l}-\mathbf{A})=(h \mathbf{l}-\mathbf{A}+i k \mathbf{l})(h \mathbf{l}-\mathbf{A}-i k \mathbf{l}) \\
& =(h \mathbf{I}-\mathbf{A})^{2}+k^{2} \mathbf{l}
\end{aligned}
$$

For some $\mathbf{x} \neq \mathbf{0}, \quad \mathbf{B x}=\mathbf{0}$, and

$$
\mathbf{x}^{T} \mathbf{B} \mathbf{x}=0 \Rightarrow \mathbf{x}^{T}(h \mathbf{I}-\mathbf{A})^{T}(h \mathbf{I}-\mathbf{A}) \mathbf{x}+k^{2} \mathbf{x}^{T} \mathbf{x}=0
$$

$$
k=0 \text { and } \lambda=h
$$

Mathematical Methods in Engineering and Science

Symmetric Matrices

Proposition: Eigenvalues of a real symmetric matrix must be real.
Take $\mathbf{A} \in R^{n \times n}$ such that $\mathbf{A}=\mathbf{A}^{T}$, with eigenvalue $\lambda=h+i k$.
Since $\lambda \mathbf{I}-\mathbf{A}$ is singular, so is

$$
\begin{aligned}
\mathbf{B} & =(\lambda \mathbf{I}-\mathbf{A})(\bar{\lambda} \mathbf{I}-\mathbf{A})=(h \mathbf{l}-\mathbf{A}+i k \mathbf{l})(h \mathbf{l}-\mathbf{A}-i k \mathbf{l}) \\
& =(h \mathbf{l}-\mathbf{A})^{2}+k^{2} \mathbf{l}
\end{aligned}
$$

For some $\mathbf{x} \neq \mathbf{0}, \quad \mathbf{B x}=\mathbf{0}$, and

$$
\mathbf{x}^{T} \mathbf{B} \mathbf{x}=0 \Rightarrow \mathbf{x}^{T}(h \mathbf{I}-\mathbf{A})^{T}(h \mathbf{I}-\mathbf{A}) \mathbf{x}+k^{2} \mathbf{x}^{T} \mathbf{x}=0
$$

Thus, $\|(h \mathbf{l}-\mathbf{A}) \mathbf{x}\|^{2}+\|k \mathbf{x}\|^{2}=0$

$$
k=0 \text { and } \lambda=h
$$

Mathematical Methods in Engineering and Science
Diagonalization and Similarity Transformations

Symmetric Matrices

Proposition: A symmetric matrix possesses a complete set of eigenvectors.

Mathematical Methods in Engineering and Science
Diagonalization and Similarity Transformations

Symmetric Matrices

Proposition: A symmetric matrix possesses a complete set of eigenvectors.

Consider a repeated real eigenvalue λ of \mathbf{A} and examine its Jordan block(s).

Mathematical Methods in Engineering and Science

Symmetric Matrices

Proposition: A symmetric matrix possesses a complete set of eigenvectors.

Consider a repeated real eigenvalue λ of \mathbf{A} and examine its Jordan block(s).

Suppose $\mathbf{A v}=\lambda \mathbf{v}$.
The first generalized eigenvector \mathbf{w} satisfies $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}$, giving

$$
\begin{aligned}
\mathbf{v}^{T}(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}^{T} \mathbf{v} & \Rightarrow \mathbf{v}^{T} \mathbf{A}^{T} \mathbf{w}-\lambda \mathbf{v}^{T} \mathbf{w}=\mathbf{v}^{T} \mathbf{v} \\
& \Rightarrow(\mathbf{A} \mathbf{v})^{T} \mathbf{w}-\lambda \mathbf{v}^{T} \mathbf{w}=\|\mathbf{v}\|^{2} \\
& \Rightarrow\|\mathbf{v}\|^{2}=0
\end{aligned}
$$

which is absurd.

All Jordan blocks will be of 1×1 size.

Mathematical Methods in Engineering and Science

Symmetric Matrices

Proposition: A symmetric matrix possesses a complete set of eigenvectors.

Consider a repeated real eigenvalue λ of \mathbf{A} and examine its Jordan block(s).

Suppose $\mathbf{A v}=\lambda \mathbf{v}$.
The first generalized eigenvector \mathbf{w} satisfies $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}$, giving

$$
\begin{aligned}
\mathbf{v}^{T}(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}^{T} \mathbf{v} & \Rightarrow \mathbf{v}^{T} \mathbf{A}^{T} \mathbf{w}-\lambda \mathbf{v}^{T} \mathbf{w}=\mathbf{v}^{T} \mathbf{v} \\
& \Rightarrow(\mathbf{A} \mathbf{v})^{T} \mathbf{w}-\lambda \mathbf{v}^{T} \mathbf{w}=\|\mathbf{v}\|^{2} \\
& \Rightarrow\|\mathbf{v}\|^{2}=0
\end{aligned}
$$

which is absurd.
An eigenvector will not admit a generalized eigenvector.
All Jordan blocks will be of 1×1 size.

Mathematical Methods in Engineering and Science
Diagonalization and Similarity Transformations

Symmetric Matrices

Proposition: Eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are necessarily orthogonal.

Mathematical Methods in Engineering and Science
Diagonalization and Similarity Transformations

Symmetric Matrices

Diagonalizability
Canonical Forms
Symmetric Matrices
Similarity Transformations

Proposition: Eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are necessarily orthogonal.
Take two eigenpairs $\left(\lambda_{1}, \mathbf{v}_{1}\right)$ and $\left(\lambda_{2}, \mathbf{v}_{2}\right)$, with $\lambda_{1} \neq \lambda_{2}$.

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{2}=0
$$

Mathematical Methods in Engineering and Science

Symmetric Matrices

Proposition: Eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are necessarily orthogonal.
Take two eigenpairs $\left(\lambda_{1}, \mathbf{v}_{1}\right)$ and $\left(\lambda_{2}, \mathbf{v}_{2}\right)$, with $\lambda_{1} \neq \lambda_{2}$.

$$
\begin{aligned}
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{2} & =\mathbf{v}_{1}^{T}\left(\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{1}^{T} \mathbf{v}_{2} \\
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{2} & =\mathbf{v}_{1}^{T} \mathbf{A}^{T} \mathbf{v}_{2}=\left(\mathbf{A} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\left(\lambda_{1} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\lambda_{1} \mathbf{v}_{1}^{T} \mathbf{v}_{2}
\end{aligned}
$$

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{2}=0
$$

Mathematical Methods in Engineering and Science

Symmetric Matrices

Proposition: Eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are necessarily orthogonal.
Take two eigenpairs $\left(\lambda_{1}, \mathbf{v}_{1}\right)$ and $\left(\lambda_{2}, \mathbf{v}_{2}\right)$, with $\lambda_{1} \neq \lambda_{2}$.

$$
\begin{aligned}
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{2} & =\mathbf{v}_{1}^{T}\left(\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{1}^{T} \mathbf{v}_{2} \\
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{2} & =\mathbf{v}_{1}^{T} \mathbf{A}^{T} \mathbf{v}_{2}=\left(\mathbf{A} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\left(\lambda_{1} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\lambda_{1} \mathbf{v}_{1}^{T} \mathbf{v}_{2}
\end{aligned}
$$

From the two expressions, $\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1}^{T} \mathbf{v}_{2}=0$

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{2}=0
$$

Mathematical Methods in Engineering and Science

Symmetric Matrices

Proposition: Eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are necessarily orthogonal.
Take two eigenpairs $\left(\lambda_{1}, \mathbf{v}_{1}\right)$ and $\left(\lambda_{2}, \mathbf{v}_{2}\right)$, with $\lambda_{1} \neq \lambda_{2}$.

$$
\begin{aligned}
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{2} & =\mathbf{v}_{1}^{T}\left(\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{1}^{T} \mathbf{v}_{2} \\
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{2} & =\mathbf{v}_{1}^{T} \mathbf{A}^{T} \mathbf{v}_{2}=\left(\mathbf{A} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\left(\lambda_{1} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\lambda_{1} \mathbf{v}_{1}^{T} \mathbf{v}_{2}
\end{aligned}
$$

From the two expressions, $\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1}^{T} \mathbf{v}_{2}=0$

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{2}=0
$$

Proposition: Corresponding to a repeated eigenvalue of a symmetric matrix, an appropriate number of orthogonal eigenvectors can be selected.

Mathematical Methods in Engineering and Science

Symmetric Matrices

Proposition: Eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are necessarily orthogonal.
Take two eigenpairs $\left(\lambda_{1}, \mathbf{v}_{1}\right)$ and $\left(\lambda_{2}, \mathbf{v}_{2}\right)$, with $\lambda_{1} \neq \lambda_{2}$.

$$
\begin{aligned}
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{2} & =\mathbf{v}_{1}^{T}\left(\lambda_{2} \mathbf{v}_{2}\right)=\lambda_{2} \mathbf{v}_{1}^{T} \mathbf{v}_{2} \\
\mathbf{v}_{1}^{T} \mathbf{A} \mathbf{v}_{2} & =\mathbf{v}_{1}^{T} \mathbf{A}^{T} \mathbf{v}_{2}=\left(\mathbf{A} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\left(\lambda_{1} \mathbf{v}_{1}\right)^{T} \mathbf{v}_{2}=\lambda_{1} \mathbf{v}_{1}^{T} \mathbf{v}_{2}
\end{aligned}
$$

From the two expressions, $\left(\lambda_{1}-\lambda_{2}\right) \mathbf{v}_{1}^{T} \mathbf{v}_{2}=0$

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{2}=0
$$

Proposition: Corresponding to a repeated eigenvalue of a symmetric matrix, an appropriate number of orthogonal eigenvectors can be selected.
If $\lambda_{1}=\lambda_{2}$, then the entire subspace $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$ is an eigenspace. Select any two mutually orthogonal eigenvectors for the basis.

Mathematical Methods in Engineering and Science

Symmetric Matrices

Diagonalization and Similarity Transformations

Facilities with the 'omnipresent' symmetric matrices.

- Expression
$\mathbf{A}=\mathbf{V} \wedge \mathbf{V}^{T}$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\lambda_{1} \mathbf{v}_{1} \mathbf{v}_{1}^{T}+\lambda_{2} \mathbf{v}_{2} \mathbf{v}_{2}^{T}+\cdots+\lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{T}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
\end{aligned}
$$

Mathematical Methods in Engineering and Science

Symmetric Matrices

Facilities with the 'omnipresent' symmetric simatrices: Transformations

- Expression

$$
\mathbf{A}=\mathbf{V} \wedge \mathbf{V}^{T}
$$

$$
\begin{aligned}
& =\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\lambda_{1} \mathbf{v}_{1} \mathbf{v}_{1}^{T}+\lambda_{2} \mathbf{v}_{2} \mathbf{v}_{2}^{T}+\cdots+\lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{T}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
\end{aligned}
$$

- Reconstruction from a sum of rank-one components
- Efficient storage with only large eigenvalues and corresponding eigenvectors

Symmetric Matrices

Facilities with the 'omnipresent' symmetric matrices formations

- Expression

$$
\begin{aligned}
\mathbf{A} & =\mathbf{V} \wedge \mathbf{V}^{T} \\
& =\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T} \\
\vdots \\
\mathbf{v}_{n}^{T}
\end{array}\right] \\
& =\lambda_{1} \mathbf{v}_{1} \mathbf{v}_{1}^{T}+\lambda_{2} \mathbf{v}_{2} \mathbf{v}_{2}^{T}+\cdots+\lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{T}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
\end{aligned}
$$

- Reconstruction from a sum of rank-one components
- Efficient storage with only large eigenvalues and corresponding eigenvectors
- Deflation technique
- Stable and effective methods: easier to solve the eigenvalue problem

Mathematical Methods in Engineering and Science

Similarity Transformations

Figure: Eigenvalue problem: forms and steps

Mathematical Methods in Engineering and Science

Similarity Transformations

Figure: Eigenvalue problem: forms and steps

How to find suitable similarity transformations?

Similarity Transformations

Figure: Eigenvalue problem: forms and steps

How to find suitable similarity transformations?

1. rotation
2. reflection
3. matrix decomposition or factorization
4. elementary transformation

Points to note

- Generally possible reduction: Jordan canonical form
- Condition of diagonalizability and the diagonal form
- Possible with orthogonal similarity transformations: triangular form
- Useful non-canonical forms: tridiagonal and Hessenberg
- Orthogonal diagonalization of symmetric matrices

Caution: Each step in this context to be effected through similarity transformations

Necessary Exercises: 1,2,4

Jacobi and Givens Rotation Methods (for symmetric matrices)
Plane Rotations
Jacobi Rotation Method
Givens Rotation Method

Jacobi and Givens Rotation Methods

Figure: Rotation of axes and change of basis

Jacobi and Givens Rotation Methods

Figure: Rotation of axes and change of basis

$$
\begin{aligned}
& x=O L+L M=O L+K N=x^{\prime} \cos \phi+y^{\prime} \sin \phi \\
& y=P N-M N=P N-L K=y^{\prime} \cos \phi-x^{\prime} \sin \phi
\end{aligned}
$$

Mathematical Methods in Engineering and Science
Jacobi and Givens Rotation Methods

Orthogonal change of basis:

$$
\mathbf{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\Re \mathbf{r}^{\prime}
$$

Mathematical Methods in Engineering and Science
Jacobi and Givens Rotation Methods

Orthogonal change of basis:

$$
\mathbf{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\Re \mathbf{r}^{\prime}
$$

Mapping of position vectors with

$$
\Re^{-1}=\Re^{T}=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

Orthogonal change of basis:

$$
\mathbf{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{rr}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\Re \mathbf{r}^{\prime}
$$

Mapping of position vectors with

$$
\Re^{-1}=\Re^{T}=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

In three-dimensional (ambient) space,

$$
\Re_{x y}=\left[\begin{array}{rrr}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right], \Re_{x z}=\left[\begin{array}{rrr}
\cos \phi & 0 & \sin \phi \\
0 & 1 & 0 \\
-\sin \phi & 0 & \cos \phi
\end{array}\right] \text { etc. }
$$

lathematical Methods in Engineering and Science
Jacobi and Givens Rotation Methods
Plane Rotations
Generalizing to n-dimensional Euclidean space $\left(R^{n}\right)$,

$$
\mathbf{P}_{p q}=\left[\begin{array}{ccccccccccc}
1 & & & & 0 & & & & 0 & & \\
& 1 & & & 0 & & & & 0 & & \\
& & \ddots & & \vdots & & & & \vdots & & \\
& & & 1 & 0 & & & & 0 & & \\
0 & 0 & \cdots & 0 & c & 0 & \cdots & 0 & s & \cdots & 0 \\
& & & & 0 & 1 & & & 0 & & \\
& & & & \vdots & & \ddots & & \vdots & & \\
& & & & 0 & & & 1 & 0 & & \\
0 & 0 & \cdots & 0 & -s & 0 & \cdots & 0 & c & \cdots & 0 \\
& & & & \vdots & & & & \vdots & \ddots & \\
& & & & 0 & & & & 0 & & 1
\end{array}\right]
$$

Jacobi and Givens Rotation Methods

Generalizing to n-dimensional Euclidean space (R^{n}),

$$
\mathbf{P}_{p q}=\left[\begin{array}{ccccccccccc}
1 & & & & 0 & & & & 0 & & \\
& 1 & & & 0 & & & & 0 & & \\
& & \ddots & & \vdots & & & & \vdots & & \\
& & & 1 & 0 & & & & 0 & & \\
0 & 0 & \cdots & 0 & c & 0 & \cdots & 0 & s & \cdots & 0 \\
& & & & 0 & 1 & & & 0 & & \\
& & & & \vdots & & \ddots & & \vdots & & \\
& & & & 0 & & & 1 & 0 & & \\
0 & 0 & \cdots & 0 & -s & 0 & \cdots & 0 & c & \cdots & 0 \\
& & & & \vdots & & & & \vdots & \ddots & \\
& & & & 0 & & & & 0 & & 1
\end{array}\right]
$$

Matrix A is transformed as

$$
\mathbf{A}^{\prime}=\mathbf{P}_{p q}^{-1} \mathbf{A} \mathbf{P}_{p q}=\mathbf{P}_{p q}^{T} \mathbf{A} \mathbf{P}_{p q}
$$

only the p-th and q-th rows and columns being affected.

Jacobi and Givens Rotation Methods

$$
\begin{aligned}
a_{p r}^{\prime}=a_{r p}^{\prime} & =c a_{r p}-s a_{r q} \text { for } p \neq r \neq q \\
a_{q r}^{\prime}=a_{r q}^{\prime} & =c a_{r q}+s a_{r p} \text { for } p \neq r \neq q \\
a_{p p}^{\prime} & =c^{2} a_{p p}+s^{2} a_{q q}-2 s c a_{p q} \\
a_{q q}^{\prime} & =s^{2} a_{p p}+c^{2} a_{q q}+2 s c a_{p q}, \text { and } \\
a_{p q}^{\prime}=a_{q p}^{\prime} & =\left(c^{2}-s^{2}\right) a_{p q}+s c\left(a_{p p}-a_{q q}\right)
\end{aligned}
$$

$$
\begin{aligned}
a_{p r}^{\prime}=a_{r p}^{\prime} & =c a_{r p}-s a_{r q} \text { for } p \neq r \neq q \\
a_{q r}^{\prime}=a_{r q}^{\prime} & =c a_{r q}+s a_{r p} \text { for } p \neq r \neq q \\
a_{p p}^{\prime} & =c^{2} a_{p p}+s^{2} a_{q q}-2 s c a_{p q} \\
a_{q q}^{\prime} & =s^{2} a_{p p}+c^{2} a_{q q}+2 s c a_{p q}, \text { and } \\
a_{p q}^{\prime}=a_{q p}^{\prime} & =\left(c^{2}-s^{2}\right) a_{p q}+s c\left(a_{p p}-a_{q q}\right)
\end{aligned}
$$

In a Jacobi rotation,

$$
a_{p q}^{\prime}=0 \Rightarrow \frac{c^{2}-s^{2}}{2 s c}=\frac{a_{q q}-a_{p p}}{2 a_{p q}}=k \quad(\text { say })
$$

Left side is $\cot 2 \phi$: solve this equation for ϕ.

Jacobi and Givens Rotation Methods

$$
\begin{aligned}
a_{p r}^{\prime}=a_{r p}^{\prime} & =c a_{r p}-s a_{r q} \text { for } p \neq r \neq q \\
a_{q r}^{\prime}=a_{r q}^{\prime} & =c a_{r q}+s a_{r p} \text { for } p \neq r \neq q \\
a_{p p}^{\prime} & =c^{2} a_{p p}+s^{2} a_{q q}-2 s c a_{p q} \\
a_{q q}^{\prime} & =s^{2} a_{p p}+c^{2} a_{q q}+2 s c a_{p q}, \text { and } \\
a_{p q}^{\prime}=a_{q p}^{\prime} & =\left(c^{2}-s^{2}\right) a_{p q}+s c\left(a_{p p}-a_{q q}\right)
\end{aligned}
$$

In a Jacobi rotation,

$$
a_{p q}^{\prime}=0 \Rightarrow \frac{c^{2}-s^{2}}{2 s c}=\frac{a_{q q}-a_{p p}}{2 a_{p q}}=k \quad(\text { say })
$$

Left side is $\cot 2 \phi$: solve this equation for ϕ.
Jacobi rotation transformations $\mathbf{P}_{12}, \mathbf{P}_{13}, \cdots, \mathbf{P}_{1 n} ; \mathbf{P}_{23}, \cdots, \mathbf{P}_{2 n}$;
$\cdots ; \mathbf{P}_{n-1, n}$ complete a full sweep.

Jacobi and Givens Rotation Methods

$$
\begin{aligned}
a_{p r}^{\prime}=a_{r p}^{\prime} & =c a_{r p}-s a_{r q} \text { for } p \neq r \neq q \\
a_{q r}^{\prime}=a_{r q}^{\prime} & =c a_{r q}+s a_{r p} \text { for } p \neq r \neq q \\
a_{p p}^{\prime} & =c^{2} a_{p p}+s^{2} a_{q q}-2 s c a_{p q} \\
a_{q q}^{\prime} & =s^{2} a_{p p}+c^{2} a_{q q}+2 s c a_{p q}, \text { and } \\
a_{p q}^{\prime}=a_{q p}^{\prime} & =\left(c^{2}-s^{2}\right) a_{p q}+s c\left(a_{p p}-a_{q q}\right)
\end{aligned}
$$

In a Jacobi rotation,

$$
a_{p q}^{\prime}=0 \Rightarrow \frac{c^{2}-s^{2}}{2 s c}=\frac{a_{q q}-a_{p p}}{2 a_{p q}}=k \quad(\text { say }) .
$$

Left side is $\cot 2 \phi$: solve this equation for ϕ.
Jacobi rotation transformations $\mathbf{P}_{12}, \mathbf{P}_{13}, \cdots, \mathbf{P}_{1 n} ; \mathbf{P}_{23}, \cdots, \mathbf{P}_{2 n}$;
$\cdots ; \mathbf{P}_{n-1, n}$ complete a full sweep.
Note: The resulting matrix is far from diagonal!

Mathematical methods in Engineering and science
Jacobi Rotation Method
Jacobi and Givens Rotation Methods

Sum of squares of off-diagonal terms before the transformation

$$
\begin{aligned}
S & =\sum_{r \neq s}\left|a_{r s}\right|^{2}=2\left[\sum_{r \neq p} a_{r p}^{2}+\sum_{p \neq r \neq q} a_{r q}^{2}\right] \\
& =2\left[\sum_{p \neq r \neq q}\left(a_{r p}^{2}+a_{r q}^{2}\right)+a_{p q}^{2}\right]
\end{aligned}
$$

Jacobi and Givens Rotation Methods

Sum of squares of off-diagonal terms before the transformation

$$
\begin{aligned}
S & =\sum_{r \neq s}\left|a_{r s}\right|^{2}=2\left[\sum_{r \neq p} a_{r p}^{2}+\sum_{p \neq r \neq q} a_{r q}^{2}\right] \\
& =2\left[\sum_{p \neq r \neq q}\left(a_{r p}^{2}+a_{r q}^{2}\right)+a_{p q}^{2}\right]
\end{aligned}
$$

and that afterwards

$$
\begin{aligned}
S^{\prime} & =2\left[\sum_{p \neq r \neq q}\left(a_{r p}^{\prime 2}+a_{r q}^{\prime 2}\right)+a_{p q}^{\prime 2}\right] \\
& =2 \sum_{p \neq r \neq q}\left(a_{r p}^{2}+a_{r q}^{2}\right)
\end{aligned}
$$

Jacobi and Givens Rotation Methods

Sum of squares of off-diagonal terms before the transformation

$$
\begin{aligned}
S & =\sum_{r \neq s}\left|a_{r s}\right|^{2}=2\left[\sum_{r \neq p} a_{r p}^{2}+\sum_{p \neq r \neq q} a_{r q}^{2}\right] \\
& =2\left[\sum_{p \neq r \neq q}\left(a_{r p}^{2}+a_{r q}^{2}\right)+a_{p q}^{2}\right]
\end{aligned}
$$

and that afterwards

$$
\begin{aligned}
S^{\prime} & =2\left[\sum_{p \neq r \neq q}\left(a_{r p}^{\prime 2}+a_{r q}^{\prime 2}\right)+a_{p q}^{\prime 2}\right] \\
& =2 \sum_{p \neq r \neq q}\left(a_{r p}^{2}+a_{r q}^{2}\right)
\end{aligned}
$$

differ by

$$
\Delta S=S^{\prime}-S=-2 a_{p q}^{2} \leq 0 ; \quad \text { and } S \rightarrow 0
$$

Mathematical Methods in Engineering and Science
Givens Rotation Method
Jacobi and Givens Rotation Methods

While applying the rotation $\mathbf{P}_{p q}$, demand $a_{r q}^{\prime}=0: \tan \phi=-\frac{a_{r q}}{a_{r p}}$

While applying the rotation $\mathbf{P}_{p q}$, demand $a_{r q}^{\prime}=0: \tan \phi=-\frac{a_{r q}}{a_{r p}}$
$r=p-1$: Givens rotation

- Once $a_{p-1, q}$ is annihilated, it is never updated again!

Givens Rotation Method

While applying the rotation $\mathbf{P}_{p q}$, demand $a_{r q}^{\prime}=0: \tan \phi=-\frac{a_{r q}}{a_{r p}}$
$r=p-1$: Givens rotation

- Once $a_{p-1, q}$ is annihilated, it is never updated again!

Sweep $\mathbf{P}_{23}, \mathbf{P}_{24}, \cdots, \mathbf{P}_{2 n} ; \mathbf{P}_{34}, \cdots, \mathbf{P}_{3 n} ; \cdots ; \mathbf{P}_{n-1, n}$ to annihilate $a_{13}, a_{14}, \cdots, a_{1 n} ; a_{24}, \cdots, a_{2 n} ; \cdots ; a_{n-2, n}$.

> Symmetric tridiagonal matrix

Givens Rotation Method

While applying the rotation $\mathbf{P}_{p q}$, demand $a_{r q}^{\prime}=0: \tan \phi=-\frac{a r q}{a_{r p}}$
$r=p-1$: Givens rotation

- Once $a_{p-1, q}$ is annihilated, it is never updated again!

Sweep $\mathbf{P}_{23}, \mathbf{P}_{24}, \cdots, \mathbf{P}_{2 n} ; \mathbf{P}_{34}, \cdots, \mathbf{P}_{3 n} ; \cdots ; \mathbf{P}_{n-1, n}$ to annihilate $a_{13}, a_{14}, \cdots, a_{1 n} ; a_{24}, \cdots, a_{2 n} ; \cdots ; a_{n-2, n}$.

> Symmetric tridiagonal matrix

How do eigenvectors transform through Jacobi/Givens rotation steps?

$$
\tilde{\mathbf{A}}=\cdots \mathbf{P}^{(2)^{T}} \mathbf{P}^{(1)^{T}} \mathbf{A} \mathbf{P}^{(1)} \mathbf{P}^{(2)} \ldots
$$

Product matrix $\mathbf{P}^{(1)} \mathbf{P}^{(2)} \ldots$ gives the basis.

Givens Rotation Method

Jacobi and Givens Rotation Methods

While applying the rotation $\mathbf{P}_{p q}$, demand $a_{r q}^{\prime}=0: \tan \phi=-\frac{a_{r q}}{a_{r p}}$
$r=p-1$: Givens rotation

- Once $a_{p-1, q}$ is annihilated, it is never updated again!

Sweep $\mathbf{P}_{23}, \mathbf{P}_{24}, \cdots, \mathbf{P}_{2 n} ; \mathbf{P}_{34}, \cdots, \mathbf{P}_{3 n} ; \cdots ; \mathbf{P}_{n-1, n}$ to annihilate $a_{13}, a_{14}, \cdots, a_{1 n} ; a_{24}, \cdots, a_{2 n} ; \cdots ; a_{n-2, n}$.

> Symmetric tridiagonal matrix

How do eigenvectors transform through Jacobi/Givens rotation steps?

$$
\tilde{\mathbf{A}}=\cdots \mathbf{P}^{(2)^{T}} \mathbf{P}^{(1)^{T}} \mathbf{A} \mathbf{P}^{(1)} \mathbf{P}^{(2)} \ldots
$$

Product matrix $\mathbf{P}^{(1)} \mathbf{P}^{(2)} \ldots$ gives the basis.
To record it, initialize \mathbf{V} by identity and keep multiplying new rotation matrices on the right side.

Jacobi and Givens Rotation Methods

Contrast between Jacobi and Givens rotation methods

- What happens to intermediate zeros?
- What do we get after a complete sweep?
- How many sweeps are to be applied?
- What is the intended final form of the matrix?
- How is size of the matrix relevant in the choice of the method?

Givens Rotation Method

Jacobi and Givens Rotation Methods

Contrast between Jacobi and Givens rotation methods

- What happens to intermediate zeros?
- What do we get after a complete sweep?
- How many sweeps are to be applied?
- What is the intended final form of the matrix?
- How is size of the matrix relevant in the choice of the method?

Fast forward ...

- Householder method accomplishes 'tridiagonalization' more efficiently than Givens rotation method.
- But, with a half-processed matrix, there come situations in which Givens rotation method turns out to be more efficient!

Rotation transformation on symmetric matrices

- Plane rotations provide orthogonal change of basis that can be used for diagonalization of matrices.
- For small matrices (say $4 \leq n \leq 8$), Jacobi rotation sweeps are competitive enough for diagonalization upto a reasonable tolerance.
- For large matrices, one sweep of Givens rotations can be applied to get a symmetric tridiagonal matrix, for efficient further processing.

Necessary Exercises: 2,3,4

Householder Transformation and Tridiagonal Matrices Householder Reflection Transformation Householder Method Eigenvalues of Symmetric Tridiagonal Matrices

Figure: Vectors in Householder reflection

Consider $\mathbf{u}, \mathbf{v} \in R^{k}, \quad\|\mathbf{u}\|=\|\mathbf{v}\|$ and $\mathbf{w}=\frac{\mathbf{u}-\mathbf{v}}{\|\mathbf{u}-\mathbf{v}\|}$.

athematical Methods in Engineering and Science

Householder Transformation and Tridiagonal Matrices

Householder Reflection Transformatiohbusenoldorer Refection Transformation

Eigenvalues of Symmetric Tridiagonal Matrices

Figure: Vectors in Householder reflection

Consider $\mathbf{u}, \mathbf{v} \in R^{k}, \quad\|\mathbf{u}\|=\|\mathbf{v}\|$ and $\mathbf{w}=\frac{\mathbf{u}-\mathbf{v}}{\|\mathbf{u}-\mathbf{v}\|}$.

Householder reflection matrix

$$
\mathbf{H}_{k}=\mathbf{I}_{k}-2 \mathbf{w} \mathbf{w}^{T}
$$

is symmetric and orthogonal.

athematical Methods in Engineering and Science

Householder Transformation and Tridiagonal Matrices

Householder Reflection Transformatiohisusenoldorer Refelection Transformation

Eigenvalues of Symmetric Tridiagonal Matrices

Figure: Vectors in Householder reflection

Consider $\mathbf{u}, \mathbf{v} \in R^{k}, \quad\|\mathbf{u}\|=\|\mathbf{v}\|$ and $\mathbf{w}=\frac{\mathbf{u}-\mathbf{v}}{\|\mathbf{u}-\mathbf{v}\|}$.

Householder reflection matrix

$$
\mathbf{H}_{k}=\mathbf{I}_{k}-2 \mathbf{w} \mathbf{w}^{T}
$$

is symmetric and orthogonal.
For any vector \mathbf{x} orthogonal to \mathbf{w},
$\mathbf{H}_{k} \mathbf{x}=\left(\mathbf{I}_{k}-2 \mathbf{w} \mathbf{w}^{T}\right) \mathbf{x}=\mathbf{x} \quad$ and $\quad \mathbf{H}_{k} \mathbf{w}=\left(\mathbf{I}_{k}-2 \mathbf{w} \mathbf{w}^{T}\right) \mathbf{w}=-\mathbf{w}$.

athematical Methods in Engineering and Science

Householder Transformation and Tridiagonal Matrices

Figure: Vectors in Householder reflection

Consider $\mathbf{u}, \mathbf{v} \in R^{k}, \quad\|\mathbf{u}\|=\|\mathbf{v}\|$ and $\mathbf{w}=\frac{\mathbf{u}-\mathbf{v}}{\|\mathbf{u}-\mathbf{v}\|}$.

Householder reflection matrix

$$
\mathbf{H}_{k}=\mathbf{I}_{k}-2 \mathbf{w} \mathbf{w}^{T}
$$

is symmetric and orthogonal.
For any vector \mathbf{x} orthogonal to \mathbf{w},
$\mathbf{H}_{k} \mathbf{x}=\left(\mathbf{I}_{k}-2 \mathbf{w} \mathbf{w}^{T}\right) \mathbf{x}=\mathbf{x} \quad$ and $\quad \mathbf{H}_{k} \mathbf{w}=\left(\mathbf{I}_{k}-2 \mathbf{w} \mathbf{w}^{T}\right) \mathbf{w}=-\mathbf{w}$.
Hence, $\mathbf{H}_{k} \mathbf{y}=\mathbf{H}_{k}\left(\mathbf{y}_{\mathbf{w}}+\mathbf{y}_{\perp}\right)=-\mathbf{y}_{\mathbf{w}}+\mathbf{y}_{\perp}, \mathbf{H}_{k} \mathbf{u}=\mathbf{v}$ and $\mathbf{H}_{k} \mathbf{v}=\mathbf{u}$.

Mathematical Methods in Engineering and Science
Householder Method
Consider $n \times n$ symmetric matrix \mathbf{A}.
Let $\mathbf{u}=\left[\begin{array}{llll}a_{21} & a_{31} & \cdots & a_{n 1}\end{array}\right]^{T} \in R^{n-1}$ and $\mathbf{v}=\|\mathbf{u}\| \mathbf{e}_{1} \in R^{n-1}$.

athematical Methods in Engineering and Science
 Householder Method

Consider $n \times n$ symmetric matrix \mathbf{A}.
Let $\mathbf{u}=\left[\begin{array}{llll}a_{21} & a_{31} & \cdots & a_{n 1}\end{array}\right]^{T} \in R^{n-1}$ and $\mathbf{v}=\|\mathbf{u}\| \mathbf{e}_{1} \in R^{n-1}$.
Construct $\mathbf{P}_{1}=\left[\begin{array}{cc}1 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_{n-1}\end{array}\right]$ and operate as

$$
\begin{aligned}
\mathbf{A}^{(1)}=\mathbf{P}_{1} \mathbf{A} \mathbf{P}_{1} & =\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{n-1}
\end{array}\right]\left[\begin{array}{cc}
a_{11} & \mathbf{u}^{T} \\
\mathbf{u} & \mathbf{A}_{1}
\end{array}\right]\left[\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{n-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{11} & \mathbf{v}^{T} \\
\mathbf{v} & \mathbf{H}_{n-1} \mathbf{A}_{1} \mathbf{H}_{n-1}
\end{array}\right] .
\end{aligned}
$$

athematical Methods in Engineering and Science

Householder Transformation and Tridiagonal Matrices

Consider $n \times n$ symmetric matrix \mathbf{A}.
Let $\mathbf{u}=\left[\begin{array}{llll}a_{21} & a_{31} & \cdots & a_{n 1}\end{array}\right]^{T} \in R^{n-1}$ and $\mathbf{v}=\|\mathbf{u}\| \mathbf{e}_{1} \in R^{n-1}$.
Construct $\mathbf{P}_{1}=\left[\begin{array}{cc}1 & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_{n-1}\end{array}\right]$ and operate as

$$
\begin{aligned}
\mathbf{A}^{(1)}=\mathbf{P}_{1} \mathbf{A} \mathbf{P}_{1} & =\left[\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{n-1}
\end{array}\right]\left[\begin{array}{cc}
a_{11} & \mathbf{u}^{T} \\
\mathbf{u} & \mathbf{A}_{1}
\end{array}\right]\left[\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{n-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{11} & \mathbf{v}^{T} \\
\mathbf{v} & \mathbf{H}_{n-1} \mathbf{A}_{1} \mathbf{H}_{n-1}
\end{array}\right] .
\end{aligned}
$$

Reorganizing and re-naming,

$$
\mathbf{A}^{(1)}=\left[\begin{array}{ccc}
d_{1} & e_{2} & \mathbf{0} \\
e_{2} & d_{2} & \mathbf{u}_{2}^{T} \\
\mathbf{0} & \mathbf{u}_{2} & \mathbf{A}_{2}
\end{array}\right]
$$

Mathematical Methods in Engineering and Science
Householder Method
Next, with $\mathbf{v}_{2}=\left\|\mathbf{u}_{2}\right\| \mathbf{e}_{1}$, we form

$$
\mathbf{P}_{2}=\left[\begin{array}{cc}
\mathbf{I}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{n-2}
\end{array}\right]
$$

and operate as $\mathbf{A}^{(2)}=\mathbf{P}_{2} \mathbf{A}^{(1)} \mathbf{P}_{2}$.

athematical Methods in Engineering and Science
 Householder Method

Next, with $\mathbf{v}_{2}=\left\|\mathbf{u}_{2}\right\| \mathbf{e}_{1}$, we form

$$
\mathbf{P}_{2}=\left[\begin{array}{cc}
\mathbf{I}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{n-2}
\end{array}\right]
$$

and operate as $\mathbf{A}^{(2)}=\mathbf{P}_{2} \mathbf{A}^{(1)} \mathbf{P}_{2}$.
After j steps,

$$
\mathbf{A}^{(j)}=\left[\begin{array}{ccccc}
d_{1} & e_{2} & & & \\
e_{2} & d_{2} & \ddots & & \\
& \ddots & \ddots & e_{j+1} & \\
& & e_{j+1} & d_{j+1} & \mathbf{u}_{j+1}^{T} \\
& & & \mathbf{u}_{j+1} & \mathbf{A}_{j+1}
\end{array}\right]
$$

Householder Method

Next, with $\mathbf{v}_{2}=\left\|\mathbf{u}_{2}\right\| \mathbf{e}_{1}$, we form

$$
\mathbf{P}_{2}=\left[\begin{array}{cc}
\mathbf{I}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{H}_{n-2}
\end{array}\right]
$$

and operate as $\mathbf{A}^{(2)}=\mathbf{P}_{2} \mathbf{A}^{(1)} \mathbf{P}_{2}$.
After j steps,

$$
\mathbf{A}^{(j)}=\left[\begin{array}{ccccc}
d_{1} & e_{2} & & & \\
e_{2} & d_{2} & \ddots & & \\
& \ddots & \ddots & e_{j+1} & \\
& & e_{j+1} & d_{j+1} & \mathbf{u}_{j+1}^{T} \\
& & & \mathbf{u}_{j+1} & \mathbf{A}_{j+1}
\end{array}\right]
$$

By $n-2$ steps, with $\mathbf{P}=\mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3} \cdots \mathbf{P}_{n-2}$,

$$
\mathbf{A}^{(n-2)}=\mathbf{P}^{\top} \mathbf{A} \mathbf{P}
$$

is symmetric tridiagonal.

Mathematical Methods in Engineering and Science
Eigenvalues of Symmetric TridiagonaldMadriceden Transomation

$$
\mathbf{T}=\left[\begin{array}{ccccc}
d_{1} & e_{2} & & & \\
e_{2} & d_{2} & \ddots & & \\
& \ddots & \ddots & e_{n-1} & \\
& & e_{n-1} & d_{n-1} & e_{n} \\
& & & e_{n} & d_{n}
\end{array}\right]
$$

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices
Eigenvalues of Symmetric TridiagonaldMadricesten Transomation
Eigenvalues of Symmetric Tridiagonal Matrices

$$
\mathbf{T}=\left[\begin{array}{ccccc}
d_{1} & e_{2} & & & \\
e_{2} & d_{2} & \ddots & & \\
& \ddots & \ddots & e_{n-1} & \\
& & e_{n-1} & d_{n-1} & e_{n} \\
& & & e_{n} & d_{n}
\end{array}\right]
$$

Characteristic polynomial

$$
p(\lambda)=\left|\begin{array}{ccccc}
\lambda-d_{1} & -e_{2} & & & \\
-e_{2} & \lambda-d_{2} & \ddots & & \\
& \ddots & \ddots & -e_{n-1} & \\
& & -e_{n-1} & \lambda-d_{n-1} & -e_{n} \\
& & & -e_{n} & \lambda-d_{n}
\end{array}\right|
$$

Mathematical Methods in Engineering and Science

Eigenvalues of Symmetric Tridiagonaldadrices Transomation

Characteristic polynomial of the leading $k \times k$ sub-matrix: $p_{k}(\lambda)$

$$
\begin{aligned}
p_{0}(\lambda)= & 1 \\
p_{1}(\lambda)= & \lambda-d_{1} \\
p_{2}(\lambda)= & \left(\lambda-d_{2}\right)\left(\lambda-d_{1}\right)-e_{2}^{2} \\
\cdots & \cdots \\
p_{k+1}(\lambda)= & \left(\lambda-d_{k+1}\right) p_{k}(\lambda)-e_{k+1}^{2} p_{k-1}(\lambda) .
\end{aligned}
$$

Eigenvalues of Symmetric TridiagonaldMatrices Tranformation

Characteristic polynomial of the leading $k \times k$ sub-matrix: $p_{k}(\lambda)$

$$
\begin{aligned}
p_{0}(\lambda)= & 1 \\
p_{1}(\lambda)= & \lambda-d_{1} \\
p_{2}(\lambda)= & \left(\lambda-d_{2}\right)\left(\lambda-d_{1}\right)-e_{2}^{2} \\
\cdots & \cdots \\
p_{k+1}(\lambda)= & \left(\lambda-d_{k+1}\right) p_{k}(\lambda)-e_{k+1}^{2} p_{k-1}(\lambda) .
\end{aligned}
$$

$P(\lambda)=\left\{p_{0}(\lambda), p_{1}(\lambda), \cdots, p_{n}(\lambda)\right\}$

- a Sturmian sequence if $e_{j} \neq 0 \forall j$

Characteristic polynomial of the leading $k \times k$ sub-matrix: $p_{k}(\lambda)$

$$
\begin{aligned}
p_{0}(\lambda)= & 1 \\
p_{1}(\lambda)= & \lambda-d_{1} \\
p_{2}(\lambda)= & \left(\lambda-d_{2}\right)\left(\lambda-d_{1}\right)-e_{2}^{2} \\
\cdots & \cdots \\
p_{k+1}(\lambda)= & \left(\lambda-d_{k+1}\right) p_{k}(\lambda)-e_{k+1}^{2} p_{k-1}(\lambda) .
\end{aligned}
$$

$P(\lambda)=\left\{p_{0}(\lambda), p_{1}(\lambda), \cdots, p_{n}(\lambda)\right\}$

- a Sturmian sequence if $e_{j} \neq 0 \forall j$

Question: What if $e_{j}=0$ for some j ?!

Characteristic polynomial of the leading $k \times k$ sub-matrix: $p_{k}(\lambda)$

$$
\begin{aligned}
p_{0}(\lambda)= & 1 \\
p_{1}(\lambda)= & \lambda-d_{1} \\
p_{2}(\lambda)= & \left(\lambda-d_{2}\right)\left(\lambda-d_{1}\right)-e_{2}^{2} \\
\cdots & \cdots \\
p_{k+1}(\lambda)= & \left(\lambda-d_{k+1}\right) p_{k}(\lambda)-e_{k+1}^{2} p_{k-1}(\lambda)
\end{aligned}
$$

$P(\lambda)=\left\{p_{0}(\lambda), p_{1}(\lambda), \cdots, p_{n}(\lambda)\right\}$

- a Sturmian sequence if $e_{j} \neq 0 \forall j$

Question: What if $e_{j}=0$ for some j ?!
Answer: That is good news. Split the matrix.

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Sturmian sequence property of $P(\lambda)$ with $e_{j} \neq 0$:
Interlacing property: Roots of $p_{k+1}(\lambda)$ interlace the roots of $p_{k}(\lambda)$. That is, if the roots of $p_{k+1}(\lambda)$ are
$\lambda_{1}>\lambda_{2}>\cdots>\lambda_{k+1}$ and those of $p_{k}(\lambda)$ are
$\mu_{1}>\mu_{2}>\cdots>\mu_{k}$; then

$$
\lambda_{1}>\mu_{1}>\lambda_{2}>\mu_{2}>\cdots \cdots>\lambda_{k}>\mu_{k}>\lambda_{k+1}
$$

This property leads to a convenient © proceaure

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Sturmian sequence property of $P(\lambda)$ with $e_{j} \neq 0$:
Interlacing property: Roots of $p_{k+1}(\lambda)$ interlace the
roots of $p_{k}(\lambda)$. That is, if the roots of $p_{k+1}(\lambda)$ are
$\lambda_{1}>\lambda_{2}>\cdots>\lambda_{k+1}$ and those of $p_{k}(\lambda)$ are
$\mu_{1}>\mu_{2}>\cdots>\mu_{k}$; then

$$
\lambda_{1}>\mu_{1}>\lambda_{2}>\mu_{2}>\cdots \quad \cdots>\lambda_{k}>\mu_{k}>\lambda_{k+1}
$$

This property leads to a convenient © procedure.
Proof
$p_{1}(\lambda)$ has a single root, d_{1}.

$$
p_{2}\left(d_{1}\right)=-e_{2}^{2}<0
$$

athematical Methods in Engineering and Science

Eigenvalues of Symmetric TridiagonaldMatrices Transomation

Sturmian sequence property of $P(\lambda)$ with $e_{j} \neq 0$:
Interlacing property: Roots of $p_{k+1}(\lambda)$ interlace the
roots of $p_{k}(\lambda)$. That is, if the roots of $p_{k+1}(\lambda)$ are
$\lambda_{1}>\lambda_{2}>\cdots>\lambda_{k+1}$ and those of $p_{k}(\lambda)$ are
$\mu_{1}>\mu_{2}>\cdots>\mu_{k}$; then

$$
\lambda_{1}>\mu_{1}>\lambda_{2}>\mu_{2}>\cdots \cdots>\lambda_{k}>\mu_{k}>\lambda_{k+1} .
$$

This property leads to a convenient

```
- proceaure
```

Proof
$p_{1}(\lambda)$ has a single root, d_{1}.

$$
p_{2}\left(d_{1}\right)=-e_{2}^{2}<0
$$

Since $p_{2}(\pm \infty)=\infty>0$, roots t_{1} and t_{2} of $p_{2}(\lambda)$ are separated as $\infty>t_{1}>d_{1}>t_{2}>-\infty$.

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Sturmian sequence property of $P(\lambda)$ with $e_{j} \neq 0$:
Interlacing property: Roots of $p_{k+1}(\lambda)$ interlace the
roots of $p_{k}(\lambda)$. That is, if the roots of $p_{k+1}(\lambda)$ are
$\lambda_{1}>\lambda_{2}>\cdots>\lambda_{k+1}$ and those of $p_{k}(\lambda)$ are
$\mu_{1}>\mu_{2}>\cdots>\mu_{k}$; then

$$
\lambda_{1}>\mu_{1}>\lambda_{2}>\mu_{2}>\cdots \cdots>\lambda_{k}>\mu_{k}>\lambda_{k+1}
$$

This property leads to a convenient - proceaure Proof
$p_{1}(\lambda)$ has a single root, d_{1}.

$$
p_{2}\left(d_{1}\right)=-e_{2}^{2}<0
$$

Since $p_{2}(\pm \infty)=\infty>0$, roots t_{1} and t_{2} of $p_{2}(\lambda)$ are separated as $\infty>t_{1}>d_{1}>t_{2}>-\infty$.

The statement is true for $k=1$.

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Eigenvalues of Symmetric Tridiagonaldadrices Transormation

Next, we assume that the statement is true for $k=i$.
Roots of $p_{i}(\lambda): \alpha_{1}>\alpha_{2}>\cdots>\alpha_{i}$
Roots of $p_{i+1}(\lambda): \beta_{1}>\beta_{2}>\cdots>\beta_{i}>\beta_{i+1}$
Roots of $p_{i+2}(\lambda): \gamma_{1}>\gamma_{2}>\cdots>\gamma_{i}>\gamma_{i+1}>\gamma_{i+2}$

Eigenvalues of Symmetric Tridiagonaldadrices Transomation

Next, we assume that the statement is true for $k=i$.
Roots of $p_{i}(\lambda): \alpha_{1}>\alpha_{2}>\cdots>\alpha_{i}$
Roots of $p_{i+1}(\lambda): \beta_{1}>\beta_{2}>\cdots>\beta_{i}>\beta_{i+1}$
Roots of $p_{i+2}(\lambda): \gamma_{1}>\gamma_{2}>\cdots>\gamma_{i}>\gamma_{i+1}>\gamma_{i+2}$
Assumption: $\beta_{1}>\alpha_{1}>\beta_{2}>\alpha_{2}>\cdots \cdots>\beta_{i}>\alpha_{i}>\beta_{i+1}$

(a) Roots of $p_{i}(\lambda)$ and $p_{i+1}(\lambda)$

(b) Sign of $p_{i} p_{i+2}$

Figure: Interlacing of roots of characteristic polynomials

To show: $\gamma_{1}>\beta_{1}>\gamma_{2}>\beta_{2}>\cdots \cdots>\gamma_{i+1}>\beta_{i+1}>\gamma_{i+2}$

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Eigenvalues of Symmetric TridiagonaldMatrices Transomation

Eigenvalues of Symmetric Tridiagonal Matrices
Since $\beta_{1}>\alpha_{1}, p_{i}\left(\beta_{1}\right)$ is of the same sign as $p_{i}(\infty)$, i.e. positive.

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Eigenvalues of Symmetric Tridiagonaldadrrices Transomation

Since $\beta_{1}>\alpha_{1}, p_{i}\left(\beta_{1}\right)$ is of the same sign as $p_{i}(\infty)$, i.e. positive.
Therefore, $p_{i+2}\left(\beta_{1}\right)=-e_{i+2}^{2} p_{i}\left(\beta_{1}\right)$ is negative.
But, $p_{i+2}(\infty)$ is clearly positive.

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Eigenvalues of Symmetric TridiagonaldMatrices Trantomation

Since $\beta_{1}>\alpha_{1}, p_{i}\left(\beta_{1}\right)$ is of the same sign as $p_{i}(\infty)$, i.e. positive.
Therefore, $p_{i+2}\left(\beta_{1}\right)=-e_{i+2}^{2} p_{i}\left(\beta_{1}\right)$ is negative.
But, $p_{i+2}(\infty)$ is clearly positive.
Hence, $\gamma_{1} \in\left(\beta_{1}, \infty\right)$.

athematical Methods in Engineering and Science

Eigenvalues of Symmetric TridiagonaldMatrices Tranforation

Since $\beta_{1}>\alpha_{1}, p_{i}\left(\beta_{1}\right)$ is of the same sign as $p_{i}(\infty)$, i.e. positive.
Therefore, $p_{i+2}\left(\beta_{1}\right)=-e_{i+2}^{2} p_{i}\left(\beta_{1}\right)$ is negative.
But, $p_{i+2}(\infty)$ is clearly positive.
Hence, $\gamma_{1} \in\left(\beta_{1}, \infty\right)$.
Similarly, $\gamma_{i+2} \in\left(-\infty, \beta_{i+1}\right)$.
Question: Where are the rest of the i roots of $p_{i+2}(\lambda)$?

Eigenvalues of Symmetric Tridiagonaldadrices Transomation

Since $\beta_{1}>\alpha_{1}, p_{i}\left(\beta_{1}\right)$ is of the same sign as $p_{i}(\infty)$, i.e. positive.
Therefore, $p_{i+2}\left(\beta_{1}\right)=-e_{i+2}^{2} p_{i}\left(\beta_{1}\right)$ is negative.
But, $p_{i+2}(\infty)$ is clearly positive.
Hence, $\gamma_{1} \in\left(\beta_{1}, \infty\right)$.
Similarly, $\gamma_{i+2} \in\left(-\infty, \beta_{i+1}\right)$.
Question: Where are the rest of the i roots of $p_{i+2}(\lambda)$?

$$
\begin{aligned}
p_{i+2}\left(\beta_{j}\right) & =\left(\beta_{j}-d_{i+2}\right) p_{i+1}\left(\beta_{j}\right)-e_{i+2}^{2} p_{i}\left(\beta_{j}\right)=-e_{i+2}^{2} p_{i}\left(\beta_{j}\right) \\
p_{i+2}\left(\beta_{j+1}\right) & =-e_{i+2}^{2} p_{i}\left(\beta_{j+1}\right)
\end{aligned}
$$

That is, p_{i} and p_{i+2} are of opposite signs at each β.

- Reter iogure.

Over $\left[\beta_{i+1}, \beta_{1}\right], \quad p_{i+2}(\lambda)$ changes sign over each sub-interval [β_{j+1}, β_{j}], along with $p_{i}(\lambda)$, to maintain opposite signs at each β.
Conclusion: $p_{i+2}(\lambda)$ has exactly one root in $\left(\beta_{j+1}, \beta_{j}\right)$.

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Eigenvalues of Symmetric TridiagonaldMatrices Trantomation

Examine sequence $P(w)=\left\{p_{0}(w), p_{1}(w), p_{2}(w), \cdots, p_{n}(w)\right\}$. If $p_{k}(w)$ and $p_{k+1}(w)$ have opposite signs then $p_{k+1}(\lambda)$ has one root more than $p_{k}(\lambda)$ in the interval (w, ∞).

Mathematical Methods in Engineering and Science
Householder Transformation and Tridiagonal Matrices

Eigenvalues of Symmetric TridiagonaldMadricest Transormation

Examine sequence $P(w)=\left\{p_{0}(w), p_{1}(w), p_{2}(w), \cdots, p_{n}(w)\right\}$. If $p_{k}(w)$ and $p_{k+1}(w)$ have opposite signs then $p_{k+1}(\lambda)$ has one root more than $p_{k}(\lambda)$ in the interval (w, ∞).

Number of roots of $p_{n}(\lambda)$ above $w=$ number of sign changes in the sequence $P(w)$.

Consequence: Number of roots of $p_{n}(\lambda)$ in $(a, b)=$ difference between numbers of sign changes in $P(a)$ and $P(b)$.

Examine sequence $P(w)=\left\{p_{0}(w), p_{1}(w), p_{2}(w), \cdots, p_{n}(w)\right\}$. If $p_{k}(w)$ and $p_{k+1}(w)$ have opposite signs then $p_{k+1}(\lambda)$ has one root more than $p_{k}(\lambda)$ in the interval (w, ∞).

Number of roots of $p_{n}(\lambda)$ above $w=$ number of sign changes in the sequence $P(w)$.

Consequence: Number of roots of $p_{n}(\lambda)$ in $(a, b)=$ difference between numbers of sign changes in $P(a)$ and $P(b)$.
Bisection method: Examine the sequence at $\frac{a+b}{2}$.
Separate roots, bracket each of them and then squeeze the interval!

Examine sequence $P(w)=\left\{p_{0}(w), p_{1}(w), p_{2}(w), \cdots, p_{n}(w)\right\}$. If $p_{k}(w)$ and $p_{k+1}(w)$ have opposite signs then $p_{k+1}(\lambda)$ has one root more than $p_{k}(\lambda)$ in the interval (w, ∞).

Number of roots of $p_{n}(\lambda)$ above $w=$ number of sign changes in the sequence $P(w)$.

Consequence: Number of roots of $p_{n}(\lambda)$ in $(a, b)=$ difference between numbers of sign changes in $P(a)$ and $P(b)$.
Bisection method: Examine the sequence at $\frac{a+b}{2}$.
Separate roots, bracket each of them and then squeeze the interval!

Any way to start with an interval to include all eigenvalues?

Examine sequence $P(w)=\left\{p_{0}(w), p_{1}(w), p_{2}(w), \cdots, p_{n}(w)\right\}$. If $p_{k}(w)$ and $p_{k+1}(w)$ have opposite signs then $p_{k+1}(\lambda)$ has one root more than $p_{k}(\lambda)$ in the interval (w, ∞).

Number of roots of $p_{n}(\lambda)$ above $w=$ number of sign changes in the sequence $P(w)$.

Consequence: Number of roots of $p_{n}(\lambda)$ in $(a, b)=$ difference between numbers of sign changes in $P(a)$ and $P(b)$.
Bisection method: Examine the sequence at $\frac{a+b}{2}$.
Separate roots, bracket each of them and then squeeze the interval!

Any way to start with an interval to include all eigenvalues?

$$
\left|\lambda_{i}\right| \leq \lambda_{\text {bnd }}=\max _{1 \leq j \leq n}\left\{\left|e_{j}\right|+\left|d_{j}\right|+\left|e_{j+1}\right|\right\}
$$

Algorithm

- Identify the interval $[a, b]$ of interest.
- For a degenerate case (some $e_{j}=0$), split the given matrix.
- For each of the non-degenerate matrices,
- by repeated use of bisection and study of the sequence $P(\lambda)$, bracket individual eigenvalues within small sub-intervals, and
- by further use of the bisection method (or a substitute) within each such sub-interval, determine the individual eigenvalues to the desired accuracy.

Note: The algorithm is based on

- Sturman sequence property
- A Householder matrix is symmetric and orthogonal. It effects a reflection transformation.
- A sequence of Householder transformations can be used to convert a symmetric matrix into a symmetric tridiagonal form.
- Eigenvalues of the leading square sub-matrices of a symmetric tridiagonal matrix exhibit a useful interlacing structure.
- This property can be used to separate and bracket eigenvalues.
- Method of bisection is useful in the separation as well as subsequent determination of the eigenvalues.

Necessary Exercises: 2,4,5

QR Decomposition Method
QR Decomposition
QR Iterations
Conceptual Basis of QR Method*
QR Algorithm with Shift*

Mathematical Methods in Engineering and Science

Decomposition (or factorization) $\mathbf{A}=\mathbf{Q R}$ into two factors, orthogonal \mathbf{Q} and upper-triangular \mathbf{R} :
(a) It always exists.
(b) Performing this decomposition is pretty straightforward.
(c) It has a number of properties useful in the solution of the eigenvalue problem.

QR Decomposition Method

Decomposition (or factorization) $\mathbf{A}=\mathbf{Q R}$ into two factors, orthogonal \mathbf{Q} and upper-triangular \mathbf{R} :
(a) It always exists.
(b) Performing this decomposition is pretty straightforward.
(c) It has a number of properties useful in the solution of the eigenvalue problem.

$$
\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{n}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 n} \\
& \ddots & \vdots \\
& & r_{n n}
\end{array}\right]
$$

QR Decomposition

Decomposition (or factorization) $\mathbf{A}=\mathbf{Q R}$ into two factors, orthogonal \mathbf{Q} and upper-triangular \mathbf{R} :
(a) It always exists.
(b) Performing this decomposition is pretty straightforward.
(c) It has a number of properties useful in the solution of the eigenvalue problem.

$$
\left[\begin{array}{lll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{q}_{1} & \cdots & \mathbf{q}_{n}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 n} \\
& \ddots & \vdots \\
& & r_{n n}
\end{array}\right]
$$

A simple method based on Gram-Schmidt orthogonalization: Considering columnwise equality $\mathbf{a}_{j}=\sum_{i=1}^{j} r_{i j} \mathbf{q}_{i}$, for $j=1,2,3, \cdots, n$;
$r_{i j}=\mathbf{q}_{i}^{T} \mathbf{a}_{j} \quad \forall i<j, \quad \mathbf{a}_{j}^{\prime}=\mathbf{a}_{j}-\sum_{i=1}^{j-1} r_{i j} \mathbf{q}_{i}, \quad r_{j j}=\left\|\mathbf{a}_{j}^{\prime}\right\| ;$
$\mathbf{q}_{j}=\left\{\begin{array}{l}\mathbf{a}_{j}^{\prime} / r_{j j}, \quad \text { if } r_{j j} \neq 0 ; \\ \text { any vector satisfying } \mathbf{q}_{i}^{T} \mathbf{q}_{j}=\delta_{i j} \text { for } 1 \leq i \leq j, \text { if } r_{j j}=0 .\end{array}\right.$

Mathematical Methods in Engineering and Science
QR Decomposition
Practical method: one-sided Householder transformations, starting with

$$
\mathbf{u}_{0}=\mathbf{a}_{1}, \quad \mathbf{v}_{0}=\left\|\mathbf{u}_{0}\right\| \mathbf{e}_{1} \in R^{n} \quad \text { and } \quad \mathbf{w}_{0}=\frac{\mathbf{u}_{0}-\mathbf{v}_{0}}{\left\|\mathbf{u}_{0}-\mathbf{v}_{0}\right\|}
$$

and $\mathbf{P}_{0}=\mathbf{H}_{n}=\mathbf{I}_{n}-2 \mathbf{w}_{0} \mathbf{w}_{0}^{T}$.

QR Decomposition
Practical method: one-sided Householder transformations, starting with

$$
\mathbf{u}_{0}=\mathbf{a}_{1}, \quad \mathbf{v}_{0}=\left\|\mathbf{u}_{0}\right\| \mathbf{e}_{1} \in R^{n} \quad \text { and } \quad \mathbf{w}_{0}=\frac{\mathbf{u}_{0}-\mathbf{v}_{0}}{\left\|\mathbf{u}_{0}-\mathbf{v}_{0}\right\|}
$$

and $\mathbf{P}_{0}=\mathbf{H}_{n}=\mathbf{I}_{n}-2 \mathbf{w}_{0} \mathbf{w}_{0}^{T}$.

$$
\begin{aligned}
& \mathbf{P}_{n-2} \mathbf{P}_{n-3} \cdots \mathbf{P}_{2} \mathbf{P}_{1} \mathbf{P}_{0} \mathbf{A}=\mathbf{P}_{n-2} \mathbf{P}_{n-3} \cdots \mathbf{P}_{2} \mathbf{P}_{1}\left[\begin{array}{cc}
\left\|\mathbf{a}_{1}\right\| & * * \\
\mathbf{0} & \mathbf{A}_{0}
\end{array}\right] \\
& \quad=\mathbf{P}_{n-2} \mathbf{P}_{n-3} \cdots \mathbf{P}_{2}\left[\begin{array}{ccc}
r_{11} & * & * * \\
& r_{22} & * * \\
& & \mathbf{A}_{1}
\end{array}\right]=\cdots \quad \cdots=\mathbf{R}
\end{aligned}
$$

With

$$
\mathbf{Q}=\left(\mathbf{P}_{n-2} \mathbf{P}_{n-3} \cdots \mathbf{P}_{2} \mathbf{P}_{1} \mathbf{P}_{0}\right)^{T}=\mathbf{P}_{0} \mathbf{P}_{1} \mathbf{P}_{2} \cdots \mathbf{P}_{n-3} \mathbf{P}_{n-2}
$$

we have $\mathbf{Q}^{T} \mathbf{A}=\mathbf{R} \Rightarrow \mathbf{A}=\mathbf{Q} \mathbf{R}$.

Alternative method useful for tridiagonal and Hessenberg matrices: One-sided plane rotations

- rotations $\mathbf{P}_{12}, \mathbf{P}_{23}$ etc to annihilate a_{21}, a_{32} etc in that sequence
Givens rotation matrices!

QR Decomposition Method

Alternative method useful for tridiagonal and Hessenberg matrices: One-sided plane rotations

- rotations $\mathbf{P}_{12}, \mathbf{P}_{23}$ etc to annihilate a_{21}, a_{32} etc in that sequence
Givens rotation matrices!

Application in solution of a linear system: \mathbf{Q} and \mathbf{R} factors of a matrix \mathbf{A} come handy in the solution of $\mathbf{A x}=\mathbf{b}$

$$
\mathbf{Q} \mathbf{R} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{R} \mathbf{x}=\mathbf{Q}^{T} \mathbf{b}
$$

needs only a sequence of back-substitutions.

Mathematical Methods in Engineering and Science
QR Iterations
Multiplying \mathbf{Q} and \mathbf{R} factors in reverse,

$$
\mathbf{A}^{\prime}=\mathbf{R} \mathbf{Q}=\mathbf{Q}^{T} \mathbf{A} \mathbf{Q},
$$

an orthogonal similarity transformation.

1. If \mathbf{A} is symmetric, then so is \mathbf{A}^{\prime}.
2. If \mathbf{A} is in upper Hessenberg form, then so is \mathbf{A}^{\prime}.
3. If \mathbf{A} is symmetric tridiagonal, then so is \mathbf{A}^{\prime}.

Multiplying \mathbf{Q} and \mathbf{R} factors in reverse,

$$
\mathbf{A}^{\prime}=\mathbf{R} \mathbf{Q}=\mathbf{Q}^{T} \mathbf{A} \mathbf{Q},
$$

an orthogonal similarity transformation.

1. If \mathbf{A} is symmetric, then so is \mathbf{A}^{\prime}.
2. If \mathbf{A} is in upper Hessenberg form, then so is \mathbf{A}^{\prime}.
3. If \mathbf{A} is symmetric tridiagonal, then so is \mathbf{A}^{\prime}.

Complexity of QR iteration: $\mathcal{O}(n)$ for a symmetric tridiagonal matrix, $\mathcal{O}\left(n^{2}\right)$ operation for an upper Hessenberg matrix and $\mathcal{O}\left(n^{3}\right)$ for the general case.

QR Iterations

Multiplying \mathbf{Q} and \mathbf{R} factors in reverse,

$$
\mathbf{A}^{\prime}=\mathbf{R} \mathbf{Q}=\mathbf{Q}^{\top} \mathbf{A} \mathbf{Q},
$$

an orthogonal similarity transformation.

1. If \mathbf{A} is symmetric, then so is \mathbf{A}^{\prime}.
2. If \mathbf{A} is in upper Hessenberg form, then so is \mathbf{A}^{\prime}.
3. If \mathbf{A} is symmetric tridiagonal, then so is \mathbf{A}^{\prime}.

Complexity of QR iteration: $\mathcal{O}(n)$ for a symmetric tridiagonal matrix, $\mathcal{O}\left(n^{2}\right)$ operation for an upper Hessenberg matrix and $\mathcal{O}\left(n^{3}\right)$ for the general case.

Algorithm: Set $\mathbf{A}_{1}=\mathbf{A}$ and for $k=1,2,3, \cdots$,

- decompose $\mathbf{A}_{k}=\mathbf{Q}_{k} \mathbf{R}_{k}$,
- reassemble $\mathbf{A}_{k+1}=\mathbf{R}_{k} \mathbf{Q}_{k}$.

As $k \rightarrow \infty, \quad \mathbf{A}_{k}$ approaches the quasi-upper-triangular form.

QR Iterations

Quasi-upper-triangular form:

with $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots$.

- Diagonal blocks \mathbf{B}_{k} correspond to eigenspaces of equal/close (magnitude) eigenvalues.
- 2×2 diagonal blocks often correspond to pairs of complex eigenvalues (for non-symmetric matrices).
- For symmetric matrices, the quasi-upper-triangular form reduces to quasi-diagonal form.

Conceptual Basis of QR Method*

QR decomposition algorithm operates on the basis of the relative magnitudes of eigenvalues and segregates subspaces.

Conceptual Basis of QR Method*

QR decomposition algorithm operates on the basis of the relative magnitudes of eigenvalues and segregates subspaces.

With $k \rightarrow \infty$,

$$
\mathbf{A}^{k} \text { Range }\left\{\mathbf{e}_{1}\right\}=\operatorname{Range}\left\{\mathbf{q}_{1}\right\} \rightarrow \operatorname{Range}\left\{\mathbf{v}_{1}\right\}
$$

and $\left(\mathbf{a}_{1}\right)_{k} \rightarrow \mathcal{Q}_{k}^{T} \mathbf{A} \mathbf{q}_{1}=\lambda_{1} \mathcal{Q}_{k}^{T} \mathbf{q}_{1}=\lambda_{1} \mathbf{e}_{1}$.

Conceptual Basis of QR Method*

QR decomposition algorithm operates on the basis of the relative magnitudes of eigenvalues and segregates subspaces.

With $k \rightarrow \infty$,

$$
\mathbf{A}^{k} \operatorname{Range}\left\{\mathbf{e}_{1}\right\}=\operatorname{Range}\left\{\mathbf{q}_{1}\right\} \rightarrow \operatorname{Range}\left\{\mathbf{v}_{1}\right\}
$$

and $\left(\mathbf{a}_{1}\right)_{k} \rightarrow \mathcal{Q}_{k}^{T} \mathbf{A} \mathbf{q}_{1}=\lambda_{1} \mathcal{Q}_{k}^{T} \mathbf{q}_{1}=\lambda_{1} \mathbf{e}_{1}$.
Further,

$$
\mathbf{A}^{k} \text { Range }\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=\text { Range }\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\} \rightarrow \text { Range }\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} .
$$

and $\left(\mathbf{a}_{2}\right)_{k} \rightarrow \mathcal{Q}_{k}^{T} \mathbf{A} \mathbf{q}_{2}=\left[\begin{array}{c}\left(\lambda_{1}-\lambda_{2}\right) \alpha_{1} \\ \lambda_{2} \\ \mathbf{0}\end{array}\right]$.
And, so on ...

Mathematical Methods in Engineering and Science
QR Decomposition Method

QR Algorithm with Shift*

QR Decomposition
QR Iterations
Conceptual Basis of QR Method*
QR Algorithm with Shift*
For $\lambda_{i}<\lambda_{j}$, entry $a_{i j}$ decays through iterations as $\left(\frac{\lambda_{i}}{\lambda_{j}}\right)$.

QR Algorithm with Shift*

For $\lambda_{i}<\lambda_{j}$, entry $a_{i j}$ decays through iterations as $\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{k}$.
With shift,

$$
\begin{aligned}
& \overline{\mathbf{A}}_{k}=\mathbf{A}_{k}-\mu_{k} \mathbf{I} ; \\
& \overline{\mathbf{A}}_{k}=\mathbf{Q}_{k} \mathbf{R}_{k}, \quad \overline{\mathbf{A}}_{k+1}=\mathbf{R}_{k} \mathbf{Q}_{k} ; \\
& \mathbf{A}_{k+1}=\overline{\mathbf{A}}_{k+1}+\mu_{k} \mathbf{I} .
\end{aligned}
$$

QR Algorithm with Shift*

For $\lambda_{i}<\lambda_{j}$, entry $a_{i j}$ decays through iterations as $\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{k}$.
With shift,

$$
\begin{aligned}
& \overline{\mathbf{A}}_{k}=\mathbf{A}_{k}-\mu_{k} \mathbf{I} ; \\
& \overline{\mathbf{A}}_{k}=\mathbf{Q}_{k} \mathbf{R}_{k}, \quad \overline{\mathbf{A}}_{k+1}=\mathbf{R}_{k} \mathbf{Q}_{k} ; \\
& \mathbf{A}_{k+1}=\overline{\mathbf{A}}_{k+1}+\mu_{k} \mathbf{I} .
\end{aligned}
$$

Resulting transformation is

$$
\begin{aligned}
\mathbf{A}_{k+1} & =\mathbf{R}_{k} \mathbf{Q}_{k}+\mu_{k} \mathbf{I}=\mathbf{Q}_{k}^{T} \overline{\mathbf{A}}_{k} \mathbf{Q}_{k}+\mu_{k} \mathbf{I} \\
& =\mathbf{Q}_{k}^{T}\left(\mathbf{A}_{k}-\mu_{k} \mathbf{I}\right) \mathbf{Q}_{k}+\mu_{k} \mathbf{I}=\mathbf{Q}_{k}^{T} \mathbf{A}_{k} \mathbf{Q}_{k}
\end{aligned}
$$

QR Algorithm with Shift*

For $\lambda_{i}<\lambda_{j}$, entry $a_{i j}$ decays through iterations as $\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{K}$.
With shift,

$$
\begin{aligned}
& \overline{\mathbf{A}}_{k}=\mathbf{A}_{k}-\mu_{k} \mathbf{I} ; \\
& \overline{\mathbf{A}}_{k}=\mathbf{Q}_{k} \mathbf{R}_{k}, \quad \overline{\mathbf{A}}_{k+1}=\mathbf{R}_{k} \mathbf{Q}_{k} ; \\
& \mathbf{A}_{k+1}=\overline{\mathbf{A}}_{k+1}+\mu_{k} \mathbf{I} .
\end{aligned}
$$

Resulting transformation is

$$
\begin{aligned}
\mathbf{A}_{k+1} & =\mathbf{R}_{k} \mathbf{Q}_{k}+\mu_{k} \mathbf{I}=\mathbf{Q}_{k}^{T} \overline{\mathbf{A}}_{k} \mathbf{Q}_{k}+\mu_{k} \mathbf{I} \\
& =\mathbf{Q}_{k}^{T}\left(\mathbf{A}_{k}-\mu_{k} \mathbf{I}\right) \mathbf{Q}_{k}+\mu_{k} \mathbf{I}=\mathbf{Q}_{k}^{T} \mathbf{A}_{k} \mathbf{Q}_{k}
\end{aligned}
$$

For the iteration,

$$
\text { convergence ratio }=\frac{\lambda_{i}-\mu_{k}}{\lambda_{j}-\mu_{k}} .
$$

QR Algorithm with Shift*

For $\lambda_{i}<\lambda_{j}$, entry $a_{i j}$ decays through iterations as $\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{K}$.
With shift,

$$
\begin{aligned}
& \overline{\mathbf{A}}_{k}=\mathbf{A}_{k}-\mu_{k} \mathbf{I} ; \\
& \overline{\mathbf{A}}_{k}=\mathbf{Q}_{k} \mathbf{R}_{k}, \quad \overline{\mathbf{A}}_{k+1}=\mathbf{R}_{k} \mathbf{Q}_{k} ; \\
& \mathbf{A}_{k+1}=\overline{\mathbf{A}}_{k+1}+\mu_{k} \mathbf{I} .
\end{aligned}
$$

Resulting transformation is

$$
\begin{aligned}
\mathbf{A}_{k+1} & =\mathbf{R}_{k} \mathbf{Q}_{k}+\mu_{k} \mathbf{I}=\mathbf{Q}_{k}^{T} \overline{\mathbf{A}}_{k} \mathbf{Q}_{k}+\mu_{k} \mathbf{I} \\
& =\mathbf{Q}_{k}^{T}\left(\mathbf{A}_{k}-\mu_{k} \mathbf{I}\right) \mathbf{Q}_{k}+\mu_{k} \mathbf{I}=\mathbf{Q}_{k}^{T} \mathbf{A}_{k} \mathbf{Q}_{k}
\end{aligned}
$$

For the iteration,

$$
\text { convergence ratio }=\frac{\lambda_{i}-\mu_{k}}{\lambda_{j}-\mu_{k}} .
$$

Question: How to find a suitable value for μ_{k} ?

Points to note

- QR decomposition can be effected on any square matrix.
- Practical methods of QR decomposition use Householder transformations or Givens rotations.
- A QR iteration effects a similarity transformation on a matrix, preserving symmetry, Hessenberg structure and also a symmetric tridiagonal form.
- A sequence of QR iterations converge to an almost upper-triangular form.
- Operations on symmetric tridiagonal and Hessenberg forms are computationally efficient.
- QR iterations tend to order subspaces according to the relative magnitudes of eigenvalues.
- Eigenvalue shifting is useful as an expediting strategy.

Necessary Exercises: 1,3

Eigenvalue Problem of General Matrices

Introductory Remarks
Reduction to Hessenberg Form* QR Algorithm on Hessenberg Matrices* Inverse Iteration
Recommendation

Eigenvalue Problem of General Matrices

- A general (non-symmetric) matrix may not be diagonalizable. We attempt to triangularize it.
- With real arithmetic, 2×2 diagonal blocks are inevitable signifying complex pair of eigenvalues.
- Higher computational complexity, slow convergence and lack of numerical stability.
- A general (non-symmetric) matrix may not be diagonalizable. We attempt to triangularize it.
- With real arithmetic, 2×2 diagonal blocks are inevitable signifying complex pair of eigenvalues.
- Higher computational complexity, slow convergence and lack of numerical stability.

A non-symmetric matrix is usually unbalanced and is prone to higher round-off errors.

Balancing as a pre-processing step: multiplication of a row and division of the corresponding column with the same number, ensuring similarity.

Introductory Remarks

- A general (non-symmetric) matrix may not be diagonalizable. We attempt to triangularize it.
- With real arithmetic, 2×2 diagonal blocks are inevitable signifying complex pair of eigenvalues.
- Higher computational complexity, slow convergence and lack of numerical stability.

A non-symmetric matrix is usually unbalanced and is prone to higher round-off errors.

Balancing as a pre-processing step: multiplication of a row and division of the corresponding column with the same number, ensuring similarity.

Note: A balanced matrix may get unbalanced again through similarity transformations that are not orthogonal!

Methods to find appropriate similarity transformations

1. a full sweep of Givens rotations,
2. a sequence of $n-2$ steps of Householder transformations, and
3. a cycle of coordinated Gaussian elimination.

Reduction to Hessenberg Form*

Methods to find appropriate similarity transformations

1. a full sweep of Givens rotations,
2. a sequence of $n-2$ steps of Householder transformations, and
3. a cycle of coordinated Gaussian elimination.

Method based on Gaussian elimination or elementary transformations:

The pre-multiplying matrix corresponding to the elementary row transformation and the post-multiplying matrix corresponding to the matching column transformation must be inverses of each other.

Reduction to Hessenberg Form*

Methods to find appropriate similarity transformations

1. a full sweep of Givens rotations,
2. a sequence of $n-2$ steps of Householder transformations, and
3. a cycle of coordinated Gaussian elimination.

Method based on Gaussian elimination or elementary transformations:

The pre-multiplying matrix corresponding to the elementary row transformation and the post-multiplying matrix corresponding to the matching column transformation must be inverses of each other.

Two kinds of steps

- Pivoting
- Elimination

athematical Methods in Engineering and Science
 Reduction to Hessenberg Form*

Eigenvalue Problem of General Matrices

Pivoting step: $\overline{\mathbf{A}}=\mathbf{P}_{r s} \mathbf{A} \mathbf{P}_{r s}=\mathbf{P}_{r s}^{-1} \mathbf{A} \mathbf{P}_{r s}$.

- Permutation $\mathbf{P}_{r s}$: interchange of r-th and s-th columns.
- $\mathbf{P}_{r s}^{-1}=\mathbf{P}_{r s}$: interchange of r-th and s-th rows.
- Pivot locations: $a_{21}, a_{32}, \cdots, a_{n-1, n-2}$.

Reduction to Hessenberg Form*

Pivoting step: $\overline{\mathbf{A}}=\mathbf{P}_{r s} \mathbf{A} \mathbf{P}_{r s}=\mathbf{P}_{r s}^{-1} \mathbf{A} \mathbf{P}_{r s}$.

- Permutation $\mathbf{P}_{r s}$: interchange of r-th and s-th columns.
- $\mathbf{P}_{r s}^{-1}=\mathbf{P}_{r s}$: interchange of r-th and s-th rows.
- Pivot locations: $a_{21}, a_{32}, \cdots, a_{n-1, n-2}$.

Elimination step: $\overline{\mathbf{A}}=\mathbf{G}_{r}^{-1} \mathbf{A} \mathbf{G}_{r}$ with elimination matrix
$\mathbf{G}_{r}=\left[\begin{array}{ccc}\mathbf{I}_{r} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{k} & \mathbf{I}_{n-r-1}\end{array}\right] \quad$ and $\quad \mathbf{G}_{r}^{-1}=\left[\begin{array}{ccc}\mathbf{I}_{r} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{0} & -\mathbf{k} & \mathbf{I}_{n-r-1}\end{array}\right]$.

- $\mathbf{G}_{r}^{-1}:$ Row $(r+1+i) \leftarrow \operatorname{Row}(r+1+i)-k_{i} \times \operatorname{Row}(r+1)$ for $i=1,2,3, \cdots, n-r-1$
- $\mathbf{G}_{r}:$ Column $(r+1) \leftarrow$ Column $(r+1)+$

$$
\sum_{i=1}^{n-r-1}\left[k_{i} \times \text { Column }(r+1+i)\right]
$$

 QR Algorithm on Hessenberg Matrices*

QR iterations: $\mathcal{O}\left(n^{2}\right)$ operations for upper Hessenberg form. Whenever a sub-diagonal zero appears, the matrix is split into two smaller upper Hessenberg blocks, and they are processed separately, thereby reducing the cost drastically.

QR iterations: $\mathcal{O}\left(n^{2}\right)$ operations for upper Hessenberg form.
Whenever a sub-diagonal zero appears, the matrix is split into two smaller upper Hessenberg blocks, and they are processed separately, thereby reducing the cost drastically.

Particular cases:

- $a_{n, n-1} \rightarrow 0$: Accept $a_{n n}=\lambda_{n}$ as an eigenvalue, continue with the leading $(n-1) \times(n-1)$ sub-matrix.
- $a_{n-1, n-2} \rightarrow 0$: Separately find the eigenvalues λ_{n-1} and λ_{n} from $\left[\begin{array}{cc}a_{n-1, n-1} & a_{n-1, n} \\ a_{n, n-1} & a_{n, n}\end{array}\right]$, continue with the leading $(n-2) \times(n-2)$ sub-matrix.

QR Algorithm on Hessenberg Matricestatution Remant

QR iterations: $\mathcal{O}\left(n^{2}\right)$ operations for upper Hessenberg form.
Whenever a sub-diagonal zero appears, the matrix is split into two smaller upper Hessenberg blocks, and they are processed separately, thereby reducing the cost drastically.

Particular cases:

- $a_{n, n-1} \rightarrow 0$: Accept $a_{n n}=\lambda_{n}$ as an eigenvalue, continue with the leading $(n-1) \times(n-1)$ sub-matrix.
- $a_{n-1, n-2} \rightarrow 0$: Separately find the eigenvalues λ_{n-1} and λ_{n} from $\left[\begin{array}{cc}a_{n-1, n-1} & a_{n-1, n} \\ a_{n, n-1} & a_{n, n}\end{array}\right]$, continue with the leading $(n-2) \times(n-2)$ sub-matrix.

Shift strategy: Double QR steps.

Mathematical Methods in Engineering and Science
Eigenvalue Problem of General Matrices
Inverse Iteration
Assumption: Matrix A has a complete set ${ }^{\text {Roff }}$ eigendenvectors.
$\left(\lambda_{i}\right)_{0}$: a good estimate of an eigenvalue λ_{i} of \mathbf{A}.

Mathematical Methods in Engineering and Science
Eigenvalue Problem of General Matrices
Inverse Iteration
Assumption: Matrix \mathbf{A} has a complete set ${ }^{\text {Reff }}$ eigendationectors.
$\left(\lambda_{i}\right)_{0}$: a good estimate of an eigenvalue λ_{i} of \mathbf{A}.
Purpose: To find λ_{i} precisely and also to find \mathbf{v}_{i}.

Mathematical Methods in Engineering and Science
Eigenvalue Problem of General Matrices
Inverse Iteration
Assumption: Matrix \mathbf{A} has a complete set ${ }^{\text {Reff }}$ eigendationectors.
$\left(\lambda_{i}\right)_{0}$: a good estimate of an eigenvalue λ_{i} of \mathbf{A}.
Purpose: To find λ_{i} precisely and also to find \mathbf{v}_{i}.
Step: Select a random vector \mathbf{y}_{0} (with $\left\|\mathbf{y}_{0}\right\|=1$) and solve

$$
\left[\mathbf{A}-\left(\lambda_{i}\right)_{0} \mathbf{I}\right] \mathbf{y}=\mathbf{y}_{0} .
$$

Assumption: Matrix A has a complete set Ref eigendionectors.
$\left(\lambda_{i}\right)_{0}$: a good estimate of an eigenvalue λ_{i} of \mathbf{A}.
Purpose: To find λ_{i} precisely and also to find \mathbf{v}_{i}.
Step: Select a random vector \mathbf{y}_{0} (with $\left\|\mathbf{y}_{0}\right\|=1$) and solve

$$
\left[\mathbf{A}-\left(\lambda_{i}\right)_{0} \mathbf{I}\right] \mathbf{y}=\mathbf{y}_{0} .
$$

Result: \mathbf{y} is a good estimate of \mathbf{v}_{i} and

$$
\left(\lambda_{i}\right)_{1}=\left(\lambda_{i}\right)_{0}+\frac{1}{\mathbf{y}_{0}^{T} \mathbf{y}}
$$

is an improvement in the estimate of the eigenvalue.

Assumption: Matrix \mathbf{A} has a complete set ${ }^{\text {Reff }}$ eigendationectors.
$\left(\lambda_{i}\right)_{0}$: a good estimate of an eigenvalue λ_{i} of \mathbf{A}.
Purpose: To find λ_{i} precisely and also to find \mathbf{v}_{i}.
Step: Select a random vector \mathbf{y}_{0} (with $\left\|\mathbf{y}_{0}\right\|=1$) and solve

$$
\left[\mathbf{A}-\left(\lambda_{i}\right)_{0} \mathbf{I}\right] \mathbf{y}=\mathbf{y}_{0} .
$$

Result: \mathbf{y} is a good estimate of \mathbf{v}_{i} and

$$
\left(\lambda_{i}\right)_{1}=\left(\lambda_{i}\right)_{0}+\frac{1}{\mathbf{y}_{0}^{T} \mathbf{y}}
$$

is an improvement in the estimate of the eigenvalue.
How to establish the result and work out an

With $\mathbf{y}_{0}=\sum_{j=1}^{n} \alpha_{j} \mathbf{v}_{j}$ and $\mathbf{y}=\sum_{j=1}^{n} \beta_{j} \mathbf{v}_{j},\left[\begin{array}{c}\text { Inverse iteration } \\ {[\boldsymbol{A}}\end{array}\right.$

$$
\begin{aligned}
\sum_{j=1}^{n} \beta_{j}\left[\mathbf{A}-\left(\lambda_{i}\right)_{0} \mathbf{I}\right] \mathbf{v}_{j} & =\sum_{j=1}^{n} \alpha_{j} \mathbf{v}_{j} \\
\Rightarrow \beta_{j}\left[\lambda_{j}-\left(\lambda_{i}\right)_{0}\right] & =\alpha_{j} \Rightarrow \beta_{j}=\frac{\alpha_{j}}{\lambda_{j}-\left(\lambda_{i}\right)_{0}} .
\end{aligned}
$$

β_{i} is typically large and eigenvector \mathbf{v}_{i} dominates \mathbf{y}.

$$
\begin{aligned}
\sum_{j=1}^{n} \beta_{j}\left[\mathbf{A}-\left(\lambda_{i}\right)_{0} \mathbf{I}\right] \mathbf{v}_{j} & =\sum_{j=1}^{n} \alpha_{j} \mathbf{v}_{j} \\
\Rightarrow \beta_{j}\left[\lambda_{j}-\left(\lambda_{i}\right)_{0}\right] & =\alpha_{j} \Rightarrow \beta_{j}=\frac{\alpha_{j}}{\lambda_{j}-\left(\lambda_{i}\right)_{0}} .
\end{aligned}
$$

β_{i} is typically large and eigenvector \mathbf{v}_{i} dominates \mathbf{y}.
$\mathbf{A} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ gives $\left[\mathbf{A}-\left(\lambda_{i}\right)_{0} \mathbf{0}\right] \mathbf{v}_{i}=\left[\lambda_{i}-\left(\lambda_{i}\right)_{0}\right] \mathbf{v}_{i}$. Hence,

$$
\left[\lambda_{i}-\left(\lambda_{i}\right)_{0}\right] \mathbf{y} \approx\left[\mathbf{A}-\left(\lambda_{i}\right)_{0} \mathbf{0}\right] \mathbf{y}=\mathbf{y}_{0} .
$$

Inner product with \mathbf{y}_{0} gives

$$
\left[\lambda_{i}-\left(\lambda_{i}\right)_{0}\right] \mathbf{y}_{0}^{T} \mathbf{y} \approx 1 \Rightarrow \lambda_{i} \approx\left(\lambda_{i}\right)_{0}+\frac{1}{\mathbf{y}_{0}^{T} \mathbf{y}} .
$$

Inverse Iteration

Algorithm:

Start with estimate $\left(\lambda_{i}\right)_{0}$, guess \mathbf{y}_{0} (normalized).
For $k=0,1,2, \cdots$

- Solve $\left[\mathbf{A}-\left(\lambda_{i}\right)_{k} \mathbf{l}\right] \mathbf{y}=\mathbf{y}_{k}$.
- Normalize $\mathbf{y}_{k+1}=\frac{\mathbf{y}}{\|\boldsymbol{y}\|}$.
- Improve $\left(\lambda_{i}\right)_{k+1}=\left(\lambda_{i}\right)_{k}+\frac{1}{\mathbf{y}_{k}^{T} \mathbf{y}}$.
- If $\left\|\mathbf{y}_{k+1}-\mathbf{y}_{k}\right\|<\epsilon$, terminate.

Mathematical Methods in Engineering and Science
Inverse Iteration

Algorithm:

Start with estimate $\left(\lambda_{i}\right)_{0}$, guess \mathbf{y}_{0} (normalized).
For $k=0,1,2, \cdots$

- Solve $\left[\mathbf{A}-\left(\lambda_{i}\right)_{k} \mathbf{l}\right] \mathbf{y}=\mathbf{y}_{k}$.
- Normalize $\mathbf{y}_{k+1}=\frac{\mathbf{y}}{\|\mathbf{y}\|}$.
- Improve $\left(\lambda_{i}\right)_{k+1}=\left(\lambda_{i}\right)_{k}+\frac{1}{y_{k}^{T} \mathbf{y}}$.
- If $\left\|\mathbf{y}_{k+1}-\mathbf{y}_{k}\right\|<\epsilon$, terminate.

Important issues

- Update eigenvalue once in a while, not at every iteration.
- Use some acceptable small number as artificial pivot.
- The method may not converge for defective matrix or for one having complex eigenvalues.
- Repeated eigenvalues may inhibit the process.

Table: Eigenvalue problem: summary of methods

Type	Size	Reduction	Algorithm	Post-processing		
General	Small (up to 4)	Definition: Characteristic polynomial	Polynomial root finding (eigenvalues)	Solution of linear systems (eigenvectors)		
Symmetric	Intermediate (say, 4-12)	Jacobi sweeps	Selective Jacobi rotations			
		Tridiagonalization (Givens rotation or Householder method)	Sturm sequence property: Bracketing and bisection (rough eigenvalues)	Inverse iteration (eigenvalue improvement and eigenvectors)		
	Large	Tridiagonalization (usually Householder method)	QR decomposition iterations			
Non-						
symmetric	Intermediate Large	Balancing, and then Reduction to Hessenberg form (Above methods or Gaussian elimination)	QR decomposition iterations (eigenvalues)	Inverse iteration (eigenvectors)		
General	Very large (selective requirement)	Power method, shift and deflation				

Points to note

- Eigenvalue problem of a non-symmetric matrix is difficult!
- Balancing and reduction to Hessenberg form are desirable pre-processing steps.
- QR decomposition algorithm is typically used for reduction to an upper-triangular form.
- Use inverse iteration to polish eigenvalue and find eigenvectors.
- In algebraic eigenvalue problems, different methods or combinations are suitable for different cases; regarding matrix size, symmetry and the requirements.

Necessary Exercises: 1,2

Singular Value Decomposition
SVD Theorem and Construction
Properties of SVD
Pseudoinverse and Solution of Linear Systems
Optimality of Pseudoinverse Solution SVD Algorithm

Mathematical methods in Engineering and Science
SVD Theorem and Construction
Singular Value Decomposition

Do not ask for similarity. Focus on the form of the decomposition.

Do not ask for similarity. Focus on the form of the decomposition.
Guaranteed decomposition with orthogonal U, V, and non-negative diagonal entries in Λ - by allowing $\mathbf{U} \neq \mathbf{V}$.

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T} \text { such that } \mathbf{U}^{T} \mathbf{A} \mathbf{V}=\boldsymbol{\Sigma}
$$

Singular Value Decomposition

Do not ask for similarity. Focus on the form of the decomposition.
Guaranteed decomposition with orthogonal U, V, and non-negative diagonal entries in Λ - by allowing $\mathbf{U} \neq \mathbf{V}$.

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T} \text { such that } \mathbf{U}^{T} \mathbf{A} \mathbf{V}=\mathbf{\Sigma}
$$

SVD Theorem For any real matrix $\mathbf{A} \in R^{m \times n}$, there exist orthogonal matrices $\mathbf{U} \in R^{m \times m}$ and $\mathbf{V} \in R^{n \times n}$ such that

$$
\mathbf{U}^{T} \mathbf{A} \mathbf{V}=\Sigma \in R^{m \times n}
$$

is a diagonal matrix, with diagonal entries $\sigma_{1}, \sigma_{2}, \cdots \geq 0$, obtained by appending the square diagonal matrix $\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}\right)$ with $(m-p)$ zero rows or $(n-p)$ zero columns, where $p=\min (m, n)$.

Singular values: $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}$.
Similar result for complex matrices

Mathematical Methods in Engineering and Scienc
Singular Value Decomposition
SVD Theorem and Construction Question: How to construct \mathbf{U}, \mathbf{V} and Σ ?

$$
\mathbf{A}^{T} \mathbf{A}=\left(\mathbf{V} \Sigma^{T} \mathbf{U}^{T}\right)\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right)=\mathbf{V} \Sigma^{T} \Sigma \mathbf{V}^{T}=\mathbf{V} \wedge \mathbf{V}^{T},
$$

where $\Lambda=\Sigma^{\top} \Sigma$ is an $n \times n$ diagonal matrix.

This provides a proof as well!

$$
\mathbf{A}^{T} \mathbf{A}=\left(\mathbf{V} \Sigma^{T} \mathbf{U}^{T}\right)\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right)=\mathbf{V} \Sigma^{T} \Sigma \mathbf{V}^{T}=\mathbf{V} \wedge \mathbf{V}^{T}
$$

where $\Lambda=\Sigma^{T} \Sigma$ is an $n \times n$ diagonal matrix.

Determine \mathbf{V} and Λ. Work out Σ and we have

$$
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T} \Rightarrow \mathbf{A} \mathbf{V}=\mathbf{U} \Sigma
$$

This provides a proof as well!

From $\mathbf{A V}=\mathbf{U} \Sigma$, determine columns of \mathbf{U}.

1. Column $\mathbf{A} \mathbf{v}_{k}=\sigma_{k} \mathbf{u}_{k}$, with $\sigma_{k} \neq 0$: determine column \mathbf{u}_{k}. Columns developed are bound to be mutually orthonormal!
Verify $\mathbf{u}_{i}^{T} \mathbf{u}_{j}=\left(\frac{1}{\sigma_{i}} \mathbf{A} \mathbf{v}_{i}\right)^{T}\left(\frac{1}{\sigma_{j}} \mathbf{A} \mathbf{v}_{j}\right)=\delta_{i j}$.
2. Column $\mathbf{A} \mathbf{v}_{k}=\sigma_{k} \mathbf{u}_{k}$, with $\sigma_{k}=0: \mathbf{u}_{k}$ is left indeterminate (free).
3. In the case of $m<n$, identically zero columns $\mathbf{A} \mathbf{v}_{k}=\mathbf{0}$ for $k>m$: no corresponding columns of \mathbf{U} to determine.
4. In the case of $m>n$, there will be $(m-n)$ columns of \mathbf{U} left indeterminate.

Extend columns of \mathbf{U} to an orthonormal basis.

Mathematical Methods in Engineering and Science

From $\mathbf{A V}=\mathbf{U} \Sigma$, determine columns of \mathbf{U}.

1. Column $\mathbf{A} \mathbf{v}_{k}=\sigma_{k} \mathbf{u}_{k}$, with $\sigma_{k} \neq 0$: determine column \mathbf{u}_{k}. Columns developed are bound to be mutually orthonorma!!

$$
\text { Verify } \mathbf{u}_{i}^{T} \mathbf{u}_{j}=\left(\frac{1}{\sigma_{i}} \mathbf{A} \mathbf{v}_{i}\right)^{T}\left(\frac{1}{\sigma_{j}} \mathbf{A} \mathbf{v}_{j}\right)=\delta_{i j}
$$

2. Column $\mathbf{A} \mathbf{v}_{k}=\sigma_{k} \mathbf{u}_{k}$, with $\sigma_{k}=0: \mathbf{u}_{k}$ is left indeterminate (free).
3. In the case of $m<n$, identically zero columns $\mathbf{A} \mathbf{v}_{k}=\mathbf{0}$ for $k>m$: no corresponding columns of \mathbf{U} to determine.
4. In the case of $m>n$, there will be $(m-n)$ columns of \mathbf{U} left indeterminate.

Extend columns of \mathbf{U} to an orthonormal basis.
All three factors in the decomposition are constructed, as desired.

Properties of SVD

For a given matrix, the SVD is unique up tovD Algorithm
(a) the same permutations of columns of \mathbf{U}, columns of \mathbf{V} and diagonal elements of Σ;
(b) the same orthonormal linear combinations among columns of \mathbf{U} and columns of \mathbf{V}, corresponding to equal singular values; and
(c) arbitrary orthonormal linear combinations among columns of \mathbf{U} or columns of \mathbf{V}, corresponding to zero or non-existent singular values.

Properties of SVD

For a given matrix, the SVD is unique up tovD Algorithm
(a) the same permutations of columns of \mathbf{U}, columns of \mathbf{V} and diagonal elements of Σ;
(b) the same orthonormal linear combinations among columns of \mathbf{U} and columns of \mathbf{V}, corresponding to equal singular values; and
(c) arbitrary orthonormal linear combinations among columns of \mathbf{U} or columns of \mathbf{V}, corresponding to zero or non-existent singular values.

Ordering of the singular values:

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0, \quad \text { and } \quad \sigma_{r+1}=\sigma_{r+2}=\cdots=\sigma_{p}=0
$$

Properties of SVD

For a given matrix, the SVD is unique up to vD Algorithm Pseudoinverse Solution
(a) the same permutations of columns of \mathbf{U}, columns of \mathbf{V} and diagonal elements of Σ;
(b) the same orthonormal linear combinations among columns of \mathbf{U} and columns of \mathbf{V}, corresponding to equal singular values; and
(c) arbitrary orthonormal linear combinations among columns of \mathbf{U} or columns of \mathbf{V}, corresponding to zero or non-existent singular values.

Ordering of the singular values:

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0, \quad \text { and } \quad \sigma_{r+1}=\sigma_{r+2}=\cdots=\sigma_{p}=0
$$

$\operatorname{Rank}(\mathbf{A})=\operatorname{Rank}(\Sigma)=r$
Rank of a matrix is the same as the number of its non-zero singular values.

Properties of SVD
Singular Value Decomposition

$$
\mathbf{A x}=\mathbf{U} \Sigma \mathbf{V}^{\top} \mathbf{x}=\mathbf{U} \Sigma \mathbf{y}=\left[\begin{array}{llllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \mathbf{u}_{r+1} & \cdots & \mathbf{u}_{m}
\end{array}\right]
$$

$$
=\sigma_{1} y_{1} \mathbf{u}_{1}+\sigma_{2} y_{2} \mathbf{u}_{2}+\cdots+\sigma_{r} y_{r} \mathbf{u}_{r}
$$

has non-zero components along only the first r columns of \mathbf{U}.
U gives an orthonormal basis for the co-domain such that

$$
\operatorname{Range}(\mathbf{A})=\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{r}\right\rangle
$$

Properties of SVD

$$
\begin{aligned}
\mathbf{A} \mathbf{x} & =\mathbf{U} \Sigma \mathbf{V}^{T} \mathbf{x}=\mathbf{U} \Sigma \mathbf{y}=\left[\begin{array}{llllll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r} & \mathbf{u}_{r+1} & \cdots & \mathbf{u}_{m}
\end{array}\right]\left[\begin{array}{c}
\vdots \\
\sigma_{r} y_{r} \\
\mathbf{0}
\end{array}\right] \\
& =\sigma_{1} y_{1} \mathbf{u}_{1}+\sigma_{2} y_{2} \mathbf{u}_{2}+\cdots+\sigma_{r} y_{r} \mathbf{u}_{r}
\end{aligned}
$$

has non-zero components along only the first r columns of \mathbf{U}.
\mathbf{U} gives an orthonormal basis for the co-domain such that

$$
\operatorname{Range}(\mathbf{A})=<\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{r}>
$$

With $\mathbf{V}^{T} \mathbf{x}=\mathbf{y}, \mathbf{v}_{k}^{T} \mathbf{x}=y_{k}$, and

$$
\mathbf{x}=y_{1} \mathbf{v}_{1}+y_{2} \mathbf{v}_{2}+\cdots+y_{r} \mathbf{v}_{r}+y_{r+1} \mathbf{v}_{r+1}+\cdots y_{n} \mathbf{v}_{n} .
$$

V gives an orthonormal basis for the domain such that

$$
\operatorname{Null}(\mathbf{A})=\left\langle\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \cdots, \mathbf{v}_{n}\right\rangle
$$

Properties of SVD

In basis $\mathbf{V}, \mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{V}$ cila of d the norm is given by

$$
\begin{aligned}
\|\mathbf{A}\|^{2} & =\max _{\mathbf{v}} \frac{\|\mathbf{A} \mathbf{v}\|^{2}}{\|\mathbf{v}\|^{2}}=\max _{\mathbf{v}} \frac{\mathbf{v}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{v}}{\mathbf{v}^{T} \mathbf{v}} \\
& =\max _{\mathbf{c}} \frac{\mathbf{c}^{T} \mathbf{V}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{V} \mathbf{c}}{\mathbf{c}^{T} \mathbf{V}^{T} \mathbf{V} \mathbf{c}}=\max _{\mathbf{c}} \frac{\mathbf{c}^{T} \Sigma^{T} \Sigma \mathbf{c}}{\mathbf{c}^{T} \mathbf{c}}=\max _{\mathbf{c}} \frac{\sum_{k} \sigma_{k}^{2} c_{k}^{2}}{\sum_{k} c_{k}^{2}}
\end{aligned}
$$

Properties of SVD

In basis $\mathbf{V}, \mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{V}$ ality of d the norm is given by

$$
\begin{aligned}
\|\mathbf{A}\|^{2} & =\max _{\mathbf{v}} \frac{\|\mathbf{A} \mathbf{v}\|^{2}}{\|\mathbf{v}\|^{2}}=\max _{\mathbf{v}} \frac{\mathbf{v}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{v}}{\mathbf{v}^{T} \mathbf{v}} \\
& =\max _{\mathbf{c}} \frac{\mathbf{c}^{T} \mathbf{V}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{V} \mathbf{c}}{\mathbf{c}^{T} \mathbf{V}^{T} \mathbf{V} \mathbf{c}}=\max _{\mathbf{c}} \frac{\mathbf{c}^{T} \Sigma^{T} \Sigma \mathbf{c}}{\mathbf{c}^{T} \mathbf{c}}=\max _{\mathbf{c}} \frac{\sum_{k} \sigma_{k}^{2} c_{k}^{2}}{\sum_{k} c_{k}^{2}} . \\
\|\mathbf{A}\| & =\sqrt{\max _{\mathbf{c}} \frac{\sum_{k} \sigma_{k}^{2} c_{k}^{2}}{\sum_{k} c_{k}^{2}}}=\sigma_{\max }
\end{aligned}
$$

Properties of SVD

In basis $\mathbf{V}, \mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{V}$ alitand of the norm is given by

$$
\begin{aligned}
\|\mathbf{A}\|^{2} & =\max _{\mathbf{v}} \frac{\|\mathbf{A} \mathbf{v}\|^{2}}{\|\mathbf{v}\|^{2}}=\max _{\mathbf{v}} \frac{\mathbf{v}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{v}}{\mathbf{v}^{T} \mathbf{v}} \\
& =\max _{\mathbf{c}} \frac{\mathbf{c}^{T} \mathbf{V}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{V} \mathbf{c}}{\mathbf{c}^{T} \mathbf{V}^{T} \mathbf{V} \mathbf{c}}=\max _{\mathbf{c}} \frac{\mathbf{c}^{T} \Sigma^{T} \Sigma \mathbf{c}}{\mathbf{c}^{T} \mathbf{c}}=\max _{\mathbf{c}} \frac{\sum_{k} \sigma_{k}^{2} c_{k}^{2}}{\sum_{k} c_{k}^{2}} \\
\|\mathbf{A}\| & =\sqrt{\max _{\mathbf{c}} \frac{\sum_{k} \sigma_{k}^{2} c_{k}^{2}}{\sum_{k} c_{k}^{2}}}=\sigma_{\max }
\end{aligned}
$$

For a non-singular square matrix,

$$
\mathbf{A}^{-1}=\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right)^{-1}=\mathbf{V} \Sigma^{-1} \mathbf{U}^{T}=\mathbf{V} \operatorname{diag}\left(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, \cdots, \frac{1}{\sigma_{n}}\right) \mathbf{U}^{T}
$$

Properties of SVD
In basis $\mathbf{V}, \mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{V}$ ality for sithen torm is given by

$$
\begin{aligned}
\|\mathbf{A}\|^{2} & =\max _{\mathbf{v}} \frac{\|\mathbf{A} \mathbf{v}\|^{2}}{\|\mathbf{v}\|^{2}}=\max _{\mathbf{v}} \frac{\mathbf{v}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{v}}{\mathbf{v}^{T} \mathbf{v}} \\
& =\max _{\mathbf{c}} \frac{\mathbf{c}^{T} \mathbf{V}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{V} \mathbf{c}}{\mathbf{c}^{T} \mathbf{V}^{T} \mathbf{V} \mathbf{c}}=\max _{\mathbf{c}} \frac{\mathbf{c}^{T} \Sigma^{T} \Sigma \mathbf{c}}{\mathbf{c}^{T} \mathbf{c}}=\max _{\mathbf{c}} \frac{\sum_{k} \sigma_{k}^{2} c_{k}^{2}}{\sum_{k} c_{k}^{2}} \\
\|\mathbf{A}\| & =\sqrt{\max _{\mathbf{c}} \frac{\sum_{k} \sigma_{k}^{2} c_{k}^{2}}{\sum_{k} c_{k}^{2}}}=\sigma_{\max }
\end{aligned}
$$

For a non-singular square matrix,

$$
\mathbf{A}^{-1}=\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right)^{-1}=\mathbf{V} \Sigma^{-1} \mathbf{U}^{T}=\mathbf{V} \operatorname{diag}\left(\frac{1}{\sigma_{1}}, \frac{1}{\sigma_{2}}, \cdots, \frac{1}{\sigma_{n}}\right) \mathbf{U}^{T}
$$

Then, $\left\|\mathbf{A}^{-1}\right\|=\frac{1}{\sigma_{\text {min }}}$ and the condition number is

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|=\frac{\sigma_{\max }}{\sigma_{\min }}
$$

Revision of definition of norm and condition number:
The norm of a matrix is the same as its largest singular value, while its condition number is given by the ratio of the largest singular value to the least.

Properties of SVD

Revision of definition of norm and condition number:
The norm of a matrix is the same as its largest singular value, while its condition number is given by the ratio of the largest singular value to the least.

Arranging singular values in decreasing order, with $\operatorname{Rank}(\mathbf{A})=r$,

$$
\begin{gathered}
\mathbf{U}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \overline{\mathbf{U}}
\end{array}\right] \text { and } \quad \begin{array}{ll}
\mathbf{V}=\left[\begin{array}{ll}
\mathbf{V}_{r} & \overline{\mathbf{V}}
\end{array}\right], \\
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \overline{\mathbf{U}}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{r}^{T} \\
\overline{\mathbf{V}}^{T}
\end{array}\right],
\end{array}, .
\end{gathered}
$$

or,

$$
\mathbf{A}=\mathbf{U}_{r} \Sigma_{r} \mathbf{V}_{r}^{T}=\sum_{k=1}^{r} \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}
$$

Properties of SVD

Revision of definition of norm and condition number:
The norm of a matrix is the same as its largest singular value, while its condition number is given by the ratio of the largest singular value to the least.

Arranging singular values in decreasing order, with $\operatorname{Rank}(\mathbf{A})=r$,

$$
\begin{gathered}
\mathbf{U}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \overline{\mathbf{U}}
\end{array}\right] \text { and } \quad \begin{array}{l}
\mathbf{V}=\left[\begin{array}{ll}
\mathbf{V}_{r} & \overline{\mathbf{V}}
\end{array}\right], \\
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}=\left[\begin{array}{ll}
\mathbf{U}_{r} & \overline{\mathbf{U}}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{V}_{r}^{T} \\
\overline{\mathbf{V}}^{T}
\end{array}\right],
\end{array}, .
\end{gathered}
$$

or,

$$
\mathbf{A}=\mathbf{U}_{r} \Sigma_{r} \mathbf{V}_{r}^{T}=\sum_{k=1}^{r} \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{T}
$$

Efficient storage and reconstruction!

Mathematical Methods in Engineering and Science

Generalized inverse: \mathbf{G} is called a generalize opd in inverse or g-inverse of \mathbf{A} if, for $\mathbf{b} \in \operatorname{Range}(\mathbf{A}), \mathbf{G b}$ is a solution of $\mathbf{A x}=\mathbf{b}$.

Mathematical Methods in Engineering and Science

Pseudoinverse and Solution of Linear Systemis construction

Generalized inverse: \mathbf{G} is called a generalize of in inverse or g-inverse of \mathbf{A} if, for $\mathbf{b} \in \operatorname{Range}(\mathbf{A}), \mathbf{G b}$ is a solution of $\mathbf{A x}=\mathbf{b}$.
The Moore-Penrose inverse or the pseudoinverse:

$$
\mathbf{A}^{\#}=\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right)^{\#}=\left(\mathbf{V}^{\top}\right)^{\#} \Sigma^{\#} \mathbf{U}^{\#}=\mathbf{V} \Sigma^{\#} \mathbf{U}^{T}
$$

athematical Methods in Engineering and Science

Pseudoinverse and Solution of Linear Systemis constrution

Generalized inverse: \mathbf{G} is called a generalize opd in inverse or g-inverse of \mathbf{A} if, for $\mathbf{b} \in \operatorname{Range}(\mathbf{A}), \mathbf{G b}$ is a solution of $\mathbf{A x}=\mathbf{b}$.
The Moore-Penrose inverse or the pseudoinverse:

$$
\begin{aligned}
& \mathbf{A}^{\#}=\left(\mathbf{U} \Sigma \mathbf{V}^{T}\right)^{\#}=\left(\mathbf{V}^{T}\right)^{\#} \Sigma^{\#} \mathbf{U}^{\#}=\mathbf{V} \Sigma^{\#} \mathbf{U}^{T} \\
& \text { With } \Sigma=\left[\begin{array}{cc}
\Sigma_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right], \Sigma^{\#}=\left[\begin{array}{cc}
\Sigma_{r}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] .
\end{aligned}
$$

lathematical Methods in Engineering and Science

Pseudoinverse and Solution of Linear SSystemis constrution

Generalized inverse: \mathbf{G} is called a generalized inverse or g-inverse of \mathbf{A} if, for $\mathbf{b} \in \operatorname{Range}(\mathbf{A}), \mathbf{G b}$ is a solution of $\mathbf{A x}=\mathbf{b}$.
The Moore-Penrose inverse or the pseudoinverse:

$$
\begin{gathered}
\mathbf{A}^{\#}=\left(\mathbf{U} \Sigma \mathbf{V}^{\top}\right)^{\#}=\left(\mathbf{V}^{\top}\right)^{\#} \Sigma^{\#} \mathbf{U}^{\#}=\mathbf{V} \Sigma^{\#} \mathbf{U}^{\top} \\
\text { With } \Sigma=\left[\begin{array}{cc}
\Sigma_{r} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right], \Sigma^{\#}=\left[\begin{array}{ccc:c}
\Sigma_{r}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] . \\
\text { Or, } \quad \Sigma^{\#}=\left[\begin{array}{lllll}
\rho_{1} & & & \\
& \rho_{2} & & & \mathbf{0} \\
& & \ddots & & \\
-- & & \rho_{p} & & \\
\hdashline & \mathbf{0} & & -- & \times
\end{array}\right],
\end{gathered}
$$

where $\rho_{k}=\left\{\begin{array}{cc}\frac{1}{\sigma_{k}}, & \text { for } \sigma_{k} \neq 0 \text { or for }\left|\sigma_{k}\right|>\epsilon ; \\ 0, & \text { for } \sigma_{k}=0 \text { or for }\left|\sigma_{k}\right| \leq \epsilon .\end{array}\right.$

athematical Methods in Engineering and Science

Pseudoinverse and Solution of Linear Systemis
 Inverse-like facets and beyond

- $\left(\mathbf{A}^{\#}\right)^{\#}=\mathbf{A}$.
- If \mathbf{A} is invertible, then $\mathbf{A}^{\#}=\mathbf{A}^{-1}$.
- $\mathbf{A}^{\#} \mathbf{b}$ gives the correct unique solution.
- If $\mathbf{A x}=\mathbf{b}$ is an under-determined consistent system, then $\mathbf{A}^{\#} \mathbf{b}$ selects the solution \mathbf{x}^{*} with the minimum norm.
- If the system is inconsistent, then $\mathbf{A}^{\#} \mathbf{b}$ minimizes the least square error $\|\mathbf{A x}-\mathbf{b}\|$.
- If the minimizer of $\|\mathbf{A x}-\mathbf{b}\|$ is not unique, then it picks up that minimizer which has the minimum norm $\|\mathbf{x}\|$ among such minimizers.

athematical Methods in Engineering and Science

Pseudoinverse and Solution of Linear Systemis
 Inverse-like facets and beyond

- $\left(\mathbf{A}^{\#}\right)^{\#}=\mathbf{A}$.
- If \mathbf{A} is invertible, then $\mathbf{A}^{\#}=\mathbf{A}^{-1}$.
- $\mathbf{A}^{\#} \mathbf{b}$ gives the correct unique solution.
- If $\mathbf{A x}=\mathbf{b}$ is an under-determined consistent system, then $\mathbf{A}^{\#} \mathbf{b}$ selects the solution \mathbf{x}^{*} with the minimum norm.
- If the system is inconsistent, then $\mathbf{A}^{\#} \mathbf{b}$ minimizes the least square error $\|\mathbf{A x}-\mathbf{b}\|$.
- If the minimizer of $\|\mathbf{A x}-\mathbf{b}\|$ is not unique, then it picks up that minimizer which has the minimum norm $\|\mathbf{x}\|$ among such minimizers.

Contrast with Tikhonov regularization:
Pseudoinverse solution for precision and diagnosis. Tikhonov's solution for continuity of solution over variable A and computational efficiency.

Mathematical Methods in Engineering and Science
Optimality of Pseudoinverse Solution $\begin{gathered}\text { Svo Therem and Construction } \\ \text { froperties of SvD }\end{gathered}$
Pseudoinverse and Solution of Linear Systems
Pseudoinverse solution of $\mathbf{A x}=\mathbf{b}$:

$$
\mathbf{x}^{*}=\mathbf{V} \Sigma^{\#} \mathbf{U}^{T} \mathbf{b}=\sum_{k=1}^{r} \rho_{k} \mathbf{v}_{k} \mathbf{u}_{k}^{T} \mathbf{b}=\sum_{k=1}^{r}\left(\mathbf{u}_{k}^{T} \mathbf{b} / \sigma_{k}\right) \mathbf{v}_{k}
$$

lathematical Methods in Engineering and Science Singular Value Decomposition
Optimality of Pseudoinverse Solution $\begin{gathered}\text { Svo Theorerem and ond Construction } \\ \text { Pros }\end{gathered}$
Pseudoinverse solution of $\mathbf{A x}=\mathbf{b}$:

$$
\mathbf{x}^{*}=\mathbf{V} \Sigma^{\#} \mathbf{U}^{T} \mathbf{b}=\sum_{k=1}^{r} \rho_{k} \mathbf{v}_{k} \mathbf{u}_{k}^{T} \mathbf{b}=\sum_{k=1}^{r}\left(\mathbf{u}_{k}^{T} \mathbf{b} / \sigma_{k}\right) \mathbf{v}_{k}
$$

Minimize

$$
E(\mathbf{x})=\frac{1}{2}(\mathbf{A} \mathbf{x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{b}+\frac{1}{2} \mathbf{b}^{T} \mathbf{b}
$$

athematical Methods in Engineering and Science Singular Value Decomposition
Optimality of Pseudoinverse Solution $\begin{gathered}\text { SVO Theorem and Construction } \\ \text { Proeties of svo }\end{gathered}$
Pseudoinverse solution of $\mathbf{A x}=\mathbf{b}$:

$$
\mathbf{x}^{*}=\mathbf{V} \Sigma^{\#} \mathbf{U}^{T} \mathbf{b}=\sum_{k=1}^{r} \rho_{k} \mathbf{v}_{k} \mathbf{u}_{k}^{T} \mathbf{b}=\sum_{k=1}^{r}\left(\mathbf{u}_{k}^{T} \mathbf{b} / \sigma_{k}\right) \mathbf{v}_{k}
$$

Minimize

$$
E(\mathbf{x})=\frac{1}{2}(\mathbf{A} \mathbf{x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{b}+\frac{1}{2} \mathbf{b}^{T} \mathbf{b}
$$

Condition of vanishing gradient:

$$
\begin{aligned}
\frac{\partial E}{\partial \mathbf{x}}=\mathbf{0} & \Rightarrow \mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b} \\
& \Rightarrow \mathbf{V}\left(\Sigma^{T} \Sigma\right) \mathbf{V}^{T} \mathbf{x}=\mathbf{V} \Sigma^{T} \mathbf{U}^{T} \mathbf{b} \\
& \Rightarrow\left(\Sigma^{T} \Sigma\right) \mathbf{V}^{T} \mathbf{x}=\Sigma^{T} \mathbf{U}^{T} \mathbf{b} \\
& \Rightarrow \sigma_{k}^{2} \mathbf{v}_{\mathbf{k}}^{T} \mathbf{x}=\sigma_{k} \mathbf{u}_{k}^{T} \mathbf{b} \\
& \Rightarrow \mathbf{v}_{k}^{T} \mathbf{x}=\mathbf{u}_{k}^{T} \mathbf{b} / \sigma_{k} \text { for } k=1,2,3, \cdots, r .
\end{aligned}
$$

Mathematical Methods in Engineering and Science

Optimality of Pseudoinverse Solution SVD Theorem and Construction
 Properties of SVD
 Pseudoinverse and Solution of Linear Systems Optimality of Pseudoinverse Solution SVD Algorithm

With $\overline{\mathbf{V}}=\left[\begin{array}{llll}\mathbf{v}_{r+1} & \mathbf{v}_{r+2} & \cdots & \mathbf{v}_{n}\end{array}\right]$, then

$$
\mathbf{x}=\sum_{k=1}^{r}\left(\mathbf{u}_{k}^{T} \mathbf{b} / \sigma_{k}\right) \mathbf{v}_{k}+\overline{\mathbf{V}} \mathbf{y}=\mathbf{x}^{*}+\overline{\mathbf{V}}_{\mathbf{y}}
$$

Mathematical Methods in Engineering and Science
Singular Value Decomposition
Optimality of Pseudoinverse Solution $\begin{gathered}\text { svo Theorerem and Construction } \\ \text { proper f SVD }\end{gathered}$

With $\overline{\mathbf{V}}=\left[\begin{array}{llll}\mathbf{v}_{r+1} & \mathbf{v}_{r+2} & \cdots & \mathbf{v}_{n}\end{array}\right]$, then

$$
\mathbf{x}=\sum_{k=1}^{r}\left(\mathbf{u}_{k}^{T} \mathbf{b} / \sigma_{k}\right) \mathbf{v}_{k}+\overline{\mathbf{V}} \mathbf{y}=\mathbf{x}^{*}+\overline{\mathbf{V}} \mathbf{y}
$$

How to minimize $\|\mathbf{x}\|^{2}$ subject to $E(\mathbf{x})$ minimum?

athematical Methods in Engineering and Science

With $\overline{\mathbf{V}}=\left[\begin{array}{llll}\mathbf{v}_{r+1} & \mathbf{v}_{r+2} & \cdots & \mathbf{v}_{n}\end{array}\right]$, then

$$
\mathbf{x}=\sum_{k=1}^{r}\left(\mathbf{u}_{k}^{T} \mathbf{b} / \sigma_{k}\right) \mathbf{v}_{k}+\overline{\mathbf{V}} \mathbf{y}=\mathbf{x}^{*}+\overline{\mathbf{V}} \mathbf{y}
$$

How to minimize $\|\mathbf{x}\|^{2}$ subject to $E(\mathbf{x})$ minimum?
$\operatorname{Minimize} E_{1}(\mathbf{y})=\left\|\mathbf{x}^{*}+\overline{\mathbf{V}} \mathbf{y}\right\|^{2}$.

With $\overline{\mathbf{V}}=\left[\begin{array}{llll}\mathbf{v}_{r+1} & \mathbf{v}_{r+2} & \cdots & \mathbf{v}_{n}\end{array}\right]$, then

$$
\mathbf{x}=\sum_{k=1}^{r}\left(\mathbf{u}_{k}^{T} \mathbf{b} / \sigma_{k}\right) \mathbf{v}_{k}+\overline{\mathbf{V}} \mathbf{y}=\mathbf{x}^{*}+\overline{\mathbf{V}} \mathbf{y}
$$

How to minimize $\|\mathbf{x}\|^{2}$ subject to $E(\mathbf{x})$ minimum?
$\operatorname{Minimize} E_{1}(\mathbf{y})=\left\|\mathbf{x}^{*}+\overline{\mathbf{V}} \mathbf{y}\right\|^{2}$.

Since \mathbf{x}^{*} and $\overline{\mathbf{V}} \mathbf{y}$ are mutually orthogonal,

$$
E_{1}(\mathbf{y})=\left\|\mathbf{x}^{*}+\overline{\mathbf{V}} \mathbf{y}\right\|^{2}=\left\|\mathbf{x}^{*}\right\|^{2}+\|\overline{\mathbf{V}} \mathbf{y}\|^{2}
$$

is minimum when $\overline{\mathbf{V}} \mathbf{y}=0$, i.e. $\mathbf{y}=0$.

Mathematical Methods in Engineering and Science
 Anatomy of the optimization through SViD ality of Psendinverse Solution Using basis \mathbf{V} for domain and \mathbf{U} for co-domain, the variables are transformed as

$$
\mathbf{V}^{\top} \mathbf{x}=\mathbf{y} \quad \text { and } \quad \mathbf{U}^{\top} \mathbf{b}=\mathbf{c} .
$$

athematical Methods in Engineering and Science

Optimality of Pseudoinverse Solution $\begin{gathered}\text { Svo Theoremer and Constuction } \\ \text { proper of SVD }\end{gathered}$
 Using basis \mathbf{V} for domain and \mathbf{U} for co-domain, the variables are transformed as

$$
\mathbf{V}^{\top} \mathbf{x}=\mathbf{y} \quad \text { and } \quad \mathbf{U}^{\top} \mathbf{b}=\mathbf{c} .
$$

Then,

$$
\mathbf{A} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{U} \Sigma \mathbf{V}^{T} \mathbf{x}=\mathbf{b} \Rightarrow \Sigma \mathbf{V}^{T} \mathbf{x}=\mathbf{U}^{\top} \mathbf{b} \Rightarrow \Sigma \mathbf{y}=\mathbf{c} .
$$

A completely decoupled system!

Singular Value Decomposition

Optimality of Pseudoinverse Solution propetiese of sivid Construction

Anatomy of the optimization through SPID ility of Pseudoinverse Solution Anatomy of the optimization through SWDAlgorithm
Using basis \mathbf{V} for domain and \mathbf{U} for co-domain, the variables are transformed as

$$
\mathbf{V}^{T} \mathbf{x}=\mathbf{y} \quad \text { and } \quad \mathbf{U}^{T} \mathbf{b}=\mathbf{c} .
$$

Then,

$$
\mathbf{A} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{U} \Sigma \mathbf{V}^{T} \mathbf{x}=\mathbf{b} \Rightarrow \Sigma \mathbf{V}^{T} \mathbf{x}=\mathbf{U}^{T} \mathbf{b} \Rightarrow \Sigma \mathbf{y}=\mathbf{c}
$$

A completely decoupled system!
Usable components: $y_{k}=c_{k} / \sigma_{k}$ for $k=1,2,3, \cdots, r$. For $k>r$,

- completely redundant information $\left(c_{k}=0\right)$
- purely unresolvable conflict $\left(c_{k} \neq 0\right)$

Pseudoinverse and Solution of Linear Systems
Anatomy of the optimization through SVID Using basis \mathbf{V} for domain and \mathbf{U} for co-domain, the variables are transformed as

$$
\mathbf{V}^{T} \mathbf{x}=\mathbf{y} \quad \text { and } \quad \mathbf{U}^{T} \mathbf{b}=\mathbf{c} .
$$

Then,

$$
\mathbf{A} \mathbf{x}=\mathbf{b} \Rightarrow \mathbf{U} \Sigma \mathbf{V}^{\top} \mathbf{x}=\mathbf{b} \Rightarrow \Sigma \mathbf{V}^{\top} \mathbf{x}=\mathbf{U}^{\top} \mathbf{b} \Rightarrow \Sigma \mathbf{y}=\mathbf{c} .
$$

A completely decoupled system!
Usable components: $y_{k}=c_{k} / \sigma_{k}$ for $k=1,2,3, \cdots, r$.
For $k>r$,

- completely redundant information $\left(c_{k}=0\right)$
- purely unresolvable conflict $\left(c_{k} \neq 0\right)$

SVD extracts this pure redundancy/inconsistency.
Setting $\rho_{k}=0$ for $k>r$ rejects it wholesale! At the same time, $\|\mathbf{y}\|$ is minimized, and hence $\|\mathbf{x}\|$ too.

Points to note

- SVD provides a complete orthogonal decomposition of the domain and co-domain of a linear transformation, separating out functionally distinct subspaces.
- If offers a complete diagnosis of the pathologies of systems of linear equations.
- Pseudoinverse solution of linear systems satisfy meaningful optimality requirements in several contexts.
- With the existence of SVD guaranteed, many important results can be established in a straightforward manner.

Necessary Exercises: 2,4,5,6,7

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*

Vector Spaces: Fundamental Concepts*

Group
Field
Vector Space
Linear Transformation
Isomorphism
Inner Product Space
Function Space

Mathematical Methods in Engineering and Science
Group
A set G and a binary operation, say ' + ', fulfilliengism Space
Closure: $\quad a+b \in G \forall a, b \in G$
Function Space
Associativity: $a+(b+c)=(a+b)+c, \forall a, b, c \in G$
Existence of identity: $\exists 0 \in G$ such that $\forall a \in G, a+0=a=0+a$
Existence of inverse: $\forall a \in G, \exists(-a) \in G$ such that

$$
a+(-a)=0=(-a)+a
$$

Examples: $(Z,+),(R,+),(Q-\{0\}, \cdot), 2 \times 5$ real matrices, Rotations etc.

Group

A set G and a binary operation, say ' + ', fulfillipg bism Space
Closure: $\quad a+b \in G \forall a, b \in G$
Associativity: $a+(b+c)=(a+b)+c, \forall a, b, c \in G$
Existence of identity: $\exists 0 \in G$ such that $\forall a \in G, a+0=a=0+a$
Existence of inverse: $\forall a \in G, \exists(-a) \in G$ such that

$$
a+(-a)=0=(-a)+a
$$

Examples: $(Z,+),(R,+),(Q-\{0\}, \cdot), 2 \times 5$ real matrices, Rotations etc.

- Commutative group

Examples: $(Z,+),(R,+),(Q-\{0\}, \cdot),(\mathcal{F},+)$.

Vector Spaces: Fundamental Concepts*

A set G and a binary operation, say ' + ', fulfillipg bism Space
Closure: $\quad a+b \in G \forall a, b \in G$
Associativity: $a+(b+c)=(a+b)+c, \forall a, b, c \in G$
Existence of identity: $\exists 0 \in G$ such that $\forall a \in G, a+0=a=0+a$
Existence of inverse: $\forall a \in G, \exists(-a) \in G$ such that

$$
a+(-a)=0=(-a)+a
$$

Examples: $(Z,+),(R,+),(Q-\{0\}, \cdot), 2 \times 5$ real matrices, Rotations etc.

- Commutative group

Examples: $(Z,+),(R,+),(Q-\{0\}, \cdot), \bigcirc(\mathcal{F},+)$.

- Subgroup

Group property for addition: $(F,+)$ is a commutative group. (Denote the identity element of this group as ' 0 '.)
Group property for multiplication: $(F-\{0\}, \cdot)$ is a commutative group. (Denote the identity element of this group as '1'.)
Distributivity: $a \cdot(b+c)=a \cdot b+a \cdot c, \quad \forall a, b, c \in F$.

Concept of field: abstraction of a number system

A set F and two binary operations, say ' + ' and don spact satisfying
Group property for addition: $(F,+)$ is a commutative group. (Denote the identity element of this group as ' 0 '.)
Group property for multiplication: $(F-\{0\}, \cdot)$ is a commutative group. (Denote the identity element of this group as '1'.)
Distributivity: $a \cdot(b+c)=a \cdot b+a \cdot c, \quad \forall a, b, c \in F$.

Concept of field: abstraction of a number system

Examples: $(Q,+, \cdot),(R,+, \cdot),(C,+, \cdot)$ etc.

A set F and two binary operations, say ' + ' and don spact satisfying
Group property for addition: $(F,+)$ is a commutative group. (Denote the identity element of this group as ' 0 '.)
Group property for multiplication: $(F-\{0\}, \cdot)$ is a commutative group. (Denote the identity element of this group as '1'.)
Distributivity: $a \cdot(b+c)=a \cdot b+a \cdot c, \quad \forall a, b, c \in F$.

Concept of field: abstraction of a number system

Examples: $(Q,+, \cdot),(R,+, \cdot),(C,+, \cdot)$ etc.

- Subfield

Vector Space

A vector space is defined by

- a field F of 'scalars',
- a commutative group V of 'vectors', and
- a binary operation between F and \mathbf{V}, that may be called 'scalar multiplication', such that $\forall \alpha, \beta \in F, \forall \mathbf{a}, \mathbf{b} \in \mathbf{V}$; the following conditions hold.
Closure: $\quad \alpha \mathbf{a} \in \mathbf{V}$. Identity: $\quad 1 \mathbf{a}=\mathbf{a}$.
Associativity: $(\alpha \beta) \mathbf{a}=\alpha(\beta \mathbf{a})$. Scalar distributivity: $\alpha(\mathbf{a}+\mathbf{b})=\alpha \mathbf{a}+\alpha \mathbf{b}$. Vector distributivity: $(\alpha+\beta) \mathbf{a}=\alpha \mathbf{a}+\beta \mathbf{a}$.

Examples: $R^{n}, C^{n}, m \times n$ real matrices etc.

Vector Space

A vector space is defined by

- a field F of 'scalars',
- a commutative group V of 'vectors', and
- a binary operation between F and \mathbf{V}, that may be called 'scalar multiplication', such that $\forall \alpha, \beta \in F, \forall \mathbf{a}, \mathbf{b} \in \mathbf{V}$; the following conditions hold.
Closure: $\quad \alpha \mathbf{a} \in \mathbf{V}$. Identity: $\quad 1 \mathbf{a}=\mathbf{a}$.
Associativity: $(\alpha \beta) \mathbf{a}=\alpha(\beta \mathbf{a})$. Scalar distributivity: $\alpha(\mathbf{a}+\mathbf{b})=\alpha \mathbf{a}+\alpha \mathbf{b}$.
Vector distributivity: $(\alpha+\beta) \mathbf{a}=\alpha \mathbf{a}+\beta \mathbf{a}$.
Examples: $R^{n}, C^{n}, m \times n$ real matrices etc.
Field \leftrightarrow Number system
Vector space \leftrightarrow Space

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*

Vector Space
Suppose V is a vector space. Take a vector $\xi_{1} \neq \mathbf{0}$ in it.

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*
Vector Space
Suppose V is a vector space. Take a vector $\xi_{1} \neq \mathbf{0}$ in it.

Then, vectors linearly dependent on ξ_{1} : $\alpha_{1} \xi_{1} \in \mathbf{V} \forall \alpha_{1} \in F$.

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*
Vector Space
Suppose V is a vector space.

Then, vectors linearly dependent on ξ_{1} : $\alpha_{1} \xi_{1} \in \mathbf{V} \forall \alpha_{1} \in F$.

Question: Are the elements of \mathbf{V} exhausted?

Suppose V is a vector space. Take a vector $\xi_{1} \neq \mathbf{0}$ in it.

Question: Are the elements of \mathbf{V} exhausted?
If not, then take $\xi_{2} \in \mathbf{V}$: linearly independent from ξ_{1}. Then, $\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2} \in \mathbf{V} \forall \alpha_{1}, \alpha_{2} \in F$.

Suppose V is a vector space. Take a vector $\xi_{1} \neq \mathbf{0}$ in it.

Question: Are the elements of \mathbf{V} exhausted?
If not, then take $\xi_{2} \in \mathbf{V}$: linearly independent from ξ_{1}.
Then, $\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2} \in \mathbf{V} \forall \alpha_{1}, \alpha_{2} \in F$.

Question: Are the elements of \mathbf{V} exhausted now?

Suppose V is a vector space. Take a vector $\xi_{1} \neq \mathbf{0}$ in it.

Question: Are the elements of \mathbf{V} exhausted?
If not, then take $\xi_{2} \in \mathbf{V}$: linearly independent from ξ_{1}.
Then, $\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2} \in \mathbf{V} \forall \alpha_{1}, \alpha_{2} \in F$.

Question: Are the elements of \mathbf{V} exhausted now?

Suppose V is a vector space. Take a vector $\xi_{1} \neq \mathbf{0}$ in it.
Vector Spaces: Fundamental Concepts*

Question: Are the elements of \mathbf{V} exhausted?
If not, then take $\xi_{2} \in \mathbf{V}$: linearly independent from ξ_{1}. Then, $\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2} \in \mathbf{V} \forall \alpha_{1}, \alpha_{2} \in F$.

Question: Are the elements of \mathbf{V} exhausted now?

Question: Will this process ever end?

Suppose V is a vector space. Take a vector $\xi_{1} \neq \mathbf{0}$ in it.

Question: Are the elements of \mathbf{V} exhausted?
If not, then take $\xi_{2} \in \mathbf{V}$: linearly independent from ξ_{1}. Then, $\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2} \in \mathbf{V} \forall \alpha_{1}, \alpha_{2} \in F$.

Question: Are the elements of \mathbf{V} exhausted now?

Question: Will this process ever end?
Suppose it does.

Vector Space

Suppose V is a vector space. Take a vector $\xi_{1} \neq \mathbf{0}$ in it.

Then, vectors linearly dependent on ξ_{1} : $\alpha_{1} \xi_{1} \in \mathbf{V} \forall \alpha_{1} \in F$.

Question: Are the elements of \mathbf{V} exhausted?
If not, then take $\xi_{2} \in \mathbf{V}$: linearly independent from ξ_{1}.
Then, $\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2} \in \mathbf{V} \forall \alpha_{1}, \alpha_{2} \in F$.
Question: Are the elements of \mathbf{V} exhausted now?

Question: Will this process ever end?
Suppose it does.
finite dimensional vector space

Mathematical Methods in Engineering and Science
Vector Space

Finite dimensional vector space

Suppose the above process ends after n choices of linearly independent vectors.

$$
\chi=\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}+\cdots+\alpha_{n} \xi_{n}
$$

Finite dimensional vector space
Vector Spaces: Fundamental Concepts*

Suppose the above process ends after n choices of linearly independent vectors.

$$
\chi=\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}+\cdots+\alpha_{n} \xi_{n}
$$

Then,

- n : dimension of the vector space
- ordered set $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$: a basis
- $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in F$: coordinates of χ in that basis

Finite dimensional vector space
Vector Spaces: Fundamental Concepts*

Suppose the above process ends after n choices of linearly independent vectors.

$$
\chi=\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}+\cdots+\alpha_{n} \xi_{n}
$$

Then,

- n : dimension of the vector space
- ordered set $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$: a basis
- $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in F$: coordinates of χ in that basis R^{n}, R^{m} etc: vector spaces over the field of real numbers

Finite dimensional vector space
Vector Spaces: Fundamental Concepts*

Suppose the above process ends after n choices of linearly independent vectors.

$$
\chi=\alpha_{1} \xi_{1}+\alpha_{2} \xi_{2}+\cdots+\alpha_{n} \xi_{n}
$$

Then,

- n : dimension of the vector space
- ordered set $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$: a basis
- $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in F$: coordinates of χ in that basis R^{n}, R^{m} etc: vector spaces over the field of real numbers
- Subspace

Mathematical Methods in Engineering and Science
Linear Transformation
Vector Spaces: Fundamental Concepts*

A mapping $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ satisfying

$$
\mathbf{T}(\alpha \mathbf{a}+\beta \mathbf{b})=\alpha \mathbf{T}(\mathbf{a})+\beta \mathbf{T}(\mathbf{b}) \forall \alpha, \beta \in F \quad \text { and } \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{V}
$$

where \mathbf{V} and \mathbf{W} are vector spaces over the field F.

Lithematical Methods in Engineering and Science
Tinear Transformation
Vector Spaces: Fundamental Concepts*

A mapping $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ satisfying

$$
\mathbf{T}(\alpha \mathbf{a}+\beta \mathbf{b})=\alpha \mathbf{T}(\mathbf{a})+\beta \mathbf{T}(\mathbf{b}) \forall \alpha, \beta \in F \quad \text { and } \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{V}
$$

where \mathbf{V} and \mathbf{W} are vector spaces over the field F.
Question: How to describe the linear transformation T?

A mapping $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ satisfying

$$
\mathbf{T}(\alpha \mathbf{a}+\beta \mathbf{b})=\alpha \mathbf{T}(\mathbf{a})+\beta \mathbf{T}(\mathbf{b}) \forall \alpha, \beta \in F \quad \text { and } \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{V}
$$

where \mathbf{V} and \mathbf{W} are vector spaces over the field F.
Question: How to describe the linear transformation T?

- For \mathbf{V}, basis $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$
- For \mathbf{W}, basis $\eta_{1}, \eta_{2}, \cdots, \eta_{m}$
$\xi_{1} \in \mathbf{V}$ gets mapped to $\mathbf{T}\left(\xi_{1}\right) \in \mathbf{W}$.

$$
\mathbf{T}\left(\xi_{1}\right)=a_{11} \eta_{1}+a_{21} \eta_{2}+\cdots+a_{m 1} \eta_{m}
$$

Similarly, enumerate $\mathbf{T}\left(\xi_{j}\right)=\sum_{i=1}^{m} a_{i j} \eta_{i}$.

A mapping $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ satisfying

$$
\mathbf{T}(\alpha \mathbf{a}+\beta \mathbf{b})=\alpha \mathbf{T}(\mathbf{a})+\beta \mathbf{T}(\mathbf{b}) \forall \alpha, \beta \in F \quad \text { and } \quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{V}
$$

where \mathbf{V} and \mathbf{W} are vector spaces over the field F.
Question: How to describe the linear transformation T?

- For \mathbf{V}, basis $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$
- For \mathbf{W}, basis $\eta_{1}, \eta_{2}, \cdots, \eta_{m}$
$\xi_{1} \in \mathbf{V}$ gets mapped to $\mathbf{T}\left(\xi_{1}\right) \in \mathbf{W}$.

$$
\mathbf{T}\left(\xi_{1}\right)=a_{11} \eta_{1}+a_{21} \eta_{2}+\cdots+a_{m 1} \eta_{m}
$$

Similarly, enumerate $\mathbf{T}\left(\xi_{j}\right)=\sum_{i=1}^{m} a_{i j} \eta_{i}$.
Matrix $\mathbf{A}=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ codes this description!

Mathematical Methods in Engineering and Science
Linear Transformation
Vector Spaces: Fundamental Concepts*

Function Space

$$
\chi=x_{1} \xi_{1}+x_{2} \xi_{2}+\cdots+x_{n} \xi_{n}
$$

Coordinates in a column: $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$

Vector Spaces: Fundamental Concepts*

Function Space

$$
\chi=x_{1} \xi_{1}+x_{2} \xi_{2}+\cdots+x_{n} \xi_{n}
$$

Coordinates in a column: $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$
Mapping:

$$
\mathbf{T}(\chi)=x_{1} \mathbf{T}\left(\xi_{1}\right)+x_{2} \mathbf{T}\left(\xi_{2}\right)+\cdots+x_{n} \mathbf{T}\left(\xi_{n}\right),
$$

with coordinates $\mathbf{A x}$, as we know!

Vector Spaces: Fundamental Concepts*

$$
\chi=x_{1} \xi_{1}+x_{2} \xi_{2}+\cdots+x_{n} \xi_{n}
$$

Coordinates in a column: $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$
Mapping:

$$
\mathbf{T}(\chi)=x_{1} \mathbf{T}\left(\xi_{1}\right)+x_{2} \mathbf{T}\left(\xi_{2}\right)+\cdots+x_{n} \mathbf{T}\left(\xi_{n}\right),
$$

with coordinates $\mathbf{A x}$, as we know!
Summary:

- basis vectors of \mathbf{V} get mapped to vectors in \mathbf{W} whose coordinates are listed in columns of \mathbf{A}, and
- a vector of \mathbf{V}, having its coordinates in \mathbf{x}, gets mapped to a vector in \mathbf{W} whose coordinates are obtained from $\mathbf{A x}$.

Understanding:

- Vector χ is an actual object in the set \mathbf{V} and the column $\mathbf{x} \in R^{n}$ is merely a list of its coordinates.
- $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ is the linear transformation and the matrix \mathbf{A} simply stores coefficients needed to describe it.
- By changing bases of \mathbf{V} and \mathbf{W}, the same vector χ and the same linear transformation are now expressed by different \mathbf{x} and \mathbf{A}, respectively.

Understanding:

- Vector χ is an actual object in the set \mathbf{V} and the column $\mathbf{x} \in R^{n}$ is merely a list of its coordinates.
- $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ is the linear transformation and the matrix \mathbf{A} simply stores coefficients needed to describe it.
- By changing bases of \mathbf{V} and \mathbf{W}, the same vector χ and the same linear transformation are now expressed by different \mathbf{x} and \mathbf{A}, respectively.

Matrix representation emerges as the natural description of a linear transformation between two vector spaces.

Understanding:

- Vector χ is an actual object in the set \mathbf{V} and the column $\mathbf{x} \in R^{n}$ is merely a list of its coordinates.
- $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ is the linear transformation and the matrix \mathbf{A} simply stores coefficients needed to describe it.
- By changing bases of \mathbf{V} and \mathbf{W}, the same vector χ and the same linear transformation are now expressed by different \mathbf{x} and A, respectively.

Matrix representation emerges as the natural description of a linear transformation between two vector spaces.

Exercise: Set of all $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{W}$ form a vector space of their own!!
Analyze and describe that vector space.

Isomorphism

- Linear transformation T defines a one-ône ontio mapping, which is invertible.
- $\operatorname{dim} \mathbf{V}=\operatorname{dim} \mathbf{W}$
- Inverse linear transformation $\mathbf{T}^{-1}: \mathbf{W} \rightarrow \mathbf{V}$
- T defines (is) an isomorphism.
- Vector spaces \mathbf{V} and \mathbf{W} are isomorphic to each other.
- Isomorphism is an equivalence relation. V and \mathbf{W} are equivalent!

Isomorphism

athematical Methods in Engineering and Science

Consider T:V W that establishes a one

- Linear transformation T defines a one-óne ontion mapping, which is invertible.
- $\operatorname{dim} \mathbf{V}=\operatorname{dim} \mathbf{W}$
- Inverse linear transformation $\mathbf{T}^{-1}: \mathbf{W} \rightarrow \mathbf{V}$
- T defines (is) an isomorphism.
- Vector spaces \mathbf{V} and \mathbf{W} are isomorphic to each other.
- Isomorphism is an equivalence relation. V and \mathbf{W} are equivalent!

If we need to perform some operations on vectors in one vector space, we may as well

1. transform the vectors to another vector space through an isomorphism,
2. conduct the required operations there, and
3. map the results back to the original space through the inverse.

Mathematical Methods in Engineering and Science
Isomorphism
Vector Spaces: Fundamental Concepts*

Consider vector spaces \mathbf{V} and \mathbf{W} over the samerfield Fe and of the same dimension n.

Mathematical Methods in Engineering and Science
Isomorphism
Vector Spaces: Fundamental Concepts*
 same dimension n.

Question: Can we define an isomorphism between them?

Mathematical Methods in Engineering and Science
Isomorphism
Vector Spaces: Fundamental Concepts*
 same dimension n.

Question: Can we define an isomorphism between them?
Answer: Of course. As many as we want!

Isomorphism

 same dimension n.

Question: Can we define an isomorphism between them?
Answer: Of course. As many as we want!
The underlying field and the dimension together completely specify a vector space, up to an isomorphism.

Isomorphism

Consider vector spaces \mathbf{V} and \mathbf{W} over the $\begin{gathered}\text { somorphism } \\ \text { same } \\ \text { sunction fidd }\end{gathered}$ same dimension n.

Question: Can we define an isomorphism between them?
Answer: Of course. As many as we want!
The underlying field and the dimension together completely specify a vector space, up to an isomorphism.

- All n-dimensional vector spaces over the field F are isomorphic to one another.
- In particular, they are all isomorphic to F^{n}.
- The representation (columns) can be considered as the objects (vectors) themselves.

Mathematical Methods in Engineering and Science
Inner Product Space
Inner product (\mathbf{a}, \mathbf{b}) in a real or complex vertor $\begin{aligned} & \text { vemorphism } \\ & \text { Eunction } \\ & \text { Spacee }\end{aligned}$ a scalar function $p: \mathbf{V} \times \mathbf{V} \rightarrow F$ satisfying
Closure: $\quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{V},(\mathbf{a}, \mathbf{b}) \in F$
Associativity: $(\alpha \mathbf{a}, \mathbf{b})=\alpha(\mathbf{a}, \mathbf{b})$
Distributivity: $(\mathbf{a}+\mathbf{b}, \mathbf{c})=(\mathbf{a}, \mathbf{c})+(\mathbf{b}, \mathbf{c})$
Conjugate commutativity: $(\mathbf{b}, \mathbf{a})=\overline{(\mathbf{a}, \mathbf{b})}$
Positive definiteness: $(\mathbf{a}, \mathbf{a}) \geq 0$; and $(\mathbf{a}, \mathbf{a})=0$ iff $\mathbf{a}=\mathbf{0}$
Note: Property of conjugate commutativity forces (\mathbf{a}, \mathbf{a}) to be real.
Examples: $\mathbf{a}^{T} \mathbf{b}, \mathbf{a}^{T} \mathbf{W} \mathbf{b}$ in $R, \mathbf{a}^{*} \mathbf{b}$ in C etc.

Inner Product Space
Inner product (a,b) in a real or complex vectornespáee: a scalar function $p: \mathbf{V} \times \mathbf{V} \rightarrow F$ satisfying
Closure: $\quad \forall \mathbf{a}, \mathbf{b} \in \mathbf{V},(\mathbf{a}, \mathbf{b}) \in F$
Associativity: $(\alpha \mathbf{a}, \mathbf{b})=\alpha(\mathbf{a}, \mathbf{b})$
Distributivity: $(\mathbf{a}+\mathbf{b}, \mathbf{c})=(\mathbf{a}, \mathbf{c})+(\mathbf{b}, \mathbf{c})$
Conjugate commutativity: $(\mathbf{b}, \mathbf{a})=\overline{(\mathbf{a}, \mathbf{b})}$
Positive definiteness: $(\mathbf{a}, \mathbf{a}) \geq 0$; and $(\mathbf{a}, \mathbf{a})=0$ iff $\mathbf{a}=\mathbf{0}$
Note: Property of conjugate commutativity forces (\mathbf{a}, \mathbf{a}) to be real.
Examples: $\mathbf{a}^{\top} \mathbf{b}, \mathbf{a}^{\top} \mathbf{W} \mathbf{b}$ in $R, \mathbf{a}^{*} \mathbf{b}$ in C etc.
Inner product space: a vector space possessing an inner product

- Euclidean space: over R
- Unitary space: over C

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*
Inner Product Space

Inner products bring in ideas of angle and lene fifiditicthe geometry of vector spaces.

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*
Inner Product Space

Inner products bring in ideas of angle and lengethint flice geometry of vector spaces.

Orthogonality: $(\mathbf{a}, \mathbf{b})=0$
Norm: $\|\cdot\|: \mathbf{V} \rightarrow R$, such that $\|\mathbf{a}\|=\sqrt{(\mathbf{a}, \mathbf{a})}$

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*
Inner Product Space

Inner products bring in ideas of angle and lene flodith frace geometry of vector spaces.

Orthogonality: $(\mathbf{a}, \mathbf{b})=0$
Norm: $\|\cdot\|: \mathbf{V} \rightarrow R$, such that $\|\mathbf{a}\|=\sqrt{(\mathbf{a}, \mathbf{a})}$
Associativity: $\|\alpha \mathbf{a}\|=|\alpha|\|\mathbf{a}\|$
Positive definiteness: $\|\mathbf{a}\|>0$ for $\mathbf{a} \neq 0$ and $\|\mathbf{0}\|=0$
Triangle inequality: $\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|$
Cauchy-Schwarz inequality: $|(\mathbf{a}, \mathbf{b})| \leq\|\mathbf{a}\|\|\mathbf{b}\|$

Inner Product Space
Vector Spaces: Fundamental Concepts*

Inner products bring in ideas of angle and leheffithict sher geometry of vector spaces.

Orthogonality: $(\mathbf{a}, \mathbf{b})=0$
Norm: $\|\cdot\|: \mathbf{V} \rightarrow R$, such that $\|\mathbf{a}\|=\sqrt{(\mathbf{a}, \mathbf{a})}$
Associativity: $\|\alpha \mathbf{a}\|=|\alpha|\|\mathbf{a}\|$
Positive definiteness: $\|\mathbf{a}\|>0$ for $\mathbf{a} \neq 0$ and $\|\mathbf{0}\|=0$
Triangle inequality: $\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|$
Cauchy-Schwarz inequality: $|(\mathbf{a}, \mathbf{b})| \leq\|\mathbf{a}\|\|\mathbf{b}\|$
A distance function or metric: $d_{\mathbf{V}}: \mathbf{V} \times \mathbf{V} \rightarrow R$ such that

$$
d_{v}(\mathbf{a}, \mathbf{b})=\|\mathbf{a}-\mathbf{b}\|
$$

Funt tion Space

Suppose we decide to represent a continuousinfluncticn $f:[a, b] \rightarrow R$ by the listing

$$
\mathbf{v}_{f}=\left[\begin{array}{lllll}
f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right) & \cdots & f\left(x_{N}\right)
\end{array}\right]^{T}
$$

with $a=x_{1}<x_{2}<x_{3}<\cdots<x_{N}=b$.
Note: The 'true' representation will require N to be infinite!

Suppose we decide to represent a continuousinfthictitish $f:[a, b] \rightarrow R$ by the listing

$$
\mathbf{v}_{f}=\left[\begin{array}{lllll}
f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right) & \cdots & f\left(x_{N}\right)
\end{array}\right]^{T}
$$

with $a=x_{1}<x_{2}<x_{3}<\cdots<x_{N}=b$.
Note: The 'true' representation will require N to be infinite!
Here, \mathbf{v}_{f} is a real column vector.
Do such vectors form a vector space?

Suppose we decide to represent a continuousneftingtiden $f:[a, b] \rightarrow R$ by the listing

$$
\mathbf{v}_{f}=\left[\begin{array}{lllll}
f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right) & \cdots & f\left(x_{N}\right)
\end{array}\right]^{T}
$$

with $a=x_{1}<x_{2}<x_{3}<\cdots<x_{N}=b$.
Note: The 'true' representation will require N to be infinite!
Here, \mathbf{v}_{f} is a real column vector.
Do such vectors form a vector space?

Correspondingly, does the set \mathcal{F} of continuous functions over $[a, b]$ form a vector space?

> infinite dimensional vector space

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*

Function Space

Vector space of continuous functions

First, $(\mathcal{F},+)$ is a commutative group.

Vector space of continuous functions

First, $(\mathcal{F},+)$ is a commutative group.
Next, with $\alpha, \beta \in R, \forall x \in[a, b]$,

- if $f(x) \in R$, then $\alpha f(x) \in R$
- $1 \cdot f(x)=f(x)$
- $(\alpha \beta) f(x)=\alpha[\beta f(x)]$
- $\alpha\left[f_{1}(x)+f_{2}(x)\right]=\alpha f_{1}(x)+\alpha f_{2}(x)$
- $(\alpha+\beta) f(x)=\alpha f(x)+\beta f(x)$

Funt etion Space

Vector space of continuous functions

First, $(\mathcal{F},+)$ is a commutative group.
Next, with $\alpha, \beta \in R, \forall x \in[a, b]$,

- if $f(x) \in R$, then $\alpha f(x) \in R$
- $1 \cdot f(x)=f(x)$
- $(\alpha \beta) f(x)=\alpha[\beta f(x)]$
- $\alpha\left[f_{1}(x)+f_{2}(x)\right]=\alpha f_{1}(x)+\alpha f_{2}(x)$
- $(\alpha+\beta) f(x)=\alpha f(x)+\beta f(x)$
- Thus, \mathcal{F} forms a vector space over R.
- Every function in this space is an (infinite dimensional) vector.
- Listing of values is just an obvious basis.

Linear dependence of (non-zero) functions ${ }^{\text {sof }} f_{1}^{\circ}{ }^{\circ}$ and $d_{1} f_{2 \text { ace }}$

- $f_{2}(x)=k f_{1}(x)$ for all x in the domain
- $k_{1} f_{1}(x)+k_{2} f_{2}(x)=0, \forall x$ with k_{1} and k_{2} not both zero.

Linear independence: $k_{1} f_{1}(x)+k_{2} f_{2}(x)=0 \forall x \Rightarrow k_{1}=k_{2}=0$

Function Space

Linear dependence of (non-zero) functions, fferand $f_{2 \text { 2ce }}$

- $f_{2}(x)=k f_{1}(x)$ for all x in the domain
- $k_{1} f_{1}(x)+k_{2} f_{2}(x)=0, \forall x$ with k_{1} and k_{2} not both zero.

Linear independence: $k_{1} f_{1}(x)+k_{2} f_{2}(x)=0 \forall x \Rightarrow k_{1}=k_{2}=0$ In general,

- Functions $f_{1}, f_{2}, f_{3}, \cdots, f_{n} \in \mathcal{F}$ are linearly dependent if $\exists k_{1}, k_{2}, k_{3}, \cdots, k_{n}$, not all zero, such that $k_{1} f_{1}(x)+k_{2} f_{2}(x)+k_{3} f_{3}(x)+\cdots+k_{n} f_{n}(x)=0 \forall x \in[a, b]$.
- $k_{1} f_{1}(x)+k_{2} f_{2}(x)+k_{3} f_{3}(x)+\cdots+k_{n} f_{n}(x)=0 \forall x \in[a, b] \Rightarrow$ $k_{1}, k_{2}, k_{3}, \cdots, k_{n}=0$ means that functions $f_{1}, f_{2}, f_{3}, \cdots, f_{n}$ are linearly independent.

Linear dependence of (non-zero) functions, ff and $f_{2 \text { ace }}$
- $f_{2}(x)=k f_{1}(x)$ for all x in the domain
- $k_{1} f_{1}(x)+k_{2} f_{2}(x)=0, \forall x$ with k_{1} and k_{2} not both zero.

Linear independence: $k_{1} f_{1}(x)+k_{2} f_{2}(x)=0 \forall x \Rightarrow k_{1}=k_{2}=0$
In general,

- Functions $f_{1}, f_{2}, f_{3}, \cdots, f_{n} \in \mathcal{F}$ are linearly dependent if $\exists k_{1}, k_{2}, k_{3}, \cdots, k_{n}$, not all zero, such that $k_{1} f_{1}(x)+k_{2} f_{2}(x)+k_{3} f_{3}(x)+\cdots+k_{n} f_{n}(x)=0 \forall x \in[a, b]$.
- $k_{1} f_{1}(x)+k_{2} f_{2}(x)+k_{3} f_{3}(x)+\cdots+k_{n} f_{n}(x)=0 \forall x \in[a, b] \Rightarrow$ $k_{1}, k_{2}, k_{3}, \cdots, k_{n}=0$ means that functions $f_{1}, f_{2}, f_{3}, \cdots, f_{n}$ are linearly independent.

Example: functions $1, x, x^{2}, x^{3}, \cdots$ are a set of linearly independent functions.

Incidentally, this set is a commonly used basis.

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*
Function Space
Inner product: For functions $f(x)$ and $g(x)$ ner product between corresponding vectors:

$$
\left(\mathbf{v}_{f}, \mathbf{v}_{g}\right)=\mathbf{v}_{f}^{T} \mathbf{v}_{g}=f\left(x_{1}\right) g\left(x_{1}\right)+f\left(x_{2}\right) g\left(x_{2}\right)+f\left(x_{3}\right) g\left(x_{3}\right)+\cdots
$$

Weighted inner product: $\left(\mathbf{v}_{f}, \mathbf{v}_{g}\right)=\mathbf{v}_{f}^{T} \mathbf{W} \mathbf{v}_{g}=\sum_{i} w_{i} f\left(x_{i}\right) g\left(x_{i}\right)$

Mathematical Methods in Engineering and Science
Vector Spaces: Fundamental Concepts*
Function Space
Inner product: For functions $f(x)$ and $g(x)$ ner product between corresponding vectors:

$$
\left(\mathbf{v}_{f}, \mathbf{v}_{g}\right)=\mathbf{v}_{f}^{T} \mathbf{v}_{g}=f\left(x_{1}\right) g\left(x_{1}\right)+f\left(x_{2}\right) g\left(x_{2}\right)+f\left(x_{3}\right) g\left(x_{3}\right)+\cdots
$$

Weighted inner product: $\left(\mathbf{v}_{f}, \mathbf{v}_{g}\right)=\mathbf{v}_{f}^{T} \mathbf{W} \mathbf{v}_{g}=\sum_{i} w_{i} f\left(x_{i}\right) g\left(x_{i}\right)$
For the functions,

$$
(f, g)=\int_{a}^{b} w(x) f(x) g(x) d x
$$

Function Space
Inner product: For functions $f(x)$ and $g(x)$ ner product between corresponding vectors:

$$
\left(\mathbf{v}_{f}, \mathbf{v}_{g}\right)=\mathbf{v}_{f}^{T} \mathbf{v}_{g}=f\left(x_{1}\right) g\left(x_{1}\right)+f\left(x_{2}\right) g\left(x_{2}\right)+f\left(x_{3}\right) g\left(x_{3}\right)+\cdots
$$

Weighted inner product: $\left(\mathbf{v}_{f}, \mathbf{v}_{g}\right)=\mathbf{v}_{f}^{T} \mathbf{W} \mathbf{v}_{g}=\sum_{i} w_{i} f\left(x_{i}\right) g\left(x_{i}\right)$
For the functions,

$$
(f, g)=\int_{a}^{b} w(x) f(x) g(x) d x
$$

- Orthogonality: $(f, g)=\int_{a}^{b} w(x) f(x) g(x) d x=0$
- Norm: $\|f\|=\sqrt{\int_{a}^{b} w(x)[f(x)]^{2} d x}$
- Orthonormal basis:

$$
\left(f_{j}, f_{k}\right)=\int_{a}^{b} w(x) f_{j}(x) f_{k}(x) d x=\delta_{j k} \forall j, k
$$

Points to note

- Matrix algebra provides a natural description for vector spaces and linear transformations.
- Through isomorphisms, R^{n} can represent all n-dimensional real vector spaces.
- Through the definition of an inner product, a vector space incorporates key geometric features of physical space.
- Continuous functions over an interval constitute an infinite dimensional vector space, complete with the usual notions.

Necessary Exercises: 6,7

Topics in Multivariate Calculus

Derivatives in Multi-Dimensional Spaces
Taylor's Series
Chain Rule and Change of Variables
Numerical Differentiation
An Introduction to Tensors*

Topics in Multivariate Calculus

Derivatives in Multi-Dimensional SpaReéestives serine Muti-imenesional Spaces
 Chain Rule and Change of Variables

Gradient

$$
\nabla f(\mathbf{x}) \equiv \frac{\partial f}{\partial \mathbf{x}}(\mathbf{x})=\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right]^{T}
$$

Up to the first order, $\delta f \approx[\nabla f(\mathbf{x})]^{T} \delta \mathbf{x}$
Directional derivative

$$
\frac{\partial f}{\partial \mathbf{d}}=\lim _{\alpha \rightarrow 0} \frac{f(\mathbf{x}+\alpha \mathbf{d})-f(\mathbf{x})}{\alpha}
$$

Relationships:

$$
\frac{\partial f}{\partial \mathbf{e}_{j}}=\frac{\partial f}{\partial x_{j}}, \quad \frac{\partial f}{\partial \mathbf{d}}=\mathbf{d}^{T} \nabla f(\mathbf{x}) \quad \text { and } \quad \frac{\partial f}{\partial \hat{\mathbf{g}}}=\|\nabla f(\mathbf{x})\|
$$

Among all unit vectors, taken as directions,

- the rate of change of a function in a direction is the same as the component of its gradient along that direction, and
- the rate of change along the direction of the gradient is the greatest and is equal to the magnitude of the gradient.

Mathematical Methods in Engineering and Science Topics in Multivariate Calculus
Derivatives in Multi-Dimensional Spaعeés sitive in mutirinimensional Spaces
Chain Rule and Change of Variables
Numerical Differentiation
An Introduction to Tensors*
Hessian

$$
\mathbf{H}(\mathbf{x})=\frac{\partial^{2} f}{\partial \mathbf{x}^{2}}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} & \frac{\partial^{2} f}{\partial x^{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}{ }^{2}}
\end{array}\right]
$$

Meaning: $\nabla f(\mathbf{x}+\delta \mathbf{x})-\nabla f(\mathbf{x}) \approx\left[\frac{\partial^{2} f}{\partial \mathbf{x}^{2}}(\mathbf{x})\right] \delta \mathbf{x}$

athematical Methods in Engineering and Science
 Topics in Multivariate Calculus

 Chain Rule and Change of Variables

Numerical Differentiation
An Introduction to Tensors*

Hessian

$$
\mathbf{H}(\mathbf{x})=\frac{\partial^{2} f}{\partial \mathbf{x}^{2}}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} & \frac{\partial^{2} f}{\partial x^{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}{ }^{2}}
\end{array}\right]
$$

Meaning: $\nabla f(\mathbf{x}+\delta \mathbf{x})-\nabla f(\mathbf{x}) \approx\left[\frac{\partial^{2} f}{\partial \mathbf{x}^{2}}(\mathbf{x})\right] \delta \mathbf{x}$
For a vector function $\mathbf{h}(\mathbf{x})$, Jacobian

$$
\mathbf{J}(\mathbf{x})=\frac{\partial \mathbf{h}}{\partial \mathbf{x}}(\mathbf{x})=\left[\begin{array}{llll}
\frac{\partial \mathbf{h}}{\partial x_{1}} & \frac{\partial \mathbf{h}}{\partial x_{2}} & \cdots & \frac{\partial \mathbf{h}}{\partial x_{n}}
\end{array}\right]
$$

Underlying notion: $\delta \mathbf{h} \approx[\mathbf{J}(\mathbf{x})] \delta \mathbf{x}$

Taylor's Series
Taylor's formula in the remainder form:

$$
\begin{aligned}
& f(x+\delta x)=f(x)+f^{\prime}(x) \delta x \\
& \quad+\frac{1}{2!} f^{\prime \prime}(x) \delta x^{2}+\cdots+\frac{1}{(n-1)!} f^{(n-1)}(x) \delta x^{n-1}+\frac{1}{n!} f^{(n)}\left(x_{c}\right) \delta x^{n}
\end{aligned}
$$

where $x_{c}=x+t \delta x$ with $0 \leq t \leq 1$
Mean value theorem: existence of x_{c}

Taylor's Series
Taylor's formula in the remainder form:

$$
\begin{aligned}
& f(x+\delta x)=f(x)+f^{\prime}(x) \delta x \\
& \quad+\frac{1}{2!} f^{\prime \prime}(x) \delta x^{2}+\cdots+\frac{1}{(n-1)!} f^{(n-1)}(x) \delta x^{n-1}+\frac{1}{n!} f^{(n)}\left(x_{c}\right) \delta x^{n}
\end{aligned}
$$

where $x_{c}=x+t \delta x$ with $0 \leq t \leq 1$ Mean value theorem: existence of x_{c}
Taylor's series:

$$
f(x+\delta x)=f(x)+f^{\prime}(x) \delta x+\frac{1}{2!} f^{\prime \prime}(x) \delta x^{2}+\cdots
$$

Taylor's Series

Taylor's formula in the remainder form:

$$
\begin{aligned}
& f(x+\delta x)=f(x)+f^{\prime}(x) \delta x \\
& \quad+\frac{1}{2!} f^{\prime \prime}(x) \delta x^{2}+\cdots+\frac{1}{(n-1)!} f^{(n-1)}(x) \delta x^{n-1}+\frac{1}{n!} f^{(n)}\left(x_{c}\right) \delta x^{n}
\end{aligned}
$$

where $x_{c}=x+t \delta x$ with $0 \leq t \leq 1$
Mean value theorem: existence of x_{c}
Taylor's series:

$$
f(x+\delta x)=f(x)+f^{\prime}(x) \delta x+\frac{1}{2!} f^{\prime \prime}(x) \delta x^{2}+\cdots
$$

For a multivariate function,

$$
\begin{aligned}
f(\mathbf{x}+\delta \mathbf{x})= & f(\mathbf{x})+\left[\delta \mathbf{x}^{T} \nabla\right] f(\mathbf{x})+\frac{1}{2!}\left[\delta \mathbf{x}^{T} \nabla\right]^{2} f(\mathbf{x})+\cdots \\
& +\frac{1}{(n-1)!}\left[\delta \mathbf{x}^{T} \nabla\right]^{n-1} f(\mathbf{x})+\frac{1}{n!}\left[\delta \mathbf{x}^{T} \nabla\right]^{n} f(\mathbf{x}+t \delta \mathbf{x}) \\
f(\mathbf{x}+\delta \mathbf{x}) \approx & f(\mathbf{x})+[\nabla f(\mathbf{x})]^{T} \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{T}\left[\frac{\partial^{2} f}{\partial \mathbf{x}^{2}}(\mathbf{x})\right] \delta \mathbf{x}
\end{aligned}
$$

For $f(\mathbf{x})$, the total differential:

$$
d f=[\nabla f(\mathbf{x})]^{T} d \mathbf{x}=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}
$$

Ordinary derivative or total derivative:

$$
\frac{d f}{d t}=[\nabla f(\mathbf{x})]^{T} \frac{d \mathbf{x}}{d t}
$$

Chain Rule and Change of Variables
Natemaicina
For $f(\mathbf{x})$, the total differential:

$$
d f=[\nabla f(\mathbf{x})]^{T} d \mathbf{x}=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}
$$

Ordinary derivative or total derivative:

$$
\frac{d f}{d t}=[\nabla f(\mathbf{x})]^{T} \frac{d \mathbf{x}}{d t}
$$

For $f(t, \mathbf{x}(t))$, total derivative: $\frac{d f}{d t}=\frac{\partial f}{\partial t}+[\nabla f(\mathbf{x})]^{T} \frac{d \mathbf{x}}{d t}$

Chain Rule and Change of Variables

For $f(\mathbf{x})$, the total differential:

$$
d f=[\nabla f(\mathbf{x})]^{T} d \mathbf{x}=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}
$$

Ordinary derivative or total derivative:

$$
\frac{d f}{d t}=[\nabla f(\mathbf{x})]^{T} \frac{d \mathbf{x}}{d t}
$$

For $f(t, \mathbf{x}(t))$, total derivative: $\frac{d f}{d t}=\frac{\partial f}{\partial t}+[\nabla f(\mathbf{x})]^{T} \frac{d \mathbf{x}}{d t}$
For $f(\mathbf{v}, \mathbf{x}(\mathbf{v}))=f\left(v_{1}, v_{2}, \cdots, v_{m}, x_{1}(\mathbf{v}), x_{2}(\mathbf{v}), \cdots, x_{n}(\mathbf{v})\right)$,

$$
\begin{gathered}
\frac{\partial f}{\partial v_{i}}(\mathbf{v}, \mathbf{x}(\mathbf{v}))=\left(\frac{\partial f}{\partial v_{i}}\right)_{x}+\left[\frac{\partial f}{\partial \mathbf{x}}(\mathbf{v}, \mathbf{x})\right]^{T} \frac{\partial \mathbf{x}}{\partial v_{i}}=\left(\frac{\partial f}{\partial v_{i}}\right)_{x}+\left[\nabla_{x} f(\mathbf{v}, \mathbf{x})\right]^{T} \frac{\partial \mathbf{x}}{\partial v_{i}} \\
\Rightarrow \nabla f(\mathbf{v}, \mathbf{x}(\mathbf{v}))=\nabla_{v} f(\mathbf{v}, \mathbf{x})+\left[\frac{\partial \mathbf{x}}{\partial \mathbf{v}}(\mathbf{v})\right]^{T} \nabla_{x} f(\mathbf{v}, \mathbf{x})
\end{gathered}
$$

Mathematical Methods in Engineering and Science
Topics in Multivariate Calculus

Let $\mathbf{x} \in R^{m+n}$ and $\mathbf{h}(\mathbf{x}) \in R^{m}$.
Partition $\mathbf{x} \in R^{m+n}$ into $\mathbf{z} \in R^{n}$ and $\mathbf{w} \in R^{m}$.

Chain Rule and Change of Variables
Watemaicial ind
Let $\mathbf{x} \in R^{m+n}$ and $\mathbf{h}(\mathbf{x}) \in R^{m}$.
Partition $\mathbf{x} \in R^{m+n}$ into $\mathbf{z} \in R^{n}$ and $\mathbf{w} \in R^{m}$.
System of equations $\mathbf{h}(\mathbf{x})=\mathbf{0}$ means $\mathbf{h}(\mathbf{z}, \mathbf{w})=\mathbf{0}$.
Question: Can we work out the function $\mathbf{w}=\mathbf{w}(\mathbf{z})$?

Let $\mathbf{x} \in R^{m+n}$ and $\mathbf{h}(\mathbf{x}) \in R^{m}$.
Partition $\mathbf{x} \in R^{m+n}$ into $\mathbf{z} \in R^{n}$ and $\mathbf{w} \in R^{m}$.
System of equations $\mathbf{h}(\mathbf{x})=\mathbf{0}$ means $\mathbf{h}(\mathbf{z}, \mathbf{w})=\mathbf{0}$.
Question: Can we work out the function $\mathbf{w}=\mathbf{w}(\mathbf{z})$?
Solution of m equations in m unknowns?

Partition $\mathbf{x} \in R^{m+n}$ into $\mathbf{z} \in R^{n}$ and $\mathbf{w} \in R^{m}$.
System of equations $\mathbf{h}(\mathbf{x})=\mathbf{0}$ means $\mathbf{h}(\mathbf{z}, \mathbf{w})=\mathbf{0}$.
Question: Can we work out the function $\mathbf{w}=\mathbf{w}(\mathbf{z})$?
Solution of m equations in m unknowns?
Question: If we have one valid pair (\mathbf{z}, \mathbf{w}), then is it possible to develop $\mathbf{w}=\mathbf{w}(\mathbf{z})$ in the local neighbourhood?

Chain Rule and Change of Variables
Watemaicill
Let $\mathbf{x} \in R^{m+n}$ and $\mathbf{h}(\mathbf{x}) \in R^{m}$.
Partition $\mathbf{x} \in R^{m+n}$ into $\mathbf{z} \in R^{n}$ and $\mathbf{w} \in R^{m}$.
System of equations $\mathbf{h}(\mathbf{x})=\mathbf{0}$ means $\mathbf{h}(\mathbf{z}, \mathbf{w})=\mathbf{0}$.
Question: Can we work out the function $\mathbf{w}=\mathbf{w}(\mathbf{z})$?
Solution of m equations in m unknowns?
Question: If we have one valid pair (\mathbf{z}, \mathbf{w}), then is it possible to develop $\mathbf{w}=\mathbf{w}(\mathbf{z})$ in the local neighbourhood?
Answer: Yes, if Jacobian $\frac{\partial \mathbf{h}}{\partial \mathbf{w}}$ is non-singular.
Implicit function theorem

Chain Rule and Change of Variables
Let $\mathbf{x} \in R^{m+n}$ and $\mathbf{h}(\mathbf{x}) \in R^{m}$.
Partition $\mathbf{x} \in R^{m+n}$ into $\mathbf{z} \in R^{n}$ and $\mathbf{w} \in R^{m}$.
System of equations $\mathbf{h}(\mathbf{x})=\mathbf{0}$ means $\mathbf{h}(\mathbf{z}, \mathbf{w})=\mathbf{0}$.
Question: Can we work out the function $\mathbf{w}=\mathbf{w}(\mathbf{z})$?
Solution of m equations in m unknowns?
Question: If we have one valid pair (\mathbf{z}, \mathbf{w}), then is it possible to develop $\mathbf{w}=\mathbf{w}(\mathbf{z})$ in the local neighbourhood?
Answer: Yes, if Jacobian $\frac{\partial \mathbf{h}}{\partial \mathbf{w}}$ is non-singular.
Implicit function theorem

$$
\frac{\partial \mathbf{h}}{\partial \mathbf{z}}+\frac{\partial \mathbf{h}}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \mathbf{z}}=\mathbf{0} \Rightarrow \frac{\partial \mathbf{w}}{\partial \mathbf{z}}=-\left[\frac{\partial \mathbf{h}}{\partial \mathbf{w}}\right]^{-1}\left[\frac{\partial \mathbf{h}}{\partial \mathbf{z}}\right]
$$

Upto first order, $\mathbf{w}_{1}=\mathbf{w}+\left[\frac{\partial \mathbf{w}}{\partial \mathbf{z}}\right]\left(\mathbf{z}_{1}-\mathbf{z}\right)$.

Chain Rule and Change of Variables
For a multiple integral

$$
I=\iint_{A} \int f(x, y, z) d x d y d z
$$

change of variables $x=x(u, v, w), y=y(u, v, w), z=z(u, v, w)$ gives
$I=\iint_{\bar{A}} \int f(x(u, v, w), y(u, v, w), z(u, v, w))|J(u, v, w)| d u d v d w$,
where Jacobian determinant $|J(u, v, w)|=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|$.

Chain Rule and Change of Variables

For the differential

$$
P_{1}(\mathbf{x}) d x_{1}+P_{2}(\mathbf{x}) d x_{2}+\cdots+P_{n}(\mathbf{x}) d x_{n}
$$

we ask: does there exist a function $f(\mathbf{x})$,

- of which this is the differential;
- or equivalently, the gradient of which is $\mathbf{P}(\mathbf{x})$?

Perfect or exact differential: can be integrated to find f.
athematical Methods in Engineering and Science Topics in Multivariate Calculus

How To differentiate $\phi(x)=\phi(x, u(x), v(x))=\int_{u(x)}^{v(x)} f(x, t) d t$?

Chain Rule and Change of Variables
Watemaicill

Differentiation under the integral sign

In the expression

$$
\phi^{\prime}(x)=\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial u} \frac{d u}{d x}+\frac{\partial \phi}{\partial v} \frac{d v}{d x}
$$

we have $\frac{\partial \phi}{\partial x}=\int_{u}^{v} \frac{\partial f}{\partial x}(x, t) d t$.

Chain Rule and Change of Variables

Differentiation under the integral sign

How To differentiate $\phi(x)=\phi(x, u(x), v(x))=\int_{u(x)}^{v(x)} f(x, t) d t$?
In the expression

$$
\phi^{\prime}(x)=\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial u} \frac{d u}{d x}+\frac{\partial \phi}{\partial v} \frac{d v}{d x}
$$

we have $\frac{\partial \phi}{\partial x}=\int_{u}^{v} \frac{\partial f}{\partial x}(x, t) d t$.
Now, considering function $F(x, t)$ such that $f(x, t)=\frac{\partial F(x, t)}{\partial t}$,

$$
\phi(x)=\int_{u}^{v} \frac{\partial F}{\partial t}(x, t) d t=F(x, v)-F(x, u) \equiv \phi(x, u, v)
$$

Chain Rule and Change of Variables

Differentiation under the integral sign

How To differentiate $\phi(x)=\phi(x, u(x), v(x))=\int_{u(x)}^{v(x)} f(x, t) d t$?
In the expression

$$
\phi^{\prime}(x)=\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial u} \frac{d u}{d x}+\frac{\partial \phi}{\partial v} \frac{d v}{d x}
$$

we have $\frac{\partial \phi}{\partial x}=\int_{u}^{v} \frac{\partial f}{\partial x}(x, t) d t$.
Now, considering function $F(x, t)$ such that $f(x, t)=\frac{\partial F(x, t)}{\partial t}$,

$$
\phi(x)=\int_{u}^{v} \frac{\partial F}{\partial t}(x, t) d t=F(x, v)-F(x, u) \equiv \phi(x, u, v)
$$

Using $\frac{\partial \phi}{\partial v}=f(x, v)$ and $\frac{\partial \phi}{\partial u}=-f(x, u)$,

$$
\phi^{\prime}(x)=\int_{u(x)}^{v(x)} \frac{\partial f}{\partial x}(x, t) d t+f(x, v) \frac{d v}{d x}-f(x, u) \frac{d u}{d x}
$$

Mathematical Methods in Engineering and Science

Numerical Differentiation
Forward difference formula

Derivatives in Multi-Dimensional Spaces Taylor's Series
Chain Rule and Change of Variables
Numerical Differentiation
An Introduction to Tensors*

$$
f^{\prime}(x)=\frac{f(x+\delta x)-f(x)}{\delta x}+\mathcal{O}(\delta x)
$$

athematical Methods in Engineering and Science

Forward difference formula

$$
f^{\prime}(x)=\frac{f(x+\delta x)-f(x)}{\delta x}+\mathcal{O}(\delta x)
$$

Central difference formulae

$$
\begin{gathered}
f^{\prime}(x)=\frac{f(x+\delta x)-f(x-\delta x)}{2 \delta x}+\mathcal{O}\left(\delta x^{2}\right) \\
f^{\prime \prime}(x)=\frac{f(x+\delta x)-2 f(x)+f(x-\delta x)}{\delta x^{2}}+\mathcal{O}\left(\delta x^{2}\right)
\end{gathered}
$$

athematical Methods in Engineering and Science
 Numerical Differentiation

$$
f^{\prime}(x)=\frac{f(x+\delta x)-f(x)}{\delta x}+\mathcal{O}(\delta x)
$$

Central difference formulae

$$
\begin{gathered}
f^{\prime}(x)=\frac{f(x+\delta x)-f(x-\delta x)}{2 \delta x}+\mathcal{O}\left(\delta x^{2}\right) \\
f^{\prime \prime}(x)=\frac{f(x+\delta x)-2 f(x)+f(x-\delta x)}{\delta x^{2}}+\mathcal{O}\left(\delta x^{2}\right)
\end{gathered}
$$

For gradient $\nabla f(\mathbf{x})$ and Hessian,

$$
\begin{gathered}
\frac{\partial f}{\partial x_{i}}(\mathbf{x})=\frac{1}{2 \delta}\left[f\left(\mathbf{x}+\delta \mathbf{e}_{i}\right)-f\left(\mathbf{x}-\delta \mathbf{e}_{i}\right)\right] \\
\frac{\partial^{2} f}{\partial x_{i}^{2}}(\mathbf{x})=\frac{f\left(\mathbf{x}+\delta \mathbf{e}_{i}\right)-2 f(\mathbf{x})+f\left(\mathbf{x}-\delta \mathbf{e}_{i}\right)}{\delta^{2}}, \quad \text { and } \\
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x})=\frac{f\left(\mathbf{x}+\delta \mathbf{e}_{i}+\delta \mathbf{e}_{j}\right)-f\left(\mathbf{x}+\delta \mathbf{e}_{i}-\delta \mathbf{e}_{j}\right)}{-f\left(\mathbf{x}-\delta \mathbf{e}_{i}+\delta \mathbf{e}_{j}\right)+f\left(\mathbf{x}-\delta \mathbf{e}_{i}-\delta \mathbf{e}_{j}\right)} \\
4 \delta^{2}
\end{gathered}
$$

An Introduction to Tensors*

- Indicial notation and summation convention
- Kronecker delta and Levi-Civita symbol
- Rotation of reference axes
- Tensors of order zero, or scalars
- Contravariant and covariant tensors of order one, or vectors
- Cartesian tensors
- Cartesian tensors of order two
- Higher order tensors
- Elementary tensor operations
- Symmetric tensors
- Tensor fields
-
- Gradient, Hessian, Jacobian and the Taylor's series
- Partial and total gradients
- Implicit functions
- Leibnitz rule
- Numerical derivatives

Necessary Exercises: 2,3,4,8

Vector Analysis: Curves and Surfaces
Recapitulation of Basic Notions
Curves in Space
Surfaces*

Dot and cross products: their implications
Scalar and vector triple products
Differentiation rules

Dot and cross products: their implications
Scalar and vector triple products
Differentiation rules
Interface with matrix algebra:

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{x}=\mathbf{a}^{T} \mathbf{x}, \\
&(\mathbf{a} \cdot \mathbf{x}) \mathbf{b}=\left(\mathbf{b a}^{T}\right) \mathbf{x}, \\
& \text { and } \\
& \mathbf{a} \times \mathbf{x}= \begin{cases}\mathbf{a}_{\perp}^{T} \mathbf{x}, & \text { for 2-d vectors } \\
\widetilde{\mathbf{a}} \mathbf{x}, & \text { for 3-d vectors }\end{cases}
\end{aligned}
$$

where

$$
\mathbf{a}_{\perp}=\left[\begin{array}{c}
-a_{y} \\
a_{x}
\end{array}\right] \quad \text { and } \quad \tilde{\mathbf{a}}=\left[\begin{array}{rrr}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]
$$

Explicit equation: $y=y(x)$ and $z=z(x)$
Implicit equation: $F(x, y, z)=0=G(x, y, z)$

Parametric equation:

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k} \equiv\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]^{T}
$$

Explicit equation: $y=y(x)$ and $z=z(x)$
Implicit equation: $F(x, y, z)=0=G(x, y, z)$

Parametric equation:

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k} \equiv\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]^{T}
$$

- Tangent vector: $\mathbf{r}^{\prime}(t)$
- Speed: $\left\|\mathbf{r}^{\prime}\right\|$
- Unit tangent: $\mathbf{u}(t)=\frac{\mathbf{r}^{\prime}}{\left\|\mathbf{r}^{\prime}\right\|}$
- Length of the curve: $I=\int_{a}^{b}\|d \mathbf{r}\|=\int_{a}^{b} \sqrt{\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}} d t$

Curves in Space
Explicit equation: $y=y(x)$ and $z=z(x)$
Implicit equation: $F(x, y, z)=0=G(x, y, z)$

Parametric equation:

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k} \equiv\left[\begin{array}{lll}
x(t) & y(t) & z(t)
\end{array}\right]^{T}
$$

- Tangent vector: $\mathbf{r}^{\prime}(t)$
- Speed: $\left\|\mathbf{r}^{\prime}\right\|$
- Unit tangent: $\mathbf{u}(t)=\frac{\mathbf{r}^{\prime}}{\left\|\mathbf{r}^{\prime}\right\|}$
- Length of the curve: $I=\int_{a}^{b}\|d \mathbf{r}\|=\int_{a}^{b} \sqrt{\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}} d t$

Arc length function

$$
s(t)=\int_{a}^{t} \sqrt{\mathbf{r}^{\prime}(\tau) \cdot \mathbf{r}^{\prime}(\tau)} d \tau
$$

with $d s=\|d \mathbf{r}\|=\sqrt{d x^{2}+d y^{2}+d z^{2}}$ and $\frac{d s}{d t}=\left\|\mathbf{r}^{\prime}\right\|$

Curve $\mathbf{r}(t)$ is regular if $\mathbf{r}^{\prime}(t) \neq \mathbf{0} \forall t$.

- Reparametrization with respect to parameter t^{*}, some strictly increasing function of t

Curve $\mathbf{r}(t)$ is regular if $\mathbf{r}^{\prime}(t) \neq \mathbf{0} \forall t$.

- Reparametrization with respect to parameter t^{*}, some strictly increasing function of t

Observations

- Arc length $s(t)$ is obviously a monotonically increasing function.
- For a regular curve, $\frac{d s}{d t} \neq 0$.
- Then, $s(t)$ has an inverse function.
- Inverse $t(s)$ reparametrizes the curve as $\mathbf{r}(t(s))$.

Curve $\mathbf{r}(t)$ is regular if $\mathbf{r}^{\prime}(t) \neq \mathbf{0} \forall t$.

- Reparametrization with respect to parameter t^{*}, some strictly increasing function of t

Observations

- Arc length $s(t)$ is obviously a monotonically increasing function.
- For a regular curve, $\frac{d s}{d t} \neq 0$.
- Then, $s(t)$ has an inverse function.
- Inverse $t(s)$ reparametrizes the curve as $\mathbf{r}(t(s))$.

For a unit speed curve $\mathbf{r}(s),\left\|\mathbf{r}^{\prime}(s)\right\|=1$ and the unit tangent is

$$
\mathbf{u}(s)=\mathbf{r}^{\prime}(s)
$$

Curvature: The rate at which the direction changes with arc length.

$$
\kappa(s)=\left\|\mathbf{u}^{\prime}(s)\right\|=\left\|\mathbf{r}^{\prime \prime}(s)\right\|
$$

Unit principal normal:

$$
\mathbf{p}=\frac{1}{\kappa} \mathbf{u}^{\prime}(s)
$$

Curvature: The rate at which the direction changes with arc length.

$$
\kappa(s)=\left\|\mathbf{u}^{\prime}(s)\right\|=\left\|\mathbf{r}^{\prime \prime}(s)\right\|
$$

Unit principal normal:

$$
\mathbf{p}=\frac{1}{\kappa} \mathbf{u}^{\prime}(s)
$$

With general parametrization,

$$
\mathbf{r}^{\prime \prime}(t)=\frac{d\left\|\mathbf{r}^{\prime}\right\|}{d t} \mathbf{u}(t)+\left\|\mathbf{r}^{\prime}(t)\right\| \frac{d \mathbf{u}}{d t}=\frac{d\left\|\mathbf{r}^{\prime}\right\|}{d t} \mathbf{u}(t)+\kappa(t)\left\|\mathbf{r}^{\prime}\right\|^{2} \mathbf{p}(t)
$$

Curvature: The rate at which the direction changes with arc length.

$$
\kappa(s)=\left\|\mathbf{u}^{\prime}(s)\right\|=\left\|\mathbf{r}^{\prime \prime}(s)\right\|
$$

Unit principal normal:

$$
\mathbf{p}=\frac{1}{\kappa} \mathbf{u}^{\prime}(s)
$$

With general parametrization,

$$
\mathbf{r}^{\prime \prime}(t)=\frac{d\left\|\mathbf{r}^{\prime}\right\|}{d t} \mathbf{u}(t)+\left\|\mathbf{r}^{\prime}(t)\right\| \frac{d \mathbf{u}}{d t}=\frac{d\left\|\mathbf{r}^{\prime}\right\|}{d t} \mathbf{u}(t)+\kappa(t)\left\|\mathbf{r}^{\prime}\right\|^{2} \mathbf{p}(t)
$$

- Osculating plane
- Centre of curvature
- Radius of curvature

Figure: Tangent and normal to a curve

Mathematical Methods in Engineering and Science
Vector Analysis: Curves and Surfaces

Binormal: $\mathbf{b}=\mathbf{u} \times \mathbf{p}$
Serret-Frenet frame: Right-handed triad $\{\mathbf{u}, \mathbf{p}, \mathbf{b}\}$

- Osculating, rectifying and normal planes

Binormal: $\mathbf{b}=\mathbf{u} \times \mathbf{p}$

Serret-Frenet frame: Right-handed triad $\{\mathbf{u}, \mathbf{p}, \mathbf{b}\}$

- Osculating, rectifying and normal planes

Torsion: Twisting out of the osculating plane

- rate of change of \mathbf{b} with respect to arc length s

$$
\mathbf{b}^{\prime}=\mathbf{u}^{\prime} \times \mathbf{p}+\mathbf{u} \times \mathbf{p}^{\prime}=\kappa(s) \mathbf{p} \times \mathbf{p}+\mathbf{u} \times \mathbf{p}^{\prime}=\mathbf{u} \times \mathbf{p}^{\prime}
$$

What is \mathbf{p}^{\prime} ?

Curves in Space

Binormal: $\mathbf{b}=\mathbf{u} \times \mathbf{p}$
Serret-Frenet frame: Right-handed triad $\{\mathbf{u}, \mathbf{p}, \mathbf{b}\}$

- Osculating, rectifying and normal planes

Torsion: Twisting out of the osculating plane

- rate of change of \mathbf{b} with respect to arc length s

$$
\mathbf{b}^{\prime}=\mathbf{u}^{\prime} \times \mathbf{p}+\mathbf{u} \times \mathbf{p}^{\prime}=\kappa(s) \mathbf{p} \times \mathbf{p}+\mathbf{u} \times \mathbf{p}^{\prime}=\mathbf{u} \times \mathbf{p}^{\prime}
$$

What is \mathbf{p}^{\prime} ?
Taking $\mathbf{p}^{\prime}=\sigma \mathbf{u}+\tau \mathbf{b}$,

$$
\mathbf{b}^{\prime}=\mathbf{u} \times(\sigma \mathbf{u}+\tau \mathbf{b})=-\tau \mathbf{p}
$$

Torsion of the curve

$$
\tau(s)=-\mathbf{p}(s) \cdot \mathbf{b}^{\prime}(s)
$$

Mathematical Methods in Engineering and Science
Vector Analysis: Curves and Surfaces

We have \mathbf{u}^{\prime} and \mathbf{b}^{\prime}. What is \mathbf{p}^{\prime} ?

Mathematical Methods in Engineering and Science
Vector Analysis: Curves and Surfaces

We have \mathbf{u}^{\prime} and \mathbf{b}^{\prime}. What is \mathbf{p}^{\prime} ?
From $\mathbf{p}=\mathbf{b} \times \mathbf{u}$,

$$
\mathbf{p}^{\prime}=\mathbf{b}^{\prime} \times \mathbf{u}+\mathbf{b} \times \mathbf{u}^{\prime}=-\tau \mathbf{p} \times \mathbf{u}+\mathbf{b} \times \kappa \mathbf{p}=-\kappa \mathbf{u}+\tau \mathbf{b} .
$$

We have \mathbf{u}^{\prime} and \mathbf{b}^{\prime}. What is \mathbf{p}^{\prime} ?
From $\mathbf{p}=\mathbf{b} \times \mathbf{u}$,

$$
\mathbf{p}^{\prime}=\mathbf{b}^{\prime} \times \mathbf{u}+\mathbf{b} \times \mathbf{u}^{\prime}=-\tau \mathbf{p} \times \mathbf{u}+\mathbf{b} \times \kappa \mathbf{p}=-\kappa \mathbf{u}+\tau \mathbf{b} .
$$

Serret-Frenet formulae

$$
\begin{array}{llll}
\mathbf{u}^{\prime} & = & \kappa \mathbf{p}, \\
\mathbf{p}^{\prime} & = & -\kappa \mathbf{u}+ & +\mathbf{b}, \\
\mathbf{b}^{\prime} & = & -\tau \mathbf{p}
\end{array}
$$

We have \mathbf{u}^{\prime} and \mathbf{b}^{\prime}. What is \mathbf{p}^{\prime} ?
From $\mathbf{p}=\mathbf{b} \times \mathbf{u}$,

$$
\mathbf{p}^{\prime}=\mathbf{b}^{\prime} \times \mathbf{u}+\mathbf{b} \times \mathbf{u}^{\prime}=-\tau \mathbf{p} \times \mathbf{u}+\mathbf{b} \times \kappa \mathbf{p}=-\kappa \mathbf{u}+\tau \mathbf{b} .
$$

Serret-Frenet formulae

$$
\begin{array}{llll}
\mathbf{u}^{\prime} & = & \kappa \mathbf{p}, \\
\mathbf{p}^{\prime} & = & -\kappa \mathbf{u}+ & +\mathbf{b}, \\
\mathbf{b}^{\prime} & = & -\tau \mathbf{p}
\end{array}
$$

Intrinsic representation of a curve is complete with $\kappa(s)$ and $\tau(s)$.
The arc-length parametrization of a curve is completely determined by its curvature $\kappa(s)$ and torsion $\tau(s)$ functions, except for a rigid body motion.

Surfaces*

Parametric surface equation:

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k} \equiv\left[\begin{array}{lll}
x(u, v) & y(u, v) & z(u, v)
\end{array}\right]^{T}
$$

Tangent vectors \mathbf{r}_{u} and \mathbf{r}_{v} define a tangent plane \mathcal{T}.
$\mathbf{N}=\mathbf{r}_{u} \times \mathbf{r}_{v}$ is normal to the surface and the unit normal is

$$
\mathbf{n}=\frac{\mathbf{N}}{\|\mathbf{N}\|}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|}
$$

Parametric surface equation:

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k} \equiv\left[\begin{array}{lll}
x(u, v) & y(u, v) & z(u, v)
\end{array}\right]^{T}
$$

Tangent vectors \mathbf{r}_{u} and \mathbf{r}_{V} define a tangent plane \mathcal{T}.
$\mathbf{N}=\mathbf{r}_{u} \times \mathbf{r}_{v}$ is normal to the surface and the unit normal is

$$
\mathbf{n}=\frac{\mathbf{N}}{\|\mathbf{N}\|}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|}
$$

Question: How does \mathbf{n} vary over the surface?
Information on local geometry: curvature tensor

- Normal and principal curvatures
- Local shape: convex, concave, saddle, cylindrical, planar
- Parametric equation is the general and most convenient representation of curves and surfaces.
- Arc length is the natural parameter and the Serret-Frenet frame offers the natural frame of reference.
- Curvature and torsion are the only inherent properties of a curve.
- The local shape of a surface patch can be understood through an analysis of its curvature tensor.

Necessary Exercises: 1,2,3,6

Scalar and Vector Fields
Differential Operations on Field Functions Integral Operations on Field Functions Integral Theorems
Closure

athematical Methods in Engineering and Science

Scalar point function or scalar field $\phi(x, y, z)^{\text {s.sur }} R^{3} \rightarrow R$ Vector point function or vector field $\mathbf{V}(x, y, z): R^{3} \rightarrow R^{3}$ The del or nabla (∇) operator

$$
\nabla \equiv \mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}
$$

- ∇ is a vector,
- it signifies a differentiation, and
- it operates from the left side.

athematical Methods in Engineering and Science

Scalar point function or scalar field $\phi(x, y, z)^{\text {s.sur }} R^{3} \rightarrow R$ Vector point function or vector field $\mathbf{V}(x, y, z): R^{3} \rightarrow R^{3}$ The del or nabla (∇) operator

$$
\nabla \equiv \mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}
$$

- ∇ is a vector,
- it signifies a differentiation, and
- it operates from the left side.

Laplacian operator:

$$
\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \quad=\nabla \cdot \nabla ? ?
$$

Laplace's equation:

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0
$$

Solution of $\nabla^{2} \phi=0$: harmonic function

Scalar and Vector Fields

Gradient

$$
\operatorname{grad} \phi \equiv \nabla \phi=\frac{\partial \phi}{\partial x} \mathbf{i}+\frac{\partial \phi}{\partial y} \mathbf{j}+\frac{\partial \phi}{\partial z} \mathbf{k}
$$

is orthogonal to the level surfaces.
Flow fields: $-\nabla \phi$ gives the velocity vector.

Differential Operations on Field Funcltfiential opeations on fied functions

Gradient

$$
\operatorname{grad} \phi \equiv \nabla \phi=\frac{\partial \phi}{\partial x} \mathbf{i}+\frac{\partial \phi}{\partial y} \mathbf{j}+\frac{\partial \phi}{\partial z} \mathbf{k}
$$

is orthogonal to the level surfaces.
Flow fields: $-\nabla \phi$ gives the velocity vector.

Divergence

For $\mathbf{V}(x, y, z) \equiv V_{x}(x, y, z) \mathbf{i}+V_{y}(x, y, z) \mathbf{j}+V_{z}(x, y, z) \mathbf{k}$,

$$
\operatorname{div} \mathbf{V} \equiv \nabla \cdot \mathbf{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}
$$

Divergence of $\rho \mathbf{V}$: flow rate of mass per unit volume out of the control volume.

Similar relation between field and flux in electromagnetics.

Mathematical Methods in Engineering and Science
Differential Operations on Field Funclithiti

Curl

$$
\begin{aligned}
\text { curl } \mathbf{V} & \equiv \nabla \times \mathbf{V}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
V_{x} & V_{y} & V_{z}
\end{array}\right| \\
& =\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right) \mathbf{i}+\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right) \mathbf{j}+\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) \mathbf{k}
\end{aligned}
$$

If $\mathbf{V}=\omega \times \mathbf{r}$ represents the velocity field, then angular velocity

$$
\omega=\frac{1}{2} \operatorname{curl} \mathbf{V}
$$

Curl represents rotationality.
Connections between electric and magnetic fields!

Mathematical Methods in Engineering and Science
Scalar and Vector Fields

Differential Operations on Field Funclifibity

Composite operations

Operator ∇ is linear.

$$
\begin{aligned}
\nabla(\phi+\psi) & =\nabla \phi+\nabla \psi, \\
\nabla \cdot(\mathbf{V}+\mathbf{W}) & =\nabla \cdot \mathbf{V}+\nabla \cdot \mathbf{W}, \quad \text { and } \\
\nabla \times(\mathbf{V}+\mathbf{W}) & =\nabla \times \mathbf{V}+\nabla \times \mathbf{W} .
\end{aligned}
$$

athematical Methods in Engineering and Science

Differential Operations on Field Funclifinision Oearationson on Fielidd functions

Composite operations
Operator ∇ is linear.

$$
\begin{aligned}
\nabla(\phi+\psi) & =\nabla \phi+\nabla \psi, \\
\nabla \cdot(\mathbf{V}+\mathbf{W}) & =\nabla \cdot \mathbf{V}+\nabla \cdot \mathbf{W}, \quad \text { and } \\
\nabla \times(\mathbf{V}+\mathbf{W}) & =\nabla \times \mathbf{V}+\nabla \times \mathbf{W} .
\end{aligned}
$$

Considering the products $\phi \psi, \phi \mathbf{V}, \mathbf{V} \cdot \mathbf{W}$, and $\mathbf{V} \times \mathbf{W}$;

$$
\begin{aligned}
& \nabla(\phi \psi)=\psi \nabla \phi+\phi \nabla \psi \\
& \nabla \cdot(\phi \mathbf{V})=\nabla \phi \cdot \mathbf{V}+\phi \nabla \cdot \mathbf{V} \\
& \nabla \times(\phi \mathbf{V})=\nabla \phi \times \mathbf{V}+\phi \nabla \times \mathbf{V} \\
& \nabla(\mathbf{V} \cdot \mathbf{W})=(\mathbf{W} \cdot \nabla) \mathbf{V}+(\mathbf{V} \cdot \nabla) \mathbf{W}+\mathbf{W} \times(\nabla \times \mathbf{V})+\mathbf{V} \times(\nabla \times \mathbf{W}) \\
& \nabla \cdot(\mathbf{V} \times \mathbf{W})=\mathbf{W} \cdot(\nabla \times \mathbf{V})-\mathbf{V} \cdot(\nabla \times \mathbf{W}) \\
& \nabla \times(\mathbf{V} \times \mathbf{W})=(\mathbf{W} \cdot \nabla) \mathbf{V}-\mathbf{W}(\nabla \cdot \mathbf{V})-(\mathbf{V} \cdot \nabla) \mathbf{W}+\mathbf{V}(\nabla \cdot \mathbf{W})
\end{aligned}
$$

Differential Operations on Field Funclifititis opeation on fied functions
Composite operations
Operator ∇ is linear.

$$
\begin{aligned}
\nabla(\phi+\psi) & =\nabla \phi+\nabla \psi, \\
\nabla \cdot(\mathbf{V}+\mathbf{W}) & =\nabla \cdot \mathbf{V}+\nabla \cdot \mathbf{W}, \quad \text { and } \\
\nabla \times(\mathbf{V}+\mathbf{W}) & =\nabla \times \mathbf{V}+\nabla \times \mathbf{W} .
\end{aligned}
$$

Considering the products $\phi \psi, \phi \mathbf{V}, \mathbf{V} \cdot \mathbf{W}$, and $\mathbf{V} \times \mathbf{W}$;

$$
\begin{aligned}
& \nabla(\phi \psi)=\psi \nabla \phi+\phi \nabla \psi \\
& \nabla \cdot(\phi \mathbf{V})=\nabla \phi \cdot \mathbf{V}+\phi \nabla \cdot \mathbf{V} \\
& \nabla \times(\phi \mathbf{V})=\nabla \phi \times \mathbf{V}+\phi \nabla \times \mathbf{V} \\
& \nabla(\mathbf{V} \cdot \mathbf{W})=(\mathbf{W} \cdot \nabla) \mathbf{V}+(\mathbf{V} \cdot \nabla) \mathbf{W}+\mathbf{W} \times(\nabla \times \mathbf{V})+\mathbf{V} \times(\nabla \times \mathbf{W}) \\
& \nabla \cdot(\mathbf{V} \times \mathbf{W})=\mathbf{W} \cdot(\nabla \times \mathbf{V})-\mathbf{V} \cdot(\nabla \times \mathbf{W}) \\
& \nabla \times(\mathbf{V} \times \mathbf{W})=(\mathbf{W} \cdot \nabla) \mathbf{V}-\mathbf{W}(\nabla \cdot \mathbf{V})-(\mathbf{V} \cdot \nabla) \mathbf{W}+\mathbf{V}(\nabla \cdot \mathbf{W})
\end{aligned}
$$

Note: the expression $\mathbf{V} \cdot \nabla \equiv V_{x} \frac{\partial}{\partial x}+V_{y} \frac{\partial}{\partial y}+V_{z} \frac{\partial}{\partial z}$ is an operator!

Scalar and Vector Fields

Second order differential operators

$$
\begin{aligned}
\operatorname{div} \operatorname{grad} \phi & \equiv \nabla \cdot(\nabla \phi) \\
\text { curl } \operatorname{grad} \phi & \equiv \nabla \times(\nabla \phi) \\
\operatorname{div} \operatorname{curl} \mathbf{V} & \equiv \nabla \cdot(\nabla \times \mathbf{V}) \\
\text { curl curl } \mathbf{V} & \equiv \nabla \times(\nabla \times \mathbf{V}) \\
\text { grad div } \mathbf{V} & \equiv \nabla(\nabla \cdot \mathbf{V})
\end{aligned}
$$

athematical Methods in Engineering and Science

Differential Operations on Field Funclifinision Oearationson on Fielidd functions

Second order differential operators

$$
\begin{aligned}
\text { div } \operatorname{grad} \phi & \equiv \nabla \cdot(\nabla \phi) \\
\text { curl grad } \phi & \equiv \nabla \times(\nabla \phi) \\
\operatorname{div} \operatorname{curl} \mathbf{V} & \equiv \nabla \cdot(\nabla \times \mathbf{V}) \\
\text { curl curl } \mathbf{V} & \equiv \nabla \times(\nabla \times \mathbf{V}) \\
\text { grad div } \mathbf{V} & \equiv \nabla(\nabla \cdot \mathbf{V})
\end{aligned}
$$

Important identities:

$$
\begin{aligned}
\operatorname{div} \operatorname{grad} \phi & \equiv \nabla \cdot(\nabla \phi)=\nabla^{2} \phi \\
\text { curl } \operatorname{grad} \phi \equiv & \equiv \times(\nabla \phi)=\mathbf{0} \\
\text { div curl } \mathbf{V} \equiv & \nabla \cdot(\nabla \times \mathbf{V})=0 \\
\text { curl curl } \mathbf{V} \equiv & \nabla \times(\nabla \times \mathbf{V}) \\
& =\nabla(\nabla \cdot \mathbf{V})-\nabla^{2} \mathbf{V}=\operatorname{grad} \operatorname{div} \mathbf{V}-\nabla^{2} \mathbf{V}
\end{aligned}
$$

Mathematical Methods in Engineering and Science
 Line integral along curve C :

$$
I=\int_{C} \mathbf{V} \cdot d \mathbf{r}=\int_{C}\left(V_{x} d x+V_{y} d y+V_{z} d z\right)
$$

For a parametrized curve $\mathbf{r}(t), t \in[a, b]$,

$$
I=\int_{C} \mathbf{V} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{V} \cdot \frac{d \mathbf{r}}{d t} d t .
$$

Mathematical Methods in Engineering and Science
Integral Operations on Field Function Mifierential Opeatation ons on Filid functions
Line integral along curve C :

$$
I=\int_{C} \mathbf{V} \cdot d \mathbf{r}=\int_{C}\left(V_{x} d x+V_{y} d y+V_{z} d z\right)
$$

For a parametrized curve $\mathbf{r}(t), t \in[a, b]$,

$$
I=\int_{C} \mathbf{V} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{V} \cdot \frac{d \mathbf{r}}{d t} d t
$$

For simple (non-intersecting) paths contained in a simply connected region, equivalent statements:

- $V_{x} d x+V_{y} d y+V_{z} d z$ is an exact differential.
- $\mathbf{V}=\nabla \phi$ for some $\phi(\mathbf{r})$.
- $\int_{C} \mathbf{V} \cdot d \mathbf{r}$ is independent of path.
- Circulation $\oint \mathbf{V} \cdot d \mathbf{r}=0$ around any closed path.
- curl $\mathbf{V}=\mathbf{0}$.
- Field \mathbf{V} is conservative.

Mathematical Methods in Engineering and Science

Surface integral over an orientable surface S :

$$
J=\int_{S} \int \mathbf{V} \cdot d \mathbf{S}=\int_{S} \int \mathbf{V} \cdot \mathbf{n} d S
$$

For $\mathbf{r}(u, w), \quad d S=\left\|\mathbf{r}_{u} \times \mathbf{r}_{w}\right\| d u d w$ and

$$
J=\int_{S} \int \mathbf{V} \cdot \mathbf{n} d S=\int_{R} \int \mathbf{V} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{w}\right) d u d w
$$

Mathematical Methods in Engineering and Science

Surface integral over an orientable surface S :

$$
J=\int_{S} \int \mathbf{V} \cdot d \mathbf{S}=\int_{S} \int \mathbf{V} \cdot \mathbf{n} d S
$$

For $\mathbf{r}(u, w), \quad d S=\left\|\mathbf{r}_{u} \times \mathbf{r}_{w}\right\| d u d w$ and

$$
J=\int_{S} \int \mathbf{V} \cdot \mathbf{n} d S=\int_{R} \int \mathbf{V} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{w}\right) d u d w
$$

Volume integrals of point functions over a region T :

$$
M=\iint_{T} \int \phi d v \quad \text { and } \quad \mathbf{F}=\iint_{T} \int \mathbf{V} d v
$$

Mathematical Methods in Engineering and Science

Green's theorem in the plane

R : closed bounded region in the $x y$-plane
C : boundary, a piecewise smooth closed curve $F_{1}(x, y)$ and $F_{2}(x, y)$: first order continuous functions

$$
\oint_{C}\left(F_{1} d x+F_{2} d y\right)=\int_{R} \int\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y
$$

Green's theorem in the plane

R : closed bounded region in the xy-plane
C : boundary, a piecewise smooth closed curve $F_{1}(x, y)$ and $F_{2}(x, y)$: first order continuous functions

$$
\oint_{C}\left(F_{1} d x+F_{2} d y\right)=\int_{R} \int\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y
$$

(a) Simple domain

(b) General domain

Figure: Regions for proof of Green's theorem in the plane

Integral Theorems

Proof:

$$
\begin{aligned}
\int_{R} \int \frac{\partial F_{1}}{\partial y} d x d y & =\int_{a}^{b} \int_{y_{1}(x)}^{y_{2}(x)} \frac{\partial F_{1}}{\partial y} d y d x \\
& =\int_{a}^{b}\left[F_{1}\left\{x, y_{2}(x)\right\}-F_{1}\left\{x, y_{1}(x)\right\}\right] d x \\
& =-\int_{b}^{a} F_{1}\left\{x, y_{2}(x)\right\} d x-\int_{a}^{b} F_{1}\left\{x, y_{1}(x)\right\} d x \\
& =-\oint_{C} F_{1}(x, y) d x
\end{aligned}
$$

Integral Theorems

Proof:

$$
\begin{aligned}
\int_{R} \int \frac{\partial F_{1}}{\partial y} d x d y & =\int_{a}^{b} \int_{y_{1}(x)}^{y_{2}(x)} \frac{\partial F_{1}}{\partial y} d y d x \\
& =\int_{a}^{b}\left[F_{1}\left\{x, y_{2}(x)\right\}-F_{1}\left\{x, y_{1}(x)\right\}\right] d x \\
& =-\int_{b}^{a} F_{1}\left\{x, y_{2}(x)\right\} d x-\int_{a}^{b} F_{1}\left\{x, y_{1}(x)\right\} d x \\
& =-\oint_{C} F_{1}(x, y) d x \\
\int_{R} \int \frac{\partial F_{2}}{\partial x} d x d y & =\int_{c}^{d} \int_{x_{1}(y)}^{x_{2}(y)} \frac{\partial F_{2}}{\partial x} d x d y=\oint_{C} F_{2}(x, y) d y
\end{aligned}
$$

Difference: $\oint_{C}\left(F_{1} d x+F_{2} d y\right)=\int_{R} \int\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y$

Integral Theorems

Proof:

$$
\begin{aligned}
\int_{R} \int \frac{\partial F_{1}}{\partial y} d x d y & =\int_{a}^{b} \int_{y_{1}(x)}^{y_{2}(x)} \frac{\partial F_{1}}{\partial y} d y d x \\
& =\int_{a}^{b}\left[F_{1}\left\{x, y_{2}(x)\right\}-F_{1}\left\{x, y_{1}(x)\right\}\right] d x \\
& =-\int_{b}^{a} F_{1}\left\{x, y_{2}(x)\right\} d x-\int_{a}^{b} F_{1}\left\{x, y_{1}(x)\right\} d x \\
& =-\oint_{C} F_{1}(x, y) d x \\
\int_{R} \int \frac{\partial F_{2}}{\partial x} d x d y & =\int_{c}^{d} \int_{x_{1}(y)}^{x_{2}(y)} \frac{\partial F_{2}}{\partial x} d x d y=\oint_{C} F_{2}(x, y) d y
\end{aligned}
$$

Difference: $\oint_{C}\left(F_{1} d x+F_{2} d y\right)=\int_{R} \int\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d x d y$ In alternative form, $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{R} \int \operatorname{curl} \mathbf{F} \cdot \mathbf{k} d x d y$.

Mathematical Methods in Engineering and Science

Gauss's divergence theorem

T : a closed bounded region
S: boundary, a piecewise smooth closed orientable surface
$\mathbf{F}(x, y, z)$: a first order continuous vector function

$$
\iint_{T} \int \operatorname{div} \mathbf{F} d v=\int_{S} \int \mathbf{F} \cdot \mathbf{n} d S
$$

Interpretation of the definition extended to finite domains.

Integral Theorems

Gauss's divergence theorem

T : a closed bounded region
S: boundary, a piecewise smooth closed orientable surface
$\mathbf{F}(x, y, z)$: a first order continuous vector function

$$
\iint_{T} \int \operatorname{div} \mathbf{F} d v=\int_{S} \int \mathbf{F} \cdot \mathbf{n} d S
$$

Interpretation of the definition extended to finite domains.

$$
\iint_{T} \int\left(\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}\right) d x d y d z=\int_{S} \int\left(F_{x} n_{x}+F_{y} n_{y}+F_{z} n_{z}\right) d S
$$

To show: $\iint_{T} \int \frac{\partial F_{z}}{\partial z} d x d y d z=\int_{S} \int F_{z} n_{z} d S$

Integral Theorems

Gauss's divergence theorem

T: a closed bounded region
S: boundary, a piecewise smooth closed orientable surface
$\mathbf{F}(x, y, z)$: a first order continuous vector function

$$
\iint_{T} \int \operatorname{div} \mathbf{F} d v=\int_{S} \int \mathbf{F} \cdot \mathbf{n} d S
$$

Interpretation of the definition extended to finite domains.
$\iint_{T} \int\left(\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}\right) d x d y d z=\int_{S} \int\left(F_{x} n_{x}+F_{y} n_{y}+F_{z} n_{z}\right) d S$
To show: $\iint_{T} \int \frac{\partial F_{z}}{\partial z} d x d y d z=\int_{S} \int F_{z} n_{z} d S$
First consider a region, the boundary of which is intersected at most twice by any line parallel to a coordinate axis.

Integral Theorems

Lower and upper segments of $S: z=z_{1}(x, y)$ and $z=z_{2}(x, y)$.

$$
\begin{aligned}
& \iint_{T} \int \frac{\partial F_{z}}{\partial z} d x d y d z=\int_{R} \int\left[\int_{z_{1}}^{z_{2}} \frac{\partial F_{z}}{\partial z} d z\right] d x d y \\
& \quad=\int_{R} \int\left[F_{z}\left\{x, y, z_{2}(x, y)\right\}-F_{z}\left\{x, y, z_{1}(x, y)\right\}\right] d x d y
\end{aligned}
$$

R : projection of T on the $x y$-plane

Integral Theorems

Lower and upper segments of $S: z=z_{1}(x, y)$ and $z=z_{2}(x, y)$.

$$
\begin{aligned}
& \iint_{T} \int \frac{\partial F_{z}}{\partial z} d x d y d z=\int_{R} \int\left[\int_{z_{1}}^{z_{2}} \frac{\partial F_{z}}{\partial z} d z\right] d x d y \\
& \quad=\int_{R} \int\left[F_{z}\left\{x, y, z_{2}(x, y)\right\}-F_{z}\left\{x, y, z_{1}(x, y)\right\}\right] d x d y
\end{aligned}
$$

R : projection of T on the $x y$-plane
Projection of area element of the upper segment: $n_{z} d S=d x d y$ Projection of area element of the lower segment: $n_{z} d S=-d x d y$

Integral Theorems

Lower and upper segments of $S: z=z_{1}(x, y)$ and $z=z_{2}(x, y)$.

$$
\begin{aligned}
& \iint_{T} \int \frac{\partial F_{z}}{\partial z} d x d y d z=\int_{R} \int\left[\int_{z_{1}}^{z_{2}} \frac{\partial F_{z}}{\partial z} d z\right] d x d y \\
& \quad=\int_{R} \int\left[F_{z}\left\{x, y, z_{2}(x, y)\right\}-F_{z}\left\{x, y, z_{1}(x, y)\right\}\right] d x d y
\end{aligned}
$$

R : projection of T on the $x y$-plane
Projection of area element of the upper segment: $n_{z} d S=d x d y$ Projection of area element of the lower segment: $n_{z} d S=-d x d y$

Thus, $\iint_{T} \int \frac{\partial F_{z}}{\partial z} d x d y d z=\int_{S} \int F_{z} n_{z} d S$.
Sum of three such components leads to the result.

Integral Theorems

Lower and upper segments of $S: z=z_{1}(x, y)$ and $z=z_{2}(x, y)$.

$$
\begin{aligned}
& \iint_{T} \int \frac{\partial F_{z}}{\partial z} d x d y d z=\int_{R} \int\left[\int_{z_{1}}^{z_{2}} \frac{\partial F_{z}}{\partial z} d z\right] d x d y \\
& \quad=\int_{R} \int\left[F_{z}\left\{x, y, z_{2}(x, y)\right\}-F_{z}\left\{x, y, z_{1}(x, y)\right\}\right] d x d y
\end{aligned}
$$

R : projection of T on the $x y$-plane
Projection of area element of the upper segment: $n_{z} d S=d x d y$ Projection of area element of the lower segment: $n_{z} d S=-d x d y$

Thus, $\iint_{T} \int \frac{\partial F_{z}}{\partial z} d x d y d z=\int_{S} \int F_{z} n_{z} d S$.
Sum of three such components leads to the result.
Extension to arbitrary regions by a suitable subdivision of domain!

Integral Theorems

Green's identities (theorem)

Region T and boundary S: as required in premises of Gauss's theorem $\phi(x, y, z)$ and $\psi(x, y, z)$: second order continuous scalar functions

$$
\begin{aligned}
\int_{S} \int \phi \nabla \psi \cdot \mathbf{n} d S & =\iint_{T} \int\left(\phi \nabla^{2} \psi+\nabla \phi \cdot \nabla \psi\right) d v \\
\int_{S} \int(\phi \nabla \psi-\psi \nabla \phi) \cdot \mathbf{n} d S & =\iint_{T} \int\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d v
\end{aligned}
$$

Direct consequences of Gauss's theorem

Mathematical Methods in Engineering and Science
Integral Theorems

Green's identities (theorem)

Region T and boundary S: as required in premises of Gauss's theorem $\phi(x, y, z)$ and $\psi(x, y, z)$: second order continuous scalar functions

$$
\begin{aligned}
\int_{S} \int \phi \nabla \psi \cdot \mathbf{n} d S & =\iint_{T} \int\left(\phi \nabla^{2} \psi+\nabla \phi \cdot \nabla \psi\right) d v \\
\int_{S} \int(\phi \nabla \psi-\psi \nabla \phi) \cdot \mathbf{n} d S & =\iint_{T} \int\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d v
\end{aligned}
$$

Direct consequences of Gauss's theorem

To establish, apply Gauss's divergence theorem on $\phi \nabla \psi$, and then on $\psi \nabla \phi$ as well.

Integral Theorems

Stokes's theorem

S: a piecewise smooth surface
C: boundary, a piecewise smooth simple closed curve $\mathbf{F}(x, y, z)$: first order continuous vector function

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{S} \int \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

n: unit normal given by the right hand clasp rule on C

Integral Theorems

Stokes's theorem

S: a piecewise smooth surface
C: boundary, a piecewise smooth simple closed curve $\mathbf{F}(x, y, z)$: first order continuous vector function

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{S} \int \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

n : unit normal given by the right hand clasp rule on C

For $\mathbf{F}(x, y, z)=F_{x}(x, y, z) \mathbf{i}$,

$$
\oint_{C} F_{x} d x=\int_{S} \int\left(\frac{\partial F_{x}}{\partial z} \mathbf{j}-\frac{\partial F_{x}}{\partial y} \mathbf{k}\right) \cdot \mathbf{n} d S=\int_{S} \int\left(\frac{\partial F_{x}}{\partial z} n_{y}-\frac{\partial F_{x}}{\partial y} n_{z}\right) d S
$$

Integral Theorems

Stokes's theorem

S: a piecewise smooth surface
C: boundary, a piecewise smooth simple closed curve $\mathbf{F}(x, y, z)$: first order continuous vector function

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{S} \int \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S
$$

n : unit normal given by the right hand clasp rule on C

For $\mathbf{F}(x, y, z)=F_{x}(x, y, z) \mathbf{i}$,
$\oint_{C} F_{x} d x=\int_{S} \int\left(\frac{\partial F_{x}}{\partial z} \mathbf{j}-\frac{\partial F_{x}}{\partial y} \mathbf{k}\right) \cdot \mathbf{n} d S=\int_{S} \int\left(\frac{\partial F_{x}}{\partial z} n_{y}-\frac{\partial F_{x}}{\partial y} n_{z}\right) d S$.

First, consider a surface S intersected at most once by any line parallel to a coordinate axis.

Mathematical Methods in Engineering and Science

Integral Theorems

Represent S as $z=z(x, y) \equiv f(x, y)$.
Unit normal $\mathbf{n}=\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right]^{T}$ is proportional to $\left[\begin{array}{lll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & -1\end{array}\right]^{T}$.

$$
n_{y}=-n_{z} \frac{\partial z}{\partial y}
$$

Integral Theorems

Represent S as $z=z(x, y) \equiv f(x, y)$.
Unit normal $\mathbf{n}=\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right]^{T}$ is proportional to $\left[\begin{array}{lll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & -1\end{array}\right]^{T}$.

$$
\begin{aligned}
n_{y} & =-n_{z} \frac{\partial z}{\partial y} \\
\int_{S} \int\left(\frac{\partial F_{x}}{\partial z} n_{y}-\frac{\partial F_{x}}{\partial y} n_{z}\right) d S & =-\int_{S} \int\left(\frac{\partial F_{x}}{\partial y}+\frac{\partial F_{x}}{\partial z} \frac{\partial z}{\partial y}\right) n_{z} d S
\end{aligned}
$$

Over projection R of S on $x y$-plane, $\phi(x, y)=F_{x}(x, y, z(x, y))$.

$$
\text { LHS }=-\int_{R} \int \frac{\partial \phi}{\partial y} d x d y=\oint_{C^{\prime}} \phi(x, y) d x=\oint_{C} F_{x} d x
$$

Similar results for $F_{y}(x, y, z) \mathbf{j}$ and $F_{z}(x, y, z) \mathbf{k}$.

- The 'del' operator ∇
- Gradient, divergence and curl
- Composite and second order operators
- Line, surface and volume intergals
- Green's, Gauss's and Stokes's theorems
- Applications in physics (and engineering)

Necessary Exercises: 1,2,3,6,7

Polynomial Equations
Basic Principles
Analytical Solution
General Polynomial Equations
Two Simultaneous Equations
Elimination Methods*
Advanced Techniques*

Batheacical Princtinciplesering

Fundamental theorem of algebra

$$
p(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}
$$

has exactly n roots $x_{1}, x_{2}, \cdots, x_{n}$; with

$$
p(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \cdots\left(x-x_{n}\right) .
$$

In general, roots are complex.

Basic Principles

Fundamental theorem of algebra

$$
p(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}
$$

has exactly n roots $x_{1}, x_{2}, \cdots, x_{n}$; with

$$
p(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \cdots\left(x-x_{n}\right) .
$$

In general, roots are complex.
Multiplicity: A root of $p(x)$ with multiplicity k satisfies

$$
p(x)=p^{\prime}(x)=p^{\prime \prime}(x)=\cdots=p^{(k-1)}(x)=0
$$

Basic Principles

$$
p(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n}
$$

has exactly n roots $x_{1}, x_{2}, \cdots, x_{n}$; with

$$
p(x)=a_{0}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \cdots\left(x-x_{n}\right) .
$$

In general, roots are complex.
Multiplicity: A root of $p(x)$ with multiplicity k satisfies

$$
p(x)=p^{\prime}(x)=p^{\prime \prime}(x)=\cdots=p^{(k-1)}(x)=0 .
$$

- Descartes' rule of signs
- Bracketing and separation
- Synthetic division and deflation

$$
p(x)=f(x) q(x)+r(x)
$$

Mathematical Methods in Engineering and Science
Polynomial Equations

Analytical Solution

Quadratic equation

Basic Principles
Analytical Solution
General Polynomial Equations
Two Simultaneous Equations
Elimination Methods*
Advanced Techniques*

$$
a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

lathematical Methods in Engineering and Science
Polynomial Equations
Analytical Solution

Quadratic equation

$$
a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Method of completing the square:

$$
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \Rightarrow\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

Analytical Solution

Quadratic equation

$$
a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Method of completing the square:

$$
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \Rightarrow\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

Cubic equations (Cardano):

$$
x^{3}+a x^{2}+b x+c=0
$$

Completing the cube?

Analytical Solution
ander

Quadratic equation

$$
a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Method of completing the square:

$$
x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \Rightarrow\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

Cubic equations (Cardano):

$$
x^{3}+a x^{2}+b x+c=0
$$

Completing the cube?
Substituting $y=x+k$,

$$
y^{3}+(a-3 k) y^{2}+\left(b-2 a k+3 k^{2}\right) y+\left(c-b k+a k^{2}-k^{3}\right)=0 .
$$

Choose the shift $k=a / 3$.

Mathematical Methods in Engineering and Science
Polynomial Equations

$$
y^{3}+p y+q=0
$$

Two Simultaneous Equations

Analytical Solution

$$
y^{3}+p y+q=0
$$

Assuming $y=u+v$, we have $y^{3}=u^{3}+v^{3}+3 u v(u+v)$.

$$
\begin{aligned}
u v & =-p / 3 \\
u^{3}+v^{3} & =-q
\end{aligned}
$$

$$
\text { and hence }\left(u^{3}-v^{3}\right)^{2}=q^{2}+\frac{4 p^{3}}{27}
$$

Solution:

$$
u^{3}, v^{3}=-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}=A, B \text { (say). }
$$

Analytical Solution

$$
y^{3}+p y+q=0
$$

Assuming $y=u+v$, we have $y^{3}=u^{3}+v^{3}+3 u v(u+v)$.

$$
\begin{aligned}
u v & =-p / 3 \\
u^{3}+v^{3} & =-q
\end{aligned}
$$

$$
\text { and hence }\left(u^{3}-v^{3}\right)^{2}=q^{2}+\frac{4 p^{3}}{27}
$$

Solution:

$$
\begin{gathered}
u^{3}, v^{3}=-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}=A, B \text { (say). } \\
u=A_{1}, A_{1} \omega, A_{1} \omega^{2}, \text { and } v=B_{1}, B_{1} \omega, B_{1} \omega^{2} \\
y_{1}=A_{1}+B_{1}, y_{2}=A_{1} \omega+B_{1} \omega^{2} \text { and } y_{3}=A_{1} \omega^{2}+B_{1} \omega .
\end{gathered}
$$

At least one of the solutions is real!!

Mathematical Methods in Engineering and Science
Polynomial Equations

Analytical Solution

Quartic equations (Ferrari)

Analyalicicalical Sol Sginering and
and

Quartic equations (Ferrari)

$$
x^{4}+a x^{3}+b x^{2}+c x+d=0 \Rightarrow\left(x^{2}+\frac{a}{2} x\right)^{2}=\left(\frac{a^{2}}{4}-b\right) x^{2}-c x-d
$$

For a perfect square,

$$
\left(x^{2}+\frac{a}{2} x+\frac{y}{2}\right)^{2}=\left(\frac{a^{2}}{4}-b+y\right) x^{2}+\left(\frac{a y}{2}-c\right) x+\left(\frac{y^{2}}{4}-d\right)
$$

Under what condition, the new RHS will be a perfect square?

Analytical Solution

Quartic equations (Ferrari)

$x^{4}+a x^{3}+b x^{2}+c x+d=0 \Rightarrow\left(x^{2}+\frac{a}{2} x\right)^{2}=\left(\frac{a^{2}}{4}-b\right) x^{2}-c x-d$
For a perfect square,

$$
\left(x^{2}+\frac{a}{2} x+\frac{y}{2}\right)^{2}=\left(\frac{a^{2}}{4}-b+y\right) x^{2}+\left(\frac{a y}{2}-c\right) x+\left(\frac{y^{2}}{4}-d\right)
$$

Under what condition, the new RHS will be a perfect square?

$$
\left(\frac{a y}{2}-c\right)^{2}-4\left(\frac{a^{2}}{4}-b+y\right)\left(\frac{y^{2}}{4}-d\right)=0
$$

Resolvent of a quartic:

$$
y^{3}-b y^{2}+(a c-4 d) y+\left(4 b d-a^{2} d-c^{2}\right)=0
$$

Analytical Solution
nationd

Procedure

- Frame the cubic resolvent.
- Solve this cubic equation.
- Pick up one solution as y.
- Insert this y to form

$$
\left(x^{2}+\frac{a}{2} x+\frac{y}{2}\right)^{2}=(e x+f)^{2}
$$

- Split it into two quadratic equations as

$$
x^{2}+\frac{a}{2} x+\frac{y}{2}= \pm(e x+f)
$$

- Solve each of the two quadratic equations to obtain a total of four solutions of the original quartic equation.

General Polynomial Equations

Analytical solution of the general quintic Two Simul ${ }^{\text {neeous Equations }}$ Galois: group theory:

A general quintic, or higher degree, equation is not solvable by radicals.

General Polynomial Equations

Analytical solution of the general quintic equation? Galois: group theory:

A general quintic, or higher degree, equation is not solvable by radicals.

General polynomial equations: iterative algorithms

- Methods for nonlinear equations
- Methods specific to polynomial equations

General Polynomial Equations

Analytical solution of the general quintic equation tiveus Equ* Galois: group theory:

A general quintic, or higher degree, equation is not solvable by radicals.

General polynomial equations: iterative algorithms

- Methods for nonlinear equations
- Methods specific to polynomial equations

Solution through the companion matrix

Roots of a polynomial are the same as the eigenvalues of its companion matrix.
Companion matrix: $\left[\begin{array}{rrrrr}0 & 0 & \cdots & 0 & -a_{n} \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_{2} \\ 0 & 0 & \cdots & 1 & -a_{1}\end{array}\right]$

Bairstow's method
to separate out factors of small degree.
Attempt to separate real linear factors?

General Polynomial Equations

Bairstow's method

to separate out factors of small degree.
Attempt to separate real linear factors?
Real quadratic factors

Synthetic division with a guess factor $x^{2}+q_{1} x+q_{2}$:
remainder $r_{1} x+r_{2}$
$\mathbf{r}=\left[\begin{array}{ll}r_{1} & r_{2}\end{array}\right]^{T}$ is a vector function of $\mathbf{q}=\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right]^{T}$.
Iterate over $\left(q_{1}, q_{2}\right)$ to make $\left(r_{1}, r_{2}\right)$ zero.

General Polynomial Equations

Bairstow's method

to separate out factors of small degree.
Attempt to separate real linear factors?

Real quadratic factors

Synthetic division with a guess factor $x^{2}+q_{1} x+q_{2}$:
remainder $r_{1} x+r_{2}$
$\mathbf{r}=\left[\begin{array}{ll}r_{1} & r_{2}\end{array}\right]^{T}$ is a vector function of $\mathbf{q}=\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right]^{T}$.

Iterate over $\left(q_{1}, q_{2}\right)$ to make $\left(r_{1}, r_{2}\right)$ zero.

Newton-Raphson (Jacobian based) iteration: see exercise.

Two Simultaneous Equations

$$
\begin{aligned}
& p_{1} x^{2}+q_{1} x y+r_{1} y^{2}+u_{1} x+v_{1} y+w_{1}=0 \\
& p_{2} x^{2}+q_{2} x y+r_{2} y^{2}+u_{2} x+v_{2} y+w_{2}=0
\end{aligned}
$$

Rearranging,

$$
\begin{aligned}
& a_{1} x^{2}+b_{1} x+c_{1}=0 \\
& a_{2} x^{2}+b_{2} x+c_{2}=0
\end{aligned}
$$

Cramer's rule:

$$
\begin{gathered}
\frac{x^{2}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{-x}{a_{1} c_{2}-a_{2} c_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}} \\
\Rightarrow x=-\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} c_{2}-a_{2} c_{1}}=-\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\end{gathered}
$$

Consistency condition:

$$
\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(b_{1} c_{2}-b_{2} c_{1}\right)-\left(a_{1} c_{2}-a_{2} c_{1}\right)^{2}=0
$$

A 4th degree equation in y

Elimination Methods*

The method operates similarly even if the degreane ${ }^{\text {Tecectit }}$ the original equations in y are higher.

What about the degree of the eliminant equation?

Elimination Methods*

The method operates similarly even if the degreaced ${ }^{\text {Te }}$ off ${ }^{\text {iig the }}$ * original equations in y are higher.

What about the degree of the eliminant equation?
Two equations in x and y of degrees n_{1} and n_{2} :
x-eliminant is an equation of degree $n_{1} n_{2}$ in y
Maximum number of solutions:
Bezout number $=n_{1} n_{2}$
Note: Deficient systems may have less number of solutions.

Elimination Methods*

The method operates similarly even if the degreand ${ }^{\text {Tesechi }}$ the equations in y are higher.

What about the degree of the eliminant equation?

> Two equations in x and y of degrees n_{1} and n_{2} :
> x-eliminant is an equation of degree $n_{1} n_{2}$ in y

Maximum number of solutions:
Bezout number $=n_{1} n_{2}$
Note: Deficient systems may have less number of solutions.

Classical methods of elimination

- Sylvester's dialytic method
- Bezout's method

Mathematical Methods in Engineering and Science

Advanced Techniques*

Three or more independent equations in as Adany thenk howns?

- Cascaded elimination? Objections!
- Exploitation of special structures through clever heuristics (mechanisms kinematics literature)
- Gröbner basis representation
(algebraic geometry)
- Continuation or homotopy method by Morgan

For solving the system $\mathbf{f}(\mathbf{x})=\mathbf{0}$, identify another structurally similar system $\mathbf{g}(\mathbf{x})=\mathbf{0}$ with known solutions and construct the parametrized system

$$
\mathbf{h}(\mathbf{x})=t \mathbf{f}(\mathbf{x})+(1-t) \mathbf{g}(\mathbf{x})=\mathbf{0} \quad \text { for } \quad t \in[0,1]
$$

Track each solution from $t=0$ to $t=1$.

Points to note

- Roots of cubic and quartic polynomials by the methods of Cardano and Ferrari
- For higher degree polynomials,
- Bairstow's method: a clever implementation of Newton-Raphson method for polynomials
- Eigenvalue problem of a companion matrix
- Reduction of a system of polynomial equations in two unknowns by elimination

Necessary Exercises: 1,3,4,6

Solution of Nonlinear Equations and Systems

Methods for Nonlinear Equations Systems of Nonlinear Equations Closure

Algebraic and transcendental equations in the form

$$
f(x)=0
$$

Practical problem: to find one real root (zero) of $f(x)$

Example of $f(x): x^{3}-2 x+5, x^{3} \ln x-\sin x+2$, etc.

Algebraic and transcendental equations in the form

$$
f(x)=0
$$

Practical problem: to find one real root (zero) of $f(x)$

Example of $f(x): x^{3}-2 x+5, x^{3} \ln x-\sin x+2$, etc.

If $f(x)$ is continuous, then
Bracketing: $f\left(x_{0}\right) f\left(x_{1}\right)<0 \Rightarrow$ there must be a root of $f(x)$ between x_{0} and x_{1}.
Bisection: Check the sign of $f\left(\frac{x_{0}+x_{1}}{2}\right)$. Replace either x_{0} or x_{1} with $\frac{x_{0}+x_{1}}{2}$.

athematical Methods in Engineering and Science
 Methods for Nonlinear Equations

Fixed point iteration

Rearrange $f(x)=0$ in the form $x=g(x)$.

Example:
For $f(x)=\tan x-x^{3}-2$,
possible rearrangements:
$g_{1}(x)=\tan ^{-1}\left(x^{3}+2\right)$
$g_{2}(x)=(\tan x-2)^{1 / 3}$
$g_{3}(x)=\frac{\tan x-2}{x^{2}}$
Iteration: $x_{k+1}=g\left(x_{k}\right)$

Methods for Nonlinear Equations

Fixed point iteration
Rearrange $f(x)=0$ in the form $x=g(x)$.
Example:
For $f(x)=\tan x-x^{3}-2$, possible rearrangements:
$g_{1}(x)=\tan ^{-1}\left(x^{3}+2\right)$
$g_{2}(x)=(\tan x-2)^{1 / 3}$
$g_{3}(x)=\frac{\tan x-2}{x^{2}}$
Iteration: $x_{k+1}=g\left(x_{k}\right)$

Figure: Fixed point iteration

If x^{*} is the unique solution in interval J and $\left|g^{\prime}(x)\right| \leq h<1$ in J, then any $x_{0} \in J$ converges to x^{*}.

athematical Methods in Engineering and Science
 Methods for Nonlinear Equations

Newton-Raphson method

First order Taylor series
$f(x+\delta x) \approx f(x)+f^{\prime}(x) \delta x$
From $f\left(x_{k}+\delta x\right)=0$,
$\delta x=-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$
Iteration:
$x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$
Convergence criterion:
$\left|f(x) f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|^{2}$

athematical Methods in Engineering and Science
 Methods for Nonlinear Equations

Newton-Raphson method
First order Taylor series
$f(x+\delta x) \approx f(x)+f^{\prime}(x) \delta x$
From $f\left(x_{k}+\delta x\right)=0$,
$\delta x=-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$
Iteration:
$x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$
Convergence criterion:
$\left|f(x) f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|^{2}$
Draw tangent to $f(x)$.
Take its x-intercept.

Figure: Newton-Raphson method

Methods for Nonlinear Equations

Newton-Raphson method

First order Taylor series
$f(x+\delta x) \approx f(x)+f^{\prime}(x) \delta x$
From $f\left(x_{k}+\delta x\right)=0$,
$\delta x=-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$
Iteration:
$x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)$
Convergence criterion:
$\left|f(x) f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|^{2}$
Draw tangent to $f(x)$.
Take its x-intercept.

Figure: Newton-Raphson method

Merit: quadratic speed of convergence: $\left|x_{k+1}-x^{*}\right|=c\left|x_{k}-x^{*}\right|^{2}$
Demerit: If the starting point is not appropriate,
haphazard wandering, oscillations or outright divergence!

athematical Methods in Engineering and Science
 Methods for Nonlinear Equations

Secant method and method of false position

In the Newton-Raphson formula, $f^{\prime}(x) \approx \frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}$
$\Rightarrow \quad x_{k+1}=x_{k}-\frac{x_{k}-x_{k}-1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} f\left(x_{k}\right)$
Draw the chord or
secant to $f(x)$ through
$\left(x_{k-1}, f\left(x_{k-1}\right)\right)$ and $\left(x_{k}, f\left(x_{k}\right)\right)$.
Take its x-intercept.

athematical Methods in Engineering and Science
 Methods for Nonlinear Equations

Secant method and method of false position

In the Newton-Raphson formula, $f^{\prime}(x) \approx \frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}$
$\Rightarrow \quad x_{k+1}=x_{k}-\frac{x_{k}-x_{k}-1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} f\left(x_{k}\right)$
Draw the chord or
secant to $f(x)$ through
$\left(x_{k-1}, f\left(x_{k-1}\right)\right)$ and $\left(x_{k}, f\left(x_{k}\right)\right)$.

Take its x-intercept.
Figure: Method of false position

Special case: Maintain a bracket over the root at every iteration.
The method of false position or regula falsi
Convergence is guaranteed!

Quadratic interpolation method or Muller method Evaluate $f(x)$ at three points and model $y=a+b x+c x^{2}$. Set $y=0$ and solve for x.

Quadratic interpolation method or Muller method Evaluate $f(x)$ at three points and model $y=a+b x+c x^{2}$. Set $y=0$ and solve for x.

Inverse quadratic interpolation

Evaluate $f(x)$ at three points and model $x=a+b y+c y^{2}$.
Set $y=0$ to get $x=a$.

Quadratic interpolation method or Muller method Evaluate $f(x)$ at three points and model $y=a+b x+c x^{2}$. Set $y=0$ and solve for x.

Inverse quadratic interpolation Evaluate $f(x)$ at three points and model $x=a+b y+c y^{2}$. Set $y=0$ to get $x=a$.

Figure: Interpolation schemes

athematical Methods in Engineering and science
 Methods for Nonlinear Equations

Quadratic interpolation method or Muller method Evaluate $f(x)$ at three points and model $y=a+b x+c x^{2}$. Set $y=0$ and solve for x.

Inverse quadratic interpolation Evaluate $f(x)$ at three points and model $x=a+b y+c y^{2}$.
Set $y=0$ to get $x=a$.

Figure: Interpolation schemes

Van Wijngaarden-Dekker Brent method

- maintains the bracket,
- uses inverse quadratic interpolation, and
- accepts outcome if within bounds, else takes a bisection step.

Opportunistic manoeuvring between a fast method and a safe one!

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0 \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0 \\
\ldots \quad \cdots, \cdots & \cdots \\
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0
\end{aligned}
$$

$$
\mathbf{f}(\mathbf{x})=\mathbf{0}
$$

Solution of Nonlinear Equations and Systems

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0 \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0 \\
\ldots \quad \cdots, \cdots & \cdots \\
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0
\end{aligned}
$$

$$
\mathbf{f}(\mathbf{x})=\mathbf{0}
$$

- Number of variables and number of equations?
- No bracketing!
- Fixed point iteration schemes $\mathbf{x}=\mathbf{g}(\mathbf{x})$?

Systems of Nonlinear Equations

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0 \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0, \\
\ldots \quad \cdots \quad \cdots & \cdots \\
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) & =0 . \\
\mathbf{f (x) = \mathbf { 0 }} &
\end{aligned}
$$

- Number of variables and number of equations?
- No bracketing!
- Fixed point iteration schemes $\mathbf{x}=\mathbf{g}(\mathbf{x})$?

Newton's method for systems of equations

$$
\begin{aligned}
\mathbf{f}(\mathbf{x}+\delta \mathbf{x})= & \mathbf{f}(\mathbf{x})+\left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x})\right] \delta \mathbf{x}+\cdots \approx \mathbf{f}(\mathbf{x})+\mathbf{J}(\mathbf{x}) \delta \mathbf{x} \\
& \Rightarrow \mathbf{x}_{k+1}=\mathbf{x}_{k}-\left[\mathbf{J}\left(\mathbf{x}_{k}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}_{k}\right)
\end{aligned}
$$

with the usual merits and demerits!

Modified Newton's method

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k}\left[\mathbf{J}\left(\mathbf{x}_{k}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}_{k}\right)
$$

Broyden's secant method

Jacobian is not evaluated at every iteration, but gets developed through updates.

Modified Newton's method

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k}\left[\mathbf{J}\left(\mathbf{x}_{k}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}_{k}\right)
$$

Broyden's secant method
Jacobian is not evaluated at every iteration, but gets developed through updates.

Optimization-based formulation
Global minimum of the function

$$
\|\mathbf{f}(\mathbf{x})\|^{2}=f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}
$$

Levenberg-Marquardt method

- Iteration schemes for solving $f(x)=0$
- Newton (or Newton-Raphson) iteration for a system of equations

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left[\mathbf{J}\left(\mathbf{x}_{k}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}_{k}\right)
$$

- Optimization formulation of a multi-dimensional root finding problem

Necessary Exercises: 1,2,3

Optimization: Introduction
The Methodology of Optimization Single-Variable Optimization
Conceptual Background of Multivariate Optimization

- Parameters and variables
- The statement of the optimization problem

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{x}) \\
\text { subject to } & \mathbf{g}(\mathbf{x}) \leq \mathbf{0} \\
& \mathbf{h}(\mathbf{x})=\mathbf{0}
\end{array}
$$

- Optimization methods
- Sensitivity analysis
- Optimization problems: unconstrained and constrained
- Optimization problems: linear and nonlinear
- Single-variable and multi-variable problems

Optimization: Introduction

For a function $f(x)$, a point x^{*} is defined as a relative (local) minimum if $\exists \epsilon$ such that $f(x) \geq f\left(x^{*}\right) \forall x \in\left[x^{*}-\epsilon, x^{*}+\epsilon\right]$.

Figure: Schematic of optima of a univariate function

Single-Variable Optimization

For a function $f(x)$, a point x^{*} is defined as a relative (local) minimum if $\exists \epsilon$ such that $f(x) \geq f\left(x^{*}\right) \forall x \in\left[x^{*}-\epsilon, x^{*}+\epsilon\right]$.

Figure: Schematic of optima of a univariate function

Optimality criteria

First order necessary condition: If x^{*} is a local minimum or maximum point and if $f^{\prime}\left(x^{*}\right)$ exists, then $f^{\prime}\left(x^{*}\right)=0$.
Second order necessary condition: If x^{*} is a local minimum point and $f^{\prime \prime}\left(x^{*}\right)$ exists, then $f^{\prime \prime}\left(x^{*}\right) \geq 0$.
Second order sufficient condition: If $f^{\prime}\left(x^{*}\right)=0$ and $f^{\prime \prime}\left(x^{*}\right)>0$ then x^{*} is a local minimum point.

Single-Variable Optimization

Higher order analysis: From Taylor's series,

$$
\begin{aligned}
\Delta f & =f\left(x^{*}+\delta x\right)-f\left(x^{*}\right) \\
& =f^{\prime}\left(x^{*}\right) \delta x+\frac{1}{2!} f^{\prime \prime}\left(x^{*}\right) \delta x^{2}+\frac{1}{3!} f^{\prime \prime \prime}\left(x^{*}\right) \delta x^{3}+\frac{1}{4!} f^{i v}\left(x^{*}\right) \delta x^{4}+\cdots
\end{aligned}
$$

For an extremum to occur at point x^{*}, the lowest order derivative with non-zero value should be of even order.

Single-Variable Optimization

Higher order analysis: From Taylor's series,
$\Delta f=f\left(x^{*}+\delta x\right)-f\left(x^{*}\right)$
$=f^{\prime}\left(x^{*}\right) \delta x+\frac{1}{2!} f^{\prime \prime}\left(x^{*}\right) \delta x^{2}+\frac{1}{3!} f^{\prime \prime \prime}\left(x^{*}\right) \delta x^{3}+\frac{1}{4!} f^{i v}\left(x^{*}\right) \delta x^{4}+\cdots$
For an extremum to occur at point x^{*}, the lowest order derivative with non-zero value should be of even order.

If $f^{\prime}\left(x^{*}\right)=0$, then

- x^{*} is a stationary point, a candidate for an extremum.
- Evaluate higher order derivatives till one of them is found to be non-zero.
- If its order is odd, then x^{*} is an inflection point.
- If its order is even, then x^{*} is a local minimum or maximum, as the derivative value is positive or negative, respectively.

Single-Variable Optimization

Iterative methods of line search

Methods based on gradient root finding

- Newton's method

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

- Secant method

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)} f^{\prime}\left(x_{k}\right)
$$

- Method of cubic estimation point of vanishing gradient of the cubic fit with $f\left(x_{k-1}\right), f\left(x_{k}\right), f^{\prime}\left(x_{k-1}\right)$ and $f^{\prime}\left(x_{k}\right)$
- Method of quadratic estimation
point of vanishing gradient of the quadratic fit through three points

Disadvantage: treating all stationary points alike!

Single-Variable Optimization

Bracketing:

$$
x_{1}<x_{2}<x_{3} \text { with } f\left(x_{1}\right) \geq f\left(x_{2}\right) \leq f\left(x_{3}\right)
$$

Exhaustive search method or its variants

Single-Variable Optimization

Bracketing:

$$
x_{1}<x_{2}<x_{3} \text { with } f\left(x_{1}\right) \geq f\left(x_{2}\right) \leq f\left(x_{3}\right)
$$

Exhaustive search method or its variants
Direct optimization algorithms

- Fibonacci search uses a pre-defined number N, of function evaluations, and the Fibonacci sequence

$$
F_{0}=1, F_{1}=1, F_{2}=2, \cdots, F_{j}=F_{j-2}+F_{j-1}, \cdots
$$

to tighten a bracket with economized number of function evaluations.

- Golden section search uses a constant ratio

$$
\tau=\frac{\sqrt{5}-1}{2} \approx 0.618
$$

the golden section ratio, of interval reduction, that is determined as the limiting case of $N \rightarrow \infty$ and the actual number of steps is decided by the accuracy desired.

Unconstrained minimization problem

$$
\begin{aligned}
& \mathbf{x}^{*} \text { is called a local minimum of } f(\mathbf{x}) \text { if } \exists \delta \text { such that } \\
& f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right) \text { for all } \mathbf{x} \text { satisfying }\left\|\mathbf{x}-\mathbf{x}^{*}\right\|<\delta \text {. }
\end{aligned}
$$

Mathematical Methods in Engineering and Science

Conceptual Background of Multivariale Optimization

Unconstrained minimization problem

$$
\begin{aligned}
& \mathbf{x}^{*} \text { is called a local minimum of } f(\mathbf{x}) \text { if } \exists \delta \text { such that } \\
& f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right) \text { for all } \mathbf{x} \text { satisfying }\left\|\mathbf{x}-\mathbf{x}^{*}\right\|<\delta \text {. }
\end{aligned}
$$

Optimality criteria

From Taylor's series,

$$
f(\mathbf{x})-f\left(\mathbf{x}^{*}\right)=\left[\mathbf{g}\left(\mathbf{x}^{*}\right)\right]^{T} \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{T}\left[\mathbf{H}\left(\mathbf{x}^{*}\right)\right] \delta \mathbf{x}+\cdots .
$$

For \mathbf{x}^{*} to be a local minimum,
necessary condition: $\mathbf{g}\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is positive semi-definite, sufficient condition: $\mathbf{g}\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is positive definite.

Indefinite Hessian matrix characterizes a saddle point.

athematical Methods in Engineering and Science

Conceptual Background of Multivariate Optimization

Convexity

Set $S \subseteq R^{n}$ is a convex set if

$$
\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in S \text { and } \alpha \in(0,1), \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in S .
$$

Function $f(x)$ over a convex set S : a convex function if
$\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and $\alpha \in(0,1)$,

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) .
$$

Chord approximation is an overestimate at intermediate points!

athematical Methods in Engineering and Science

Conceptual Background of Multivariateien Oimization

Convexity

Set $S \subseteq R^{n}$ is a convex set if

$$
\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in S \text { and } \alpha \in(0,1), \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in S .
$$

Function $f(x)$ over a convex set S : a convex function if
$\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in S$ and $\alpha \in(0,1)$,

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) .
$$

Chord approximation is an overestimate at intermediate points!

Figure: A convex domain

Figure: A convex function

athematical Methods in Engineering and Science

Conceptual Background of Multivariateien Oimization

First order characterization of convexity

From $f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right)$,

$$
f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right) \geq \frac{f\left(\mathbf{x}_{2}+\alpha\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)-f\left(\mathbf{x}_{2}\right)}{\alpha} .
$$

As $\alpha \rightarrow 0, \quad f\left(\mathbf{x}_{1}\right) \geq f\left(\mathbf{x}_{2}\right)+\left[\nabla f\left(\mathbf{x}_{2}\right)\right]^{T}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)$.
Tangent approximation is an underestimate at intermediate points!

athematical Methods in Engineering and Science

Conceptual Background of Multivariateptimization

First order characterization of convexity
From $f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right)$,

$$
f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right) \geq \frac{f\left(\mathbf{x}_{2}+\alpha\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)-f\left(\mathbf{x}_{2}\right)}{\alpha} .
$$

As $\alpha \rightarrow 0, \quad f\left(\mathbf{x}_{1}\right) \geq f\left(\mathbf{x}_{2}\right)+\left[\nabla f\left(\mathbf{x}_{2}\right)\right]^{T}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)$.
Tangent approximation is an underestimate at intermediate points!
Second order characterization: Hessian is positive semi-definite.

athematical Methods in Engineering and Science

First order characterization of convexity
From $f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right)$,

$$
f\left(\mathbf{x}_{1}\right)-f\left(\mathbf{x}_{2}\right) \geq \frac{f\left(\mathbf{x}_{2}+\alpha\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)-f\left(\mathbf{x}_{2}\right)}{\alpha} .
$$

As $\alpha \rightarrow 0, \quad f\left(\mathbf{x}_{1}\right) \geq f\left(\mathbf{x}_{2}\right)+\left[\nabla f\left(\mathbf{x}_{2}\right)\right]^{T}\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)$.
Tangent approximation is an underestimate at intermediate points!
Second order characterization: Hessian is positive semi-definite.
Convex programming problem: convex function over convex set A local minimum is also a global minimum, and all minima are connected in a convex set.

Note: Convexity is a stronger condition than unimodality!

Quadratic function

$$
q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c
$$

Gradient $\nabla q(\mathbf{x})=\mathbf{A x}+\mathbf{b}$ and Hessian $=\mathbf{A}$ is constant.

athematical Methods in Engineering and Science

Quadratic function

$$
q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c
$$

Gradient $\nabla q(\mathbf{x})=\mathbf{A x}+\mathbf{b}$ and Hessian $=\mathbf{A}$ is constant.

- If \mathbf{A} is positive definite, then the unique solution of $\mathbf{A x}=-\mathbf{b}$ is the only minimum point.
- If \mathbf{A} is positive semi-definite and $-\mathbf{b} \in \operatorname{Range}(\mathbf{A})$, then the entire subspace of solutions of $\mathbf{A x}=-\mathbf{b}$ are global minima.
- If \mathbf{A} is positive semi-definite but $-\mathbf{b} \notin \operatorname{Range}(\mathbf{A})$, then the function is unbounded!

Conceptual Background of Multivaria

Quadratic function

$$
q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c
$$

Gradient $\nabla q(\mathbf{x})=\mathbf{A x}+\mathbf{b}$ and Hessian $=\mathbf{A}$ is constant.

- If \mathbf{A} is positive definite, then the unique solution of $\mathbf{A} \mathbf{x}=-\mathbf{b}$ is the only minimum point.
- If \mathbf{A} is positive semi-definite and $-\mathbf{b} \in \operatorname{Range}(\mathbf{A})$, then the entire subspace of solutions of $\mathbf{A x}=-\mathbf{b}$ are global minima.
- If \mathbf{A} is positive semi-definite but $-\mathbf{b} \notin \operatorname{Range}(\mathbf{A})$, then the function is unbounded!

Note: A quadratic problem (with positive definite Hessian) acts as a benchmark for optimization algorithms.

Optimization Algorithms

From the current point, move to another point, hopefully better.

Mathematical Methods in Engineering and Science
Optimization: Introduction

Optimization Algorithms

From the current point, move to another point, hopefully better.

Which way to go? How far to go? Which decision is first?

Mathematical Methods in Engineering and Science

Conceptual Background of Multivaria

Optimization Algorithms

From the current point, move to another point, hopefully better.
Which way to go? How far to go? Which decision is first?
Strategies and versions of algorithms:
Trust Region: Develop a local quadratic model

$$
f\left(\mathbf{x}_{k}+\delta \mathbf{x}\right)=f\left(\mathbf{x}_{k}\right)+\left[\mathbf{g}\left(\mathbf{x}_{k}\right)\right]^{T} \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{\top} \mathbf{F}_{k} \delta \mathbf{x},
$$

and minimize it in a small trust region around x_{k}. (Define trust region with dummy boundaries.)
Line search: Identify a descent direction \mathbf{d}_{k} and minimize the function along it through the univariate function

$$
\phi(\alpha)=f\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right) .
$$

- Exact or accurate line search
- Inexact or inaccurate line search
- Armijo, Goldstein and Wolfe conditions

Conceptual Background of Multivaria

Convergence of algorithms: notions of guarantee and speed
Global convergence: the ability of an algorithm to approach and converge to an optimal solution for an arbitrary problem, starting from an arbitrary point

- Practically, a sequence (or even subsequence) of monotonically decreasing errors is enough.
Local convergence: the rate/speed of approach, measured by p, where

$$
\beta=\lim _{k \rightarrow \infty} \frac{\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|}{\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{p}}<\infty
$$

- Linear, quadratic and superlinear rates of convergence for $p=1,2$ and intermediate.
- Comparison among algorithms with linear rates of convergence is by the convergence ratio β.
- Theory and methods of single-variable optimization
- Optimality criteria in multivariate optimization
- Convexity in optimization
- The quadratic function
- Trust region
- Line search
- Global and local convergence

Necessary Exercises: 1,2,5,7,8

Multivariate Optimization
Direct Methods
Steepest Descent (Cauchy) Method
Newton's Method
Hybrid (Levenberg-Marquardt) Method
Least Square Problems

Direct Methods

Direct search methods using only function values

- Cyclic coordinate search
- Rosenbrock's method
- Hooke-Jeeves pattern search
- Box's complex method
- Nelder and Mead's simplex search
- Powell's conjugate directions method

Useful for functions, for which derivative either does not exist at all points in the domain or is computationally costly to evaluate.

Direct Methods

Direct search methods using only function values

- Cyclic coordinate search
- Rosenbrock's method
- Hooke-Jeeves pattern search
- Box's complex method
- Nelder and Mead's simplex search
- Powell's conjugate directions method

Useful for functions, for which derivative either does not exist at all points in the domain or is computationally costly to evaluate.

Note: When derivatives are easily available, gradient-based algorithms appear as mainstream methods.

Multivariate Optimization

Nelder and Mead's simplex method

Simplex in n-dimensional space: polytope formed by $n+1$ vertices
Nelder and Mead's method iterates over simplices that are non-degenerate (i.e. enclosing non-zero hypervolume).

Multivariate Optimization

Nelder and Mead's simplex method

Simplex in n-dimensional space: polytope formed by $n+1$ vertices
Nelder and Mead's method iterates over simplices that are non-degenerate (i.e. enclosing non-zero hypervolume).

First, $n+1$ suitable points are selected for the starting simplex.
Among vertices of the current simplex, identify the worst point \mathbf{x}_{w}, the best point \mathbf{x}_{b} and the second worst point \mathbf{x}_{s}.

Need to replace \mathbf{x}_{w} with a good point.

Direct Methods

Nelder and Mead's simplex method

Simplex in n-dimensional space: polytope formed by $n+1$ vertices
Nelder and Mead's method iterates over simplices that are non-degenerate (i.e. enclosing non-zero hypervolume).

First, $n+1$ suitable points are selected for the starting simplex.
Among vertices of the current simplex, identify the worst point \mathbf{x}_{w}, the best point \mathbf{x}_{b} and the second worst point \mathbf{x}_{s}.

Need to replace \mathbf{x}_{w} with a good point.

Centre of gravity of the face not containing \mathbf{x}_{w} :

$$
\mathbf{x}_{c}=\frac{1}{n} \sum_{i=1, i \neq w}^{n+1} \mathbf{x}_{i}
$$

Reflect \mathbf{x}_{w} with respect to \mathbf{x}_{c} as $\mathbf{x}_{r}=2 \mathbf{x}_{c}-\mathbf{x}_{w}$. Consider options.

Mathematical Methods in Engineering and Science
Multivariate Optimization

Default $\mathbf{x}_{n e w}=\mathbf{x}_{r}$.
Revision possibilities:

Figure: Nelder and Mead's simplex method

Direct Methods

Multivariate Optimization

Default $\mathbf{x}_{\text {new }}=\mathbf{x}_{r}$.
Revision possibilities:

Figure: Nelder and Mead's simplex method

1. For $f\left(\mathbf{x}_{r}\right)<f\left(\mathbf{x}_{b}\right)$, expansion:

$$
\mathbf{x}_{\text {new }}=\mathbf{x}_{c}+\alpha\left(\mathbf{x}_{c}-\mathbf{x}_{w}\right), \alpha>1
$$

2. For $f\left(\mathbf{x}_{r}\right) \geq f\left(\mathbf{x}_{w}\right)$, negative contraction:

$$
\mathbf{x}_{\text {new }}=\mathbf{x}_{c}-\beta\left(\mathbf{x}_{c}-\mathbf{x}_{w}\right), 0<\beta<1
$$

3. For $f\left(\mathbf{x}_{s}\right)<f\left(\mathbf{x}_{r}\right)<f\left(\mathbf{x}_{w}\right)$, positive contraction:
$\mathbf{x}_{\text {new }}=\mathbf{x}_{c}+\beta\left(\mathbf{x}_{c}-\mathbf{x}_{w}\right)$, with $0<\beta<1$.
Replace \mathbf{x}_{w} with $\mathbf{x}_{n e w}$. Continue with new simplex.

From a point \mathbf{x}_{k}, a move through α units in direction \mathbf{d}_{k} :

$$
f\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right)=f\left(\mathbf{x}_{k}\right)+\alpha\left[\mathbf{g}\left(\mathbf{x}_{k}\right)\right]^{T} \mathbf{d}_{k}+\mathcal{O}\left(\alpha^{2}\right)
$$

Descent direction \mathbf{d}_{k} : For $\alpha>0,\left[\mathbf{g}\left(\mathbf{x}_{k}\right)\right]^{T} \mathbf{d}_{k}<0$
Direction of steepest descent: $\mathbf{d}_{k}=-\mathbf{g}_{k} \quad\left[\right.$ or $\left.\quad \mathbf{d}_{k}=-\mathbf{g}_{k} /\left\|\mathbf{g}_{k}\right\|\right]$

Steepest Descent (Cauchy) Method

From a point \mathbf{x}_{k}, a move through α units in direction \mathbf{d}_{k} :

$$
f\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right)=f\left(\mathbf{x}_{k}\right)+\alpha\left[\mathbf{g}\left(\mathbf{x}_{k}\right)\right]^{T} \mathbf{d}_{k}+\mathcal{O}\left(\alpha^{2}\right)
$$

Descent direction \mathbf{d}_{k} : For $\alpha>0,\left[\mathbf{g}\left(\mathbf{x}_{k}\right)\right]^{T} \mathbf{d}_{k}<0$
Direction of steepest descent: $\mathbf{d}_{k}=-\mathbf{g}_{k} \quad\left[\right.$ or $\left.\quad \mathbf{d}_{k}=-\mathbf{g}_{k} /\left\|\mathbf{g}_{k}\right\|\right]$
Minimize

$$
\phi(\alpha)=f\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right) .
$$

Exact line search:

$$
\phi^{\prime}\left(\alpha_{k}\right)=\left[\mathbf{g}\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}\right)\right]^{T} \mathbf{d}_{k}=0
$$

Search direction tangential to the contour surface at $\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}\right)$.
Note: Next direction $\mathbf{d}_{k+1}=-\mathbf{g}\left(\mathbf{x}_{k+1}\right)$ orthogonal to \mathbf{d}_{k}

Mathematical Methods in Engineering and Science

Steepest Descent (Cauchy) Method

Steepest descent algorithm

1. Select a starting point \mathbf{x}_{0}, set $k=0$ and several parameters: tolerance ϵ_{G} on gradient, absolute tolerance ϵ_{A} on reduction in function value, relative tolerance ϵ_{R} on reduction in function value and maximum number of iterations M.
2. If $\left\|\mathbf{g}_{k}\right\| \leq \epsilon_{G}$, STOP. Else $\mathbf{d}_{k}=-\mathbf{g}_{k} /\left\|\mathbf{g}_{k}\right\|$.
3. Line search: Obtain α_{k} by minimizing $\phi(\alpha)=f\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right)$, $\alpha>0$. Update $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}$.
4. If $\left|f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)\right| \leq \epsilon_{A}+\epsilon_{R}\left|f\left(\mathbf{x}_{k}\right)\right|$,STOP. Else $k \leftarrow k+1$.
5. If $k>M$, STOP. Else go to step 2.

Mathematical Methods in Engineering and Science

Multivariate Optimization

Steepest Descent (Cauchy) Method

Steepest descent algorithm

1. Select a starting point \mathbf{x}_{0}, set $k=0$ and several parameters: tolerance ϵ_{G} on gradient, absolute tolerance ϵ_{A} on reduction in function value, relative tolerance ϵ_{R} on reduction in function value and maximum number of iterations M.
2. If $\left\|\mathbf{g}_{k}\right\| \leq \epsilon_{G}$, STOP. Else $\mathbf{d}_{k}=-\mathbf{g}_{k} /\left\|\mathbf{g}_{k}\right\|$.
3. Line search: Obtain α_{k} by minimizing $\phi(\alpha)=f\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right)$, $\alpha>0$. Update $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}$.
4. If $\left|f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)\right| \leq \epsilon_{A}+\epsilon_{R}\left|f\left(\mathbf{x}_{k}\right)\right|$,STOP. Else $k \leftarrow k+1$.
5. If $k>M$, STOP. Else go to step 2.

Very good global convergence.
But, why so many "STOPS"?

Steepest Descent (Cauchy) Method

Analysis on a quadratic function

For minimizing $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}$, the error function:

$$
E(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} \mathbf{A}\left(\mathbf{x}-\mathbf{x}^{*}\right)
$$

Convergence ratio: $\frac{E\left(\mathbf{x}_{k+1}\right)}{E\left(\mathbf{x}_{k}\right)} \leq\left(\frac{\kappa(\mathbf{A})-1}{\kappa(\mathbf{A})+1}\right)^{2}$
Local convergence is poor.

Mathematical Methods in Engineering and Science

Steepest Descent (Cauchy) Method

Analysis on a quadratic function

For minimizing $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}$, the error function:

$$
E(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} \mathbf{A}\left(\mathbf{x}-\mathbf{x}^{*}\right)
$$

Convergence ratio: $\frac{E\left(\mathbf{x}_{k+1}\right)}{E\left(\mathbf{x}_{k}\right)} \leq\left(\frac{\kappa(\mathbf{A})-1}{\kappa(\mathbf{A})+1}\right)^{2}$
Local convergence is poor.

Importance of steepest descent method

- conceptual understanding
- initial iterations in a completely new problem
- spacer steps in other sophisticated methods

Re-scaling of the problem through change of variables?

Newton's Method
Multivariate Optimization

Second order approximation of a function:

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}_{k}\right)+\left[\mathbf{g}\left(\mathbf{x}_{k}\right)\right]^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{T} \mathbf{H}\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)
$$

Vanishing of gradient

$$
\mathbf{g}(\mathbf{x}) \approx \mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{H}\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)
$$

gives the iteration formula

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left[\mathbf{H}\left(\mathbf{x}_{k}\right)\right]^{-1} \mathbf{g}\left(\mathbf{x}_{k}\right) .
$$

Excellent local convergence property!

$$
\frac{\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|}{\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{2}} \leq \beta
$$

Newton's Method

Second order approximation of a function: $\begin{gathered}\text { Newton's Method } \\ \text { Hybrid (Levenberg-Marquardt) Method } \\ \text { Least SSuare Problems }\end{gathered}$

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}_{k}\right)+\left[\mathbf{g}\left(\mathbf{x}_{k}\right)\right]^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{T} \mathbf{H}\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)
$$

Vanishing of gradient

$$
\mathbf{g}(\mathbf{x}) \approx \mathbf{g}\left(\mathbf{x}_{k}\right)+\mathbf{H}\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)
$$

gives the iteration formula

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left[\mathbf{H}\left(\mathbf{x}_{k}\right)\right]^{-1} \mathbf{g}\left(\mathbf{x}_{k}\right)
$$

Excellent local convergence property!

$$
\frac{\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|}{\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{2}} \leq \beta
$$

Caution: Does not have global convergence.
If $\mathbf{H}\left(\mathbf{x}_{k}\right)$ is positive definite then $\mathbf{d}_{k}=-\left[\mathbf{H}\left(\mathbf{x}_{k}\right)\right]^{-1} \mathbf{g}\left(\mathbf{x}_{k}\right)$ is a descent direction.

Modified Newton's method

- Replace the Hessian by $\mathbf{F}_{k}=\mathbf{H}\left(\mathbf{x}_{k}\right)+\gamma l$.
- Replace full Newton's step by a line search.

Algorithm

1. Select \mathbf{x}_{0}, tolerance ϵ and $\delta>0$. Set $k=0$.
2. Evaluate $\mathbf{g}_{k}=\mathbf{g}\left(\mathbf{x}_{k}\right)$ and $\mathbf{H}\left(\mathbf{x}_{k}\right)$. Choose γ, find $\mathbf{F}_{k}=\mathbf{H}\left(\mathbf{x}_{k}\right)+\gamma l$, solve $\mathbf{F}_{k} \mathbf{d}_{k}=-\mathbf{g}_{k}$ for \mathbf{d}_{k}.
3. Line search: obtain α_{k} to minimize $\phi(\alpha)=f\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right)$. Update $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}$.
4. Check convergence: If $\left|f\left(\mathbf{x}_{k+1}\right)-f\left(\mathbf{x}_{k}\right)\right|<\epsilon$, STOP. Else, $k \leftarrow k+1$ and go to step 2.

Mathematical Methods in Engineering and Science

 Methods of deflected gradients

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k}\left[\mathbf{M}_{k}\right] \mathbf{g}_{k}
$$

- identity matrix in place of \mathbf{M}_{k} : steepest descent step
- $\mathbf{M}_{k}=\mathbf{F}_{k}^{-1}$: step of modified Newton's method
- $\mathbf{M}_{k}=\left[\mathbf{H}\left(\mathbf{x}_{k}\right)\right]^{-1}$ and $\alpha_{k}=1$: pure Newton's step

Mathematical Methods in Engineering and Science

Methods of deflected gradients

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k}\left[\mathbf{M}_{k}\right] \mathbf{g}_{k}
$$

- identity matrix in place of \mathbf{M}_{k} : steepest descent step
- $\mathbf{M}_{k}=\mathbf{F}_{k}^{-1}$: step of modified Newton's method
- $\mathbf{M}_{k}=\left[\mathbf{H}\left(\mathbf{x}_{k}\right)\right]^{-1}$ and $\alpha_{k}=1$: pure Newton's step
$\ln \mathbf{M}_{k}=\left[\mathbf{H}\left(\mathbf{x}_{k}\right)+\lambda_{k} I\right]^{-1}$, tune parameter λ_{k} over iterations.
- Initial value of λ : large enough to favour steepest descent trend
- Improvement in an iteration: λ reduced by a factor
- Increase in function value: step rejected and λ increased

Opportunism systematized!

Mathematical Methods in Engineering and Science

Methods of deflected gradients

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k}\left[\mathbf{M}_{k}\right] \mathbf{g}_{k}
$$

- identity matrix in place of \mathbf{M}_{k} : steepest descent step
- $\mathbf{M}_{k}=\mathbf{F}_{k}^{-1}$: step of modified Newton's method
- $\mathbf{M}_{k}=\left[\mathbf{H}\left(\mathbf{x}_{k}\right)\right]^{-1}$ and $\alpha_{k}=1$: pure Newton's step
$\ln \mathbf{M}_{k}=\left[\mathbf{H}\left(\mathbf{x}_{k}\right)+\lambda_{k} I\right]^{-1}$, tune parameter λ_{k} over iterations.
- Initial value of λ : large enough to favour steepest descent trend
- Improvement in an iteration: λ reduced by a factor
- Increase in function value: step rejected and λ increased

Opportunism systematized!
Note: Cost of evaluating the Hessian remains a bottleneck. Useful for problems where Hessian estimates come cheap!

Multivariate Optimization

Linear least square problem:

$$
y(\theta)=x_{1} \phi_{1}(\theta)+x_{2} \phi_{2}(\theta)+\cdots+x_{n} \phi_{n}(\theta)
$$

For measured values $y\left(\theta_{i}\right)=y_{i}$,

$$
e_{i}=\sum_{k=1}^{n} x_{k} \phi_{k}\left(\theta_{i}\right)-y_{i}=\left[\Phi\left(\theta_{i}\right)\right]^{T} \mathbf{x}-y_{i}
$$

Error vector: $\mathbf{e}=\mathbf{A x}-\mathbf{y}$
Last square fit:

$$
\text { Minimize } E=\frac{1}{2} \sum_{i} e_{i}^{2}=\frac{1}{2} \mathbf{e}^{T} \mathbf{e}
$$

> Pseudoinverse solution and its variants

athematical Methods in Engineering and Science
 Least Square Problems

Nonlinear least square problem

For model function in the form

$$
y(\theta)=f(\theta, \mathbf{x})=f\left(\theta, x_{1}, x_{2}, \cdots, x_{n}\right)
$$

square error function

$$
E(\mathbf{x})=\frac{1}{2} \mathbf{e}^{T} \mathbf{e}=\frac{1}{2} \sum_{i} e_{i}^{2}=\frac{1}{2} \sum_{i}\left[f\left(\theta_{i}, \mathbf{x}\right)-y_{i}\right]^{2}
$$

Nonlinear least square problem

For model function in the form

$$
y(\theta)=f(\theta, \mathbf{x})=f\left(\theta, x_{1}, x_{2}, \cdots, x_{n}\right)
$$

square error function

$$
E(\mathbf{x})=\frac{1}{2} \mathbf{e}^{T} \mathbf{e}=\frac{1}{2} \sum_{i} e_{i}^{2}=\frac{1}{2} \sum_{i}\left[f\left(\theta_{i}, \mathbf{x}\right)-y_{i}\right]^{2}
$$

Gradient: $\mathbf{g}(\mathbf{x})=\nabla E(\mathbf{x})=\sum_{i}\left[f\left(\theta_{i}, \mathbf{x}\right)-y_{i}\right] \nabla f\left(\theta_{i}, \mathbf{x}\right)=\mathbf{J}^{T} \mathbf{e}$ Hessian: $\mathbf{H}(\mathbf{x})=\frac{\partial^{2}}{\partial \mathbf{x}^{2}} E(\mathbf{x})=\mathbf{J}^{T} \mathbf{J}+\sum_{i} e_{i} \frac{\partial^{2}}{\partial \mathbf{x}^{2}} f\left(\theta_{i}, \mathbf{x}\right) \approx \mathbf{J}^{T} \mathbf{J}$

Nonlinear least square problem

For model function in the form

$$
y(\theta)=f(\theta, \mathbf{x})=f\left(\theta, x_{1}, x_{2}, \cdots, x_{n}\right)
$$

square error function

$$
E(\mathbf{x})=\frac{1}{2} \mathbf{e}^{T} \mathbf{e}=\frac{1}{2} \sum_{i} e_{i}^{2}=\frac{1}{2} \sum_{i}\left[f\left(\theta_{i}, \mathbf{x}\right)-y_{i}\right]^{2}
$$

Gradient: $\mathbf{g}(\mathbf{x})=\nabla E(\mathbf{x})=\sum_{i}\left[f\left(\theta_{i}, \mathbf{x}\right)-y_{i}\right] \nabla f\left(\theta_{i}, \mathbf{x}\right)=\mathbf{J}^{T} \mathbf{e}$ Hessian: $\mathbf{H}(\mathbf{x})=\frac{\partial^{2}}{\partial \mathbf{x}^{2}} E(\mathbf{x})=\mathbf{J}^{T} \mathbf{J}+\sum_{i} e_{i} \frac{\partial^{2}}{\partial \mathbf{x}^{2}} f\left(\theta_{i}, \mathbf{x}\right) \approx \mathbf{J}^{T} \mathbf{J}$

Combining a modified form $\lambda \operatorname{diag}\left(\mathbf{J}^{\top} \mathbf{J}\right) \delta \mathbf{x}=-\mathbf{g}(\mathbf{x})$ of steepest descent formula with Newton's formula,

Levenberg-Marquardt step: $\left[\mathbf{J}^{T} \mathbf{J}+\lambda \operatorname{diag}\left(\mathbf{J}^{T} \mathbf{J}\right)\right] \delta \mathbf{x}=-\mathbf{g}(\mathbf{x})$

Multivariate Optimization

Levenberg-Marquardt algorithm

1. Select \mathbf{x}_{0}, evaluate $E\left(\mathbf{x}_{0}\right)$. Select tolerance ϵ, initial λ and its update factor. Set $k=0$.
2. Evaluate \mathbf{g}_{k} and $\overline{\mathbf{H}}_{k}=\mathbf{J}^{T} \mathbf{J}+\lambda \operatorname{diag}\left(\mathbf{J}^{T} \mathbf{J}\right)$. Solve $\overline{\mathbf{H}}_{k} \delta \mathbf{x}=-\mathbf{g}_{k}$. Evaluate $E\left(\mathbf{x}_{k}+\delta \mathbf{x}\right)$.
3. If $\left|E\left(\mathbf{x}_{k}+\delta \mathbf{x}\right)-E\left(\mathbf{x}_{k}\right)\right|<\epsilon$, STOP.
4. If $E\left(\mathbf{x}_{k}+\delta \mathbf{x}\right)<E\left(\mathbf{x}_{k}\right)$, then decrease λ, update $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\delta \mathbf{x}, \quad k \leftarrow k+1$. Else increase λ.
5. Go to step 2.

Professional procedure for nonlinear least square problems and also for solving systems of nonlinear equations in the form $\mathbf{h}(\mathbf{x})=\mathbf{0}$.

- Simplex method of Nelder and Mead
- Steepest descent method with its global convergence
- Newton's method for fast local convergence
- Levenberg-Marquardt method for equation solving and least squares

Necessary Exercises: 1,2,3,4,5,6

Methods of Nonlinear Optimization*
 Conjugate Direction Methods
 Quasi-Newton Methods Closure

Methods of Nonlinear Optimization*

Conjugacy of directions:
Two vectors \mathbf{d}_{1} and \mathbf{d}_{2} are mutually conjugate with respect to a symmetric matrix \mathbf{A}, if $\mathbf{d}_{1}^{T} \mathbf{A} \mathbf{d}_{2}=0$.

Linear independence of conjugate directions:
Conjugate directions with respect to a positive definite matrix are linearly independent.

Conjugate Direction Methods

Conjugacy of directions:
Two vectors \mathbf{d}_{1} and \mathbf{d}_{2} are mutually conjugate with respect to a symmetric matrix \mathbf{A}, if $\mathbf{d}_{1}^{T} \mathbf{A} \mathbf{d}_{2}=0$.

Linear independence of conjugate directions:
Conjugate directions with respect to a positive definite matrix are linearly independent.

Expanding subspace property: $\ln R^{n}$, with conjugate vectors $\left\{\mathbf{d}_{0}, \mathbf{d}_{1}, \cdots, \mathbf{d}_{n-1}\right\}$ with respect to symmetric positive definite \mathbf{A}, for any $\mathbf{x}_{0} \in R^{n}$, the sequence $\left\{\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right\}$ generated as

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}, \quad \text { with } \quad \alpha_{k}=-\frac{\mathbf{g}_{k}^{T} \mathbf{d}_{k}}{\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}}
$$

where $\mathbf{g}_{k}=\mathbf{A} \mathbf{x}_{k}+\mathbf{b}$, has the property that

$$
\begin{aligned}
& \mathbf{x}_{k} \text { minimizes } q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x} \text { on the line } \\
& \mathbf{x}_{k-1}+\alpha \mathbf{d}_{k-1} \text {, as well as on the linear variety } \mathbf{x}_{0}+\mathcal{B}_{k} \text {, } \\
& \text { where } \mathcal{B}_{k} \text { is the span of } \mathbf{d}_{0}, \mathbf{d}_{1}, \cdots, \mathbf{d}_{k-1} \text {. }
\end{aligned}
$$

Question: How to find a set of n conjugate directions?
Gram-Schmidt procedure is a poor option!

Conjugate Direction Methods

Question: How to find a set of n conjugate directions?
Gram-Schmidt procedure is a poor option!
Conjugate gradient method
Starting from $\mathbf{d}_{0}=-\mathbf{g}_{0}$,

$$
\mathbf{d}_{k+1}=-\mathbf{g}_{k+1}+\beta_{k} \mathbf{d}_{k}
$$

Imposing the condition of conjugacy of \mathbf{d}_{k+1} with \mathbf{d}_{k},

$$
\beta_{k}=\frac{\mathbf{g}_{k+1}^{T} \mathbf{A} \mathbf{d}_{k}}{\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}}=\frac{\mathbf{g}_{k+1}^{T}\left(\mathbf{g}_{k+1}-\mathbf{g}_{k}\right)}{\alpha_{k} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}}
$$

Resulting \mathbf{d}_{k+1} conjugate to all the earlier directions, for a quadratic problem.

Using k in place of $k+1$ in the formula for \mathbf{d}_{k+1},

$$
\begin{gathered}
\mathbf{d}_{k}=-\mathbf{g}_{k}+\beta_{k-1} \mathbf{d}_{k-1} \\
\Rightarrow \mathbf{g}_{k}^{T} \mathbf{d}_{k}=-\mathbf{g}_{k}^{T} \mathbf{g}_{k} \text { and } \alpha_{k}=\frac{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}{\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}}
\end{gathered}
$$

Conjugate Direction Methods

Using k in place of $k+1$ in the formula for \mathbf{d}_{k+1},

$$
\begin{gathered}
\mathbf{d}_{k}=-\mathbf{g}_{k}+\beta_{k-1} \mathbf{d}_{k-1} \\
\Rightarrow \mathbf{g}_{k}^{T} \mathbf{d}_{k}=-\mathbf{g}_{k}^{T} \mathbf{g}_{k} \text { and } \alpha_{k}=\frac{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}{\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}}
\end{gathered}
$$

Polak-Ribiere formula:

$$
\beta_{k}=\frac{\mathbf{g}_{k+1}^{T}\left(\mathbf{g}_{k+1}-\mathbf{g}_{k}\right)}{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}
$$

No need to know A!

Conjugate Direction Methods

Using k in place of $k+1$ in the formula for \mathbf{d}_{k+1},

$$
\begin{gathered}
\mathbf{d}_{k}=-\mathbf{g}_{k}+\beta_{k-1} \mathbf{d}_{k-1} \\
\Rightarrow \mathbf{g}_{k}^{T} \mathbf{d}_{k}=-\mathbf{g}_{k}^{T} \mathbf{g}_{k} \text { and } \alpha_{k}=\frac{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}{\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}}
\end{gathered}
$$

Polak-Ribiere formula:

$$
\beta_{k}=\frac{\mathbf{g}_{k+1}^{T}\left(\mathbf{g}_{k+1}-\mathbf{g}_{k}\right)}{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}
$$

No need to know A!
Further,

$$
\mathbf{g}_{k+1}^{T} \mathbf{d}_{k}=0 \Rightarrow \mathbf{g}_{k+1}^{T} \mathbf{g}_{k}=\beta_{k-1}\left(\mathbf{g}_{k}^{T}+\alpha_{k} \mathbf{d}_{k}^{T} \mathbf{A}\right) \mathbf{d}_{k-1}=0
$$

Fletcher-Reeves formula:

$$
\beta_{k}=\frac{\mathbf{g}_{k+1}^{T} \mathbf{g}_{k+1}}{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}
$$

Conjugate Direction Methods

Extension to general (non-quadratic) functions

- Varying Hessian A: determine the step size by line search.
- After n steps, minimum not attained.

But, $\mathbf{g}_{k}^{T} \mathbf{d}_{k}=-\mathbf{g}_{k}^{T} \mathbf{g}_{k}$ implies guaranteed descent. Globally convergent, with superlinear rate of convergence.

- What to do after n steps? Restart or continue?

Conjugate Direction Methods

Extension to general (non-quadratic) functions

- Varying Hessian A: determine the step size by line search.
- After n steps, minimum not attained.

But, $\mathbf{g}_{k}^{T} \mathbf{d}_{k}=-\mathbf{g}_{k}^{T} \mathbf{g}_{k}$ implies guaranteed descent.
Globally convergent, with superlinear rate of convergence.

- What to do after n steps? Restart or continue?

Algorithm

1. Select \mathbf{x}_{0} and tolerances $\epsilon_{G}, \epsilon_{D}$. Evaluate $\mathbf{g}_{0}=\nabla f\left(\mathbf{x}_{0}\right)$.
2. Set $k=0$ and $\mathbf{d}_{k}=-\mathbf{g}_{k}$.
3. Line search: find α_{k}; update $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}$.
4. Evaluate $\mathbf{g}_{k+1}=\nabla f\left(\mathbf{x}_{k+1}\right)$. If $\left\|\mathbf{g}_{k+1}\right\| \leq \epsilon_{G}$, STOP.
5. Find $\beta_{k}=\frac{\mathbf{g}_{k+1}^{T}\left(\mathbf{g}_{k+1}-\mathbf{g}_{k}\right)}{\mathbf{g}_{k}^{T} \mathbf{g}_{k}} \quad$ (Polak-Ribiere)
or $\beta_{k}=\frac{\mathbf{g}_{k+1}^{T} \mathbf{g}_{k+1}}{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}$ (Fletcher-Reeves).
Obtain $\mathbf{d}_{k+1}=-\mathbf{g}_{k+1}+\beta_{k} \mathbf{d}_{k}$.
6. If $1-\left|\frac{\mathbf{d}_{k}^{T} \mathbf{d}_{k+1}}{\left\|\mathbf{d}_{k}\right\|\left\|\mathbf{d}_{k+1}\right\|}\right|<\epsilon_{D}$, reset $\mathbf{g}_{0}=\mathbf{g}_{k+1}$ and go to step 2 .

Else, $k \leftarrow k+1$ and go to step 3 .

Methods of Nonlinear Optimization*

Powell's conjugate direction method

For $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}$, suppose

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{x}_{A}+\alpha_{1} \mathbf{d} \text { such that } \mathbf{d}^{T} \mathbf{g}_{1}=0 \text { and } \\
& \mathbf{x}_{2}=\mathbf{x}_{B}+\alpha_{2} \mathbf{d} \text { such that } \mathbf{d}^{T} \mathbf{g}_{2}=0 .
\end{aligned}
$$

Then, $\mathbf{d}^{T} \mathbf{A}\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=\mathbf{d}^{T}\left(\mathbf{g}_{2}-\mathbf{g}_{1}\right)=0$.

Conjugate Direction Methods

Powell's conjugate direction method

For $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}$, suppose

$$
\begin{aligned}
& \mathbf{x}_{1}=\mathbf{x}_{A}+\alpha_{1} \mathbf{d} \text { such that } \mathbf{d}^{T} \mathbf{g}_{1}=0 \text { and } \\
& \mathbf{x}_{2}=\mathbf{x}_{B}+\alpha_{2} \mathbf{d} \text { such that } \mathbf{d}^{T} \mathbf{g}_{2}=0 .
\end{aligned}
$$

Then, $\mathbf{d}^{T} \mathbf{A}\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=\mathbf{d}^{T}\left(\mathbf{g}_{2}-\mathbf{g}_{1}\right)=0$.
Parallel subspace property: $\operatorname{In} R^{n}$, consider two parallel linear varieties $\mathcal{S}_{1}=\mathbf{v}_{1}+\mathcal{B}_{k}$ and $\mathcal{S}_{2}=\mathbf{v}_{2}+\mathcal{B}_{k}$, with $\mathcal{B}_{k}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \cdots, \mathbf{d}_{k}\right\}, \quad k<n$.
If \mathbf{x}_{1} and \mathbf{x}_{2}
minimize $q(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}$ on \mathcal{S}_{1} and \mathcal{S}_{2}, respectively, then $\mathbf{x}_{2}-\mathbf{x}_{1}$ is conjugate to $\mathbf{d}_{1}, \mathbf{d}_{2}, \cdots, \mathbf{d}_{k}$.

Assumptions imply $\mathbf{g}_{1}, \mathbf{g}_{2} \perp \mathcal{B}_{k}$ and hence

$$
\left(\mathbf{g}_{2}-\mathbf{g}_{1}\right) \perp \mathcal{B}_{k} \Rightarrow \mathbf{d}_{i}^{T} \mathbf{A}\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=\mathbf{d}_{i}^{T}\left(\mathbf{g}_{2}-\mathbf{g}_{1}\right)=0 \text { for } i=1,2, \cdots, k
$$

Conjugate Direction Methods

Algoithm

1. Select \mathbf{x}_{0}, ϵ and a set of n linearly independent (preferably normalized) directions $\mathbf{d}_{1}, \mathbf{d}_{2}, \cdots, \mathbf{d}_{n}$; possibly $\mathbf{d}_{i}=\mathbf{e}_{i}$.
2. Line search along \mathbf{d}_{n} and update $\mathbf{x}_{1}=\mathbf{x}_{0}+\alpha \mathbf{d}_{n}$; set $k=1$.
3. Line searches along $\mathbf{d}_{1}, \mathbf{d}_{2}, \cdots, \mathbf{d}_{n}$ in sequence to obtain $\mathbf{z}=\mathbf{x}_{k}+\sum_{j=1}^{n} \alpha_{j} \mathbf{d}_{j}$.
4. New conjugate direction $\mathbf{d}=\mathbf{z}-\mathbf{x}_{k}$. If $\|\mathbf{d}\|<\epsilon$, STOP.
5. Reassign directions $\mathbf{d}_{j} \leftarrow \mathbf{d}_{j+1}$ for $j=1,2, \cdots,(n-1)$ and $\mathbf{d}_{n}=\mathbf{d} /\|\mathbf{d}\|$.
(Old \mathbf{d}_{1} gets discarded at this step.)
6. Line search and update $\mathbf{x}_{k+1}=\mathbf{z}+\alpha \mathbf{d}_{n}$; set $k \leftarrow k+1$ and go to step 3.

- $\mathbf{x}_{0}-\mathbf{x}_{1}$ and $b-\mathbf{z}_{1}: \mathbf{x}_{1}-\mathbf{z}_{1}$ is conjugate to $b-\mathbf{z}_{1}$.
$-b-\mathbf{z}_{1}-\mathbf{x}_{2}$ and $c-d-\mathbf{z}_{2}: c-d, d-\mathbf{z}_{2}$ and $\mathbf{x}_{2}-\mathbf{z}_{2}$ are mutually conjugate.

Figure: Schematic of Powell's conjugate direction method

Conjugate Direction Methods

- $\mathbf{x}_{0}-\mathbf{x}_{1}$ and $b-\mathbf{z}_{1}: \mathbf{x}_{1}-\mathbf{z}_{1}$ is conjugate to $b-\mathbf{z}_{1}$.
$-b-\mathbf{z}_{1}-\mathbf{x}_{2}$ and $c-d-\mathbf{z}_{2}: c-d, d-\mathbf{z}_{2}$ and $\mathbf{x}_{2}-\mathbf{z}_{2}$ are mutually conjugate.

Figure: Schematic of Powell's conjugate direction method

Performance of Powell's method approaches that of the conjugate gradient method!

Variable metric methods

attempt to construct the inverse Hessian \mathbf{B}_{k}.

$$
\mathbf{p}_{k}=\mathbf{x}_{k+1}-\mathbf{x}_{k} \quad \text { and } \quad \mathbf{q}_{k}=\mathbf{g}_{k+1}-\mathbf{g}_{k} \quad \Rightarrow \quad \mathbf{q}_{k} \approx \mathbf{H} \mathbf{p}_{k}
$$

With n such steps, $\mathbf{B}=\mathbf{P Q}^{-1}$: update and construct $\mathbf{B}_{k} \approx \mathbf{H}^{-1}$.

Variable metric methods

attempt to construct the inverse Hessian \mathbf{B}_{k}.

$$
\mathbf{p}_{k}=\mathbf{x}_{k+1}-\mathbf{x}_{k} \quad \text { and } \quad \mathbf{q}_{k}=\mathbf{g}_{k+1}-\mathbf{g}_{k} \quad \Rightarrow \quad \mathbf{q}_{k} \approx \mathbf{H} \mathbf{p}_{k}
$$

With n such steps, $\mathbf{B}=\mathbf{P Q}^{-1}$: update and construct $\mathbf{B}_{k} \approx \mathbf{H}^{-1}$.
Rank one correction: $\mathbf{B}_{k+1}=\mathbf{B}_{k}+a_{k} \mathbf{z}_{k} \mathbf{z}_{k}^{T}$?

Variable metric methods
attempt to construct the inverse Hessian \mathbf{B}_{k}.

$$
\mathbf{p}_{k}=\mathbf{x}_{k+1}-\mathbf{x}_{k} \quad \text { and } \quad \mathbf{q}_{k}=\mathbf{g}_{k+1}-\mathbf{g}_{k} \quad \Rightarrow \quad \mathbf{q}_{k} \approx \mathbf{H} \mathbf{p}_{k}
$$

With n such steps, $\mathbf{B}=\mathbf{P Q}^{-1}$: update and construct $\mathbf{B}_{k} \approx \mathbf{H}^{-1}$.
Rank one correction: $\mathbf{B}_{k+1}=\mathbf{B}_{k}+a_{k} \mathbf{z}_{k} \mathbf{z}_{k}^{T}$?
Rank two correction:

$$
\mathbf{B}_{k+1}=\mathbf{B}_{k}+a_{k} \mathbf{z}_{k} \mathbf{z}_{k}^{T}+b_{k} \mathbf{w}_{k} \mathbf{w}_{k}^{T}
$$

$$
\begin{array}{|l|}
\hline \text { Davidon-Fletcher-Powell (DFP) method } \\
\hline
\end{array}
$$

30
 Quasi-Newton Methods

Variable metric methods
attempt to construct the inverse Hessian \mathbf{B}_{k}.

$$
\mathbf{p}_{k}=\mathbf{x}_{k+1}-\mathbf{x}_{k} \quad \text { and } \quad \mathbf{q}_{k}=\mathbf{g}_{k+1}-\mathbf{g}_{k} \Rightarrow \mathbf{q}_{k} \approx \mathbf{H} \mathbf{p}_{k}
$$

With n such steps, $\mathbf{B}=\mathbf{P Q}^{-1}$: update and construct $\mathbf{B}_{k} \approx \mathbf{H}^{-1}$.
Rank one correction: $\mathbf{B}_{k+1}=\mathbf{B}_{k}+a_{k} \mathbf{z}_{k} \mathbf{z}_{k}^{T}$?
Rank two correction:

$$
\mathbf{B}_{k+1}=\mathbf{B}_{k}+a_{k} \mathbf{z}_{k} \mathbf{z}_{k}^{T}+b_{k} \mathbf{w}_{k} \mathbf{w}_{k}^{T}
$$

Davidon-Fletcher-Powell (DFP) method
Select \mathbf{x}_{0}, tolerance ϵ and $\mathbf{B}_{0}=\mathbf{I}_{n}$. For $k=0,1,2, \cdots$,

- $\mathbf{d}_{k}=-B_{k} \mathbf{g}_{k}$.
- Line search for α_{k}; update $\mathbf{p}_{k}=\alpha_{k} \mathbf{d}_{k}, \mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{p}_{k}$, $\mathbf{q}_{k}=\mathbf{g}_{k+1}-\mathbf{g}_{k}$.
- If $\left\|\mathbf{p}_{k}\right\|<\epsilon$ or $\left\|\mathbf{q}_{k}\right\|<\epsilon$, STOP.
- Rank two correction: $\quad \mathbf{B}_{k+1}^{D F P}=\mathbf{B}_{k}+\frac{\mathbf{p}_{k} \mathbf{p}_{k}^{T}}{\mathbf{p}_{k}^{T} \mathbf{q}_{k}}-\frac{\mathbf{B}_{k} \mathbf{q}_{k} \mathbf{q}_{k}^{T} \mathbf{B}_{k}}{\mathbf{q}_{k}^{T} \mathbf{B}_{k} \mathbf{q}_{k}}$.

Properties of DFP iterations:

1. If \mathbf{B}_{k} is symmetric and positive definite, then so is \mathbf{B}_{k+1}.
2. For quadratic function with positive definite Hessian \mathbf{H},

$$
\begin{array}{rlll}
& \mathbf{p}_{i}^{T} \mathbf{H} \mathbf{p}_{j}=0 & \text { for } & 0 \leq i<j \leq k, \\
\text { and } & \mathbf{B}_{k+1} \mathbf{H} \mathbf{p}_{i}=\mathbf{p}_{i} & \text { for } & 0 \leq i \leq k .
\end{array}
$$

Methods of Nonlinear Optimization*

Properties of DFP iterations:

1. If \mathbf{B}_{k} is symmetric and positive definite, then so is \mathbf{B}_{k+1}.
2. For quadratic function with positive definite Hessian \mathbf{H},

$$
\begin{array}{rlll}
& \mathbf{p}_{i}^{T} \mathbf{H} \mathbf{p}_{j}=0 & \text { for } & 0 \leq i<j \leq k, \\
\text { and } & \mathbf{B}_{k+1} \mathbf{H} \mathbf{p}_{i}=\mathbf{p}_{i} & \text { for } & 0 \leq i \leq k .
\end{array}
$$

Implications:

1. Positive definiteness of inverse Hessian estimate is never lost.
2. Successive search directions are conjugate directions.
3. With $\mathbf{B}_{0}=\mathbf{I}$, the algorithm is a conjugate gradient method.
4. For a quadratic problem, the inverse Hessian gets completely constructed after n steps.

Methods of Nonlinear Optimization*

Properties of DFP iterations:

1. If \mathbf{B}_{k} is symmetric and positive definite, then so is \mathbf{B}_{k+1}.
2. For quadratic function with positive definite Hessian \mathbf{H},

$$
\begin{array}{rlll}
& \mathbf{p}_{i}^{T} \mathbf{H} \mathbf{p}_{j}=0 & \text { for } & 0 \leq i<j \leq k, \\
\text { and } & \mathbf{B}_{k+1} \mathbf{H} \mathbf{p}_{i}=\mathbf{p}_{i} & \text { for } & 0 \leq i \leq k .
\end{array}
$$

Implications:

1. Positive definiteness of inverse Hessian estimate is never lost.
2. Successive search directions are conjugate directions.
3. With $\mathbf{B}_{0}=\mathbf{I}$, the algorithm is a conjugate gradient method.
4. For a quadratic problem, the inverse Hessian gets completely constructed after n steps.

Variants: Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the Broyden family of methods

Table 23.1: Summary of performance of optimization methods

	Cauchy (Steepest Descent)	Newton	Levenberg-Marquardt (Hybrid) (Deflected Gradient)	$\begin{gathered} \text { DFP/BFGS } \\ \text { (Quasi-Newton) } \\ \text { (Variable Metric) } \\ \hline \end{gathered}$	FR/PR (Conjugate Gradient)	Powell (Direction Set)
For Quadratic						
Problems: Convergence steps	N Indefinite	1	$\begin{gathered} N \\ \text { Unknown } \end{gathered}$	n	n	n^{2}
Evaluations	$\begin{aligned} & N f \\ & N g \end{aligned}$	$\begin{gathered} 2 f \\ 2 g \\ 1 H \end{gathered}$	$\begin{gathered} N f \\ N g \\ N H \end{gathered}$	$\begin{aligned} & (n+1) f \\ & (n+1) g \end{aligned}$	$\begin{aligned} & (n+1) f \\ & (n+1) g \end{aligned}$	$n^{2} f$
Equivalent function evaluations	$N(2 n+1)$	$2 n^{2}+2 n+1$	$N\left(2 n^{2}+1\right)$	$2 n^{2}+3 n+1$	$2 n^{2}+3 n+1$	n^{2}
Line searches	N	0	N or 0	n	n	n^{2}
Storage	Vector	Matrix	Matrix	Matrix	Vector	Matrix
Performance in general problems	Slow	Risky	Costly	Flexible	Good	Okay
Practically good for	Unknown start-up	$\begin{gathered} \text { Good } \\ \text { functions } \end{gathered}$	NL Eqn. systems NL least squares	$\begin{gathered} \mathrm{Bad} \\ \text { functions } \end{gathered}$	$\begin{gathered} \text { Large } \\ \text { problems } \end{gathered}$	Small problems

Methods of Nonlinear Optimization*

- Conjugate directions and the expanding subspace property
- Conjugate gradient method
- Powell-Smith direction set method
- The quasi-Newton concept in professional optimization

Necessary Exercises: 1,2,3

Constrained Optimization

Constraints

Optimality Criteria
Sensitivity
Duality*
Structure of Methods: An Overview*

Constraints

Constrained optimization problem:

Minimize $\quad f(\mathbf{x})$
subject to $g_{i}(\mathbf{x}) \leq 0 \quad$ for $i=1,2, \cdots, I, \quad$ or $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$; and $\quad h_{j}(\mathbf{x})=0 \quad$ for $j=1,2, \cdots, m, \quad$ or $\mathbf{h}(\mathbf{x})=\mathbf{0}$.

Conceptually, "minimize $f(\mathbf{x}), \mathbf{x} \in \Omega$ ".

Constrained optimization problem:

Conceptually, "minimize $f(x), x \in \Omega$ ".
Equality constraints reduce the domain to a surface or a manifold, possessing a tangent plane at every point.

Constraints

Constrained optimization problem:

```
Minimize \(\quad f(\mathbf{x})\)
    subject to \(g_{i}(\mathbf{x}) \leq 0 \quad\) for \(i=1,2, \cdots, I, \quad\) or \(\mathbf{g}(\mathbf{x}) \leq \mathbf{0}\);
                        and \(\quad h_{j}(\mathbf{x})=0 \quad\) for \(j=1,2, \cdots, m, \quad\) or \(\mathbf{h}(\mathbf{x})=\mathbf{0}\).
```

Conceptually, "minimize $f(\mathbf{x}), \quad \mathbf{x} \in \Omega$ ".
Equality constraints reduce the domain to a surface or a manifold, possessing a tangent plane at every point.
Gradient of the vector function $\mathbf{h}(\mathbf{x})$:

$$
\nabla \mathbf{h}(\mathbf{x}) \equiv\left[\begin{array}{llll}
\nabla h_{1}(\mathbf{x}) & \nabla h_{2}(\mathbf{x}) & \cdots & \nabla h_{m}(\mathbf{x})
\end{array}\right] \equiv\left[\begin{array}{c}
\frac{\partial \mathbf{h}^{T}}{\partial x_{1}} \\
\frac{\partial \mathbf{h}^{T}}{\partial x_{2}} \\
\vdots \\
\frac{\partial \mathbf{h}^{T}}{\partial x_{n}}
\end{array}\right]
$$

related to the usual Jacobian as $\mathbf{J}_{h}(\mathbf{x})=\frac{\partial \mathbf{h}}{\partial \mathbf{x}}=[\nabla \mathbf{h}(\mathbf{x})]^{T}$.

Constraint qualification

$\nabla h_{1}(\mathbf{x}), \nabla h_{2}(\mathbf{x})$ etc are linearly independent, i.e. $\nabla \mathbf{h}(\mathbf{x})$ is full-rank.

If a feasible point \mathbf{x}_{0}, with $\mathbf{h}\left(\mathbf{x}_{0}\right)=\mathbf{0}$, satisfies the constraint qualification condition, we call it a regular point.

Constraint qualification

$\nabla h_{1}(\mathbf{x}), \nabla h_{2}(\mathbf{x})$ etc are linearly independent, i.e. $\nabla \mathbf{h}(\mathbf{x})$ is full-rank.

If a feasible point \mathbf{x}_{0}, with $\mathbf{h}\left(\mathbf{x}_{0}\right)=\mathbf{0}$, satisfies the constraint qualification condition, we call it a regular point.

At a regular feasible point x_{0}, tangent plane

$$
\mathcal{M}=\left\{\mathbf{y}:\left[\nabla \mathbf{h}\left(\mathbf{x}_{0}\right)\right]^{T} \mathbf{y}=\mathbf{0}\right\}
$$

gives the collection of feasible directions.

Constraints

Constraint qualification

$\nabla h_{1}(\mathbf{x}), \nabla h_{2}(\mathbf{x})$ etc are linearly independent, i.e. $\nabla \mathbf{h}(\mathbf{x})$ is full-rank.

If a feasible point \mathbf{x}_{0}, with $\mathbf{h}\left(\mathbf{x}_{0}\right)=\mathbf{0}$, satisfies the constraint qualification condition, we call it a regular point.

At a regular feasible point \mathbf{x}_{0}, tangent plane

$$
\mathcal{M}=\left\{\mathbf{y}:\left[\nabla \mathbf{h}\left(\mathbf{x}_{0}\right)\right]^{T} \mathbf{y}=\mathbf{0}\right\}
$$

gives the collection of feasible directions.
Equality constraints reduce the dimension of the problem.
Variable elimination?

Mathematical Methods in Engineering and Science

Constraints

Active inequality constraints $g_{i}\left(\mathbf{x}_{0}\right)=0$:

$$
\text { included among } h_{j}\left(\mathbf{x}_{0}\right)
$$

for the tangent plane.
Cone of feasible directions:

$$
\left[\nabla \mathbf{h}\left(\mathbf{x}_{0}\right)\right]^{T} \mathbf{d}=\mathbf{0} \quad \text { and } \quad\left[\nabla g_{i}\left(\mathbf{x}_{0}\right)\right]^{T} \mathbf{d} \leq 0 \quad \text { for } i \in I
$$

where I is the set of indices of active inequality constraints.

Mathematical Methods in Engineering and Science

Constraints

Active inequality constraints $g_{i}\left(\mathbf{x}_{0}\right)=0$:

$$
\text { included among } h_{j}\left(\mathbf{x}_{0}\right)
$$

for the tangent plane.
Cone of feasible directions:

$$
\left[\nabla \mathbf{h}\left(\mathbf{x}_{0}\right)\right]^{T} \mathbf{d}=\mathbf{0} \quad \text { and } \quad\left[\nabla g_{i}\left(\mathbf{x}_{0}\right)\right]^{T} \mathbf{d} \leq 0 \quad \text { for } i \in I
$$

where I is the set of indices of active inequality constraints.
Handling inequality constraints:

- Active set strategy maintains a list of active constraints, keeps checking at every step for a change of scenario and updates the list by inclusions and exclusions.
- Slack variable strategy replaces all the inequality constraints by equality constraints as $g_{i}(\mathbf{x})+x_{n+i}=0$ with the inclusion of non-negative slack variables $\left(x_{n+i}\right)$.

Suppose \mathbf{x}^{*} is a regular point with

- active inequality constraints: $\mathbf{g}^{(a)}(\mathbf{x}) \leq \mathbf{0}$
- inactive constraints: $\mathbf{g}^{(i)}(\mathbf{x}) \leq \mathbf{0}$

Columns of $\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)$ and $\nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)$: basis for orthogonal complement of the tangent plane

Suppose \mathbf{x}^{*} is a regular point with

- active inequality constraints: $\mathbf{g}^{(a)}(\mathbf{x}) \leq \mathbf{0}$
- inactive constraints: $\mathbf{g}^{(i)}(\mathbf{x}) \leq \mathbf{0}$

Columns of $\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)$ and $\nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)$: basis for orthogonal complement of the tangent plane
Basis of the tangent plane: $\mathbf{D}=\left[\begin{array}{llll}\mathbf{d}_{1} & \mathbf{d}_{2} & \cdots & \mathbf{d}_{k}\end{array}\right]$
Then, [$\left.\mathbf{D} \quad \nabla \mathbf{h}\left(\mathbf{x}^{*}\right) \quad \nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)\right]:$ basis of R^{n}

Suppose \mathbf{x}^{*} is a regular point with

- active inequality constraints: $\mathbf{g}^{(a)}(\mathbf{x}) \leq \mathbf{0}$
- inactive constraints: $\mathbf{g}^{(i)}(\mathbf{x}) \leq \mathbf{0}$

Columns of $\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)$ and $\nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)$: basis for orthogonal complement of the tangent plane
Basis of the tangent plane: $\mathbf{D}=\left[\begin{array}{llll}\mathbf{d}_{1} & \mathbf{d}_{2} & \cdots & \mathbf{d}_{k}\end{array}\right]$
Then, [$\left.\mathbf{D} \quad \nabla \mathbf{h}\left(\mathbf{x}^{*}\right) \quad \nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)\right]$: basis of R^{n}
Now, $-\nabla f\left(\mathbf{x}^{*}\right)$ is a vector in R^{n}.

$$
-\nabla f\left(\mathbf{x}^{*}\right)=\left[\begin{array}{lll}
\mathbf{D} & \nabla \mathbf{h}\left(\mathbf{x}^{*}\right) & \nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)
\end{array}\right]\left[\begin{array}{c}
\mathbf{z} \\
\boldsymbol{\lambda} \\
\boldsymbol{\mu}^{(a)}
\end{array}\right]
$$

with unique $\mathbf{z}, \boldsymbol{\lambda}$ and $\boldsymbol{\mu}^{(a)}$ for a given $\nabla f\left(\mathbf{x}^{*}\right)$.

Suppose \mathbf{x}^{*} is a regular point with

- active inequality constraints: $\mathbf{g}^{(a)}(\mathbf{x}) \leq \mathbf{0}$
- inactive constraints: $\mathbf{g}^{(i)}(\mathbf{x}) \leq \mathbf{0}$

Columns of $\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)$ and $\nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)$: basis for orthogonal complement of the tangent plane
Basis of the tangent plane: $\mathbf{D}=\left[\begin{array}{llll}\mathbf{d}_{1} & \mathbf{d}_{2} & \cdots & \mathbf{d}_{k}\end{array}\right]$
Then, $\left[\mathbf{D} \quad \nabla \mathbf{h}\left(\mathbf{x}^{*}\right) \quad \nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)\right]:$ basis of R^{n}
Now, $-\nabla f\left(\mathbf{x}^{*}\right)$ is a vector in R^{n}.

$$
-\nabla f\left(\mathbf{x}^{*}\right)=\left[\begin{array}{lll}
\mathbf{D} & \nabla \mathbf{h}\left(\mathbf{x}^{*}\right) & \nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)
\end{array}\right]\left[\begin{array}{c}
\mathbf{z} \\
\boldsymbol{\lambda} \\
\boldsymbol{\mu}^{(a)}
\end{array}\right]
$$

with unique $\mathbf{z}, \boldsymbol{\lambda}$ and $\boldsymbol{\mu}^{(a)}$ for a given $\nabla f\left(\mathbf{x}^{*}\right)$.
What can you say if \mathbf{x}^{*} is a solution to the NLP problem?

Components of $\nabla f\left(\mathbf{x}^{*}\right)$ in the tangent plane must be zero.

$$
\mathbf{z}=\mathbf{0} \Rightarrow \quad-\nabla f\left(\mathbf{x}^{*}\right)=\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}+\left[\nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\mu}^{(a)}
$$

For inactive constraints, insisting on $\boldsymbol{\mu}^{(i)}=\mathbf{0}$,

$$
-\nabla f\left(\mathbf{x}^{*}\right)=\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}+\left[\nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right) \quad \nabla \mathbf{g}^{(i)}\left(\mathbf{x}^{*}\right)\right]\left[\begin{array}{l}
\boldsymbol{\mu}^{(a)} \\
\boldsymbol{\mu}^{(i)}
\end{array}\right],
$$

or

$$
\nabla f\left(\mathbf{x}^{*}\right)+\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}+\left[\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\mu}=\mathbf{0}
$$

where $\mathbf{g}(\mathbf{x})=\left[\begin{array}{l}\mathbf{g}^{(a)}(\mathbf{x}) \\ \mathbf{g}^{(i)}(\mathbf{x})\end{array}\right]$ and $\boldsymbol{\mu}=\left[\begin{array}{l}\boldsymbol{\mu}^{(a)} \\ \boldsymbol{\mu}^{(i)}\end{array}\right]$.

Optimality Criteria
Components of $\nabla f\left(\mathbf{x}^{*}\right)$ in the tangent plane must be zero.

$$
\mathbf{z}=\mathbf{0} \Rightarrow \quad-\nabla f\left(\mathbf{x}^{*}\right)=\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}+\left[\nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\mu}^{(a)}
$$

For inactive constraints, insisting on $\boldsymbol{\mu}^{(i)}=\mathbf{0}$,

$$
-\nabla f\left(\mathbf{x}^{*}\right)=\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}+\left[\nabla \mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right) \quad \nabla \mathbf{g}^{(i)}\left(\mathbf{x}^{*}\right)\right]\left[\begin{array}{l}
\boldsymbol{\mu}^{(a)} \\
\boldsymbol{\mu}^{(i)}
\end{array}\right]
$$

or

$$
\nabla f\left(\mathbf{x}^{*}\right)+\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}+\left[\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\mu}=\mathbf{0}
$$

where $\mathbf{g}(\mathbf{x})=\left[\begin{array}{l}\mathbf{g}^{(a)}(\mathbf{x}) \\ \mathbf{g}^{(i)}(\mathbf{x})\end{array}\right]$ and $\boldsymbol{\mu}=\left[\begin{array}{l}\boldsymbol{\mu}^{(a)} \\ \boldsymbol{\mu}^{(i)}\end{array}\right]$.
Notice: $\mathbf{g}^{(a)}\left(\mathbf{x}^{*}\right)=\mathbf{0}$ and $\boldsymbol{\mu}^{(i)}=\mathbf{0} \Rightarrow \mu_{i} g_{i}\left(\mathbf{x}^{*}\right)=0 \quad \forall i$, or
$\boldsymbol{\mu}^{T} \mathbf{g}\left(\mathbf{x}^{*}\right)=0$.
Now, components in $\mathbf{g}(\mathbf{x})$ are free to appear in any order.

Finally, what about the feasible directions in the cone?ds: An Overview*

Finally, what about the feasible directions in the cone? ds: An Overview*
Answer: Negative gradient $-\nabla f\left(\mathbf{x}^{*}\right)$ can have no component towards decreasing $g_{i}^{(a)}(\mathbf{x})$, i.e. $\mu_{i}^{(a)} \geq 0, \forall i$.
Combining it with $\mu_{i}^{(i)}=0, \quad \boldsymbol{\mu} \geq \mathbf{0}$.

Finally, what about the feasible directions in the cone? ds: An Overiew*
Answer: Negative gradient $-\nabla f\left(\mathbf{x}^{*}\right)$ can have no component towards decreasing $g_{i}^{(a)}(\mathbf{x})$, i.e. $\mu_{i}^{(a)} \geq 0, \forall i$.
Combining it with $\mu_{i}^{(i)}=0, \quad \boldsymbol{\mu} \geq \mathbf{0}$.
First order necessary conditions or Karusch-Kuhn-Tucker (KKT) conditions: If \mathbf{x}^{*} is a regular point of the constraints and a solution to the NLP problem, then there exist Lagrange multiplier vectors, $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$, such that

Optimality: $\quad \nabla f\left(\mathbf{x}^{*}\right)+\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}+\left[\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\mu}=\mathbf{0}, \quad \boldsymbol{\mu} \geq \mathbf{0}$; Feasibility:
Complementarity:

$$
\begin{aligned}
\mathbf{h}\left(\mathbf{x}^{*}\right)=\mathbf{0}, \quad \mathbf{g}\left(\mathbf{x}^{*}\right) & \leq \mathbf{0} ; \\
\boldsymbol{\mu}^{T} \mathbf{g}\left(\mathbf{x}^{*}\right) & =\mathbf{0} .
\end{aligned}
$$

Optimality Criteria

Finally, what about the feasible directions in the cone? ${ }^{\text {ds: }}$ An Overview*
Answer: Negative gradient $-\nabla f\left(\mathbf{x}^{*}\right)$ can have no component towards decreasing $g_{i}^{(a)}(\mathbf{x})$, i.e. $\mu_{i}^{(a)} \geq 0, \forall i$.
Combining it with $\mu_{i}^{(i)}=0, \quad \boldsymbol{\mu} \geq \mathbf{0}$.
First order necessary conditions or Karusch-Kuhn-Tucker (KKT) conditions: If \mathbf{x}^{*} is a regular point of the constraints and a solution to the NLP problem, then there exist Lagrange multiplier vectors, $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$, such that

Optimality: $\quad \nabla f\left(\mathbf{x}^{*}\right)+\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}+\left[\nabla \mathbf{g}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\mu}=\mathbf{0}, \quad \boldsymbol{\mu} \geq \mathbf{0}$;
Feasibility: $\begin{aligned} \mathbf{h}\left(\mathbf{x}^{*}\right)=\mathbf{0}, \quad \mathbf{g}\left(\mathbf{x}^{*}\right) & \leq \mathbf{0} ; \\ \boldsymbol{\mu}^{T} \mathbf{g}\left(\mathbf{x}^{*}\right) & =\mathbf{0} .\end{aligned}$

Convex programming problem: Convex objective function $f(\mathbf{x})$ and convex domain (convex $g_{i}(\mathbf{x})$ and linear $h_{j}(\mathbf{x})$):

KKT conditions are sufficient as well!

Lagrangian function:

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x})+\boldsymbol{\mu}^{T} \mathbf{g}(\mathbf{x})
$$

Necessary conditions for a stationary point of the Lagrangian:

$$
\nabla_{x} L=\mathbf{0}, \quad \nabla_{\lambda} L=\mathbf{0}
$$

Optimality Criteria

Lagrangian function:

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x})+\boldsymbol{\mu}^{T} \mathbf{g}(\mathbf{x})
$$

Necessary conditions for a stationary point of the Lagrangian:

$$
\nabla_{x} L=\mathbf{0}, \quad \nabla_{\lambda} L=\mathbf{0}
$$

Second order conditions

Consider curve $\mathbf{z}(t)$ in the tangent plane with $\mathbf{z}(0)=\mathbf{x}^{*}$.

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}} f(\mathbf{z}(t))\right|_{t=0} & =\left.\frac{d}{d t}\left[\nabla f(\mathbf{z}(t))^{T} \dot{\mathbf{z}}(t)\right]\right|_{t=0} \\
& =\dot{\mathbf{z}}(0)^{T} \mathbf{H}\left(\mathbf{x}^{*}\right) \dot{\mathbf{z}}(0)+\left[\nabla f\left(\mathbf{x}^{*}\right)\right]^{T} \ddot{\mathbf{z}}(0) \geq 0
\end{aligned}
$$

Similarly, from $h_{j}(\mathbf{z}(t))=0$,

$$
\dot{\mathbf{z}}(0)^{T} \mathbf{H}_{h_{j}}\left(\mathbf{x}^{*}\right) \dot{\mathbf{z}}(0)+\left[\nabla h_{j}\left(\mathbf{x}^{*}\right)\right]^{T} \ddot{\mathbf{z}}(0)=0 .
$$

Including contributions from all active constraints,

$$
\left.\frac{d^{2}}{d t^{2}} f(\mathbf{z}(t))\right|_{t=0}=\dot{\mathbf{z}}(0)^{T} \mathbf{H}_{L}\left(\mathbf{x}^{*}\right) \dot{\mathbf{z}}(0)+\left[\nabla_{x} L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)\right]^{T} \ddot{\mathbf{z}}(0) \geq 0
$$

where $\mathbf{H}_{L}(\mathbf{x})=\frac{\partial^{2} L}{\partial \mathbf{x}^{2}}=\mathbf{H}(\mathbf{x})+\sum_{j} \lambda_{j} \mathbf{H}_{h_{j}}(\mathbf{x})+\sum_{i} \mu_{i} \mathbf{H}_{g_{i}}(\mathbf{x})$.

Including contributions from all active constraints,

$$
\left.\frac{d^{2}}{d t^{2}} f(\mathbf{z}(t))\right|_{t=0}=\dot{\mathbf{z}}(0)^{T} \mathbf{H}_{L}\left(\mathbf{x}^{*}\right) \dot{\mathbf{z}}(0)+\left[\nabla_{x} L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right)\right]^{T} \ddot{\mathbf{z}}(0) \geq 0
$$

where $\mathbf{H}_{L}(\mathbf{x})=\frac{\partial^{2} L}{\partial \mathbf{x}^{2}}=\mathbf{H}(\mathbf{x})+\sum_{j} \lambda_{j} \mathbf{H}_{h_{j}}(\mathbf{x})+\sum_{i} \mu_{i} \mathbf{H}_{g_{i}}(\mathbf{x})$.
First order necessary condition makes the second term vanish!
Second order necessary condition:
The Hessian matrix of the Lagrangian function is positive semi-definite on the tangent plane \mathcal{M}.

Sufficient condition: $\nabla_{x} L=\mathbf{0}$ and $\mathbf{H}_{L}(\mathbf{x})$ positive definite on \mathcal{M}.
Restriction of the mapping $\mathbf{H}_{L}\left(\mathbf{x}^{*}\right): R^{n} \rightarrow R^{n}$ on subspace \mathcal{M} ?

Take $\mathbf{y} \in \mathcal{M}$, operate $\mathbf{H}_{L}\left(\mathbf{x}^{*}\right)$ on it, project the image back to \mathcal{M}.
Restricted mapping $\mathbf{L}_{M}: \mathcal{M} \rightarrow \mathcal{M}$
Question: Matrix representation for \mathbf{L}_{M} of size $(n-m) \times(n-m)$?

Take $\mathbf{y} \in \mathcal{M}$, operate $\mathbf{H}_{L}\left(\mathbf{x}^{*}\right)$ on it, project the image back to \mathcal{M}.

$$
\text { Restricted mapping } \mathbf{L}_{M}: \mathcal{M} \rightarrow \mathcal{M}
$$

Question: Matrix representation for \mathbf{L}_{M} of size $(n-m) \times(n-m)$?
Select local orthonormal basis $\mathbf{D} \in R^{n \times(n-m)}$ for \mathcal{M}.
For arbitrary $\mathbf{z} \in R^{n-m}, \operatorname{map} \mathbf{y}=\mathbf{D z} \in R^{n}$ as $\mathbf{H}_{L} \mathbf{y}=\mathbf{H}_{L} \mathbf{D z}$.
Its component along \mathbf{d}_{i} : $\mathbf{d}_{i}^{T} \mathbf{H}_{L} \mathbf{D z}$
Hence, projection back on \mathcal{M} :

$$
\mathbf{L}_{M} \mathbf{z}=\mathbf{D}^{T} \mathbf{H}_{L} \mathbf{D} \mathbf{z}
$$

The $(n-m) \times(n-m)$ matrix $\mathbf{L}_{M}=\mathbf{D}^{T} \mathbf{H}_{L} \mathbf{D}$: the restriction!
Second order necessary/sufficient condition: \mathbf{L}_{M} p.s.d./p.d.

Suppose original objective and constraint functions as

$$
f(\mathbf{x}, \mathbf{p}), \mathbf{g}(\mathbf{x}, \mathbf{p}) \text { and } \mathbf{h}(\mathbf{x}, \mathbf{p})
$$

By choosing parameters (p), we arrive at \mathbf{x}^{*}. Call it $\mathbf{x}^{*}(\mathbf{p})$.
Question: How does $f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)$ depend on \mathbf{p} ?

Suppose original objective and constraint functic of Methods: An Overview*
Suppose original objective and constraint functions as

$$
f(\mathbf{x}, \mathbf{p}), \mathbf{g}(\mathbf{x}, \mathbf{p}) \text { and } \mathbf{h}(\mathbf{x}, \mathbf{p})
$$

By choosing parameters (p), we arrive at \mathbf{x}^{*}. Call it $\mathbf{x}^{*}(\mathbf{p})$.
Question: How does $f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)$ depend on \mathbf{p} ?
Total gradients

$$
\begin{aligned}
\bar{\nabla}_{p} f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right) & =\nabla_{p} \mathbf{x}^{*}(\mathbf{p}) \nabla_{x} f\left(\mathbf{x}^{*}, \mathbf{p}\right)+\nabla_{p} f\left(\mathbf{x}^{*}, \mathbf{p}\right), \\
\bar{\nabla}_{p} \mathbf{h}\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right) & =\nabla_{p} \mathbf{x}^{*}(\mathbf{p}) \nabla_{x} \mathbf{h}\left(\mathbf{x}^{*}, \mathbf{p}\right)+\nabla_{p} \mathbf{h}\left(\mathbf{x}^{*}, \mathbf{p}\right)=\mathbf{0},
\end{aligned}
$$

and similarly for $\mathbf{g}\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)$.
In view of $\nabla_{x} L=0$, from KKT conditions,

$$
\bar{\nabla}_{p} f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)=\nabla_{p} f\left(\mathbf{x}^{*}, \mathbf{p}\right)+\left[\nabla_{p} \mathbf{h}\left(\mathbf{x}^{*}, \mathbf{p}\right)\right] \boldsymbol{\lambda}+\left[\nabla_{p} \mathbf{g}\left(\mathbf{x}^{*}, \mathbf{p}\right)\right] \boldsymbol{\mu}
$$

Mathematicall entodosi in
Sensitivity

Sensitivity to constraints

In particular, in a revised problem, with $\mathbf{h}(\mathbf{x})=\mathbf{c}$ and $\mathbf{g}(\mathbf{x}) \leq \mathbf{d}$, using $\mathbf{p}=\mathbf{c}$,

$$
\begin{gathered}
\nabla_{p} f\left(\mathbf{x}^{*}, \mathbf{p}\right)=\mathbf{0}, \nabla_{p} \mathbf{h}\left(\mathbf{x}^{*}, \mathbf{p}\right)=-\mathbf{I} \text { and } \nabla_{p} \mathbf{g}\left(\mathbf{x}^{*}, \mathbf{p}\right)=\mathbf{0} . \\
\bar{\nabla}_{c} f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)=-\boldsymbol{\lambda}
\end{gathered}
$$

Similarly, using $\mathbf{p}=\mathbf{d}$, we get $\quad \bar{\nabla}_{d} f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)=-\boldsymbol{\mu}$.

Sensitivity

Sensitivity to constraints

In particular, in a revised problem, with $\mathbf{h}(\mathbf{x})=\mathbf{c}$ and $\mathbf{g}(\mathbf{x}) \leq \mathbf{d}$, using $\mathbf{p}=\mathbf{c}$,

$$
\begin{gathered}
\nabla_{p} f\left(\mathbf{x}^{*}, \mathbf{p}\right)=\mathbf{0}, \nabla_{p} \mathbf{h}\left(\mathbf{x}^{*}, \mathbf{p}\right)=-\mathbf{I} \text { and } \nabla_{p} \mathbf{g}\left(\mathbf{x}^{*}, \mathbf{p}\right)=\mathbf{0} . \\
\bar{\nabla}_{c} f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)=-\boldsymbol{\lambda}
\end{gathered}
$$

Similarly, using $\mathbf{p}=\mathbf{d}$, we get

$$
\bar{\nabla}_{d} f\left(\mathbf{x}^{*}(\mathbf{p}), \mathbf{p}\right)=-\boldsymbol{\mu} .
$$

Lagrange multipliers $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ signify costs of pulling the minimum point in order to satisfy the constraints!

- Equality constraint: both sides infeasible, sign of λ_{j} identifies one side or the other of the hypersurface.
- Inequality constraint: one side is feasible, no cost of pulling from that side, so $\mu_{i} \geq 0$.

Dual problem:

Reformulation of a problem in terms of the Lagrange multipliers.
Suppose \mathbf{x}^{*} as a local minimum for the problem

$$
\text { Minimize } f(\mathbf{x}) \text { subject to } \mathbf{h}(\mathbf{x})=\mathbf{0} \text {, }
$$

with Lagrange multiplier (vector) $\boldsymbol{\lambda}^{*}$.

$$
\nabla f\left(\mathbf{x}^{*}\right)+\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \boldsymbol{\lambda}^{*}=\mathbf{0}
$$

Dual problem:

Reformulation of a problem in terms of the Lagrange multipliers.
Suppose \mathbf{x}^{*} as a local minimum for the problem

$$
\text { Minimize } f(\mathbf{x}) \text { subject to } \mathbf{h}(\mathbf{x})=\mathbf{0} \text {, }
$$

with Lagrange multiplier (vector) $\boldsymbol{\lambda}^{*}$.

$$
\nabla f\left(\mathbf{x}^{*}\right)+\left[\nabla \mathbf{h}\left(\mathbf{x}^{*}\right)\right] \lambda^{*}=\mathbf{0}
$$

If $\mathbf{H}_{L}\left(\mathbf{x}^{*}\right)$ is positive definite (assumption of local duality), then \mathbf{x}^{*} is also a local minimum of

$$
\bar{f}(\mathbf{x})=f(\mathbf{x})+\boldsymbol{\lambda}^{* T} \mathbf{h}(\mathbf{x})
$$

If we vary $\boldsymbol{\lambda}$ around $\boldsymbol{\lambda}^{*}$, the minimizer of

$$
L(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x})
$$

varies continuously with $\boldsymbol{\lambda}$.

In the neighbourhood of $\boldsymbol{\lambda}^{*}$, define the dual'function ${ }^{\text {thods: An Overview* }}$

$$
\Phi(\boldsymbol{\lambda})=\min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda})=\min _{\mathbf{x}}\left[f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x})\right] .
$$

For a pair $\{\mathbf{x}, \boldsymbol{\lambda}\}$, the dual solution is feasible if and only if the primal solution is optimal.

In the neighbourhood of $\boldsymbol{\lambda}^{*}$, define the dual'function ${ }^{\text {thods: An Overview* }}$

$$
\Phi(\boldsymbol{\lambda})=\min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda})=\min _{\mathbf{x}}\left[f(\mathbf{x})+\boldsymbol{\lambda}^{\top} \mathbf{h}(\mathbf{x})\right] .
$$

For a pair $\{\mathbf{x}, \boldsymbol{\lambda}\}$, the dual solution is feasible if and only if the primal solution is optimal.

Define $\mathbf{x}(\boldsymbol{\lambda})$ as the local minimizer of $L(\mathbf{x}, \boldsymbol{\lambda})$.

$$
\Phi(\boldsymbol{\lambda})=L(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})=f(\mathbf{x}(\boldsymbol{\lambda}))+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))
$$

In the neighbourhood of $\boldsymbol{\lambda}^{*}$, define the dual'function ${ }^{\text {thods: An Overview* }}$

$$
\Phi(\boldsymbol{\lambda})=\min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda})=\min _{\mathbf{x}}\left[f(\mathbf{x})+\boldsymbol{\lambda}^{\top} \mathbf{h}(\mathbf{x})\right] .
$$

For a pair $\{\mathbf{x}, \boldsymbol{\lambda}\}$, the dual solution is feasible if and only if the primal solution is optimal.

Define $\mathbf{x}(\boldsymbol{\lambda})$ as the local minimizer of $L(\mathbf{x}, \boldsymbol{\lambda})$.

$$
\Phi(\boldsymbol{\lambda})=L(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})=f(\mathbf{x}(\boldsymbol{\lambda}))+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))
$$

First derivative:

$$
\nabla \Phi(\boldsymbol{\lambda})=\nabla_{\lambda} \mathbf{x}(\boldsymbol{\lambda}) \nabla_{x} L(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})+\mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))=\mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))
$$

For a pair $\{\mathbf{x}, \boldsymbol{\lambda}\}$, the dual solution is optimal if and only if the primal solution is feasible.

Hessian of the dual function:

$$
\mathbf{H}_{\phi}(\boldsymbol{\lambda})=\nabla_{\lambda} \mathbf{x}(\boldsymbol{\lambda}) \nabla_{x} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))
$$

Differentiating $\nabla_{x} L(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})=\mathbf{0}$, we have

$$
\nabla_{\lambda} \mathbf{x}(\boldsymbol{\lambda}) \mathbf{H}_{L}(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})+\left[\nabla_{x} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))\right]^{T}=\mathbf{0} .
$$

Solving for $\nabla_{\lambda} \mathbf{x}(\boldsymbol{\lambda})$ and substituting,

$$
\mathbf{H}_{\phi}(\boldsymbol{\lambda})=-\left[\nabla_{x} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))\right]^{T}\left[\mathbf{H}_{L}(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})\right]^{-1} \nabla_{x} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda})),
$$

negative definite!

Hessian of the dual function:

$$
\mathbf{H}_{\phi}(\boldsymbol{\lambda})=\nabla_{\lambda} \mathbf{x}(\boldsymbol{\lambda}) \nabla_{x} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))
$$

Differentiating $\nabla_{x} L(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})=\mathbf{0}$, we have

$$
\nabla_{\lambda} \mathbf{x}(\boldsymbol{\lambda}) \mathbf{H}_{L}(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})+\left[\nabla_{x} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))\right]^{T}=\mathbf{0} .
$$

Solving for $\nabla_{\lambda} \mathbf{x}(\boldsymbol{\lambda})$ and substituting,

$$
\mathbf{H}_{\phi}(\boldsymbol{\lambda})=-\left[\nabla_{x} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda}))\right]^{T}\left[\mathbf{H}_{L}(\mathbf{x}(\boldsymbol{\lambda}), \boldsymbol{\lambda})\right]^{-1} \nabla_{x} \mathbf{h}(\mathbf{x}(\boldsymbol{\lambda})),
$$

negative definite!
At $\boldsymbol{\lambda}^{*}, \mathbf{x}\left(\boldsymbol{\lambda}^{*}\right)=\mathbf{x}^{*}, \nabla \Phi\left(\boldsymbol{\lambda}^{*}\right)=\mathbf{h}\left(\mathbf{x}^{*}\right)=\mathbf{0}, \mathbf{H}_{\phi}\left(\boldsymbol{\lambda}^{*}\right)$ is negative definite and the dual function is maximized.

$$
\Phi\left(\boldsymbol{\lambda}^{*}\right)=L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)=f\left(\mathbf{x}^{*}\right)
$$

Duality*

Consolidation (including all constraints)

- Assuming local convexity, the dual function:

$$
\Phi(\boldsymbol{\lambda}, \boldsymbol{\mu})=\min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=\min _{\mathbf{x}}\left[f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x})+\boldsymbol{\mu}^{T} \mathbf{g}(\mathbf{x})\right]
$$

- Constraints on the dual: $\nabla_{x} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=\mathbf{0}$, optimality of the primal.
- Corresponding to inequality constraints of the primal problem, non-negative variables $\boldsymbol{\mu}$ in the dual problem.
- First order necessary conditons for the dual optimality: equivalent to the feasibility of the primal problem.
- The dual function is concave globally!
- Under suitable conditions, $\Phi\left(\boldsymbol{\lambda}^{*}\right)=L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)=f\left(\mathbf{x}^{*}\right)$.
- The Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ has a saddle point in the combined space of primal and dual variables: positive curvature along \mathbf{x} directions and negative curvature along $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ directions.

lathematical Methods in Engineering and Science

Structure of Methods: An Overview* ${ }^{*} \begin{gathered}\text { Constrains } \\ \text { cotimalty } \\ \text { criterein }\end{gathered}$

For a problem of n variables, with m active consstraints,ds: An Overiew* nature and dimension of working spaces
Penalty methods (R^{n}): Minimize the penalized function

$$
q(c, \mathbf{x})=f(\mathbf{x})+c P(\mathbf{x}) .
$$

Example: $P(\mathbf{x})=\frac{1}{2}\|\mathbf{h}(\mathbf{x})\|^{2}+\frac{1}{2}\left[\max (\mathbf{0}, \mathbf{g}(\mathbf{x})]^{2}\right.$.
Primal methods (R^{n-m}): Work only in feasible domain, restricting steps to the tangent plane.
Example: Gradient projection method.
Dual methods $\left(R^{m}\right)$: Transform the problem to the space of
Lagrange multipliers and maximize the dual.
Example: Augmented Lagrangian method.
Lagrange methods (R^{m+n}): Solve equations appearing in the KKT conditions directly.
Example: Sequential quadratic programming.

- Constraint qualification
- KKT conditions
- Second order conditions
- Basic ideas for solution strategy

Necessary Exercises: 1,2,3,4,5,6

Linear and Quadratic Programming Problems* Linear Programming Quadratic Programming

Mathematical Methods in Engineering and Science
Linear Programming
Standard form of an LP problem:

Minimize	$f(\mathbf{x})=\mathbf{c}^{T} \mathbf{x}$,
subject to	$\mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} ; \quad$ with $\quad \mathbf{b} \geq \mathbf{0}$.

Standard form of an LP problem:

Minimize	$f(\mathbf{x})=\mathbf{c}^{T} \mathbf{x}$,
subject to	$\mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} ; \quad$ with $\quad \mathbf{b} \geq \mathbf{0}$.

Preprocessing to cast a problem to the standard form

- Maximization: Minimize the negative function.
- Variables of unrestricted sign: Use two variables.
- Inequality constraints: Use slack/surplus variables.
- Negative RHS: Multiply with -1 .

Standard form of an LP problem:

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{x})=\mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0} ; \quad \text { with } \quad \mathbf{b} \geq \mathbf{0}
\end{array}
$$

Preprocessing to cast a problem to the standard form

- Maximization: Minimize the negative function.
- Variables of unrestricted sign: Use two variables.
- Inequality constraints: Use slack/surplus variables.
- Negative RHS: Multiply with -1 .

Geometry of an LP problem

- Infinite domain: does a minimum exist?
- Finite convex polytope: existence guaranteed
- Operating with vertices sufficient as a strategy
- Extension with slack/surplus variables: original solution space a subspace in the extented space, $\mathbf{x} \geq \mathbf{0}$ marking the domain
- Essence of the non-negativity condition of variables

The simplex method

Suppose $\mathbf{x} \in R^{N}, \mathbf{b} \in R^{M}$ and $\mathbf{A} \in R^{M \times N}$ full-rank, with $M<N$.

$$
\mathbf{I}_{M} \mathbf{x}_{B}+\mathbf{A}^{\prime} \mathbf{x}_{N B}=\mathbf{b}^{\prime}
$$

Basic and non-basic variables: $\mathbf{x}_{B} \in R^{M}$ and $\mathbf{x}_{N B} \in R^{N-M}$
Basic feasible solution: $\mathbf{x}_{B}=\mathbf{b}^{\prime} \geq \mathbf{0}$ and $\mathbf{x}_{N B}=\mathbf{0}$

The simplex method

Suppose $\mathbf{x} \in R^{N}, \mathbf{b} \in R^{M}$ and $\mathbf{A} \in R^{M \times N}$ full-rank, with $M<N$.

$$
\mathbf{I}_{M} \mathbf{x}_{B}+\mathbf{A}^{\prime} \mathbf{x}_{N B}=\mathbf{b}^{\prime}
$$

Basic and non-basic variables: $\mathbf{x}_{B} \in R^{M}$ and $\mathbf{x}_{N B} \in R^{N-M}$
Basic feasible solution: $\mathbf{x}_{B}=\mathbf{b}^{\prime} \geq \mathbf{0}$ and $\mathbf{x}_{N B}=\mathbf{0}$
At every iteration,

- selection of a non-basic variable to enter the basis
- edge of travel selected based on maximum rate of descent
- no qualifier: current vertex is optimal
- selection of a basic variable to leave the basis
- based on the first constraint becoming active along the edge
- no constraint ahead: function is unbounded
- elementary row operations: new basic feasible solution

The simplex method

Suppose $\mathbf{x} \in R^{N}, \mathbf{b} \in R^{M}$ and $\mathbf{A} \in R^{M \times N}$ full-rank, with $M<N$.

$$
\mathbf{I}_{M} \mathbf{x}_{B}+\mathbf{A}^{\prime} \mathbf{x}_{N B}=\mathbf{b}^{\prime}
$$

Basic and non-basic variables: $\mathbf{x}_{B} \in R^{M}$ and $\mathbf{x}_{N B} \in R^{N-M}$
Basic feasible solution: $\mathbf{x}_{B}=\mathbf{b}^{\prime} \geq \mathbf{0}$ and $\mathbf{x}_{N B}=\mathbf{0}$
At every iteration,

- selection of a non-basic variable to enter the basis
- edge of travel selected based on maximum rate of descent
- no qualifier: current vertex is optimal
- selection of a basic variable to leave the basis
- based on the first constraint becoming active along the edge
- no constraint ahead: function is unbounded
- elementary row operations: new basic feasible solution

Two-phase method: Inclusion of a pre-processing phase with artificial variables to develop a basic feasible solution

Mathematical Methods in Engineering and Science
Linear Programming

General perspective

LP problem:
Minimize $\quad f(\mathbf{x}, \mathbf{y})=\mathbf{c}_{1}^{T} \mathbf{x}+\mathbf{c}_{2}^{T} \mathbf{y}$;
subject to $\quad \mathbf{A}_{11} \mathbf{x}+\mathbf{A}_{12} \mathbf{y}=\mathbf{b}_{1}, \quad \mathbf{A}_{21} \mathbf{x}+\mathbf{A}_{22} \mathbf{y} \leq \mathbf{b}_{2}, \quad \mathbf{y} \geq \mathbf{0}$.
Lagrangian:

$$
\begin{aligned}
& L(\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\nu})=\mathbf{c}_{1}^{T} \mathbf{x}+\mathbf{c}_{2}^{T} \mathbf{y} \\
& \quad+\boldsymbol{\lambda}^{T}\left(\mathbf{A}_{11} \mathbf{x}+\mathbf{A}_{12} \mathbf{y}-\mathbf{b}_{1}\right)+\boldsymbol{\mu}^{T}\left(\mathbf{A}_{21} \mathbf{x}+\mathbf{A}_{22} \mathbf{y}-\mathbf{b}_{2}\right)-\boldsymbol{\nu}^{T} \mathbf{y}
\end{aligned}
$$

General perspective

LP problem:
Minimize $\quad f(\mathbf{x}, \mathbf{y})=\mathbf{c}_{1}^{T} \mathbf{x}+\mathbf{c}_{2}^{T} \mathbf{y}$;
subject to $\quad \mathbf{A}_{11} \mathbf{x}+\mathbf{A}_{12} \mathbf{y}=\mathbf{b}_{1}, \quad \mathbf{A}_{21} \mathbf{x}+\mathbf{A}_{22} \mathbf{y} \leq \mathbf{b}_{2}, \quad \mathbf{y} \geq \mathbf{0}$.
Lagrangian:

$$
\begin{aligned}
& L(\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\nu})=\mathbf{c}_{1}^{T} \mathbf{x}+\mathbf{c}_{2}^{T} \mathbf{y} \\
& \quad+\boldsymbol{\lambda}^{T}\left(\mathbf{A}_{11} \mathbf{x}+\mathbf{A}_{12} \mathbf{y}-\mathbf{b}_{1}\right)+\boldsymbol{\mu}^{T}\left(\mathbf{A}_{21} \mathbf{x}+\mathbf{A}_{22} \mathbf{y}-\mathbf{b}_{2}\right)-\boldsymbol{\nu}^{T} \mathbf{y}
\end{aligned}
$$

Optimality conditions:

$$
\mathbf{c}_{1}+\mathbf{A}_{11}^{T} \boldsymbol{\lambda}+\mathbf{A}_{21}^{T} \boldsymbol{\mu}=\mathbf{0} \quad \text { and } \quad \boldsymbol{\nu}=\mathbf{c}_{2}+\mathbf{A}_{12}^{T} \boldsymbol{\lambda}+\mathbf{A}_{22}^{T} \boldsymbol{\mu} \geq \mathbf{0}
$$

Substituting back, optimal function value: $f^{*}=-\boldsymbol{\lambda}^{T} \mathbf{b}_{1}-\boldsymbol{\mu}^{T} \mathbf{b}_{2}$ Sensitivity to the constraints: $\frac{\partial f^{*}}{\partial \mathbf{b}_{1}}=-\lambda$ and $\frac{\partial f^{*}}{\partial \mathbf{b}_{2}}=-\boldsymbol{\mu}$

General perspective

LP problem:
Minimize $\quad f(\mathbf{x}, \mathbf{y})=\mathbf{c}_{1}^{T} \mathbf{x}+\mathbf{c}_{2}^{T} \mathbf{y}$;
subject to $\quad \mathbf{A}_{11} \mathbf{x}+\mathbf{A}_{12} \mathbf{y}=\mathbf{b}_{1}, \quad \mathbf{A}_{21} \mathbf{x}+\mathbf{A}_{22} \mathbf{y} \leq \mathbf{b}_{2}, \quad \mathbf{y} \geq \mathbf{0}$.
Lagrangian:

$$
\begin{aligned}
& L(\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\nu})=\mathbf{c}_{1}^{T} \mathbf{x}+\mathbf{c}_{2}^{T} \mathbf{y} \\
& \quad+\boldsymbol{\lambda}^{T}\left(\mathbf{A}_{11} \mathbf{x}+\mathbf{A}_{12} \mathbf{y}-\mathbf{b}_{1}\right)+\boldsymbol{\mu}^{T}\left(\mathbf{A}_{21} \mathbf{x}+\mathbf{A}_{22} \mathbf{y}-\mathbf{b}_{2}\right)-\boldsymbol{\nu}^{T} \mathbf{y}
\end{aligned}
$$

Optimality conditions:

$$
\mathbf{c}_{1}+\mathbf{A}_{11}^{T} \boldsymbol{\lambda}+\mathbf{A}_{21}^{T} \boldsymbol{\mu}=\mathbf{0} \quad \text { and } \quad \boldsymbol{\nu}=\mathbf{c}_{2}+\mathbf{A}_{12}^{T} \boldsymbol{\lambda}+\mathbf{A}_{22}^{T} \boldsymbol{\mu} \geq \mathbf{0}
$$

Substituting back, optimal function value: $f^{*}=-\boldsymbol{\lambda}^{T} \mathbf{b}_{1}-\boldsymbol{\mu}^{T} \mathbf{b}_{2}$
Sensitivity to the constraints: $\frac{\partial f^{*}}{\partial \mathbf{b}_{1}}=-\lambda$ and $\frac{\partial f^{*}}{\partial \mathbf{b}_{2}}=-\boldsymbol{\mu}$
Dual problem:
maximize $\quad \Phi(\boldsymbol{\lambda}, \boldsymbol{\mu})=-\mathbf{b}_{1}^{T} \boldsymbol{\lambda}-\mathbf{b}_{2}^{T} \boldsymbol{\mu}$
subject to $\quad \mathbf{A}_{11}^{T} \boldsymbol{\lambda}+\mathbf{A}_{21}^{T} \boldsymbol{\mu}=-\mathbf{c}_{1}, \quad \mathbf{A}_{12}^{T} \boldsymbol{\lambda}+\mathbf{A}_{22}^{T} \boldsymbol{\mu} \geq-\mathbf{c}_{2}, \quad \boldsymbol{\mu} \geq \mathbf{0}$.
Notice the symmetry between the primal and dual problems.

A quadratic objective function and linear constraints define a QP problem.

Equations from the KKT conditions: linear!
Lagrange methods are the natural choice!

A quadratic objective function and linear constraints define a QP problem.

Equations from the KKT conditions: linear!
Lagrange methods are the natural choice!
With equality constraints only,
Minimize $\quad f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{c}^{T} \mathbf{x}, \quad$ subject to $\mathbf{A} \mathbf{x}=\mathbf{b}$.
First order necessary conditions:

$$
\left[\begin{array}{cc}
\mathbf{Q} & \mathbf{A}^{T} \\
\mathbf{A} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{*} \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{c} \\
\mathbf{b}
\end{array}\right]
$$

Solution of this linear system yields the complete result!

A quadratic objective function and linear constraints define a QP problem.

Equations from the KKT conditions: linear!
Lagrange methods are the natural choice!
With equality constraints only,
Minimize $\quad f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{c}^{T} \mathbf{x}, \quad$ subject to $\mathbf{A} \mathbf{x}=\mathbf{b}$.
First order necessary conditions:

$$
\left[\begin{array}{cc}
\mathbf{Q} & \mathbf{A}^{T} \\
\mathbf{A} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}^{*} \\
\boldsymbol{\lambda}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{c} \\
\mathbf{b}
\end{array}\right]
$$

Solution of this linear system yields the complete result!
Caution: This coefficient matrix is indefinite.

Quadratic Programming

Active set method

$$
\begin{array}{cl}
\text { Minimize } & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x} ; \\
\text { subject to } & \mathbf{A}_{1} \mathbf{x}=\mathbf{b}_{1}, \\
& \mathbf{A}_{2} \mathbf{x} \leq \mathbf{b}_{2} .
\end{array}
$$

Active set method

$$
\begin{array}{cl}
\text { Minimize } & f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{c}^{T} \mathbf{x} ; \\
\text { subject to } & \mathbf{A}_{1} \mathbf{x}=\mathbf{b}_{1} \\
& \mathbf{A}_{2} \mathbf{x} \leq \mathbf{b}_{2}
\end{array}
$$

Start the iterative process from a feasible point.

- Construct active set of constraints as $\mathbf{A x}=\mathbf{b}$.
- From the current point \mathbf{x}_{k}, with $\mathbf{x}=\mathbf{x}_{k}+\mathbf{d}_{k}$,

$$
\begin{aligned}
f(\mathbf{x}) & =\frac{1}{2}\left(\mathbf{x}_{k}+\mathbf{d}_{k}\right)^{T} \mathbf{Q}\left(\mathbf{x}_{k}+\mathbf{d}_{k}\right)+\mathbf{c}^{T}\left(\mathbf{x}_{k}+\mathbf{d}_{k}\right) \\
& =\frac{1}{2} \mathbf{d}_{k}^{T} \mathbf{Q} \mathbf{d}_{k}+\left(\mathbf{c}+\mathbf{Q} \mathbf{x}_{k}\right)^{T} \mathbf{d}_{k}+f\left(\mathbf{x}_{k}\right)
\end{aligned}
$$

- Since $\mathbf{g}_{k} \equiv \nabla f\left(\mathbf{x}_{k}\right)=\mathbf{c}+\mathbf{Q} \mathbf{x}_{k}$, subsidiary quadratic program: minimize $\frac{1}{2} \mathbf{d}_{k}^{T} \mathbf{Q} \mathbf{d}_{k}+\mathbf{g}_{k}^{T} \mathbf{d}_{k}$ subject to $\mathbf{A} \mathbf{d}_{k}=\mathbf{0}$.
- Examining solution \mathbf{d}_{k} and Lagrange multipliers, decide to terminate, proceed or revise the active set.

Linear complementary problem (LCP)

Slack variable strategy with inequality constraints
Minimize $\quad \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}, \quad$ subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}, \quad \mathbf{x} \geq \mathbf{0}$.

Linear complementary problem (LCP)

Slack variable strategy with inequality constraints
Minimize $\quad \frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{c}^{T} \mathbf{x}, \quad$ subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}, \quad \mathbf{x} \geq \mathbf{0}$.
KKT conditions: With $\mathbf{x}, \mathbf{y}, \boldsymbol{\mu}, \boldsymbol{\nu} \geq \mathbf{0}$,

$$
\begin{aligned}
\mathbf{Q} \mathbf{x}+\mathbf{c}+\mathbf{A}^{T} \boldsymbol{\mu}-\boldsymbol{\nu} & =\mathbf{0} \\
\mathbf{A} \mathbf{x}+\mathbf{y} & =\mathbf{b} \\
\mathbf{x}^{T} \boldsymbol{\nu}=\boldsymbol{\mu}^{T} \mathbf{y} & =0
\end{aligned}
$$

Linear complementary problem (LCP)

Slack variable strategy with inequality constraints
Minimize $\quad \frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{c}^{T} \mathbf{x}, \quad$ subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}, \quad \mathbf{x} \geq \mathbf{0}$. KKT conditions: With $\mathbf{x}, \mathbf{y}, \boldsymbol{\mu}, \boldsymbol{\nu} \geq \mathbf{0}$,

$$
\begin{aligned}
\mathbf{Q} \mathbf{x}+\mathbf{c}+\mathbf{A}^{T} \boldsymbol{\mu}-\boldsymbol{\nu} & =\mathbf{0} \\
\mathbf{A} \mathbf{x}+\mathbf{y} & =\mathbf{b} \\
\mathbf{x}^{T} \boldsymbol{\nu}=\boldsymbol{\mu}^{T} \mathbf{y} & =0
\end{aligned}
$$

Denoting

$$
\begin{gathered}
\mathbf{z}=\left[\begin{array}{l}
\mathbf{x} \\
\boldsymbol{\mu}
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
\boldsymbol{\nu} \\
\mathbf{y}
\end{array}\right], \mathbf{q}=\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{b}
\end{array}\right] \quad \text { and } \mathbf{M}=\left[\begin{array}{cc}
\mathbf{Q} & \mathbf{A}^{T} \\
-\mathbf{A} & \mathbf{0}
\end{array}\right], \\
\mathbf{w}-\mathbf{M} \mathbf{z}=\mathbf{q}, \quad \mathbf{w}^{T} \mathbf{z}=\mathbf{0} .
\end{gathered}
$$

Find mutually complementary non-negative \mathbf{w} and \mathbf{z}.

If $\mathbf{q} \geq \mathbf{0}$, then $\mathbf{w}=\mathbf{q}, \mathbf{z}=\mathbf{0}$ is a solution!
Lemke's method: artificial variable z_{0} with $\mathbf{e}=\left[\begin{array}{lllll}1 & 1 & 1 & \cdots & 1\end{array}\right]^{T}$:

$$
\mathbf{I} \mathbf{w}-\mathbf{M z}-\mathbf{e} z_{0}=\mathbf{q}
$$

With $z_{0}=\max \left(-q_{i}\right)$,

$$
\mathbf{w}=\mathbf{q}+\mathbf{e} z_{0} \geq \mathbf{0} \text { and } \mathbf{z}=\mathbf{0} \text { : basic feasible solution }
$$

If $\mathbf{q} \geq \mathbf{0}$, then $\mathbf{w}=\mathbf{q}, \mathbf{z}=\mathbf{0}$ is a solution!
Lemke's method: artificial variable z_{0} with $\mathbf{e}=\left[\begin{array}{lllll}1 & 1 & 1 & \cdots & 1\end{array}\right]^{T}$:

$$
\mathbf{I} \mathbf{w}-\mathbf{M z}-\mathbf{e} z_{0}=\mathbf{q}
$$

With $z_{0}=\max \left(-q_{i}\right)$,

$$
\mathbf{w}=\mathbf{q}+\mathbf{e} z_{0} \geq \mathbf{0} \text { and } \mathbf{z}=\mathbf{0}: \text { basic feasible solution }
$$

- Evolution of the basis similar to the simplex method.
- Out of a pair of w and z variables, only one can be there in any basis.
- At every step, one variable is driven out of the basis and its partner called in.
- The step driving out z_{0} flags termination.

If $\mathbf{q} \geq \mathbf{0}$, then $\mathbf{w}=\mathbf{q}, \mathbf{z}=\mathbf{0}$ is a solution!
Lemke's method: artificial variable z_{0} with $\mathbf{e}=\left[\begin{array}{lllll}1 & 1 & 1 & \cdots & 1\end{array}\right]^{T}$:

$$
\mathbf{I} \mathbf{w}-\mathbf{M z}-\mathbf{e} z_{0}=\mathbf{q}
$$

With $z_{0}=\max \left(-q_{i}\right)$,

$$
\mathbf{w}=\mathbf{q}+\mathbf{e} z_{0} \geq \mathbf{0} \text { and } \mathbf{z}=\mathbf{0}: \text { basic feasible solution }
$$

- Evolution of the basis similar to the simplex method.
- Out of a pair of w and z variables, only one can be there in any basis.
- At every step, one variable is driven out of the basis and its partner called in.
- The step driving out z_{0} flags termination.

Handling of equality constraints?

If $\mathbf{q} \geq \mathbf{0}$, then $\mathbf{w}=\mathbf{q}, \mathbf{z}=\mathbf{0}$ is a solution!
Lemke's method: artificial variable z_{0} with $\mathbf{e}=\left[\begin{array}{lllll}1 & 1 & 1 & \cdots & 1\end{array}\right]^{T}$:

$$
\mathbf{I} \mathbf{w}-\mathbf{M z}-\mathbf{e} z_{0}=\mathbf{q}
$$

With $z_{0}=\max \left(-q_{i}\right)$,

$$
\mathbf{w}=\mathbf{q}+\mathbf{e} z_{0} \geq \mathbf{0} \text { and } \mathbf{z}=\mathbf{0}: \text { basic feasible solution }
$$

- Evolution of the basis similar to the simplex method.
- Out of a pair of w and z variables, only one can be there in any basis.
- At every step, one variable is driven out of the basis and its partner called in.
- The step driving out z_{0} flags termination.

Handling of equality constraints? Very clumsy!!

- Fundamental issues and general perspective of the linear programming problem
- The simplex method
- Quadratic programming
- The active set method
- Lemke's method via the linear complementary problem

Necessary Exercises: 1,2,3,4,5

Interpolation and Approximation

Interpolation and Approximation
Polynomial Interpolation
Piecewise Polynomial Interpolation Interpolation of Multivariate Functions A Note on Approximation of Functions Modelling of Curves and Surfaces*

Problem: To develop an analytical representation of farm function from information at discrete data points.

Purpose

- Evaluation at arbitrary points
- Differentiation and/or integration
- Drawing conclusion regarding the trends or nature

Polynomial Interpolation

Problem: To develop an analytical representation of fan function from information at discrete data points.

Purpose

- Evaluation at arbitrary points
- Differentiation and/or integration
- Drawing conclusion regarding the trends or nature

Interpolation: one of the ways of function representation

- sampled data are exactly satisfied

Polynomial: a convenient class of basis functions
For $y_{i}=f\left(x_{i}\right)$ for $i=0,1,2, \cdots, n$ with $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$,

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Find the coefficients such that $p\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0,1,2, \cdots, n$.
Values of $p(x)$ for $x \in\left[x_{0}, x_{n}\right]$ interpolate $n+1$ values of $f(x)$, an outside estimate is extrapolation.

 Polynomial Interpolation

To determine $p(x)$, solve the linear system

$$
\left[\begin{array}{rrrrr}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\cdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\cdots \\
f\left(x_{n}\right)
\end{array}\right] ?
$$

Vandermonde matrix: invertible, but typically ill-conditioned!

Polynomial Interpolation

To determine $p(x)$, solve the linear system

$$
\left[\begin{array}{rrrrr}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\cdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{r}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\cdots \\
f\left(x_{n}\right)
\end{array}\right] ?
$$

Vandermonde matrix: invertible, but typically ill-conditioned! Invertibility means existence and uniqueness of polynomial $p(x)$.

Two polynomials $p_{1}(x)$ and $p_{2}(x)$ matching the function $f(x)$ at $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ imply
n-th degree polynomial $\Delta p(x)=p_{1}(x)-p_{2}(x)$ with
$n+1$ roots!
$\Delta p \equiv 0 \Rightarrow p_{1}(x)=p_{2}(x): p(x)$ is unique.

Polynomial Interpolation

Lagrange interpolation

Basis functions:

$$
\begin{aligned}
L_{k}(x) & =\frac{\prod_{j=0, j \neq k}^{n}\left(x-x_{j}\right)}{\prod_{j=0, j \neq k}^{n}\left(x_{k}-x_{j}\right)} \\
& =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)}
\end{aligned}
$$

Interpolating polynomial:

$$
p(x)=\alpha_{0} L_{0}(x)+\alpha_{1} L_{1}(x)+\alpha_{2} L_{2}(x)+\cdots+\alpha_{n} L_{n}(x)
$$

Lagrange interpolation

Basis functions:

$$
\begin{aligned}
L_{k}(x) & =\frac{\prod_{j=0, j \neq k}^{n}\left(x-x_{j}\right)}{\prod_{j=0, j \neq k}^{n}\left(x_{k}-x_{j}\right)} \\
& =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)}
\end{aligned}
$$

Interpolating polynomial:

$$
p(x)=\alpha_{0} L_{0}(x)+\alpha_{1} L_{1}(x)+\alpha_{2} L_{2}(x)+\cdots+\alpha_{n} L_{n}(x)
$$

At the data points, $L_{k}\left(x_{i}\right)=\delta_{i k}$.
Coefficient matrix identity and $\alpha_{i}=f\left(x_{i}\right)$.
Lagrange interpolation formula:

$$
p(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{k}(x)=L_{0}(x) f\left(x_{0}\right)+L_{1}(x) f\left(x_{1}\right)+\cdots+L_{n}(x) f\left(x_{n}\right)
$$

Existence of $p(x)$ is a trivial consequence!

Two interpolation formulae

Polynomial Interpolation
Piecewise Polynomial Interpolation Interpolation of Multivariate Functions A Note on Approximation of Functions
Modelling of Curves and Surfaces*

- one costly to determine, but easy to process
- the other trivial to determine, costly to process

Polynomial Interpolation
Two interpolation formulae

- one costly to determine, but easy to process
- the other trivial to determine, costly to process

Newton interpolation for an intermediate trade-off:
$p(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+c_{n} \prod_{i=0}^{n-1}\left(x-x_{i}\right)$

Polynomial Interpolation

Two interpolation formulae

- one costly to determine, but easy to process
- the other trivial to determine, costly to process

Newton interpolation for an intermediate trade-off:
$p(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+c_{n} \prod_{i=0}^{n-1}\left(x-x_{i}\right)$
Hermite interpolation
uses derivatives as well as function values.
Data: $f\left(x_{i}\right), f^{\prime}\left(x_{i}\right), \cdots, f^{\left(n_{i}-1\right)}\left(x_{i}\right)$ at $x=x_{i}$, for $i=0,1, \cdots, m$:

- At $(m+1)$ points, a total of $n+1=\sum_{i=0}^{m} n_{i}$ conditions

Polynomial Interpolation

Two interpolation formulae

- one costly to determine, but easy to process
- the other trivial to determine, costly to process

Newton interpolation for an intermediate trade-off:
$p(x)=c_{0}+c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+c_{n} \prod_{i=0}^{n-1}\left(x-x_{i}\right)$
Hermite interpolation
uses derivatives as well as function values.
Data: $f\left(x_{i}\right), f^{\prime}\left(x_{i}\right), \cdots, f^{\left(n_{i}-1\right)}\left(x_{i}\right)$ at $x=x_{i}$, for $i=0,1, \cdots, m$:

- At $(m+1)$ points, a total of $n+1=\sum_{i=0}^{m} n_{i}$ conditions Limitations of single-polynomial interpolation

With large number of data points, polynomial degree is high.

- Computational cost and numerical imprecision
- Lack of representative nature due to oscillations

Piecewise linear interpolation

$$
f(x)=f\left(x_{i-1}\right)+\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}\left(x-x_{i-1}\right) \quad \text { for } \quad x \in\left[x_{i-1}, x_{i}\right]
$$

Handy for many uses with dense data. But, not differentiable.

Piecewise Polynomial Interpolation

Piecewise linear interpolation

$$
f(x)=f\left(x_{i-1}\right)+\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}\left(x-x_{i-1}\right) \quad \text { for } \quad x \in\left[x_{i-1}, x_{i}\right]
$$

Handy for many uses with dense data. But, not differentiable.
Piecewise cubic interpolation
With function values and derivatives at $(n+1)$ points,
n cubic Hermite segments
Data for the j-th segment:

$$
f\left(x_{j-1}\right)=f_{j-1}, f\left(x_{j}\right)=f_{j}, f^{\prime}\left(x_{j-1}\right)=f_{j-1}^{\prime} \quad \text { and } \quad f^{\prime}\left(x_{j}\right)=f_{j}^{\prime}
$$

Interpolating polynomial:

$$
p_{j}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

Coefficients $a_{0}, a_{1}, a_{2}, a_{3}$: linear combinations of $f_{j-1}, f_{j}, f_{j-1}^{\prime}, f_{j}^{\prime}$

Piecewise Polynomial Interpolation

Piecewise linear interpolation

$$
f(x)=f\left(x_{i-1}\right)+\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}\left(x-x_{i-1}\right) \quad \text { for } \quad x \in\left[x_{i-1}, x_{i}\right]
$$

Handy for many uses with dense data. But, not differentiable.
Piecewise cubic interpolation
With function values and derivatives at $(n+1)$ points,
n cubic Hermite segments
Data for the j-th segment:

$$
f\left(x_{j-1}\right)=f_{j-1}, f\left(x_{j}\right)=f_{j}, f^{\prime}\left(x_{j-1}\right)=f_{j-1}^{\prime} \quad \text { and } \quad f^{\prime}\left(x_{j}\right)=f_{j}^{\prime}
$$

Interpolating polynomial:

$$
p_{j}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

Coefficients $a_{0}, a_{1}, a_{2}, a_{3}$: linear combinations of $f_{j-1}, f_{j}, f_{j-1}^{\prime}, f_{j}^{\prime}$
Composite function \mathcal{C}^{1} continuous at knot points.

Piecewise Polynomial Interpolation

General formulation through normalization off intepryail s_{n} tion of surfacest

$$
x=x_{j-1}+t\left(x_{j}-x_{j-1}\right), t \in[0,1]
$$

With $g(t)=f(x(t)), g^{\prime}(t)=\left(x_{j}-x_{j-1}\right) f^{\prime}(x(t))$;

$$
g_{0}=f_{j-1}, g_{1}=f_{j}, g_{0}^{\prime}=\left(x_{j}-x_{j-1}\right) f_{j-1}^{\prime} \text { and } g_{1}^{\prime}=\left(x_{j}-x_{j-1}\right) f_{j}^{\prime} .
$$

Cubic polynomial for the j-th segment:

$$
q_{j}(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\alpha_{3} t^{3}
$$

Piecewise Polynomial Interpolation

General formulation through normalization of intervald $\mathbf{S}_{n d}^{\text {tion } \text { Surfaces* }}$.

$$
x=x_{j-1}+t\left(x_{j}-x_{j-1}\right), t \in[0,1]
$$

With $g(t)=f(x(t)), g^{\prime}(t)=\left(x_{j}-x_{j-1}\right) f^{\prime}(x(t))$;

$$
g_{0}=f_{j-1}, g_{1}=f_{j}, g_{0}^{\prime}=\left(x_{j}-x_{j-1}\right) f_{j-1}^{\prime} \text { and } g_{1}^{\prime}=\left(x_{j}-x_{j-1}\right) f_{j}^{\prime}
$$

Cubic polynomial for the j-th segment:

$$
q_{j}(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\alpha_{3} t^{3}
$$

Modular expression:
$q_{j}(t)=\left[\begin{array}{llll}\alpha_{0} & \alpha_{1} & \alpha_{2} & \alpha_{3}\end{array}\right]\left[\begin{array}{c}1 \\ t \\ t^{2} \\ t^{3}\end{array}\right]=\left[\begin{array}{llll}g_{0} & g_{1} & g_{0}^{\prime} & g_{1}^{\prime}\end{array}\right] \mathbf{W}\left[\begin{array}{c}1 \\ t \\ t^{2} \\ t^{3}\end{array}\right]=\mathbf{G}_{j} \mathbf{W} \mathbf{T}$
Packaging data, interpolation type and variable terms separately!

Piecewise Polynomial Interpolation

$$
x=x_{j-1}+t\left(x_{j}-x_{j-1}\right), t \in[0,1]
$$

With $g(t)=f(x(t)), g^{\prime}(t)=\left(x_{j}-x_{j-1}\right) f^{\prime}(x(t))$;

$$
g_{0}=f_{j-1}, g_{1}=f_{j}, g_{0}^{\prime}=\left(x_{j}-x_{j-1}\right) f_{j-1}^{\prime} \text { and } g_{1}^{\prime}=\left(x_{j}-x_{j-1}\right) f_{j}^{\prime}
$$

Cubic polynomial for the j-th segment:

$$
q_{j}(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\alpha_{3} t^{3}
$$

Modular expression:
$q_{j}(t)=\left[\begin{array}{llll}\alpha_{0} & \alpha_{1} & \alpha_{2} & \alpha_{3}\end{array}\right]\left[\begin{array}{c}1 \\ t \\ t^{2} \\ t^{3}\end{array}\right]=\left[\begin{array}{llll}g_{0} & g_{1} & g_{0}^{\prime} & g_{1}^{\prime}\end{array}\right] \mathbf{W}\left[\begin{array}{c}1 \\ t \\ t^{2} \\ t^{3}\end{array}\right]=\mathbf{G}_{j} \mathbf{W} \mathbf{T}$
Packaging data, interpolation type and variable terms separately!
Question: How to supply derivatives? And, why?

Spline interpolation

Spline: a drafting tool to draw a smooth curve through key points.

Spline interpolation

Spline: a drafting tool to draw a smooth curve through key points.
Data: $f_{i}=f\left(x_{i}\right)$, for $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$.
If $k_{j}=f^{\prime}\left(x_{j}\right)$, then

$$
\begin{aligned}
& p_{j}(x) \text { can be determined in terms of } f_{j-1}, f_{j}, k_{j-1}, k_{j} \\
& \text { and } p_{j+1}(x) \text { in terms of } f_{j}, f_{j+1}, k_{j}, k_{j+1} .
\end{aligned}
$$

Then, $p_{j}^{\prime \prime}\left(x_{j}\right)=p_{j+1}^{\prime \prime}\left(x_{j}\right)$: a linear equation in k_{j-1}, k_{j} and k_{j+1}

Piecewise Polynomial Interpolation

Spline interpolation

Spline: a drafting tool to draw a smooth curve through key points.
Data: $f_{i}=f\left(x_{i}\right)$, for $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$.
If $k_{j}=f^{\prime}\left(x_{j}\right)$, then
$p_{j}(x)$ can be determined in terms of $f_{j-1}, f_{j}, k_{j-1}, k_{j}$ and $p_{j+1}(x)$ in terms of $f_{j}, f_{j+1}, k_{j}, k_{j+1}$.

Then, $p_{j}^{\prime \prime}\left(x_{j}\right)=p_{j+1}^{\prime \prime}\left(x_{j}\right)$: a linear equation in k_{j-1}, k_{j} and k_{j+1}
From $n-1$ interior knot points,
$n-1$ linear equations in derivative values $k_{0}, k_{1}, \cdots, k_{n}$.
Prescribing k_{0} and k_{n}, a diagonally dominant tridiagonal system!

Piecewise Polynomial Interpolation

Spline interpolation

Spline: a drafting tool to draw a smooth curve through key points.
Data: $f_{i}=f\left(x_{i}\right)$, for $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$.
If $k_{j}=f^{\prime}\left(x_{j}\right)$, then
$p_{j}(x)$ can be determined in terms of $f_{j-1}, f_{j}, k_{j-1}, k_{j}$ and $p_{j+1}(x)$ in terms of $f_{j}, f_{j+1}, k_{j}, k_{j+1}$.

Then, $p_{j}^{\prime \prime}\left(x_{j}\right)=p_{j+1}^{\prime \prime}\left(x_{j}\right)$: a linear equation in k_{j-1}, k_{j} and k_{j+1}
From $n-1$ interior knot points,
$n-1$ linear equations in derivative values $k_{0}, k_{1}, \cdots, k_{n}$.
Prescribing k_{0} and k_{n}, a diagonally dominant tridiagonal system!
A spline is a smooth interpolation, with \mathcal{C}^{2} continuity.

Mathematical Methods in Engineering and Science

Interpolation of Multivariate Functions A Note on Approximation of Functions Modelling of Curves and Surfaces*
 Piecewise bilinear interpolation

Data: $f(x, y)$ over a dense rectangular grid

$$
x=x_{0}, x_{1}, x_{2}, \cdots, x_{m} \text { and } y=y_{0}, y_{1}, y_{2}, \cdots, y_{n}
$$

Rectangular domain: $\left\{(x, y): x_{0} \leq x \leq x_{m}, y_{0} \leq y \leq y_{n}\right\}$

athematical Methods in Engineering and Science

Interpolation and Approximation

Piecewise bilinear interpolation
Data: $f(x, y)$ over a dense rectangular grid

$$
x=x_{0}, x_{1}, x_{2}, \cdots, x_{m} \text { and } y=y_{0}, y_{1}, y_{2}, \cdots, y_{n}
$$

Rectangular domain: $\left\{(x, y): x_{0} \leq x \leq x_{m}, y_{0} \leq y \leq y_{n}\right\}$
For $x_{i-1} \leq x \leq x_{i}$ and $y_{j-1} \leq y \leq y_{j}$,
$f(x, y)=a_{0,0}+a_{1,0} x+a_{0,1} y+a_{1,1} x y=\left[\begin{array}{ll}1 & x\end{array}\right]\left[\begin{array}{ll}a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1}\end{array}\right]\left[\begin{array}{l}1 \\ y\end{array}\right]$
With data at four corner points, coefficient matrix determined from

$$
\left[\begin{array}{cc}
1 & x_{i-1} \\
1 & x_{i}
\end{array}\right]\left[\begin{array}{cc}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
y_{j-1} & y_{j}
\end{array}\right]=\left[\begin{array}{cc}
f_{i-1, j-1} & f_{i-1, j} \\
f_{i, j-1} & f_{i, j}
\end{array}\right] .
$$

athematical Methods in Engineering and Science

Interpolation and Approximation

Piecewise bilinear interpolation
Data: $f(x, y)$ over a dense rectangular grid

$$
x=x_{0}, x_{1}, x_{2}, \cdots, x_{m} \text { and } y=y_{0}, y_{1}, y_{2}, \cdots, y_{n}
$$

Rectangular domain: $\left\{(x, y): x_{0} \leq x \leq x_{m}, y_{0} \leq y \leq y_{n}\right\}$
For $x_{i-1} \leq x \leq x_{i}$ and $y_{j-1} \leq y \leq y_{j}$,
$f(x, y)=a_{0,0}+a_{1,0} x+a_{0,1} y+a_{1,1} x y=\left[\begin{array}{ll}1 & x\end{array}\right]\left[\begin{array}{ll}a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1}\end{array}\right]\left[\begin{array}{l}1 \\ y\end{array}\right]$
With data at four corner points, coefficient matrix determined from

$$
\left[\begin{array}{cc}
1 & x_{i-1} \\
1 & x_{i}
\end{array}\right]\left[\begin{array}{cc}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
y_{j-1} & y_{j}
\end{array}\right]=\left[\begin{array}{cc}
f_{i-1, j-1} & f_{i-1, j} \\
f_{i, j-1} & f_{i, j}
\end{array}\right] .
$$

Approximation only \mathcal{C}^{0} continuous.
 Alternative local formula through reparametrifization ${ }_{n d}$ Surfaces ${ }^{*}$
With $u=\frac{x-x_{i-1}}{x_{i}-x_{i-1}}$ and $v=\frac{y-y_{j-1}}{y_{j}-y_{j-1}}$, denoting

$$
f_{i-1, j-1}=g_{0,0}, \quad f_{i, j-1}=g_{1,0}, \quad f_{i-1, j}=g_{0,1} \quad \text { and } \quad f_{i, j}=g_{1,1} ;
$$

bilinear interpolation:

$$
g(u, v)=\left[\begin{array}{ll}
1 & u
\end{array}\right]\left[\begin{array}{ll}
\alpha_{0,0} & \alpha_{0,1} \\
\alpha_{1,0} & \alpha_{1,1}
\end{array}\right]\left[\begin{array}{l}
1 \\
v
\end{array}\right] \quad \text { for } u, v \in[0,1] .
$$

Mathematical Methods in Engineering and Science
Interpolation and Approximation
Interpolation of Multivariate Functions
Alternative local formula through reparametrization ${ }_{n d} d$ suffaces ${ }^{*}$
With $u=\frac{x-x_{i-1}}{x_{i}-x_{i-1}}$ and $v=\frac{y-y_{j-1}}{y_{j}-y_{j-1}}$, denoting

$$
f_{i-1, j-1}=g_{0,0}, \quad f_{i, j-1}=g_{1,0}, \quad f_{i-1, j}=g_{0,1} \quad \text { and } \quad f_{i, j}=g_{1,1} ;
$$

bilinear interpolation:

$$
g(u, v)=\left[\begin{array}{ll}
1 & u
\end{array}\right]\left[\begin{array}{ll}
\alpha_{0,0} & \alpha_{0,1} \\
\alpha_{1,0} & \alpha_{1,1}
\end{array}\right]\left[\begin{array}{l}
1 \\
v
\end{array}\right] \quad \text { for } u, v \in[0,1] .
$$

Values at four corner points fix the coefficient matrix as

$$
\left[\begin{array}{ll}
\alpha_{0,0} & \alpha_{0,1} \\
\alpha_{1,0} & \alpha_{1,1}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
g_{0,0} & g_{0,1} \\
g_{1,0} & g_{1,1}
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right] .
$$

Concisely, $\quad g(u, v)=\mathbf{U}^{T} \mathbf{W}^{T} \mathbf{G}_{i, j} \mathbf{W} \mathbf{V}$ in which
$\mathbf{U}=\left[\begin{array}{l}1 \\ u\end{array}\right], \mathbf{V}=\left[\begin{array}{l}1 \\ v\end{array}\right], \mathbf{W}=\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right], \quad \mathbf{G}_{i, j}=\left[\begin{array}{cc}f_{i-1, j-1} & f_{i-1, j} \\ f_{i, j-1} & f_{i, j}\end{array}\right]$

\section*{nto

nto
 Interpolation of Multivariate Functions
 Interpolation of Multivariate Functions
 Piecewise bicubic interpolation

Data: $f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial^{2} f}{\partial x \partial y}$ over grid points
With normalizing parameters u and v,

$$
\begin{gathered}
\frac{\partial g}{\partial u}=\left(x_{i}-x_{i-1}\right) \frac{\partial f}{\partial x}, \frac{\partial g}{\partial v}=\left(y_{j}-y_{j-1}\right) \frac{\partial f}{\partial y}, \quad \text { and } \\
\frac{\partial^{2} g}{\partial u \partial v}=\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right) \frac{\partial^{2} f}{\partial x \partial y}
\end{gathered}
$$

athematical Methods in Engineering and Science
 Interpolation and Approximation

Piecewise bicubic interpolation

Data: $f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial^{2} f}{\partial x \partial y}$ over grid points With normalizing parameters u and v,

$$
\begin{gathered}
\frac{\partial g}{\partial u}=\left(x_{i}-x_{i-1}\right) \frac{\partial f}{\partial x}, \quad \frac{\partial g}{\partial v}=\left(y_{j}-y_{j-1}\right) \frac{\partial f}{\partial y}, \quad \text { and } \\
\frac{\partial^{2} g}{\partial u \partial v}=\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right) \frac{\partial^{2} f}{\partial x \partial y}
\end{gathered}
$$

$\ln \left\{(x, y): x_{i-1} \leq x \leq x_{i}, y_{j-1} \leq y \leq y_{j}\right\}$ or $\{(u, v): u, v \in[0,1]\}$,

$$
g(u, v)=\mathbf{U}^{T} \mathbf{W}^{T} \mathbf{G}_{i, j} \mathbf{W} \mathbf{V}
$$

with $\mathbf{U}=\left[\begin{array}{llll}1 & u & u^{2} & u^{3}\end{array}\right]^{T}, \mathbf{V}=\left[\begin{array}{llll}1 & v & v^{2} & v^{3}\end{array}\right]^{T}$, and

$$
\mathbf{G}_{i, j}=\left[\begin{array}{cccc}
g(0,0) & g(0,1) & g_{v}(0,0) & g_{v}(0,1) \\
g(1,0) & g(1,1) & g_{v}(1,0) & g_{v}(1,1) \\
g_{u}(0,0) & g_{u}(0,1) & g_{u v}(0,0) & g_{u v}(0,1) \\
g_{u}(1,0) & g_{u}(1,1) & g_{u v}(1,0) & g_{u v}(1,1)
\end{array}\right] .
$$

Mathematical Methods in Engineering and Science
A Note on Approximation of Functionsismomiai I Iterpolation Interpolation of Multivariate Functions A Note on Approximation of Functions
Modelling of Curves and Surfaces*
A common strategy of function approximation is to

- express a function as a linear combination of a set of basis functions (which?), and
- determine coefficients based on some criteria (what?).
lathematical Methods in Engineering and Science

A Note on Approximation of Functionsidnemial Interpolation

A common strategy of function approximation is to

- express a function as a linear combination of a set of basis functions (which?), and
- determine coefficients based on some criteria (what?).

Criteria:

Interpolatory approximation: Exact agreement with sampled data
Least square approximation: Minimization of a sum (or integral) of square errors over sampled data
Minimax approximation: Limiting the largest deviation

athematical Methods in Engineering and Science

A common strategy of function approximation is to

- express a function as a linear combination of a set of basis functions (which?), and
- determine coefficients based on some criteria (what?).

Criteria:

Interpolatory approximation: Exact agreement with sampled data
Least square approximation: Minimization of a sum (or integral) of square errors over sampled data
Minimax approximation: Limiting the largest deviation

Basis functions:
polynomials, sinusoids, orthogonal eigenfunctions or field-specific heuristic choice

Interpolation and Approximation

- Lagrange, Newton and Hermite interpolations
- Piecewise polynomial functions and splines
- Bilinear and bicubic interpolation of bivariate functions

Direct extension to vector functions: curves and surfaces!

Necessary Exercises: 1,2,4,6

Basic Methods of Numerical Integration Newton-Cotes Integration Formulae Richardson Extrapolation and Romberg Integration Further Issues

Basic Methods of Numerical Integration

$$
J=\int_{a}^{b} f(x) d x
$$

Basic Methods of Numerical Integration

$$
J=\int_{a}^{b} f(x) d x
$$

Divide $[a, b]$ into n sub-intervals with

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
$$

where $x_{i}-x_{i-1}=h=\frac{b-a}{n}$.

$$
\bar{J}=\sum_{i=1}^{n} h f\left(x_{i}^{*}\right)=h\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)\right]
$$

Taking $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ as x_{i-1} and x_{i}, we get summations J_{1} and J_{2}. As $n \rightarrow \infty$ (i.e. $h \rightarrow 0$), if J_{1} and J_{2} approach the same limit, then function $f(x)$ is integrable over interval $[a, b]$.

A rectangular rule or a one-point rule

$$
J=\int_{a}^{b} f(x) d x
$$

Divide $[a, b]$ into n sub-intervals with

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
$$

where $x_{i}-x_{i-1}=h=\frac{b-a}{n}$.

$$
\bar{J}=\sum_{i=1}^{n} h f\left(x_{i}^{*}\right)=h\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)\right]
$$

Taking $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ as x_{i-1} and x_{i}, we get summations J_{1} and J_{2}.
As $n \rightarrow \infty$ (i.e. $h \rightarrow 0$), if J_{1} and J_{2} approach the same limit, then function $f(x)$ is integrable over interval $[a, b]$.

A rectangular rule or a one-point rule
Question: Which point to take as x_{i}^{*} ?

Newton-Cotes Integration Formulae
Basic Methods of Numerical Integration
746
Newton-Cotes Integration Formulae
Richardson Extrapolation and Romberg Integration Further Issues

Mid-point rule

Selecting x_{i}^{*} as $\bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2}$,

$$
\int_{x_{i-1}}^{x_{i}} f(x) d x \approx h f\left(\bar{x}_{i}\right) \quad \text { and } \quad \int_{a}^{b} f(x) d x \approx h \sum_{i=1}^{n} f\left(\bar{x}_{i}\right)
$$

Newton-Cotes Integration Formulae
Watemaicial
Basic Methods of Numerical Integration

Mid-point rule

Selecting x_{i}^{*} as $\bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2}$,

$$
\int_{x_{i-1}}^{x_{i}} f(x) d x \approx h f\left(\bar{x}_{i}\right) \quad \text { and } \quad \int_{a}^{b} f(x) d x \approx h \sum_{i=1}^{n} f\left(\bar{x}_{i}\right)
$$

Error analysis: From Taylor's series of $f(x)$ about \bar{x}_{i},

$$
\begin{aligned}
\int_{x_{i-1}}^{x_{i}} f(x) d x & =\int_{x_{i-1}}^{x_{i}}\left[f\left(\bar{x}_{i}\right)+f^{\prime}\left(\bar{x}_{i}\right)\left(x-\bar{x}_{i}\right)+f^{\prime \prime}\left(\bar{x}_{i}\right) \frac{\left(x-\bar{x}_{i}\right)^{2}}{2}+\cdots\right] d x \\
& =h f\left(\bar{x}_{i}\right)+\frac{h^{3}}{24} f^{\prime \prime}\left(\bar{x}_{i}\right)+\frac{h^{5}}{1920} f^{i v}\left(\bar{x}_{i}\right)+\cdots
\end{aligned}
$$

third order accurate!

Newton-Cotes Integration Formulae

Basic Methods of Numerical Integration

Mid-point rule

Selecting x_{i}^{*} as $\bar{x}_{i}=\frac{x_{i-1}+x_{i}}{2}$,

$$
\int_{x_{i-1}}^{x_{i}} f(x) d x \approx h f\left(\bar{x}_{i}\right) \quad \text { and } \quad \int_{a}^{b} f(x) d x \approx h \sum_{i=1}^{n} f\left(\bar{x}_{i}\right)
$$

Error analysis: From Taylor's series of $f(x)$ about \bar{x}_{i},

$$
\begin{aligned}
\int_{x_{i-1}}^{x_{i}} f(x) d x & =\int_{x_{i-1}}^{x_{i}}\left[f\left(\bar{x}_{i}\right)+f^{\prime}\left(\bar{x}_{i}\right)\left(x-\bar{x}_{i}\right)+f^{\prime \prime}\left(\bar{x}_{i}\right) \frac{\left(x-\bar{x}_{i}\right)^{2}}{2}+\cdots\right] d x \\
& =h f\left(\bar{x}_{i}\right)+\frac{h^{3}}{24} f^{\prime \prime}\left(\bar{x}_{i}\right)+\frac{h^{5}}{1920} f^{i v}\left(\bar{x}_{i}\right)+\cdots
\end{aligned}
$$

third order accurate!
Over the entire domain $[a, b]$,

$$
\int_{a}^{b} f(x) d x \approx h \sum_{i=1}^{n} f\left(\bar{x}_{i}\right)+\frac{h^{3}}{24} \sum_{i=1}^{n} f^{\prime \prime}\left(\bar{x}_{i}\right)=h \sum_{i=1}^{n} f\left(\bar{x}_{i}\right)+\frac{h^{2}}{24}(b-a) f^{\prime \prime}(\xi)
$$

for $\xi \in[a, b]$ (from mean value theorem): second order accurate.

Trapezoidal rule

Approximating function $f(x)$ with a linear interpolation,

$$
\int_{x_{i-1}}^{x_{i}} f(x) d x \approx \frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]
$$

and

$$
\int_{a}^{b} f(x) d x \approx h\left[\frac{1}{2} f\left(x_{0}\right)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{1}{2} f\left(x_{n}\right)\right] .
$$

athematical Methods in Engineering and Science
 Newton-Cotes Integration Formulae

Trapezoidal rule

Approximating function $f(x)$ with a linear interpolation,

$$
\int_{x_{i-1}}^{x_{i}} f(x) d x \approx \frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]
$$

and

$$
\int_{a}^{b} f(x) d x \approx h\left[\frac{1}{2} f\left(x_{0}\right)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{1}{2} f\left(x_{n}\right)\right] .
$$

Taylor series expansions about the mid-point:

$$
\begin{gathered}
f\left(x_{i-1}\right)=f\left(\bar{x}_{i}\right)-\frac{h}{2} f^{\prime}\left(\bar{x}_{i}\right)+\frac{h^{2}}{8} f^{\prime \prime}\left(\bar{x}_{i}\right)-\frac{h^{3}}{48} f^{\prime \prime \prime}\left(\bar{x}_{i}\right)+\frac{h^{4}}{384} f^{i v}\left(\bar{x}_{i}\right)-\cdots \\
f\left(x_{i}\right)=f\left(\bar{x}_{i}\right)+\frac{h}{2} f^{\prime}\left(\bar{x}_{i}\right)+\frac{h^{2}}{8} f^{\prime \prime}\left(\bar{x}_{i}\right)+\frac{h^{3}}{48} f^{\prime \prime \prime}\left(\bar{x}_{i}\right)+\frac{h^{4}}{384} f^{i v}\left(\bar{x}_{i}\right)+\cdots \\
\Rightarrow \frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]=h f\left(\bar{x}_{i}\right)+\frac{h^{3}}{8} f^{\prime \prime}\left(\bar{x}_{i}\right)+\frac{h^{5}}{384} f^{i v}\left(\bar{x}_{i}\right)+\cdots
\end{gathered}
$$

Recall $\int_{x_{i-1}}^{x_{i}} f(x) d x=h f\left(\bar{x}_{i}\right)+\frac{h^{3}}{24} f^{\prime \prime}\left(\bar{x}_{i}\right)+\frac{h^{5}}{1920} f^{i v}\left(\bar{x}_{i}\right)+\cdots$.

Error estimate of trapezoidal rule

$$
\int_{x_{i-1}}^{x_{i}} f(x) d x=\frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]-\frac{h^{3}}{12} f^{\prime \prime}\left(\bar{x}_{i}\right)-\frac{h^{5}}{480} f^{i v}\left(\bar{x}_{i}\right)+\cdots
$$

Over an extended domain,

$$
\int_{a}^{b} f(x) d x=h\left[\frac{1}{2}\left\{f\left(x_{0}\right)+f\left(x_{n}\right)\right\}+\sum_{i=1}^{n-1} f\left(x_{i}\right)\right]-\frac{h^{2}}{12}(b-a) f^{\prime \prime}(\xi)+\cdots .
$$

The same order of accuracy as the mid-point rule!

Error estimate of trapezoidal rule

$$
\int_{x_{i-1}}^{x_{i}} f(x) d x=\frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]-\frac{h^{3}}{12} f^{\prime \prime}\left(\bar{x}_{i}\right)-\frac{h^{5}}{480} f^{i v}\left(\bar{x}_{i}\right)+\cdots
$$

Over an extended domain,

$$
\int_{a}^{b} f(x) d x=h\left[\frac{1}{2}\left\{f\left(x_{0}\right)+f\left(x_{n}\right)\right\}+\sum_{i=1}^{n-1} f\left(x_{i}\right)\right]-\frac{h^{2}}{12}(b-a) f^{\prime \prime}(\xi)+\cdots .
$$

The same order of accuracy as the mid-point rule!
Different sources of merit

- Mid-point rule: Use of mid-point leads to symmetric error-cancellation.
- Trapezoidal rule: Use of end-points allows double utilization of boundary points in adjacent intervals.
How to use both the merits?

Simpson's rules

Divide $[a, b]$ into an even number $(n=2 m)$ of intervals.
Fit a quadratic polynomial over a panel of two intervals.
For this panel of length $2 h$, two estimates:

$$
\begin{aligned}
M(f) & =2 h f\left(x_{i}\right) \text { and } T(f)=h\left[f\left(x_{i-1}\right)+f\left(x_{i+1}\right)\right] \\
J & =M(f)+\frac{h^{3}}{3} f^{\prime \prime}\left(x_{i}\right)+\frac{h^{5}}{60} f^{i v}\left(x_{i}\right)+\cdots \\
J & =T(f)-\frac{2 h^{3}}{3} f^{\prime \prime}\left(x_{i}\right)-\frac{h^{5}}{15} f^{i v}\left(x_{i}\right)+\cdots
\end{aligned}
$$

Simpson's rules

Divide $[a, b]$ into an even number $(n=2 m)$ of intervals.
Fit a quadratic polynomial over a panel of two intervals.
For this panel of length $2 h$, two estimates:

$$
\begin{aligned}
M(f) & =2 h f\left(x_{i}\right) \text { and } T(f)=h\left[f\left(x_{i-1}\right)+f\left(x_{i+1}\right)\right] \\
J & =M(f)+\frac{h^{3}}{3} f^{\prime \prime}\left(x_{i}\right)+\frac{h^{5}}{60} f^{i v}\left(x_{i}\right)+\cdots \\
J & =T(f)-\frac{2 h^{3}}{3} f^{\prime \prime}\left(x_{i}\right)-\frac{h^{5}}{15} f^{i v}\left(x_{i}\right)+\cdots
\end{aligned}
$$

Simpson's one-third rule (with error estimate):

$$
\int_{x_{i-1}}^{x_{i+1}} f(x) d x=\frac{h}{3}\left[f\left(x_{i-1}\right)+4 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]-\frac{h^{5}}{90} f^{i v}\left(x_{i}\right)
$$

Fifth (not fourth) order accurate!

Newton-Cotes Integration Formulae

Simpson's rules

Divide $[a, b]$ into an even number $(n=2 m)$ of intervals.
Fit a quadratic polynomial over a panel of two intervals.
For this panel of length $2 h$, two estimates:

$$
\begin{aligned}
M(f) & =2 h f\left(x_{i}\right) \text { and } T(f)=h\left[f\left(x_{i-1}\right)+f\left(x_{i+1}\right)\right] \\
J & =M(f)+\frac{h^{3}}{3} f^{\prime \prime}\left(x_{i}\right)+\frac{h^{5}}{60} f^{i v}\left(x_{i}\right)+\cdots \\
J & =T(f)-\frac{2 h^{3}}{3} f^{\prime \prime}\left(x_{i}\right)-\frac{h^{5}}{15} f^{i v}\left(x_{i}\right)+\cdots
\end{aligned}
$$

Simpson's one-third rule (with error estimate):

$$
\int_{x_{i-1}}^{x_{i+1}} f(x) d x=\frac{h}{3}\left[f\left(x_{i-1}\right)+4 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right]-\frac{h^{5}}{90} f^{i v}\left(x_{i}\right)
$$

Fifth (not fourth) order accurate!
A four-point rule: Simpson's three-eighth rule Still higher order rules NOT advisable!

To determine quantity F

- using a step size h, estimate $F(h)$
- error terms: h^{p}, h^{q}, h^{r} etc $(p<q<r)$
- $F=\lim _{\delta \rightarrow 0} F(\delta)$?
- plot $F(h), F(\alpha h), F\left(\alpha^{2} h\right)$ (with $\alpha<1$) and extrapolate?

athematical Methods in Engineering and Science
 Basic Methods of Numerical Integration
 Richardson Extrapolation and Rombekgatrategratihanmume

To determine quantity F

- using a step size h, estimate $F(h)$
- error terms: h^{p}, h^{q}, h^{r} etc $(p<q<r)$
- $F=\lim _{\delta \rightarrow 0} F(\delta)$?
- plot $F(h), F(\alpha h), F\left(\alpha^{2} h\right)$ (with $\alpha<1$) and extrapolate?

$$
\begin{aligned}
F(h) & =F+c h^{p}+\mathcal{O}\left(h^{q}\right) \\
F(\alpha h) & =F+c(\alpha h)^{p}+\mathcal{O}\left(h^{q}\right) \\
F\left(\alpha^{2} h\right) & =F+c\left(\alpha^{2} h\right)^{p}+\mathcal{O}\left(h^{q}\right)
\end{aligned}
$$

athematical Methods in Engineering and Science

Richardson Extrapolation and Rombekgarliategrationimume

To determine quantity F

- using a step size h, estimate $F(h)$
- error terms: h^{p}, h^{q}, h^{r} etc $(p<q<r)$
- $F=\lim _{\delta \rightarrow 0} F(\delta)$?
- plot $F(h), F(\alpha h), F\left(\alpha^{2} h\right)$ (with $\alpha<1$) and extrapolate?

$$
\begin{aligned}
F(h) & =F+c h^{p}+\mathcal{O}\left(h^{q}\right) \\
F(\alpha h) & =F+c(\alpha h)^{p}+\mathcal{O}\left(h^{q}\right) \\
F\left(\alpha^{2} h\right) & =F+c\left(\alpha^{2} h\right)^{p}+\mathcal{O}\left(h^{q}\right)
\end{aligned}
$$

Eliminate c and determine (better estimates of) F :

$$
\begin{aligned}
F_{1}(h) & =\frac{F(\alpha h)-\alpha^{p} F(h)}{1-\alpha^{p}}=F+c_{1} h^{q}+\mathcal{O}\left(h^{r}\right) \\
F_{1}(\alpha h) & =\frac{F\left(\alpha^{2} h\right)-\alpha^{p} F(\alpha h)}{1-\alpha^{p}}=F+c_{1}(\alpha h)^{q}+\mathcal{O}\left(h^{r}\right)
\end{aligned}
$$

athematical Methods in Engineering and Science

Richardson Extrapolation and Rombekgatriategrationimuae gres Itegation

To determine quantity F

- using a step size h, estimate $F(h)$
- error terms: h^{p}, h^{q}, h^{r} etc $(p<q<r)$
- $F=\lim _{\delta \rightarrow 0} F(\delta)$?
- plot $F(h), F(\alpha h), F\left(\alpha^{2} h\right)$ (with $\alpha<1$) and extrapolate?

$$
\begin{aligned}
\boxed{1} F(h) & =F+c h^{p}+\mathcal{O}\left(h^{q}\right) \\
2 \quad F(\alpha h) & =F+c(\alpha h)^{p}+\mathcal{O}\left(h^{q}\right) \\
4 \quad F\left(\alpha^{2} h\right) & =F+c\left(\alpha^{2} h\right)^{p}+\mathcal{O}\left(h^{q}\right)
\end{aligned}
$$

Eliminate c and determine (better estimates of) F :

$$
\begin{aligned}
& \text { (3) } F_{1}(h)=\frac{F(\alpha h)-\alpha^{p} F(h)}{1-\alpha^{p}}=F+c_{1} h^{q}+\mathcal{O}\left(h^{r}\right) \\
& 5 \quad F_{1}(\alpha h)=\frac{F\left(\alpha^{2} h\right)-\alpha^{p} F(\alpha h)}{1-\alpha^{p}}=F+c_{1}(\alpha h)^{q}+\mathcal{O}\left(h^{r}\right)
\end{aligned}
$$

Still better estimate: $6 \quad F_{2}(h)=\frac{F_{1}(\alpha h)-\alpha^{q} F_{1}(h)}{1-\alpha^{q}}=F+\mathcal{O}\left(h^{r}\right)$

athematical Methods in Engineering and Science

Richardson Extrapolati To determine quantity F

- using a step size h, estimate $F(h)$
- error terms: h^{p}, h^{q}, h^{r} etc $(p<q<r)$
- $F=\lim _{\delta \rightarrow 0} F(\delta)$?
- plot $F(h), F(\alpha h), F\left(\alpha^{2} h\right)$ (with $\alpha<1$) and extrapolate?

$$
\begin{aligned}
F(h) & =F+c h^{p}+\mathcal{O}\left(h^{q}\right) \\
F(\alpha h) & =F+c(\alpha h)^{p}+\mathcal{O}\left(h^{q}\right) \\
F\left(\alpha^{2} h\right) & =F+c\left(\alpha^{2} h\right)^{p}+\mathcal{O}\left(h^{q}\right)
\end{aligned}
$$

Eliminate c and determine (better estimates of) F :

$$
\begin{aligned}
F_{1}(h) & =\frac{F(\alpha h)-\alpha^{p} F(h)}{1-\alpha^{p}}=F+c_{1} h^{q}+\mathcal{O}\left(h^{r}\right) \\
F_{1}(\alpha h) & =\frac{F\left(\alpha^{2} h\right)-\alpha^{p} F(\alpha h)}{1-\alpha^{p}}=F+c_{1}(\alpha h)^{q}+\mathcal{O}\left(h^{r}\right)
\end{aligned}
$$

Still better estimate:

$$
F_{2}(h)=\frac{F_{1}(\alpha h)-\alpha^{q} F_{1}(h)}{1-\alpha^{q}}=F+\mathcal{O}\left(h^{r}\right)
$$

Richardson extrapolation

Richardson Extrapolation and Rombekgatritegitation mimomeerg ntegation

Trapezoidal rule for $J=\int_{a}^{b} f(x) d x: \quad p=2, q=4, r=6$ etc

$$
T(f)=J+c h^{2}+d h^{4}+e h^{6}+\cdots
$$

With $\alpha=\frac{1}{2}$, half the sum available for successive levels.

athematical Methods in Engineering and Science

Richardson Extrapolation and Rombekgatriategrationmuae gromg ntegation

Trapezoidal rule for $J=\int_{a}^{b} f(x) d x: \quad p=2, q=4, r=6$ etc

$$
T(f)=J+c h^{2}+d h^{4}+e h^{6}+\cdots
$$

With $\alpha=\frac{1}{2}$, half the sum available for successive levels.

Romberg integration

- Trapezoidal rule with $h=H$: find J_{11}.
- With $h=H / 2$, find J_{12}.

$$
J_{22}=\frac{J_{12}-\left(\frac{1}{2}\right)^{2} J_{11}}{1-\left(\frac{1}{2}\right)^{2}}=\frac{4 J_{12}-J_{11}}{3}
$$

- If $\left|J_{22}-J_{12}\right|$ is within tolerance, STOP. Accept $J \approx J_{22}$.
- With $h=H / 4$, find J_{13}.

$$
J_{23}=\frac{4 J_{13}-J_{12}}{3} \quad \text { and } \quad J_{33}=\frac{J_{23}-\left(\frac{1}{2}\right)^{4} J_{22}}{1-\left(\frac{1}{2}\right)^{4}}=\frac{16 J_{23}-J_{22}}{15}
$$

- If $\left|J_{33}-J_{23}\right|$ is within tolerance, STOP with $J \approx J_{33}$.

Featured functions: adaptive quadrature

- With prescribed tolerance ϵ, assign quota $\epsilon_{i}=\frac{\epsilon\left(x_{i}-x_{i-1}\right)}{b-a}$ of error to every interval $\left[x_{i-1}, x_{i}\right]$.
- For each interval, find two estimates of the integral and estimate the error.
- If error estimate is not within quota, then subdivide.

Featured functions: adaptive quadrature

- With prescribed tolerance ϵ, assign quota $\epsilon_{i}=\frac{\epsilon\left(x_{i}-x_{i-1}\right)}{b-a}$ of error to every interval $\left[x_{i-1}, x_{i}\right]$.
- For each interval, find two estimates of the integral and estimate the error.
- If error estimate is not within quota, then subdivide.

Function as tabulated data

- Only trapezoidal rule applicable?
- Fit a spline over data points and integrate the segments?

Featured functions: adaptive quadrature

- With prescribed tolerance ϵ, assign quota $\epsilon_{i}=\frac{\epsilon\left(x_{i}-x_{i-1}\right)}{b-a}$ of error to every interval $\left[x_{i-1}, x_{i}\right]$.
- For each interval, find two estimates of the integral and estimate the error.
- If error estimate is not within quota, then subdivide.

Function as tabulated data

- Only trapezoidal rule applicable?
- Fit a spline over data points and integrate the segments?

Improper integral: Newton-Cotes closed formulae not applicable!

- Open Newton-Cotes formulae
- Gaussian quadrature

Basic Methods of Numerical Integration
Newton-Cotes Integration Formulae

- Definition of an integral and integrability
- Closed Newton-Cotes formulae and their error estimates
- Richardson extrapolation as a general technique
- Romberg integration
- Adaptive quadrature

Necessary Exercises: 1,2,3,4

Advanced Topics in Numerical Integration*

Gaussian Quadrature Multiple Integrals

athematical Methods in Engineering and Science

Advanced Topics in Numerical Integration*

A typical quadrature formula: a weighted sum $\sum_{i=0}^{n} w_{i} f_{i}$

- f_{i} : function value at i-th sampled point
- w_{i} : corresponding weight

Newton-Cotes formulae:

- Abscissas (x_{i} 's) of sampling prescribed
- Coefficients or weight values determined to eliminate dominant error terms

A typical quadrature formula: a weighted sum $\sum_{i=0}^{n} w_{i} f_{i}$

- f_{i} : function value at i-th sampled point
- w_{i} : corresponding weight

Newton-Cotes formulae:

- Abscissas (x_{i} 's) of sampling prescribed
- Coefficients or weight values determined to eliminate dominant error terms

Gaussian quadrature rules:

- no prescription of quadrature points
- only the 'number' of quadrature points prescribed
- locations as well as weights contribute to the accuracy criteria

A typical quadrature formula: a weighted sum $\sum_{i=0}^{n} w_{i} f_{i}$

- f_{i} : function value at i-th sampled point
- w_{i} : corresponding weight

Newton-Cotes formulae:

- Abscissas (x_{i} 's) of sampling prescribed
- Coefficients or weight values determined to eliminate dominant error terms
Gaussian quadrature rules:
- no prescription of quadrature points
- only the 'number' of quadrature points prescribed
- locations as well as weights contribute to the accuracy criteria
- with n integration points, $2 n$ degrees of freedom
- can be made exact for polynomials of degree up to $2 n-1$

Gaussian Quadrature

A typical quadrature formula: a weighted sum $\sum_{i=0}^{n} w_{i} f_{i}$

- f_{i} : function value at i-th sampled point
- w_{i} : corresponding weight

Newton-Cotes formulae:

- Abscissas (x_{i} 's) of sampling prescribed
- Coefficients or weight values determined to eliminate dominant error terms

Gaussian quadrature rules:

- no prescription of quadrature points
- only the 'number' of quadrature points prescribed
- locations as well as weights contribute to the accuracy criteria
- with n integration points, $2 n$ degrees of freedom
- can be made exact for polynomials of degree up to $2 n-1$
- best locations: interior points
- open quadrature rules: can handle integrable singularities

Mathematical Methods in Engineering and Science
Advanced Topics in Numerical Integration*
Gaussian Quadrature

Gauss-Legendre quadrature

$$
\int_{-1}^{1} f(x) d x=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

Four variables: Insist that it is exact for $1, x, x^{2}$ and x^{3}.

Gauss-Legendre quadrature

$$
\int_{-1}^{1} f(x) d x=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

Four variables: Insist that it is exact for $1, x, x^{2}$ and x^{3}.

$$
\begin{aligned}
w_{1}+w_{2} & =\int_{-1}^{1} d x=2 \\
w_{1} x_{1}+w_{2} x_{2} & =\int_{-1}^{1} x d x=0, \\
w_{1} x_{1}^{2}+w_{2} x_{2}^{2} & =\int_{-1}^{1} x^{2} d x=\frac{2}{3} \\
\text { and } w_{1} x_{1}^{3}+w_{2} x_{2}^{3} & =\int_{-1}^{1} x^{3} d x=0 .
\end{aligned}
$$

Gauss-Legendre quadrature

$$
\int_{-1}^{1} f(x) d x=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

Four variables: Insist that it is exact for $1, x, x^{2}$ and x^{3}.

$$
\begin{aligned}
w_{1}+w_{2} & =\int_{-1}^{1} d x=2, \\
w_{1} x_{1}+w_{2} x_{2} & =\int_{-1}^{1} x d x=0, \\
w_{1} x_{1}^{2}+w_{2} x_{2}^{2} & =\int_{-1}^{1} x^{2} d x=\frac{2}{3} \\
\text { and } w_{1} x_{1}^{3}+w_{2} x_{2}^{3} & =\int_{-1}^{1} x^{3} d x=0 .
\end{aligned}
$$

$$
x_{1}=-x_{2}, w_{1}=w_{2}
$$

Gauss-Legendre quadrature

$$
\int_{-1}^{1} f(x) d x=w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

Four variables: Insist that it is exact for $1, x, x^{2}$ and x^{3}.

$$
\begin{aligned}
w_{1}+w_{2} & =\int_{-1}^{1} d x=2, \\
w_{1} x_{1}+w_{2} x_{2} & =\int_{-1}^{1} x d x=0, \\
w_{1} x_{1}^{2}+w_{2} x_{2}^{2} & =\int_{-1}^{1} x^{2} d x=\frac{2}{3} \\
\text { and } w_{1} x_{1}^{3}+w_{2} x_{2}^{3} & =\int_{-1}^{1} x^{3} d x=0 . \\
x_{1}=-x_{2}, w_{1}=w_{2} \Rightarrow w_{1}=w_{2} & =1, x_{1}=-\frac{1}{\sqrt{3}}, x_{2}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Mathematical Methods in Engineering and Science
Advanced Topics in Numerical Integration*
Gaussian Quadrature
Two-point Gauss-Legendre quadrature formula
$\int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)$
Exact for any cubic polynomial: parallels Simpson's rule!

Mathematical Methods in Engineering and Science
Gaussian Quadrature

Advanced Topics in Numerical Integration*

Two-point Gauss-Legendre quadrature formula

$$
\int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

Exact for any cubic polynomial: parallels Simpson's rule! Three-point quadrature rule along similar lines:

$$
\int_{-1}^{1} f(x) d x=\frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
$$

Two-point Gauss-Legendre quadrature formula

$$
\int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

Exact for any cubic polynomial: parallels Simpson's rule! Three-point quadrature rule along similar lines:

$$
\int_{-1}^{1} f(x) d x=\frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
$$

A large number of formulae: Consult mathematical handbooks.

Mathematical Methods in Engineering and Science
Gaussian Quadrature

Advanced Topics in Numerical Integration*

Two-point Gauss-Legendre quadrature formula

$$
\int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

Exact for any cubic polynomial: parallels Simpson's rule! Three-point quadrature rule along similar lines:

$$
\int_{-1}^{1} f(x) d x=\frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)
$$

A large number of formulae: Consult mathematical handbooks. For domain of integration $[a, b]$,

$$
x=\frac{a+b}{2}+\frac{b-a}{2} t \quad \text { and } \quad d x=\frac{b-a}{2} d t
$$

With scaling and relocation,

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{2} \int_{-1}^{1} f[x(t)] d t
$$

General Framework for n-point formula
$f(x)$: a polynomial of degree $2 n-1$
$p(x)$: Lagrange polynomial through the n quadrature points
$f(x)-p(x)$: a $(2 n-1)$-degree polynomial having n of its roots at the quadrature points

General Framework for n-point formula
$f(x)$: a polynomial of degree $2 n-1$
$p(x)$: Lagrange polynomial through the n quadrature points
$f(x)-p(x)$: a $(2 n-1)$-degree polynomial having n of its roots at the quadrature points

Then, with $\phi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)$,

$$
f(x)-p(x)=\phi(x) q(x)
$$

Quotient polynomial: $q(x)=\sum_{i=0}^{n-1} \alpha_{i} x^{i}$
Direct integration:

$$
\int_{-1}^{1} f(x) d x=\int_{-1}^{1} p(x) d x+\int_{-1}^{1}\left[\phi(x) \sum_{i=0}^{n-1} \alpha_{i} x^{i}\right] d x
$$

General Framework for n-point formula
$f(x)$: a polynomial of degree $2 n-1$
$p(x)$: Lagrange polynomial through the n quadrature points
$f(x)-p(x)$: a $(2 n-1)$-degree polynomial having n of its roots at the quadrature points

Then, with $\phi(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)$,

$$
f(x)-p(x)=\phi(x) q(x)
$$

Quotient polynomial: $q(x)=\sum_{i=0}^{n-1} \alpha_{i} x^{i}$
Direct integration:

$$
\int_{-1}^{1} f(x) d x=\int_{-1}^{1} p(x) d x+\int_{-1}^{1}\left[\phi(x) \sum_{i=0}^{n-1} \alpha_{i} x^{i}\right] d x
$$

How to make the second term vanish?

Mathematical Methods in Engineering and Science
Gaussian Quadrature
Advanced Topics in Numerical Integration*

Choose quadrature points $x_{1}, x_{2}, \cdots, x_{n}$ so that $\phi(x)$ is orthogonal to all polynomials of degree less than n.

Legendre polynomial

Choose quadrature points $x_{1}, x_{2}, \cdots, x_{n}$ so that $\phi(x)$ is orthogonal to all polynomials of degree less than n.

Legendre polynomial

Gauss-Legendre quadrature

1. Choose $P_{n}(x)$, Legendre polynomial of degree n, as $\phi(x)$.
2. Take its roots $x_{1}, x_{2}, \cdots, x_{n}$ as the quadrature points.
3. Fit Lagrange polynomial of $f(x)$, using these n points.

$$
p(x)=L_{1}(x) f\left(x_{1}\right)+L_{2}(x) f\left(x_{2}\right)+\cdots+L_{n}(x) f\left(x_{n}\right)
$$

4.

$$
\int_{-1}^{1} f(x) d x=\int_{-1}^{1} p(x) d x=\sum_{j=1}^{n} f\left(x_{j}\right) \int_{-1}^{1} L_{j}(x) d x
$$

Weight values: $w_{j}=\int_{-1}^{1} L_{j}(x) d x$, for $j=1,2, \cdots, n$

Weight functions in Gaussian quadrature

What is so great about exact integration of polynomials?

Weight functions in Gaussian quadrature

What is so great about exact integration of polynomials?
Demand something else: generalization
Exact integration of polynomials times function $W(x)$
Given weight function $W(x)$ and number (n) of quadrature points, work out the locations (x_{j} 's) of the n points and the corresponding weights (w_{j} 's), so that integral

$$
\int_{a}^{b} W(x) f(x) d x=\sum_{j=1}^{n} w_{j} f\left(x_{j}\right)
$$

is exact for an arbitrary polynomial $f(x)$ of degree up to ($2 n-1$).

Mathematical Methods in Engineering and Science
Gaussian Quadrature

A family of orthogonal polynomials with increasing degree: quadrature points: roots of n-th member of the family.

A family of orthogonal polynomials with increasing degree: quadrature points: roots of n-th member of the family.

For different kinds of functions and different domains,

- Gauss-Chebyshev quadrature
- Gauss-Laguerre quadrature
- Gauss-Hermite quadrature

Several singular functions and infinite domains can be handled.

A family of orthogonal polynomials with increasing degree: quadrature points: roots of n-th member of the family.

For different kinds of functions and different domains,

- Gauss-Chebyshev quadrature
- Gauss-Laguerre quadrature
- Gauss-Hermite quadrature

Several singular functions and infinite domains can be handled.

A very special case:

$$
\text { For } W(x)=1 \text {, Gauss-Legendre quadrature! }
$$

Mathematical Methods in Engineering and Science
Multiple Integrals

$$
S=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

$$
\begin{gathered}
S=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x \\
\Rightarrow F(x)=\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y \text { and } S=\int_{a}^{b} F(x) d x
\end{gathered}
$$

with complete flexibility of individual quadrature methods.

$$
\begin{gathered}
S=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x \\
\Rightarrow F(x)=\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y \text { and } S=\int_{a}^{b} F(x) d x
\end{gathered}
$$

with complete flexibility of individual quadrature methods.

Double integral on rectangular domain

Two-dimensional version of Simpson's one-third rule:

$$
\begin{aligned}
& \int_{-1}^{1} \int_{-1}^{1} f(x, y) d x d y \\
& \quad=w_{0} f(0,0)+w_{1}[f(-1,0)+f(1,0)+f(0,-1)+f(0,1)] \\
& \quad+w_{2}[f(-1,-1)+f(-1,1)+f(1,-1)+f(1,1)]
\end{aligned}
$$

$$
\begin{gathered}
S=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x \\
\Rightarrow F(x)=\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y \text { and } S=\int_{a}^{b} F(x) d x
\end{gathered}
$$

with complete flexibility of individual quadrature methods.

Double integral on rectangular domain

Two-dimensional version of Simpson's one-third rule:

$$
\begin{aligned}
& \int_{-1}^{1} \int_{-1}^{1} f(x, y) d x d y \\
& \quad=w_{0} f(0,0)+w_{1}[f(-1,0)+f(1,0)+f(0,-1)+f(0,1)] \\
& \quad+w_{2}[f(-1,-1)+f(-1,1)+f(1,-1)+f(1,1)]
\end{aligned}
$$

Exact for bicubic functions: $w_{0}=16 / 9, w_{1}=4 / 9$ and $w_{2}=1 / 9$.

Mathematical Methods in Engineering and Science
Advanced Topics in Numerical Integration*
Multiple Integrals

Monte Carlo integration

$$
I=\int_{\Omega} f(\mathbf{x}) d V
$$

Monte Carlo integration

$$
I=\int_{\Omega} f(\mathbf{x}) d V
$$

Requirements:

- a simple volume V enclosing the domain Ω
- a point classification scheme

Generating random points in V,

$$
F(\mathbf{x})=\left\{\begin{aligned}
f(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Monte Carlo integration

$$
I=\int_{\Omega} f(\mathbf{x}) d V
$$

Requirements:

- a simple volume V enclosing the domain Ω
- a point classification scheme

Generating random points in V,

$$
\begin{gathered}
F(\mathbf{x})=\left\{\begin{aligned}
f(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega \\
0 & \text { otherwise }
\end{aligned}\right. \\
I \approx \frac{V}{N} \sum_{i=1}^{N} F\left(\mathbf{x}_{i}\right)
\end{gathered}
$$

Estimate of I (usually) improves with increasing N.

- Basic strategy of Gauss-Legendre quadrature
- Formulation of a double integral from fundamental principle
- Monte Carlo integration

Necessary Exercises: 2,5,6

Numerical Solution of Ordinary Differential Equations Single-Step Methods
Practical Implementation of Single-Step Methods Systems of ODE's
Multi-Step Methods*

Mathematical Methods in Engineering and Science

Single-Step Methods

Initial value problem (IVP) of a first order ODE:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

To determine: $y(x)$ for $x \in[a, b]$ with $x_{0}=a$.

Mathematical Methods in Engineering and Science

Single-Step Methods

Initial value problem (IVP) of a first order ODE:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

To determine: $y(x)$ for $x \in[a, b]$ with $x_{0}=a$.

Numerical solution: Start from the point $\left(x_{0}, y_{0}\right)$.

- $y_{1}=y\left(x_{1}\right)=y\left(x_{0}+h\right)=$?
- Found $\left(x_{1}, y_{1}\right)$.

Mathematical Methods in Engineering and Science

Single-Step Methods

Initial value problem (IVP) of a first order ODE:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

To determine: $y(x)$ for $x \in[a, b]$ with $x_{0}=a$.

Numerical solution: Start from the point $\left(x_{0}, y_{0}\right)$.

- $y_{1}=y\left(x_{1}\right)=y\left(x_{0}+h\right)=$?
- Found $\left(x_{1}, y_{1}\right)$. Repeat up to $x=b$.

Mathematical Methods in Engineering and Science

Single-Step Methods

Initial value problem (IVP) of a first order ODE:

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

To determine: $y(x)$ for $x \in[a, b]$ with $x_{0}=a$.

Numerical solution: Start from the point $\left(x_{0}, y_{0}\right)$.

- $y_{1}=y\left(x_{1}\right)=y\left(x_{0}+h\right)=$?
- Found $\left(x_{1}, y_{1}\right)$. Repeat up to $x=b$.

Information at how many points are used at every step?

- Single-step method: Only the current value
- Multi-step method: History of several recent steps

Mathematical Methods in Engineering and Science

Single-Step Methods

Euler's method

- At $\left(x_{n}, y_{n}\right)$, evaluate slope $\frac{d y}{d x}=f\left(x_{n}, y_{n}\right)$.
- For a small step h,

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

Repitition of such steps constructs $y(x)$.

Mathematical Methods in Engineering and Science

Single-Step Methods

Euler's method

- At $\left(x_{n}, y_{n}\right)$, evaluate slope $\frac{d y}{d x}=f\left(x_{n}, y_{n}\right)$.
- For a small step h,

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

Repitition of such steps constructs $y(x)$.
First order truncated Taylor's series:
Expected error: $\mathcal{O}\left(h^{2}\right)$
Accumulation over steps

$$
\text { Total error: } \mathcal{O}(h)
$$

Euler's method is a first order method.

Mathematical Methods in Engineering and Science

Single-Step Methods

Euler's method

- At $\left(x_{n}, y_{n}\right)$, evaluate slope $\frac{d y}{d x}=f\left(x_{n}, y_{n}\right)$.
- For a small step h,

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

Repitition of such steps constructs $y(x)$.
First order truncated Taylor's series:
Expected error: $\mathcal{O}\left(h^{2}\right)$
Accumulation over steps

$$
\text { Total error: } \mathcal{O}(h)
$$

Euler's method is a first order method.
Question: Total error = Sum of errors over the steps?
Answer: No, in general.

Mathematical Methods in Engineering and Science
Numerical Solution of Ordinary Differential Equations

Single-Step Methods

Initial slope for the entire step: is it a good "Ideatit?

Figure: Euler's method

Mathematical Methods in Engineering and Science

Single-Step Methods

Initial slope for the entire step: is it a good indea?

Figure: Euler's method

Figure: Improved Euler's method

Improved Euler's method or Heun's method

Single-Step Methods

Initial slope for the entire step: is it a good indea?

Figure: Euler's method

Figure: Improved Euler's method

Improved Euler's method or Heun's method

$$
\begin{aligned}
& \bar{y}_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right) \\
& y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, \bar{y}_{n+1}\right)\right]
\end{aligned}
$$

The order of Heun's method is two.

Mathematical Methods in Engineering and Science

Single-Step Methods

Runge-Kutta methods

Second order method:

$$
\begin{array}{ll}
& k_{1}=h f\left(x_{n}, y_{n}\right), \quad k_{2}=h f\left(x_{n}+\alpha h, y_{n}+\beta k_{1}\right) \\
& k=w_{1} k_{1}+w_{2} k_{2}, \\
\text { and } \quad & x_{n+1}=x_{n}+h, \quad y_{n+1}=y_{n}+k
\end{array}
$$

Force agreement up to the second order.

Mathematical Methods in Engineering and Science

Single-Step Methods

Runge-Kutta methods

Second order method:

$$
\begin{aligned}
& k_{1}=h f\left(x_{n}, y_{n}\right), \quad k_{2}=h f\left(x_{n}+\alpha h, y_{n}+\beta k_{1}\right) \\
& k=w_{1} k_{1}+w_{2} k_{2}, \\
& x_{n+1}=x_{n}+h, \quad y_{n+1}=y_{n}+k
\end{aligned}
$$

and
Force agreement up to the second order.

$$
\begin{aligned}
& y_{n+1} \\
& \quad=y_{n}+w_{1} h f\left(x_{n}, y_{n}\right)+w_{2} h\left[f\left(x_{n}, y_{n}\right)+\alpha h f_{x}\left(x_{n}, y_{n}\right)+\beta k_{1} f_{y}\left(x_{n}, y_{n}\right)+\right. \\
& =y_{n}+\left(w_{1}+w_{2}\right) h f\left(x_{n}, y_{n}\right)+h^{2} w_{2}\left[\alpha f_{x}\left(x_{n}, y_{n}\right)+\beta f\left(x_{n}, y_{n}\right) f_{y}\left(x_{n}, y_{n}\right)\right]
\end{aligned}
$$

From Taylor's series, using $y^{\prime}=f(x, y)$ and $y^{\prime \prime}=f_{x}+f f_{y}$,

$$
y\left(x_{n+1}\right)=y_{n}+h f\left(x_{n}, y_{n}\right)+\frac{h^{2}}{2}\left[f_{x}\left(x_{n}, y_{n}\right)+f\left(x_{n}, y_{n}\right) f_{y}\left(x_{n}, y_{n}\right)\right]+\cdots
$$

Mathematical Methods in Engineering and Science

Single-Step Methods

Runge-Kutta methods

Second order method:

$$
\begin{aligned}
& k_{1}=h f\left(x_{n}, y_{n}\right), \quad k_{2}=h f\left(x_{n}+\alpha h, y_{n}+\beta k_{1}\right) \\
& k=w_{1} k_{1}+w_{2} k_{2}, \\
& x_{n+1}=x_{n}+h, \quad y_{n+1}=y_{n}+k
\end{aligned}
$$

and
Force agreement up to the second order.

$$
\begin{aligned}
& y_{n+1} \\
& \quad=y_{n}+w_{1} h f\left(x_{n}, y_{n}\right)+w_{2} h\left[f\left(x_{n}, y_{n}\right)+\alpha h f_{x}\left(x_{n}, y_{n}\right)+\beta k_{1} f_{y}\left(x_{n}, y_{n}\right)+\right. \\
& =y_{n}+\left(w_{1}+w_{2}\right) h f\left(x_{n}, y_{n}\right)+h^{2} w_{2}\left[\alpha f_{x}\left(x_{n}, y_{n}\right)+\beta f\left(x_{n}, y_{n}\right) f_{y}\left(x_{n}, y_{n}\right)\right]
\end{aligned}
$$

From Taylor's series, using $y^{\prime}=f(x, y)$ and $y^{\prime \prime}=f_{x}+f f_{y}$,

$$
\begin{aligned}
& y\left(x_{n+1}\right)=y_{n}+h f\left(x_{n}, y_{n}\right)+\frac{h^{2}}{2}\left[f_{x}\left(x_{n}, y_{n}\right)+f\left(x_{n}, y_{n}\right) f_{y}\left(x_{n}, y_{n}\right)\right]+\cdots \\
& w_{1}+w_{2}=1, \quad \alpha w_{2}=\beta w_{2}=\frac{1}{2}
\end{aligned}
$$

Single-Step Methods
Runge-Kutta methods
Second order method:

$$
\begin{aligned}
& k_{1}=h f\left(x_{n}, y_{n}\right), \quad k_{2}=h f\left(x_{n}+\alpha h, y_{n}+\beta k_{1}\right) \\
& k=w_{1} k_{1}+w_{2} k_{2} \\
& x_{n+1}=x_{n}+h, \quad y_{n+1}=y_{n}+k
\end{aligned}
$$

and
Force agreement up to the second order.

$$
\begin{aligned}
& y_{n+1} \\
& \quad=y_{n}+w_{1} h f\left(x_{n}, y_{n}\right)+w_{2} h\left[f\left(x_{n}, y_{n}\right)+\alpha h f_{x}\left(x_{n}, y_{n}\right)+\beta k_{1} f_{y}\left(x_{n}, y_{n}\right)+\right. \\
& =y_{n}+\left(w_{1}+w_{2}\right) h f\left(x_{n}, y_{n}\right)+h^{2} w_{2}\left[\alpha f_{x}\left(x_{n}, y_{n}\right)+\beta f\left(x_{n}, y_{n}\right) f_{y}\left(x_{n}, y_{n}\right)\right]
\end{aligned}
$$

From Taylor's series, using $y^{\prime}=f(x, y)$ and $y^{\prime \prime}=f_{x}+f f_{y}$,
$y\left(x_{n+1}\right)=y_{n}+h f\left(x_{n}, y_{n}\right)+\frac{h^{2}}{2}\left[f_{x}\left(x_{n}, y_{n}\right)+f\left(x_{n}, y_{n}\right) f_{y}\left(x_{n}, y_{n}\right)\right]+\cdots$
$w_{1}+w_{2}=1, \alpha w_{2}=\beta w_{2}=\frac{1}{2} \Rightarrow \alpha=\beta=\frac{1}{2 w_{2}}, \quad w_{1}=1-w_{2}$

Mathematical Methods in Engineering and Science

Single-Step Methods

With continuous choice of w_{2},
a family of second order Runge Kutta (RK2) formulae
Popular form of RK2: with choice $w_{2}=1$,

$$
\begin{aligned}
& k_{1}=h f\left(x_{n}, y_{n}\right), \quad k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
& x_{n+1}=x_{n}+h, \quad y_{n+1}=y_{n}+k_{2}
\end{aligned}
$$

Mathematical Methods in Engineering and Science

Single-Step Methods

With continuous choice of w_{2},
a family of second order Runge Kutta (RK2) formulae
Popular form of RK2: with choice $w_{2}=1$,

$$
\begin{aligned}
& k_{1}=h f\left(x_{n}, y_{n}\right), \quad k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
& x_{n+1}=x_{n}+h, \quad y_{n+1}=y_{n}+k_{2}
\end{aligned}
$$

Fourth order Runge-Kutta method (RK4):

$$
\begin{aligned}
& k_{1}=h f\left(x_{n}, y_{n}\right) \\
& k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right) \\
& k_{3}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \\
& k_{4}=h f\left(x_{n}+h, y_{n}+k_{3}\right) \\
& k=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& x_{n+1}=x_{n}+h, \quad y_{n+1}=y_{n}+k
\end{aligned}
$$

Mathematical Methods in Engineering and Science
Numerical Solution of Ordinary Differential Equations

Question: How to decide whether the error is is withistith tolerance?

Mathematical Methods in Engineering and Science
 Systems of ODE's
Question: How to decide whether the error is is within ist toterance? Additional estimates:

- handle to monitor the error
- further efficient algorithms

Systems of ODE's

Question: How to decide whether the error is is within int toterance? Additional estimates:

- handle to monitor the error
- further efficient algorithms

Runge-Kutta method with adaptive step size

In an interval $\left[x_{n}, x_{n}+h\right]$,

$$
y_{n+1}^{(1)}=y_{n+1}+c h^{5}+\text { higher order terms }
$$

Over two steps of size $\frac{h}{2}$,

$$
y_{n+1}^{(2)}=y_{n+1}+2 c\left(\frac{h}{2}\right)^{5}+\text { higher order terms }
$$

Practical Implementation of Single-Stiepician ithelods singe step methods

Question: How to decide whether the error is is withistint tolerance? Additional estimates:

- handle to monitor the error
- further efficient algorithms

Runge-Kutta method with adaptive step size
In an interval $\left[x_{n}, x_{n}+h\right]$,

$$
y_{n+1}^{(1)}=y_{n+1}+c h^{5}+\text { higher order terms }
$$

Over two steps of size $\frac{h}{2}$,

$$
y_{n+1}^{(2)}=y_{n+1}+2 c\left(\frac{h}{2}\right)^{5}+\text { higher order terms }
$$

Difference of two estimates:

$$
\Delta=y_{n+1}^{(1)}-y_{n+1}^{(2)} \approx \frac{15}{16} c h^{5}
$$

Best available value: $y_{n+1}^{*}=y_{n+1}^{(2)}-\frac{\Delta}{15}=\frac{16 y_{n+1}^{(2)}-y_{n+1}^{(1)}}{15}$

Mathematical Methods in Engineering and Science
Numerical Solution of Ordinary Differential Equations

Evaluation of a step:
$\Delta>\epsilon$: Step size is too large for accuracy. Subdivide the interval.
$\Delta \ll \epsilon$: Step size is inefficient!

Mathematical Methods in Engineering and Science

Evaluation of a step:
$\Delta>\epsilon$: Step size is too large for accuracy. Subdivide the interval.
$\Delta \ll \epsilon$: Step size is inefficient!
Start with a large step size.
Keep subdividing intervals whenever $\Delta>\epsilon$.
Fast marching over smooth segments and small steps in zones featured with rapid changes in $y(x)$.
athematical Methods in Engineering and Science Numerical Solution of Ordinary Differential Equations

Evaluation of a step:
$\Delta>\epsilon$: Step size is too large for accuracy. Subdivide the interval.
$\Delta \ll \epsilon$: Step size is inefficient!
Start with a large step size.
Keep subdividing intervals whenever $\Delta>\epsilon$.
Fast marching over smooth segments and small steps in zones featured with rapid changes in $y(x)$.

Runge-Kutta-Fehlberg method
With six function values,
An RK4 formula embedded in an RK5 formula

- two independent estimates and an error estimate!

RKF45 in professional implementations

Mathematical Methods in Engineering and Science

Systems of ODE's

Methods for a single first order ODE directly applicable to a first order vector ODE

A typical IVP with an ODE system:

$$
\frac{d \mathbf{y}}{d x}=\mathbf{f}(x, \mathbf{y}), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}
$$

Systems of ODE's

Methods for a single first order ODE directly applicable to a first order vector ODE

A typical IVP with an ODE system:

$$
\frac{d \mathbf{y}}{d x}=\mathbf{f}(x, \mathbf{y}), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}
$$

An n-th order ODE: convert into a system of first order ODE's Defining state vector $\mathbf{z}(x)=\left[\begin{array}{llll}y(x) & y^{\prime}(x) & \cdots & y^{(n-1)}(x)\end{array}\right]^{T}$, work out $\frac{d z}{d x}$ to form the state space equation. Initial condition: $\mathbf{z}\left(x_{0}\right)=\left[\begin{array}{llll}y\left(x_{0}\right) & y^{\prime}\left(x_{0}\right) & \cdots & y^{(n-1)}\left(x_{0}\right)\end{array}\right]^{T}$

Systems of ODE's

Methods for a single first order ODE
directly applicable to a first order vector ODE
A typical IVP with an ODE system:

$$
\frac{d \mathbf{y}}{d x}=\mathbf{f}(x, \mathbf{y}), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}
$$

An n-th order ODE: convert into a system of first order ODE's Defining state vector $\mathbf{z}(x)=\left[\begin{array}{llll}y(x) & y^{\prime}(x) & \cdots & y^{(n-1)}(x)\end{array}\right]^{T}$, work out $\frac{d z}{d x}$ to form the state space equation.

Initial condition: $\mathbf{z}\left(x_{0}\right)=\left[\begin{array}{llll}y\left(x_{0}\right) & y^{\prime}\left(x_{0}\right) & \cdots & y^{(n-1)}\left(x_{0}\right)\end{array}\right]^{T}$
A system of higher order ODE's with the highest order derivatives of orders $n_{1}, n_{2}, n_{3}, \cdots, n_{k}$

- Cast into the state space form with the state vector of dimension $n=n_{1}+n_{2}+n_{3}+\cdots+n_{k}$

Mathematical Methods in Engineering and Science

Systems of ODE's

State space formulation is directly applicable when
the highest order derivatives can be solved explicitly.
The resulting form of the ODE's: normal system of ODE's

Mathematical Methods in Engineering and Science

Systems of ODE's

State space formulation is directly applicable when
the highest order derivatives can be solved explicitly.
The resulting form of the ODE's: normal system of ODE's

Example:

$$
\begin{aligned}
y \frac{d^{2} x}{d t^{2}}-3\left(\frac{d y}{d t}\right)\left(\frac{d x}{d t}\right)^{2}+2 x\left(\frac{d x}{d t}\right) \sqrt{\frac{d^{2} y}{d t^{2}}}+4 & =0 \\
e^{x y} \frac{d^{3} y}{d t^{3}}-y\left(\frac{d^{2} y}{d t^{2}}\right)^{3 / 2}+2 x+1 & =e^{-t}
\end{aligned}
$$

Systems of ODE's

State space formulation is directly applicable when the highest order derivatives can be solved explicitly.

The resulting form of the ODE's: normal system of ODE's

Example:

$$
\begin{aligned}
y \frac{d^{2} x}{d t^{2}}-3\left(\frac{d y}{d t}\right)\left(\frac{d x}{d t}\right)^{2}+2 x\left(\frac{d x}{d t}\right) \sqrt{\frac{d^{2} y}{d t^{2}}}+4 & =0 \\
e^{x y} \frac{d^{3} y}{d t^{3}}-y\left(\frac{d^{2} y}{d t^{2}}\right)^{3 / 2}+2 x+1 & =e^{-t}
\end{aligned}
$$

State vector: $\mathbf{z}(t)=\left[\begin{array}{lllll}x & \frac{d x}{d t} & \text { y } & \frac{d y}{d t} & \frac{d^{2} y}{d t^{2}}\end{array}\right]^{T}$
With three trivial derivatives $z_{1}^{\prime}(t)=z_{2}, z_{3}^{\prime}(t)=z_{4}$ and $z_{4}^{\prime}(t)=z_{5}$ and the other two obtained from the given ODE's,
we get the state space equations as $\frac{d \mathbf{z}}{d t}=\mathbf{f}(t, \mathbf{z})$.

Single-step methods: every step a brand new IVP!
Why not try to capture the trend?

athematical Methods in Engineering and Science
 Multi-Step Methods*

Single-step methods: every step a brand new IVP!
Why not try to capture the trend?
A typical multi-step formula:

$$
\begin{aligned}
y_{n+1}=y_{n} & +h\left[c_{0} f\left(x_{n+1}, y_{n+1}\right)+c_{1} f\left(x_{n}, y_{n}\right)\right. \\
& \left.+c_{2} f\left(x_{n-1}, y_{n-1}\right)+c_{3} f\left(x_{n-2}, y_{n-2}\right)+\cdots\right]
\end{aligned}
$$

Determine coefficients by demanding the exactness for leading polynomial terms.

athematical Methods in Engineering and Science
 Multi-Step Methods*

Single-step methods: every step a brand new IVP!
Why not try to capture the trend?
A typical multi-step formula:

$$
\begin{aligned}
y_{n+1}=y_{n} & +h\left[c_{0} f\left(x_{n+1}, y_{n+1}\right)+c_{1} f\left(x_{n}, y_{n}\right)\right. \\
& \left.+c_{2} f\left(x_{n-1}, y_{n-1}\right)+c_{3} f\left(x_{n-2}, y_{n-2}\right)+\cdots\right]
\end{aligned}
$$

Determine coefficients by demanding the exactness for leading polynomial terms.

Explicit methods: $c_{0}=0$, evaluation easy, but involves extrapolation.
Implicit methods: $c_{0} \neq 0$, difficult to evaluate, but better stability.
Predictor-corrector methods
Example: Adams-Bashforth-Moulton method

- Euler's and Runge-Kutta methods
- Step size adaptation
- State space formulation of dynamic systems

Necessary Exercises: 1,2,5,6

ODE Solutions: Advanced Issues
Stability Analysis Implicit Methods Stiff Differential Equations
Boundary Value Problems

Adaptive RK4 is an extremely successful method. But, its scope has a limitation.

Focus of explicit methods (such as RK) is accuracy and efficiency. The issue of stabilty is handled indirectly.

Stability Analysis

Adaptive RK4 is an extremely successful method.
But, its scope has a limitation.
Focus of explicit methods (such as RK) is accuracy and efficiency.
The issue of stabilty is handled indirectly.
Stabilty of explicit methods
For the ODE system $\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y})$, Euler's method gives

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right) h+\mathcal{O}\left(h^{2}\right)
$$

Taylor's series of the actual solution:

$$
\mathbf{y}\left(x_{n+1}\right)=\mathbf{y}\left(x_{n}\right)+\mathbf{f}\left(x_{n}, \mathbf{y}\left(x_{n}\right)\right) h+\mathcal{O}\left(h^{2}\right)
$$

Stability Analysis

Adaptive RK4 is an extremely successful method.
But, its scope has a limitation.
Focus of explicit methods (such as RK) is accuracy and efficiency.
The issue of stabilty is handled indirectly.

Stabilty of explicit methods

For the ODE system $\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y})$, Euler's method gives

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right) h+\mathcal{O}\left(h^{2}\right)
$$

Taylor's series of the actual solution:

$$
\mathbf{y}\left(x_{n+1}\right)=\mathbf{y}\left(x_{n}\right)+\mathbf{f}\left(x_{n}, \mathbf{y}\left(x_{n}\right)\right) h+\mathcal{O}\left(h^{2}\right)
$$

Discrepancy or error:

$$
\begin{aligned}
\Delta_{n+1} & =\mathbf{y}_{n+1}-\mathbf{y}\left(x_{n+1}\right) \\
& =\left[\mathbf{y}_{n}-\mathbf{y}\left(x_{n}\right)\right]+\left[\mathbf{f}\left(x_{n}, \mathbf{y}_{n}\right)-\mathbf{f}\left(x_{n}, \mathbf{y}\left(x_{n}\right)\right)\right] h+\mathcal{O}\left(h^{2}\right) \\
& =\Delta_{n}+\left[\frac{\partial \mathbf{f}}{\partial \mathbf{y}}\left(x_{n}, \overline{\mathbf{y}}_{n}\right) \Delta_{n}\right] h+\mathcal{O}\left(h^{2}\right) \approx(\mathbf{l}+h \mathbf{J}) \Delta_{n}
\end{aligned}
$$

Mathematical Methods in Engineering and Science
ODE Solutions: Advanced Issues
Stability Analysis
Euler's step magnifies the error by a factor (($\left.{ }^{\prime \prime}+\mathrm{j} \mathbf{j}\right)$).

Using J loosely as the representative Jacobian,

$$
\Delta_{n+1} \approx(\mathbf{I}+h \mathbf{J})^{n} \Delta_{1}
$$

For stability, $\Delta_{n+1} \rightarrow 0$ as $n \rightarrow \infty$.
Eigenvalues of $(\mathbf{I}+h \mathbf{J})$ must fall within the unit circle $|z|=1$. By shift theorem, eigenvalues of $h \mathbf{J}$ must fall inside the unit circle with the centre at $z_{0}=-1$.

$$
|1+h \lambda|<1 \Rightarrow h<\frac{-2 \operatorname{Re}(\lambda)}{|\lambda|^{2}}
$$

Euler's step magnifies the error by a factor ($\mathbf{1}+h \mathbf{~ P} \mathbf{~})$.
Using J loosely as the representative Jacobian,

$$
\Delta_{n+1} \approx(\mathbf{I}+h \mathbf{J})^{n} \Delta_{1}
$$

For stability, $\Delta_{n+1} \rightarrow 0$ as $n \rightarrow \infty$.
Eigenvalues of $(\mathbf{I}+h \mathbf{J})$ must fall within the unit circle $|z|=1$. By shift theorem, eigenvalues of $h \mathbf{J}$ must fall inside the unit circle with the centre at $z_{0}=-1$.

$$
|1+h \lambda|<1 \Rightarrow h<\frac{-2 \operatorname{Re}(\lambda)}{|\lambda|^{2}}
$$

Note: Same result for single ODE $w^{\prime}=\lambda w$, with complex λ.
For second order Runge-Kutta method,

$$
\Delta_{n+1}=\left[1+h \lambda+\frac{h^{2} \lambda^{2}}{2}\right] \Delta_{n}
$$

Region of stability in the plane of $z=h \lambda:\left|1+z+\frac{z^{2}}{2}\right|<1$

Stability Annalysis
ODE Solutions: Advanced Issues

Figure: Stability regions of explicit methods

Question: What do these stability regions mean with reference to the system eigenvalues?
Question: How does the step size adaptation of RK4 operate on a system with eigenvalues on the left half of complex plane?

Stability Annalysis
ODE Solutions: Advanced Issues

Figure: Stability regions of explicit methods

Question: What do these stability regions mean with reference to the system eigenvalues?
Question: How does the step size adaptation of RK4 operate on a system with eigenvalues on the left half of complex plane? Step size adaptation tackles instability by its symptom!

Mathematical Methods in Engineering and Science
Implicit Methods

Backward Euler's method

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right) h
$$

Solve it?

Mathematical Methods in Engineering and Science
Implicit Methods

Backward Euler's method

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right) h
$$

Solve it? Is it worth solving?

$$
\begin{aligned}
\Delta_{n+1} & \approx \mathbf{y}_{n+1}-\mathbf{y}\left(x_{n+1}\right) \\
& =\left[\mathbf{y}_{n}-\mathbf{y}\left(x_{n}\right)\right]+h\left[\mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right)-\mathbf{f}\left(x_{n+1}, \mathbf{y}\left(x_{n+1}\right)\right)\right] \\
& =\Delta_{n}+h \mathbf{J}\left(x_{n+1}, \overline{\mathbf{y}}_{n+1}\right) \Delta_{n+1}
\end{aligned}
$$

Notice the flip in the form of this equation.

Implicit Methods
Backward Euler's method

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right) h
$$

Solve it? Is it worth solving?

$$
\begin{aligned}
\Delta_{n+1} & \approx \mathbf{y}_{n+1}-\mathbf{y}\left(x_{n+1}\right) \\
& =\left[\mathbf{y}_{n}-\mathbf{y}\left(x_{n}\right)\right]+h\left[\mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right)-\mathbf{f}\left(x_{n+1}, \mathbf{y}\left(x_{n+1}\right)\right)\right] \\
& =\Delta_{n}+h \mathbf{J}\left(x_{n+1}, \overline{\mathbf{y}}_{n+1}\right) \Delta_{n+1}
\end{aligned}
$$

Notice the flip in the form of this equation.

$$
\Delta_{n+1} \approx(\mathbf{I}-h \mathbf{J})^{-1} \Delta_{n}
$$

Stability: eigenvalues of $(\mathbf{I}-h \mathbf{J})$ outside the unit circle $|z|=1$

$$
|h \lambda-1|>1 \Rightarrow h>\frac{2 \operatorname{Re}(\lambda)}{|\lambda|^{2}}
$$

Absolute stability for a stable ODE, i.e. one with $\operatorname{Re}(\lambda)<0$

Mathematical Methods in Engineering and Science
ODE Solutions: Advanced Issues

Implicit Methods

Figure: Stability region of backward Euler's method

Mathematical Methods in Engineering and Science

Implicit Methods

Figure: Stability region of backward Euler's method
How to solve $\mathbf{g}\left(\mathbf{y}_{n+1}\right)=\mathbf{y}_{n}+h \mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right)-\mathbf{y}_{n+1}=\mathbf{0}$ for \mathbf{y}_{n+1} ?

Figure: Stability region of backward Euler's method
How to solve $\mathbf{g}\left(\mathbf{y}_{n+1}\right)=\mathbf{y}_{n}+h \mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}\right)-\mathbf{y}_{n+1}=\mathbf{0}$ for \mathbf{y}_{n+1} ? Typical Newton's iteration:

$$
\mathbf{y}_{n+1}^{(k+1)}=\mathbf{y}_{n+1}^{(k)}+(\mathbf{I}-h \mathbf{J})^{-1}\left[\mathbf{y}_{n}-\mathbf{y}_{n+1}^{(k)}+h \mathbf{f}\left(x_{n+1}, \mathbf{y}_{n+1}^{(k)}\right)\right]
$$

Semi-implicit Euler's method for local solution:

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h(\mathbf{I}-h \mathbf{J})^{-1} \mathbf{f}\left(x_{n+1}, \mathbf{y}_{n}\right)
$$

Stiff Differential Equations

Example: IVP of a mass-spring-damper systerm:

$$
\ddot{x}+c \dot{x}+k x=0, \quad x(0)=0, \quad \dot{x}(0)=1
$$

(a) $c=3, k=2: \quad x=e^{-t}-e^{-2 t}$
(b) $c=49, k=600: x=e^{-24 t}-e^{-25 t}$

(a) Case of $c=3, k=2$

(b) Case of $c=49, k=600$

Figure: Solutions of a mass-spring-damper system: ordinary situations
(c) $c=302, k=600: \quad x=\frac{e^{-2 t}-e^{-300 t}}{298}$

(c) With RK4

Figure: Solutions of a mass-spring-damper system: stiff situation

Stiff Differential Equations

$$
\text { (c) } c=302, k=600: \quad x=\frac{e^{-2 t}-e^{-300 t}}{298}
$$

(c) With RK4

(d) With implicit Euler

Figure: Solutions of a mass-spring-damper system: stiff situation
To solve stiff ODE systems, use implicit method, preferably with explicit Jacobian.

Boundary Value Problems

A paradigm shift from the initial value problems

- A ball is thrown with a particular velocity. What trajectory does the ball follow?
- How to throw a ball such that it hits a particular window at a neighbouring house after 15 seconds?

Boundary Value Problems

A paradigm shift from the initial value problems

- A ball is thrown with a particular velocity. What trajectory does the ball follow?
- How to throw a ball such that it hits a particular window at a neighbouring house after 15 seconds?

Two-point BVP in ODE's:
boundary conditions at two values of the independent variable

Boundary Value Problems

A paradigm shift from the initial value problems

- A ball is thrown with a particular velocity. What trajectory does the ball follow?
- How to throw a ball such that it hits a particular window at a neighbouring house after 15 seconds?

Two-point BVP in ODE's:

boundary conditions at two values of the independent variable

Methods of solution

- Shooting method
- Finite difference (relaxation) method
- Finite element method

Boundary Value Problems

ODE Solutions: Advanced Issues

Shooting method

follows the strategy to adjust trials to hit a target.
Consider the 2-point BVP

$$
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \quad \mathbf{g}_{1}(\mathbf{y}(a))=\mathbf{0}, \quad \mathbf{g}_{2}(\mathbf{y}(b))=\mathbf{0}
$$

where $\mathbf{g}_{1} \in R^{n_{1}}, \mathbf{g}_{2} \in R^{n_{2}}$ and $n_{1}+n_{2}=n$.

- Parametrize initial state: $\mathbf{y}(a)=\mathbf{h}(\mathbf{p})$ with $\mathbf{p} \in R^{n_{2}}$.
- Guess n_{2} values of \mathbf{p} to define IVP

$$
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \quad \mathbf{y}(a)=\mathbf{h}(\mathbf{p})
$$

- Solve this IVP for $[a, b]$ and evaluate $\mathbf{y}(b)$.
- Define error vector $\mathbf{E}(\mathbf{p})=\mathbf{g}_{2}(\mathbf{y}(b))$.

athematical Methods in Engineering and Science
 Boundary Value Problems

Objective: To solve $\mathbf{E}(\mathbf{p})=\mathbf{0}$
From current vector \mathbf{p}, n_{2} perturbations as $\mathbf{p}+\mathbf{e}_{i} \delta$: Jacobian $\frac{\partial \mathbf{E}}{\partial \mathbf{p}}$
Each Newton's step: solution of $n_{2}+1$ initial value problems!

Objective: To solve $\mathbf{E}(\mathbf{p})=\mathbf{0}$
From current vector \mathbf{p}, n_{2} perturbations as $\mathbf{p}+\mathbf{e}_{i} \delta$: Jacobian $\frac{\partial \mathbf{E}}{\partial \mathbf{p}}$
Each Newton's step: solution of $n_{2}+1$ initial value problems!

- Computational cost
- Convergence not guaranteed (initial guess important)

Boundary Value Problems

Objective: To solve $\mathbf{E}(\mathbf{p})=\mathbf{0}$
From current vector \mathbf{p}, n_{2} perturbations as $\mathbf{p}+\mathbf{e}_{i} \delta$: Jacobian $\frac{\partial \mathbf{E}}{\partial \mathbf{p}}$
Each Newton's step: solution of $n_{2}+1$ initial value problems!

- Computational cost
- Convergence not guaranteed (initial guess important)

Merits of shooting method

- Very few parameters to start
- In many cases, it is found quite efficient.

Boundary Value Problems

Finite difference (relaxation) method
adopts a global perspective.

1. Discretize domain $[a, b]$: grid of points
$a=x_{0}<x_{1}<x_{2}<\cdots<x_{N-1}<x_{N}=b$.
Function values $\mathbf{y}\left(x_{i}\right): n(N+1)$ unknowns
2. Replace the ODE over intervals by finite difference equations. Considering mid-points, a typical (vector) FDE:
$\mathbf{y}_{i}-\mathbf{y}_{i-1}-h \mathbf{f}\left(\frac{x_{i}+x_{i-1}}{2}, \frac{\mathbf{y}_{i}+\mathbf{y}_{i-1}}{2}\right)=\mathbf{0}, \quad$ for $i=1,2,3, \cdots, N$
$n N$ (scalar) equations
3. Assemble additional n equations from boundary conditions.
4. Starting from a guess solution over the grid, solve this system. (Sparse Jacobian is an advantage.)

Boundary Value Problems

Finite difference (relaxation) method
adopts a global perspective.

1. Discretize domain $[a, b]$: grid of points
$a=x_{0}<x_{1}<x_{2}<\cdots<x_{N-1}<x_{N}=b$.
Function values $\mathbf{y}\left(x_{i}\right): n(N+1)$ unknowns
2. Replace the ODE over intervals by finite difference equations. Considering mid-points, a typical (vector) FDE:
$\mathbf{y}_{i}-\mathbf{y}_{i-1}-h \mathbf{f}\left(\frac{x_{i}+x_{i-1}}{2}, \frac{\mathbf{y}_{i}+\mathbf{y}_{i-1}}{2}\right)=\mathbf{0}, \quad$ for $i=1,2,3, \cdots, N$
$n N$ (scalar) equations
3. Assemble additional n equations from boundary conditions.
4. Starting from a guess solution over the grid, solve this system.
(Sparse Jacobian is an advantage.)
Iterative schemes for solution of systems of linear equations.

- Numerical stability of ODE solution methods
- Computational cost versus better stability of implicit methods
- Multiscale responses leading to stiffness: failure of explicit methods
- Implicit methods for stiff systems
- Shooting method for two-point boundary value problems
- Relaxation method for boundary value problems

Necessary Exercises: 1,2,3,4,5

Existence and Uniqueness Theory

Well-Posedness of Initial Value Problems Uniqueness Theorems Extension to ODE Systems
Closure
"We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes."

Well-Posedness of Initial Value Problêhêh
Initial value problem

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

From (x, y), the trajectory develops according to $y^{\prime}=f(x, y)$.
The new point: $(x+\delta x, y+f(x, y) \delta x)$
The slope now: $f(x+\delta x, y+f(x, y) \delta x)$
Question: Was the old direction of approach valid?

Initial value problem

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

From (x, y), the trajectory develops according to $y^{\prime}=f(x, y)$.
The new point: $(x+\delta x, y+f(x, y) \delta x)$
The slope now: $f(x+\delta x, y+f(x, y) \delta x)$
Question: Was the old direction of approach valid?
With $\delta x \rightarrow 0$, directions appropriate, if

$$
\lim _{x \rightarrow \bar{x}} f(x, y)=f(\bar{x}, y(\bar{x}))
$$

i.e. if $f(x, y)$ is continuous.

Initial value problem

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

From (x, y), the trajectory develops according to $y^{\prime}=f(x, y)$.
The new point: $(x+\delta x, y+f(x, y) \delta x)$
The slope now: $f(x+\delta x, y+f(x, y) \delta x)$
Question: Was the old direction of approach valid?
With $\delta x \rightarrow 0$, directions appropriate, if

$$
\lim _{x \rightarrow \bar{x}} f(x, y)=f(\bar{x}, y(\bar{x}))
$$

i.e. if $f(x, y)$ is continuous.

If $f(x, y)=\infty$, then $y^{\prime}=\infty$ and trajectory is vertical.
For the same value of x, several values of y !
$y(x)$ not a function, unless $f(x, y) \neq \infty$, i.e. $f(x, y)$ is bounded. Peano's theorem: If $f(x, y)$ is continuous Gind bounded in a rectangle $R=\left\{(x, y):\left|x-x_{0}\right|<h,\left|y-y_{0}\right|<k\right\}$, with $|f(x, y)| \leq M<\infty$, then the IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$ has a solution $y(x)$ defined in a neighbourhood of x_{0}.

athematical Methods in Engineering and Science

Peano's theorem: If $f(x, y)$ is continuous and bounded in a rectangle $R=\left\{(x, y):\left|x-x_{0}\right|<h,\left|y-y_{0}\right|<k\right\}$, with $|f(x, y)| \leq M<\infty$, then the IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$ has a solution $y(x)$ defined in a neighbourhood of x_{0}.

(a) $M h<=k$

(b) $M h>=k$

Figure: Regions containing the trajectories
Guaranteed neighbourhood:

$$
\left[x_{0}-\delta, x_{0}+\delta\right], \text { where } \delta=\min \left(h, \frac{k}{M}\right)>0
$$

Mathematical Methods in Engineering and Science

Example:

$$
y^{\prime}=\frac{y-1}{x}, \quad y(0)=1
$$

Function $f(x, y)=\frac{y-1}{x}$ undefined at $(0,1)$.
Premises of existence theorem not satisfied.

Well-Posedness of Initial Value Problêhê 5 Beses Thess of niterems

Example:

$$
y^{\prime}=\frac{y-1}{x}, \quad y(0)=1
$$

Function $f(x, y)=\frac{y-1}{x}$ undefined at $(0,1)$.
Premises of existence theorem not satisfied.
But, premises here are sufficient, not necessary!
Result inconclusive.

Example:

$$
y^{\prime}=\frac{y-1}{x}, \quad y(0)=1
$$

Function $f(x, y)=\frac{y-1}{x}$ undefined at $(0,1)$.
Premises of existence theorem not satisfied.
But, premises here are sufficient, not necessary!
Result inconclusive.
The IVP has solutions: $y(x)=1+c x$ for all values of c.
The solution is not unique.

Well-Posedness of Initial Value Probleffhberestesmof of hitial value Probems
Example:

$$
y^{\prime}=\frac{y-1}{x}, \quad y(0)=1
$$

Function $f(x, y)=\frac{y-1}{x}$ undefined at $(0,1)$.
Premises of existence theorem not satisfied.
But, premises here are sufficient, not necessary!
Result inconclusive.
The IVP has solutions: $y(x)=1+c x$ for all values of c.
The solution is not unique.
Example: $\quad y^{\prime 2}=|y|, \quad y(0)=0$
Existence theorem guarantees a solution.
But, there are two solutions:

$$
y(x)=0 \text { and } y(x)=\operatorname{sgn}(x) x^{2} / 4 .
$$

Existence and Uniqueness Theory

Physical system to mathematical model

- Mathematical solution
- Interpretation about the physical system

Meanings of non-uniqueness of a solution

- Mathematical model admits of extraneous solution(s)?
- Physical system itself can exhibit alternative behaviours?

athematical Methods in Engineering and Science

Physical system to mathematical model

- Mathematical solution
- Interpretation about the physical system

Meanings of non-uniqueness of a solution

- Mathematical model admits of extraneous solution(s)?
- Physical system itself can exhibit alternative behaviours?

Indeterminacy of the solution

- Mathematical model of the system is not complete.

The initial value problem is not well-posed.

athematical Methods in Engineering and Science

 }

Physical system to mathematical model

- Mathematical solution
- Interpretation about the physical system

Meanings of non-uniqueness of a solution

- Mathematical model admits of extraneous solution(s)?
- Physical system itself can exhibit alternative behaviours?

Indeterminacy of the solution

- Mathematical model of the system is not complete.

The initial value problem is not well-posed.

After existence, next important question:

Continuous dependence on initial condition

Suppose that for IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$,

- unique solution: $y_{1}(x)$.

Applying a small perturbation to the initial condition, the new IVP:
$y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}+\epsilon$

- unique solution: $y_{2}(x)$

Question: By how much $y_{2}(x)$ differs from $y_{1}(x)$ for $x>x_{0}$?

Continuous dependence on initial condition

Suppose that for IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$,

- unique solution: $y_{1}(x)$.

Applying a small perturbation to the initial condition, the new IVP:
$y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}+\epsilon$

- unique solution: $y_{2}(x)$

Question: By how much $y_{2}(x)$ differs from $y_{1}(x)$ for $x>x_{0}$?
Large difference: solution sensitive to initial condition

- Practically unreliable solution

Continuous dependence on initial condition

Suppose that for IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$,

- unique solution: $y_{1}(x)$.

Applying a small perturbation to the initial condition, the new IVP:
$y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}+\epsilon$

- unique solution: $y_{2}(x)$

Question: By how much $y_{2}(x)$ differs from $y_{1}(x)$ for $x>x_{0}$?
Large difference: solution sensitive to initial condition

- Practically unreliable solution

Well-posed IVP:

An initial value problem is said to be well-posed if there exists a solution to it, the solution is unique and it depends continuously on the initial conditions.

Uniqueness Theorems

Lipschitz condition:

$$
|f(x, y)-f(x, z)| \leq L|y-z|
$$

L : finite positive constant (Lipschitz constant)
Theorem: If $f(x, y)$ is a continuous function satisfying a Lipschitz condition on a strip
$S=\{(x, y): a<x<b,-\infty<y<\infty\}$, then for any point $\left(x_{0}, y_{0}\right) \in S$, the initial value problem of $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$ is well-posed.

Lipschitz condition:

$$
|f(x, y)-f(x, z)| \leq L|y-z|
$$

L : finite positive constant (Lipschitz constant)
Theorem: If $f(x, y)$ is a continuous function satisfying a Lipschitz condition on a strip

$$
\begin{aligned}
& S=\{(x, y): a<x<b,-\infty<y<\infty\}, \text { then for any } \\
& \text { point }\left(x_{0}, y_{0}\right) \in S \text {, the initial value problem of } \\
& y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \text { is well-posed. }
\end{aligned}
$$

Assume $y_{1}(x)$ and $y_{2}(x)$: solutions of the ODE $y^{\prime}=f(x, y)$ with initial conditions $y\left(x_{0}\right)=\left(y_{1}\right)_{0}$ and $y\left(x_{0}\right)=\left(y_{2}\right)_{0}$
Consider $E(x)=\left[y_{1}(x)-y_{2}(x)\right]^{2}$.

$$
E^{\prime}(x)=2\left(y_{1}-y_{2}\right)\left(y_{1}^{\prime}-y_{2}^{\prime}\right)=2\left(y_{1}-y_{2}\right)\left[f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right]
$$

Lipschitz condition:

$$
|f(x, y)-f(x, z)| \leq L|y-z|
$$

L : finite positive constant (Lipschitz constant)
Theorem: If $f(x, y)$ is a continuous function satisfying a Lipschitz condition on a strip

$$
\begin{aligned}
& S=\{(x, y): a<x<b,-\infty<y<\infty\} \text {, then for any } \\
& \text { point }\left(x_{0}, y_{0}\right) \in S \text {, the initial value problem of } \\
& y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \text { is well-posed. }
\end{aligned}
$$

Assume $y_{1}(x)$ and $y_{2}(x)$: solutions of the ODE $y^{\prime}=f(x, y)$ with initial conditions $y\left(x_{0}\right)=\left(y_{1}\right)_{0}$ and $y\left(x_{0}\right)=\left(y_{2}\right)_{0}$
Consider $E(x)=\left[y_{1}(x)-y_{2}(x)\right]^{2}$.

$$
E^{\prime}(x)=2\left(y_{1}-y_{2}\right)\left(y_{1}^{\prime}-y_{2}^{\prime}\right)=2\left(y_{1}-y_{2}\right)\left[f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right]
$$

Applying Lipschitz condition,

$$
\left|E^{\prime}(x)\right| \leq 2 L\left(y_{1}-y_{2}\right)^{2}=2 L E(x)
$$

Need to consider the case of $E^{\prime}(x)>0$ only.

Mathematical Methods in Engineering and Science

Uniqueness Theorems

$$
\frac{E^{\prime}(x)}{E(x)} \leq 2 L \Rightarrow \int_{x_{0}}^{x} \frac{E^{\prime}(x)}{E(x)} d x \leq 2 L\left(x-x_{0}\right)
$$

Integrating, $E(x) \leq E\left(x_{0}\right) e^{2 L\left(x-x_{0}\right)}$.

$$
\frac{E^{\prime}(x)}{E(x)} \leq 2 L \Rightarrow \int_{x_{0}}^{x} \frac{E^{\prime}(x)}{E(x)} d x \leq 2 L\left(x-x_{0}\right)
$$

Integrating, $E(x) \leq E\left(x_{0}\right) e^{2 L\left(x-x_{0}\right)}$.
Hence,

$$
\left|y_{1}(x)-y_{2}(x)\right| \leq e^{L\left(x-x_{0}\right)}\left|\left(y_{1}\right)_{0}-\left(y_{2}\right)_{0}\right| .
$$

Existence and Uniqueness Theory

$$
\frac{E^{\prime}(x)}{E(x)} \leq 2 L \Rightarrow \int_{x_{0}}^{x} \frac{E^{\prime}(x)}{E(x)} d x \leq 2 L\left(x-x_{0}\right)
$$

Integrating, $E(x) \leq E\left(x_{0}\right) e^{2 L\left(x-x_{0}\right)}$.
Hence,

$$
\left|y_{1}(x)-y_{2}(x)\right| \leq e^{L\left(x-x_{0}\right)}\left|\left(y_{1}\right)_{0}-\left(y_{2}\right)_{0}\right| .
$$

Since $x \in[a, b], \quad e^{L\left(x-x_{0}\right)}$ is finite.

$$
\left|\left(y_{1}\right)_{0}-\left(y_{2}\right)_{0}\right|=\epsilon \Rightarrow\left|y_{1}(x)-y_{2}(x)\right| \leq e^{L\left(x-x_{0}\right)} \epsilon
$$

$$
\frac{E^{\prime}(x)}{E(x)} \leq 2 L \Rightarrow \int_{x_{0}}^{x} \frac{E^{\prime}(x)}{E(x)} d x \leq 2 L\left(x-x_{0}\right)
$$

Integrating, $E(x) \leq E\left(x_{0}\right) e^{2 L\left(x-x_{0}\right)}$.
Hence,

$$
\left|y_{1}(x)-y_{2}(x)\right| \leq e^{L\left(x-x_{0}\right)}\left|\left(y_{1}\right)_{0}-\left(y_{2}\right)_{0}\right| .
$$

Since $x \in[a, b], \quad e^{L\left(x-x_{0}\right)}$ is finite.

$$
\left|\left(y_{1}\right)_{0}-\left(y_{2}\right)_{0}\right|=\epsilon \Rightarrow\left|y_{1}(x)-y_{2}(x)\right| \leq e^{L\left(x-x_{0}\right)} \epsilon
$$

continuous dependence of the solution on initial condition
In particular, $\left(y_{1}\right)_{0}=\left(y_{2}\right)_{0}=y_{0} \Rightarrow y_{1}(x)=y_{2}(x) \forall x \in[a, b]$.
The initial value problem is well-posed.

A weaker theorem (hypotheses are stronger):
Picard's theorem: If $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous and bounded on a rectangle $R=\{(x, y): a<x<b, c<y<d\}$, then for every $\left(x_{0}, y_{0}\right) \in R$, the IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$ has a unique solution in some neighbourhood $\left|x-x_{0}\right| \leq h$.

Uniqueness Theorems

A weaker theorem (hypotheses are stronger):
Picard's theorem: If $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous and bounded on a rectangle $R=\{(x, y): a<x<b, c<y<d\}$, then for every $\left(x_{0}, y_{0}\right) \in R$, the IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$ has a unique solution in some neighbourhood $\left|x-x_{0}\right| \leq h$.

From the mean value theorem,

$$
f\left(x, y_{1}\right)-f\left(x, y_{2}\right)=\frac{\partial f}{\partial y}(x, \xi)\left(y_{1}-y_{2}\right)
$$

With Lipschitz constant $L=\sup \left|\frac{\partial f}{\partial y}\right|$,
Lipschitz condition is satisfied 'lavishly'!

Uniqueness Theorems

A weaker theorem (hypotheses are stronger):
Picard's theorem: If $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous and bounded on a rectangle $R=\{(x, y): a<x<b, c<y<d\}$, then for every $\left(x_{0}, y_{0}\right) \in R$, the IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$ has a unique solution in some neighbourhood $\left|x-x_{0}\right| \leq h$.

From the mean value theorem,

$$
f\left(x, y_{1}\right)-f\left(x, y_{2}\right)=\frac{\partial f}{\partial y}(x, \xi)\left(y_{1}-y_{2}\right)
$$

With Lipschitz constant $L=\sup \left|\frac{\partial f}{\partial y}\right|$,
Lipschitz condition is satisfied 'lavishly'!
Note: All these theorems give only sufficient conditions! Hypotheses of Picard's theorem \Rightarrow Lipschitz condition \Rightarrow
Well-posedness \Rightarrow Existence and uniqueness

Extension to ODE Systems

For ODE System

$$
\frac{d \mathbf{y}}{d x}=\mathbf{f}(x, \mathbf{y}), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}
$$

- Lipschitz condition:

$$
\|\mathbf{f}(x, \mathbf{y})-\mathbf{f}(x, \mathbf{z})\| \leq L\|\mathbf{y}-\mathbf{z}\|
$$

- Scalar function $E(x)$ generalized as

$$
E(x)=\left\|\mathbf{y}_{1}(x)-\mathbf{y}_{2}(x)\right\|^{2}=\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)^{T}\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)
$$

- Partial derivative $\frac{\partial f}{\partial y}$ replaced by the Jacobian $\mathbf{A}=\frac{\partial f}{\partial y}$
- Boundedness to be inferred from the boundedness of its norm

With these generalizations, the formulations work as usual.

Extension to ODE Systems
IVP of linear first order ODE system

$$
\mathbf{y}^{\prime}=\mathbf{A}(x) \mathbf{y}+\mathbf{g}(x), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}
$$

Rate function: $\mathbf{f}(x, \mathbf{y})=\mathbf{A}(x) \mathbf{y}+\mathbf{g}(x)$
Continuity and boundedness of the coefficient functions in $\mathbf{A}(x)$ and $\mathbf{g}(x)$ are sufficient for well-posedness.

Extension to ODE Systems

IVP of linear first order ODE system

$$
\mathbf{y}^{\prime}=\mathbf{A}(x) \mathbf{y}+\mathbf{g}(x), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}
$$

Rate function: $\mathbf{f}(x, \mathbf{y})=\mathbf{A}(x) \mathbf{y}+\mathbf{g}(x)$
Continuity and boundedness of the coefficient functions in $\mathbf{A}(x)$ and $\mathbf{g}(x)$ are sufficient for well-posedness.

An n-th order linear ordinary differential equation
$y^{(n)}+P_{1}(x) y^{(n-1)}+P_{2}(x) y^{(n-2)}+\cdots+P_{n-1}(x) y^{\prime}+P_{n}(x) y=R(x)$
State vector: $\mathbf{z}=\left[\begin{array}{lllll}y & y^{\prime} & y^{\prime \prime} & \cdots & y^{(n-1)}\end{array}\right]^{T}$
With $z_{1}^{\prime}=z_{2}, z_{2}^{\prime}=z_{3}, \cdots, z_{n-1}^{\prime}=z_{n}$ and z_{n}^{\prime} from the ODE,

- state space equation in the form $\mathbf{z}^{\prime}=\mathbf{A}(x) \mathbf{z}+\mathbf{g}(x)$

Continuity and boundedness of $P_{1}(x), P_{2}(x), \cdots, P_{n}(x)$ and $R(x)$ guarantees well-posedness.

A practical by-product of existence and uniqueness results:

- important results concerning the solutions

A practical by-product of existence and uniqueness results:

- important results concerning the solutions

A sizeable segment of current research: ill-posed problems

- Dynamics of some nonlinear systems
- Chaos: sensitive dependence on initial conditions

A practical by-product of existence and uniqueness results:

- important results concerning the solutions

A sizeable segment of current research: ill-posed problems

- Dynamics of some nonlinear systems
- Chaos: sensitive dependence on initial conditions

For boundary value problems, No general criteria for existence and uniqueness

Closure

A practical by-product of existence and uniqueness results:

- important results concerning the solutions

A sizeable segment of current research: ill-posed problems

- Dynamics of some nonlinear systems
- Chaos: sensitive dependence on initial conditions

For boundary value problems, No general criteria for existence and uniqueness

Note: Taking clue from the shooting method, a BVP in ODE's can be visualized as a complicated root-finding problem!

Multiple solutions or non-existence of solution is no surprise.

- For a solution of initial value problems, questions of existence, uniqueness and continuous dependence on initial condition are of crucial importance.
- These issues pertain to aspects of practical relevance regarding a physical system and its dynamic simulation
- Lipschitz condition is the tightest (available) criterion for deciding these questions regarding well-posedness

Necessary Exercises: 1,2

First Order Ordinary Differential Equations
Formation of Differential Equations and Their Solutions

Separation of Variables

ODE's with Rational Slope Functions
Some Special ODE's
Exact Differential Equations and Reduction to the Exact Form First Order Linear (Leibnitz) ODE and Associated Forms
Orthogonal Trajectories
Modelling and Simulation

Mathematical Methods in Engineering and Science
First Order Ordinary Differential Equations

Formation of Differential Equations afide

ODE's with Rational Slope Functions
Some Special ODE's
A differential equation $\begin{gathered}\text { Exact Differential Equations and Reduction to the } E \text {, }\end{gathered}$

Example: $y(x)=c x^{k}$

Mathematical Methods in Engineering and Science First Order Ordinary Differential Equations

ODE's with Rational Slope Functions
Some Special ODE's

Orthogonal Trajectories
Modelling and Simulation
Example: $y(x)=c x^{k}$
With $\frac{d y}{d x}=c k x^{k-1}$ and $\frac{d^{2} y}{d x^{2}}=c k(k-1) x^{k-2}$,

$$
x y \frac{d^{2} y}{d x^{2}}=x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}
$$

A compact 'intrinsic' description.

athematical Methods in Engineering and Science

First Order Ordinary Differential Equations

Example: $y(x)=c x^{k}$
With $\frac{d y}{d x}=c k x^{k-1}$ and $\frac{d^{2} y}{d x^{2}}=c k(k-1) x^{k-2}$,

$$
x y \frac{d^{2} y}{d x^{2}}=x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}
$$

A compact 'intrinsic' description.
Important terms

- Order and degree of differential equations
- Homogeneous and non-homogeneous ODE's

athematical Methods in Engineering and Science

First Order Ordinary Differential Equations

A differential equation represents a class of frant Differential Equations and Reduction to the E.
Example: $y(x)=c x^{k}$
With $\frac{d y}{d x}=c k x^{k-1}$ and $\frac{d^{2} y}{d x^{2}}=c k(k-1) x^{k-2}$,

$$
x y \frac{d^{2} y}{d x^{2}}=x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}
$$

A compact 'intrinsic' description.
Important terms

- Order and degree of differential equations
- Homogeneous and non-homogeneous ODE's

Solution of a differential equation

- general, particular and singular solutions

ODE form with separable variables:

$$
y^{\prime}=f(x, y) \Rightarrow \frac{d y}{d x}=\frac{\phi(x)}{\psi(y)} \text { or } \psi(y) d y=\phi(x) d x
$$

First Order Ordinary Differential Equations

Separation of Variables
ODE's with Rational Slope Functions
Some Special ODE's
Exact Differential Equations and Reduction to the E> First Order Linear (Leibnitz) ODE and Associated Fc
Orthogonal Trajectories

Separation of Variables

ODE form with separable variables:

$$
y^{\prime}=f(x, y) \Rightarrow \frac{d y}{d x}=\frac{\phi(x)}{\psi(y)} \text { or } \psi(y) d y=\phi(x) d x
$$

Solution as quadrature:

$$
\int \psi(y) d y=\int \phi(x) d x+c
$$

ODE form with separable variables:

$$
y^{\prime}=f(x, y) \Rightarrow \frac{d y}{d x}=\frac{\phi(x)}{\psi(y)} \text { or } \psi(y) d y=\phi(x) d x
$$

Solution as quadrature:

$$
\int \psi(y) d y=\int \phi(x) d x+c
$$

Separation of variables through substitution

Example:

$$
y^{\prime}=g(\alpha x+\beta y+\gamma)
$$

Substitute $v=\alpha x+\beta y+\gamma$ to arrive at

$$
\frac{d v}{d x}=\alpha+\beta g(v) \Rightarrow x=\int \frac{d v}{\alpha+\beta g(v)}+c
$$

$$
y^{\prime}=\frac{f_{1}(x, y)}{f_{2}(x, y)}
$$

 ODE's with Rational Slope Functions Some Special ODE's

$$
y^{\prime}=\frac{f_{1}(x, y)}{f_{2}(x, y)}
$$

If f_{1} and f_{2} are homogeneous functions of n-th degree, then substitution $y=u x$ separates variables x and u.

$$
\frac{d y}{d x}=\frac{\phi_{1}(y / x)}{\phi_{2}(y / x)} \Rightarrow u+x \frac{d u}{d x}=\frac{\phi_{1}(u)}{\phi_{2}(u)}
$$

 ODE's with Rational Slope Functions Some Special ODE's

$$
y^{\prime}=\frac{f_{1}(x, y)}{f_{2}(x, y)}
$$

If f_{1} and f_{2} are homogeneous functions of n-th degree, then substitution $y=u x$ separates variables x and u.

$$
\frac{d y}{d x}=\frac{\phi_{1}(y / x)}{\phi_{2}(y / x)} \Rightarrow u+x \frac{d u}{d x}=\frac{\phi_{1}(u)}{\phi_{2}(u)} \Rightarrow \frac{d x}{x}=\frac{\phi_{2}(u)}{\phi_{1}(u)-u \phi_{2}(u)} d u
$$

athematical Methods in Engineering and Science
First Order Ordinary Differential Equations

$$
y^{\prime}=\frac{f_{1}(x, y)}{f_{2}(x, y)}
$$

If f_{1} and f_{2} are homogeneous functions of n-th degree, then substitution $y=u x$ separates variables x and u.

$$
\frac{d y}{d x}=\frac{\phi_{1}(y / x)}{\phi_{2}(y / x)} \Rightarrow u+x \frac{d u}{d x}=\frac{\phi_{1}(u)}{\phi_{2}(u)} \Rightarrow \frac{d x}{x}=\frac{\phi_{2}(u)}{\phi_{1}(u)-u \phi_{2}(u)} d u
$$

For $y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$, coordinate shift

$$
x=X+h, \quad y=Y+k \Rightarrow y^{\prime}=\frac{d y}{d x}=\frac{d Y}{d X}
$$

produces

$$
\frac{d Y}{d X}=\frac{a_{1} X+b_{1} Y+\left(a_{1} h+b_{1} k+c_{1}\right)}{a_{2} X+b_{2} Y+\left(a_{2} h+b_{2} k+c_{2}\right)} .
$$

Choose h and k such that

$$
a_{1} h+b_{1} k+c_{1}=0=a_{2} h+b_{2} k+c_{2} .
$$

If the svstem is inconsistent. then substitute $u=a_{2} x+b_{2} v$.

Some Special ODE's

$$
y=x y^{\prime}+f\left(y^{\prime}\right)
$$

Clairaut's equation

Substitute $p=y^{\prime}$ and differentiate:

$$
p=p+x \frac{d p}{d x}+f^{\prime}(p) \frac{d p}{d x} \Rightarrow \frac{d p}{d x}\left[x+f^{\prime}(p)\right]=0
$$

Mathematical Methods in Engineering and Science
Some Special ODE's
Clairaut's equation

First Order Ordinary Differential Equations

$$
y=x y^{\prime}+f\left(y^{\prime}\right)
$$

Substitute $p=y^{\prime}$ and differentiate:

$$
p=p+x \frac{d p}{d x}+f^{\prime}(p) \frac{d p}{d x} \Rightarrow \frac{d p}{d x}\left[x+f^{\prime}(p)\right]=0
$$

$\frac{d p}{d x}=0$ means $y^{\prime}=p=m$ (constant)

- family of straight lines $y=m x+f(m)$ as general solution

Some Special ODE's

Clairaut's equation

$$
y=x y^{\prime}+f\left(y^{\prime}\right)
$$

Substitute $p=y^{\prime}$ and differentiate:

$$
p=p+x \frac{d p}{d x}+f^{\prime}(p) \frac{d p}{d x} \Rightarrow \frac{d p}{d x}\left[x+f^{\prime}(p)\right]=0
$$

$\frac{d p}{d x}=0$ means $y^{\prime}=p=m$ (constant)

- family of straight lines $y=m x+f(m)$ as general solution

Singular solution:

$$
x=-f^{\prime}(p) \quad \text { and } \quad y=f(p)-p f^{\prime}(p)
$$

Singular solution is the envelope of the family of straight lines that constitute the general solution.

Mathematical Methods in Engineering and Science
First Order Ordinary Differential Equations
Some Special ODE's
Second order ODE's with the function not siot apeafing explicitly

First Order Linear (Leibnitz) ODE and Associated Fc Orthogonal Trajectories

$$
f\left(x, y^{\prime}, y^{\prime \prime}\right)=0
$$

Substitute $y^{\prime}=p$ and solve $f\left(x, p, p^{\prime}\right)=0$ for $p(x)$.

Some Special ODE's

Second order ODE's with the function nome fecial epering explicitly

$$
f\left(x, y^{\prime}, y^{\prime \prime}\right)=0
$$

Substitute $y^{\prime}=p$ and solve $f\left(x, p, p^{\prime}\right)=0$ for $p(x)$.
Second order ODE's with independent variable not appearing explicitly

$$
f\left(y, y^{\prime}, y^{\prime \prime}\right)=0
$$

Use $y^{\prime}=p$ and

$$
y^{\prime \prime}=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=p \frac{d p}{d y} \Rightarrow f\left(y, p, p \frac{d p}{d y}\right)=0
$$

Solve for $p(y)$.

Some Special ODE's

Second order ODE's with the function nome fecial epering explicitly

$$
f\left(x, y^{\prime}, y^{\prime \prime}\right)=0
$$

Substitute $y^{\prime}=p$ and solve $f\left(x, p, p^{\prime}\right)=0$ for $p(x)$.
Second order ODE's with independent variable not appearing explicitly

$$
f\left(y, y^{\prime}, y^{\prime \prime}\right)=0
$$

Use $y^{\prime}=p$ and

$$
y^{\prime \prime}=\frac{d p}{d x}=\frac{d p}{d y} \frac{d y}{d x}=p \frac{d p}{d y} \Rightarrow f\left(y, p, p \frac{d p}{d y}\right)=0
$$

Solve for $p(y)$.
Resulting equation solved through a quadrature as

$$
\frac{d y}{d x}=p(y) \Rightarrow x=x_{0}+\int \frac{d y}{p(y)}
$$

ODE's with Rational Slope Functions
$M d x+N d y:$ an exact differential if

$$
M=\frac{\partial \phi}{\partial x} \quad \text { and } N=\frac{\partial \phi}{\partial y}, \quad \text { or, } \frac{\partial M_{n}}{\partial y}=\frac{\partial^{2}}{\partial x}
$$

ODE's with Rational Slope Functions
$M d x+N d y:$ an exact differential if

$$
M=\frac{\partial \phi}{\partial x} \quad \text { and } N=\frac{\partial \phi}{\partial y}, \quad \text { or, }, \frac{\partial M}{\partial y}=\frac{\partial M_{n}}{\partial x}
$$

$M(x, y) d x+N(x, y) d y=0$ is an exact ODE if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$

Exact Differential Equations and Reduction to the Exade For

ODE's with Rational Slope Functions
$M d x+N d y:$ an exact differential if

$$
M=\frac{\partial \phi}{\partial x} \quad \text { and } N=\frac{\partial \phi}{\partial y}, \quad \text { or, } \quad \frac{\partial M_{n}}{\partial y}=\frac{D_{n}}{\partial x}
$$

$M(x, y) d x+N(x, y) d y=0$ is an exact ODE if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
With $M(x, y)=\frac{\partial \phi}{\partial x}$ and $N(x, y)=\frac{\partial \phi}{\partial y}$,

$$
\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=0 \Rightarrow d \phi=0
$$

Solution: $\phi(x, y)=c$

Exact Differential Equations and Rediction to the Exade For

ODE's with Rational Slope Functions

$$
M=\frac{\partial \phi}{\partial x} \quad \text { and } N=\frac{\partial \phi}{\partial y}, \quad \text { or, } \quad \frac{\partial M^{n a l}}{\partial y}=\frac{\partial N^{2}}{\partial x}
$$

$M(x, y) d x+N(x, y) d y=0$ is an exact ODE if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
With $M(x, y)=\frac{\partial \phi}{\partial x}$ and $N(x, y)=\frac{\partial \phi}{\partial y}$,

$$
\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=0 \Rightarrow d \phi=0
$$

Solution: $\phi(x, y)=c$
Working rule:
$\phi_{1}(x, y)=\int M(x, y) d x+g_{1}(y)$ and $\phi_{2}(x, y)=\int N(x, y) d y+g_{2}(x)$
Determine $g_{1}(y)$ and $g_{2}(x)$ from $\phi_{1}(x, y)=\phi_{2}(x, y)=\phi(x, y)$.

Exact Differential Equations and Reduction to the Exade For

$M d x+N d y$: an exact differential if

$$
M=\frac{\partial \phi}{\partial x} \quad \text { and } N=\frac{\partial \phi}{\partial y}, \quad \text { or, } \quad \frac{\partial M_{n}^{n a l}}{\partial y}=\frac{\partial N^{\text {ries }}}{\partial x}
$$

$M(x, y) d x+N(x, y) d y=0$ is an exact ODE if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
With $M(x, y)=\frac{\partial \phi}{\partial x}$ and $N(x, y)=\frac{\partial \phi}{\partial y}$,

$$
\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=0 \Rightarrow d \phi=0
$$

Solution: $\phi(x, y)=c$
Working rule:
$\phi_{1}(x, y)=\int M(x, y) d x+g_{1}(y)$ and $\phi_{2}(x, y)=\int N(x, y) d y+g_{2}(x)$
Determine $g_{1}(y)$ and $g_{2}(x)$ from $\phi_{1}(x, y)=\phi_{2}(x, y)=\phi(x, y)$.
If $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, but $\frac{\partial}{\partial y}(F M)=\frac{\partial}{\partial x}(F N)$?
F : Integrating factor

Mathematical Methods in Engineering and Science
First Order Ordinary Differential Equations

General first order linear ODE: $\frac{d y}{d x}+P(x) y=Q(x)^{\substack{\text { Orthogonal Trajectories } \\ \text { Modeling and Simulation }}}$

Leibnitz equation

Some Special ODE's
Exact Differential Equations and Reduction to the E> First Order Linear (Leibnitz) ODE and Associated Fc

Mathematical Methods in Engineering and Science
First Order Linear (Leibnitz) ODE andicios
General first order linear ODE:

$$
\frac{d y}{d x}+P(x) y=Q(x)^{\substack{\text { Orthogonal Trajectories } \\ \text { Modeling and Simulation }}}
$$

For integrating factor $F(x)$, Leibnitz equation

$$
F(x) \frac{d y}{d x}+F(x) P(x) y=\frac{d}{d x}[F(x) y] \Rightarrow \frac{d F}{d x}=F(x) P(x)
$$

athematical Methods in Engineering and Science

First Order Linear (Leibnitz) ODE and Associated Forms

General first order linear ODE:

$$
\frac{d y}{d x}+P(x) y=Q(x)^{\begin{array}{c}
\text { Orthogonal Trajectories } \\
\text { Modelling and Simulation }
\end{array}}
$$

Leibnitz equation
For integrating factor $F(x)$,

$$
F(x) \frac{d y}{d x}+F(x) P(x) y=\frac{d}{d x}[F(x) y] \Rightarrow \frac{d F}{d x}=F(x) P(x)
$$

Separating variables,

$$
\int \frac{d F}{F}=\int P(x) d x \Rightarrow \ln F=\int P(x) d x
$$

Integrating factor: $F(x)=e^{\int P(x) d x}$

athematical Methods in Engineering and Science

First Order Linear (Leibnitz) ODE and Associated Forms

General first order linear ODE:

$$
\frac{d y}{d x}+P(x) y=Q(x)^{\begin{array}{c}
\text { Orthogonal Trajectories } \\
\text { Modelling and Simulation }
\end{array}}
$$

For integrating factor $F(x)$,

$$
F(x) \frac{d y}{d x}+F(x) P(x) y=\frac{d}{d x}[F(x) y] \Rightarrow \frac{d F}{d x}=F(x) P(x) .
$$

Separating variables,

$$
\int \frac{d F}{F}=\int P(x) d x \Rightarrow \ln F=\int P(x) d x .
$$

Integrating factor: $F(x)=e^{\int P(x) d x}$

$$
y e^{\int P(x) d x}=\int Q(x) e^{\int P(x) d x} d x+C
$$

Mathematical Methods in Engineering and Science
First Order Ordinary Differential Equations

ODE's with Rational Slope Functions
Some Special ODE's
Exact Differential Equations and Reduction to the E> First Order Linear (Leibnitz) ODE and Associated Fc

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{\substack{\text { Orthogonal Trajectories } \\ \text { Kodelling and Simulation }}}
$$

Mathematical Methods in Engineering and Science

First Order Linear (Leibnitz) ODE and Associated Forms
 \title{ Some Special ODE's

}
Bernoulli's equation

Exact Differential Equations and Reduction to the E> First Order Linear (Leibnitz) ODE and Associated Fc

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{\text {Orthogonal Trajectories }}
$$

Substitution: $z=y^{1-k}, \frac{d z}{d x}=(1-k) y^{-k} \frac{d y}{d x}$ gives

$$
\frac{d z}{d x}+(1-k) P(x) z=(1-k) Q(x),
$$

in the Leibnitz form.

athematical Methods in Engineering and Science

First Order Linear (Leibnitz) ODE and Associated Formbs

Bernoulli's equation

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{\circ}
$$

Substitution: $z=y^{1-k}, \frac{d z}{d x}=(1-k) y^{-k} \frac{d y}{d x}$ gives

$$
\frac{d z}{d x}+(1-k) P(x) z=(1-k) Q(x),
$$

in the Leibnitz form.
Riccati equation

$$
y^{\prime}=a(x)+b(x) y+c(x) y^{2}
$$

If one solution $y_{1}(x)$ is known, then propose $y(x)=y_{1}(x)+z(x)$.

athematical Methods in Engineering and Science

First Order Linear (Leibnitz) ODE and Associated Form

Bernoulli's equation

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{k}
$$

Substitution: $\quad z=y^{1-k}, \quad \frac{d z}{d x}=(1-k) y^{-k} \frac{d y}{d x}$ gives

$$
\frac{d z}{d x}+(1-k) P(x) z=(1-k) Q(x)
$$

in the Leibnitz form.
Riccati equation

$$
y^{\prime}=a(x)+b(x) y+c(x) y^{2}
$$

If one solution $y_{1}(x)$ is known, then propose $y(x)=y_{1}(x)+z(x)$.

$$
y_{1}^{\prime}(x)+z^{\prime}(x)=a(x)+b(x)\left[y_{1}(x)+z(x)\right]+c(x)\left[y_{1}(x)+z(x)\right]^{2}
$$

Since $y_{1}^{\prime}(x)=a(x)+b(x) y_{1}(x)+c(x)\left[y_{1}(x)\right]^{2}$,

$$
z^{\prime}(x)=\left[b(x)+2 c(x) y_{1}(x)\right] z(x)+c(x)[z(x)]^{2}
$$

in the form of Bernoulli's equation.

First Order Ordinary Differential Equations

In $x y$-plane, one-parameter equation $\phi(x, y, \mathcal{E})$) a family of curves

Differential equation of the family of curves:

$$
\frac{d y}{d x}=f_{1}(x, y)
$$

thematical Methods in Engineering and Science

First Order Ordinary Differential Equations
 a family of curves

Differential equation of the family of curves:

$$
\frac{d y}{d x}=f_{1}(x, y)
$$

Slope of curves orthogonal to $\phi(x, y, c)=0$:

$$
\frac{d y}{d x}=-\frac{1}{f_{1}(x, y)}
$$

Solving this ODE, another family of curves $\psi(x, y, k)=0$.
Orthogonal trajectories

athematical Methods in Engineering and Science
 Orthogonal Trajectories

In $x y$-plane, one-parameter equation $\phi(x, y, E)$, a family of curves

Differential equation of the family of curves:

$$
\frac{d y}{d x}=f_{1}(x, y)
$$

Slope of curves orthogonal to $\phi(x, y, c)=0$:

$$
\frac{d y}{d x}=-\frac{1}{f_{1}(x, y)}
$$

Solving this ODE, another family of curves $\psi(x, y, k)=0$.
Orthogonal trajectories
If $\phi(x, y, c)=0$ represents the potential lines (contours), then $\psi(x, y, k)=0$ will represent the streamlines!

Points to note
First Order Ordinary Differential Equations

- Meaning and solution of ODE's
- Separating variables
- Exact ODE's and integrating factors
- Linear (Leibnitz) equations
- Orthogonal families of curves

Necessary Exercises: 1,3,5,7

Second Order Linear Homogeneous ODE's Introduction
Homogeneous Equations with Constant Coefficients
Euler-Cauchy Equation
Theory of the Homogeneous Equations
Basis for Solutions

Second order ODE:

$$
f\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

Special case of a linear (non-homogeneous) ODE:

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)
$$

Non-homogeneous linear ODE with constant coefficients:

$$
y^{\prime \prime}+a y^{\prime}+b y=R(x)
$$

Second order ODE:

$$
f\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

Special case of a linear (non-homogeneous) ODE:

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)
$$

Non-homogeneous linear ODE with constant coefficients:

$$
y^{\prime \prime}+a y^{\prime}+b y=R(x)
$$

For $R(x)=0$, linear homogeneous differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

and linear homogeneous ODE with constant coefficients

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

Mathematical Methods in Engineering and Science
Second Order Linear Homogeneous ODE's

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

Mathematical Methods in Engineering and Science Second Order Linear Homogeneous ODE's
Homogeneous Equations with Constahtiodeefficientsonstant coeficients
Euler-Cauchy Equation
Theory of the Homogeneous Equations
Basis for Solutions

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

Assume

$$
y=e^{\lambda x} \Rightarrow y^{\prime}=\lambda e^{\lambda x} \text { and } y^{\prime \prime}=\lambda^{2} e^{\lambda x} .
$$

Substitution: $\left(\lambda^{2}+a \lambda+b\right) e^{\lambda x}=0$
Auxiliary equation:

$$
\lambda^{2}+a \lambda+b=0
$$

Solve for λ_{1} and λ_{2} :
Solutions: $e^{\lambda_{1} x}$ and $e^{\lambda_{2} x}$

athematical Methods in Engineering and Science

Second Order Linear Homogeneous ODEs

$$
y^{\prime \prime}+a y^{\prime}+b y=0
$$

Assume

$$
y=e^{\lambda x} \Rightarrow y^{\prime}=\lambda e^{\lambda x} \text { and } y^{\prime \prime}=\lambda^{2} e^{\lambda x} .
$$

Substitution: $\left(\lambda^{2}+a \lambda+b\right) e^{\lambda x}=0$
Auxiliary equation:

$$
\lambda^{2}+a \lambda+b=0
$$

Solve for λ_{1} and λ_{2} :

$$
\text { Solutions: } e^{\lambda_{1} x} \text { and } e^{\lambda_{2} x}
$$

Three cases

- Real and distinct $\left(a^{2}>4 b\right): \quad \lambda_{1} \neq \lambda_{2}$

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}
$$

Mathematical Methods in Engineering and Science

- Real and equal $\left(a^{2}=4 b\right): \quad \lambda_{1}=\lambda_{2}=\lambda=-\frac{a}{2}$
only solution in hand: $y_{1}=e^{\lambda x}$
Method to develop another solution?

athematical Methods in Engineering and Science
 Second Order Linear Homogeneous ODE's

- Real and equal $\left(a^{2}=4 b\right): \lambda_{1}=\lambda_{2}=\lambda=-\frac{a}{2}$

$$
\text { only solution in hand: } y_{1}=e^{\lambda x}
$$

Method to develop another solution?

- Verify that $y_{2}=x e^{\lambda x}$ is another solution.

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)=\left(c_{1}+c_{2} x\right) e^{\lambda x}
$$

athematical Methods in Engineering and Science

Second Order Linear Homogeneous ODE's

- Real and equal $\left(a^{2}=4 b\right): \quad \lambda_{1}=\lambda_{2}=\lambda=-\frac{a}{2}$

$$
\text { only solution in hand: } y_{1}=e^{\lambda x}
$$

Method to develop another solution?

- Verify that $y_{2}=x e^{\lambda x}$ is another solution.

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)=\left(c_{1}+c_{2} x\right) e^{\lambda x}
$$

- Complex conjugate $\left(a^{2}<4 b\right): \quad \lambda_{1,2}=-\frac{a}{2} \pm i \omega$

$$
\begin{aligned}
y(x) & =c_{1} e^{\left(-\frac{a}{2}+i \omega\right) x}+c_{2} e^{\left(-\frac{a}{2}-i \omega\right) x} \\
& =e^{-\frac{a x}{2}}\left[c_{1}(\cos \omega x+i \sin \omega x)+c_{2}(\cos \omega x-i \sin \omega x)\right] \\
& =e^{-\frac{a x}{2}}[A \cos \omega x+B \sin \omega x]
\end{aligned}
$$

with $A=c_{1}+c_{2}, \quad B=i\left(c_{1}-c_{2}\right)$.

athematical Methods in Engineering and Science

Second Order Linear Homogeneous ODE's

- Real and equal $\left(a^{2}=4 b\right): \quad \lambda_{1}=\lambda_{2}=\lambda=-\frac{a}{2}$

$$
\text { only solution in hand: } y_{1}=e^{\lambda x}
$$

Method to develop another solution?

- Verify that $y_{2}=x e^{\lambda x}$ is another solution.

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)=\left(c_{1}+c_{2} x\right) e^{\lambda x}
$$

- Complex conjugate $\left(a^{2}<4 b\right): \quad \lambda_{1,2}=-\frac{a}{2} \pm i \omega$

$$
\begin{aligned}
y(x) & =c_{1} e^{\left(-\frac{a}{2}+i \omega\right) x}+c_{2} e^{\left(-\frac{a}{2}-i \omega\right) x} \\
& =e^{-\frac{a x}{2}}\left[c_{1}(\cos \omega x+i \sin \omega x)+c_{2}(\cos \omega x-i \sin \omega x)\right] \\
& =e^{-\frac{a x}{2}}[A \cos \omega x+B \sin \omega x]
\end{aligned}
$$

with $A=c_{1}+c_{2}, B=i\left(c_{1}-c_{2}\right)$.

- A third form: $y(x)=C e^{-\frac{2 x}{2}} \cos (\omega x-\alpha)$

athematical Methods in Engineering and Science

Second Order Linear Homogeneous ODE's

$$
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0
$$

Substituting $y=x^{k}$, auxiliary (or indicial) equation:

$$
k^{2}+(a-1) k+b=0
$$

Euler-Cauchy Equation

$$
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0
$$

Substituting $y=x^{k}$, auxiliary (or indicial) equation:

$$
k^{2}+(a-1) k+b=0
$$

1. Roots real and distinct $\left[(a-1)^{2}>4 b\right]: \quad k_{1} \neq k_{2}$.

$$
y(x)=c_{1} x^{k_{1}}+c_{2} x^{k_{2}} .
$$

2. Roots real and equal $\left[(a-1)^{2}=4 b\right]: \quad k_{1}=k_{2}=k=-\frac{a-1}{2}$.

$$
y(x)=\left(c_{1}+c_{2} \ln x\right) x^{k}
$$

3. Roots complex conjugate $\left[(a-1)^{2}<4 b\right]$: $k_{1,2}=-\frac{a-1}{2} \pm i \nu$.

$$
y(x)=x^{-\frac{a-1}{2}}[A \cos (\nu \ln x)+B \sin (\nu \ln x)]=C x^{-\frac{a-1}{2}} \cos (\nu \ln x-\alpha)
$$

Euler-Cauchy Equation

$$
x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0
$$

Substituting $y=x^{k}$, auxiliary (or indicial) equation:

$$
k^{2}+(a-1) k+b=0
$$

1. Roots real and distinct $\left[(a-1)^{2}>4 b\right]: \quad k_{1} \neq k_{2}$.

$$
y(x)=c_{1} x^{k_{1}}+c_{2} x^{k_{2}} .
$$

2. Roots real and equal $\left[(a-1)^{2}=4 b\right]: k_{1}=k_{2}=k=-\frac{a-1}{2}$.

$$
y(x)=\left(c_{1}+c_{2} \ln x\right) x^{k}
$$

3. Roots complex conjugate $\left[(a-1)^{2}<4 b\right]$: $k_{1,2}=-\frac{a-1}{2} \pm i \nu$.

$$
y(x)=x^{-\frac{a-1}{2}}[A \cos (\nu \ln x)+B \sin (\nu \ln x)]=C x^{-\frac{a-1}{2}} \cos (\nu \ln x-\alpha)
$$

Alternative approach: substitution

$$
x=e^{t} \Rightarrow t=\ln x, \frac{d x}{d t}=e^{t}=x \text { and } \frac{d t}{d x}=\frac{1}{x}, \text { etc. }
$$

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

Well-posedness of its IVP:
The initial value problem of the ODE, with arbitrary initial conditions $y\left(x_{0}\right)=Y_{0}, y^{\prime}\left(x_{0}\right)=Y_{1}$, has a unique solution, as long as $P(x)$ and $Q(x)$ are continuous in the interval under question.
lathematical Methods in Engineering and Science
Theory of the Homogeneous Equationtsioduction E Equations with Constant coefficients

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

Well-posedness of its IVP:
The initial value problem of the ODE, with arbitrary initial conditions $y\left(x_{0}\right)=Y_{0}, y^{\prime}\left(x_{0}\right)=Y_{1}$, has a unique solution, as long as $P(x)$ and $Q(x)$ are continuous in the interval under question.

At least two linearly independent solutions:

- $y_{1}(x)$: IVP with initial conditions $y\left(x_{0}\right)=1, y^{\prime}\left(x_{0}\right)=0$
- $y_{2}(x)$: IVP with initial conditions $y\left(x_{0}\right)=0, y^{\prime}\left(x_{0}\right)=1$

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0 \Rightarrow c_{1}=c_{2}=0
$$

lathematical Methods in Engineering and Science
Theory of the Homogeneous Equationtsioduction E Equations with Constant coefficients

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

Well-posedness of its IVP:
The initial value problem of the ODE, with arbitrary initial conditions $y\left(x_{0}\right)=Y_{0}, y^{\prime}\left(x_{0}\right)=Y_{1}$, has a unique solution, as long as $P(x)$ and $Q(x)$ are continuous in the interval under question.

At least two linearly independent solutions:

- $y_{1}(x)$: IVP with initial conditions $y\left(x_{0}\right)=1, y^{\prime}\left(x_{0}\right)=0$
- $y_{2}(x)$: IVP with initial conditions $y\left(x_{0}\right)=0, y^{\prime}\left(x_{0}\right)=1$

$$
c_{1} y_{1}(x)+c_{2} y_{2}(x)=0 \Rightarrow c_{1}=c_{2}=0
$$

At most two linearly independent solutions?

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$ Wronskian of two solutions $y_{1}(x)$ and $y_{2}\left(x x_{\text {jisis }}^{\text {Thery }}\right.$ for Solutions

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

D Solutions y_{1} and y_{2} are linearly dependent, if and only if $\exists x_{0}$ such that $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0$.

Wronskian of two solutions $y_{1}(x)$ and $y_{2}(x)_{\text {j. isis for Sol the }}^{\text {Theons }}$.

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

- Solutions y_{1} and y_{2} are linearly dependent, if and only if $\exists x_{0}$ such that $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0$.
- $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0 \Rightarrow W\left[y_{1}(x), y_{2}(x)\right]=0 \forall x$. Euler-Cauchy Equation
Wronskian of two solutions $y_{1}(x)$ and $y_{2}\left(x x_{\text {jois }}^{\text {The for of Sol the Homogene }}\right.$.

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

(D) Solutions y_{1} and y_{2} are linearly dependent, if and only if $\exists x_{0}$ such that $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0$.

- $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0 \Rightarrow W\left[y_{1}(x), y_{2}(x)\right]=0 \forall x$.
- $W\left[y_{1}\left(x_{1}\right), y_{2}\left(x_{1}\right)\right] \neq 0 \Rightarrow W\left[y_{1}(x), y_{2}(x)\right] \neq 0 \forall x$, and $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions.

 Euler-Cauchy Equation

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

(D) Solutions y_{1} and y_{2} are linearly dependent, if and only if $\exists x_{0}$ such that $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0$.

- $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0 \Rightarrow W\left[y_{1}(x), y_{2}(x)\right]=0 \forall x$.
- $W\left[y_{1}\left(x_{1}\right), y_{2}\left(x_{1}\right)\right] \neq 0 \Rightarrow W\left[y_{1}(x), y_{2}(x)\right] \neq 0 \forall x$, and $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions.
Complete solution:
If $y_{1}(x)$ and $y_{2}(x)$ are two linearly independent solutions, then the general solution is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

No third linearly independent solution. No singular solution.

Mathematical Methods in Engineering and Science
Second Order Linear Homogeneous ODE's
Theory of the Homogeneous Equationtsioduction E Equations with Constant coefficients Euler-Cauchy Equation
If $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent, thenen $y(y)^{\text {then }}$ Herigy

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=y_{1}\left(k y_{1}^{\prime}\right)-\left(k y_{1}\right) y_{1}^{\prime}=0
$$

In particular, $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0$

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=y_{1}\left(k y_{1}^{\prime}\right)-\left(k y_{1}\right) y_{1}^{\prime}=0
$$

In particular, $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0$
Conversely, if there is a value x_{0}, where

$$
W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=\left|\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right|=0
$$

then for

$$
\left[\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\mathbf{0}
$$

coefficient matrix is singular.

If $y_{1}(x)$ and $y_{2}(x)$ are linearly dependent, then Thery of the Hemogeneous Equations

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=y_{1}\left(k y_{1}^{\prime}\right)-\left(k y_{1}\right) y_{1}^{\prime}=0
$$

In particular, $W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0$
Conversely, if there is a value x_{0}, where

$$
W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=\left|\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right|=0
$$

then for

$$
\left[\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\mathbf{0}
$$

coefficient matrix is singular.
Choose non-zero $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ and frame $y(x)=c_{1} y_{1}+c_{2} y_{2}$, satisfying

$$
I V P \quad y^{\prime \prime}+P y^{\prime}+Q y=0, \quad y\left(x_{0}\right)=0, \quad y^{\prime}\left(x_{0}\right)=0 .
$$

athematical Methods in Engineering and Science
Second Order Linear Homogeneous ODE's

$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=y_{1}\left(k y_{1}^{\prime}\right)-\left(k y_{1}\right) y_{1}^{\prime}=0
$$

In particular,

$$
W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=0
$$

Conversely, if there is a value x_{0}, where

$$
W\left[y_{1}\left(x_{0}\right), y_{2}\left(x_{0}\right)\right]=\left|\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right|=0
$$

then for

$$
\left[\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\mathbf{0}
$$

coefficient matrix is singular.
Choose non-zero $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ and frame $y(x)=c_{1} y_{1}+c_{2} y_{2}$, satisfying

$$
I V P \quad y^{\prime \prime}+P y^{\prime}+Q y=0, \quad y\left(x_{0}\right)=0, \quad y^{\prime}\left(x_{0}\right)=0
$$

Therefore, $y(x)=0 \Rightarrow y_{1}$ and y_{2} are linearly dependent.
lathematical Methods in Engineering and Science
Theory of the Homogeneous Equationstioduction Equations with Constant Coefficients Euler-Cauchy Equation
Theory of the Homogeneous Equations
Pick a candidate solution $Y(x)$, choose a point x_{0}, x_{0}, evaluate functions y_{1}, y_{2}, Y and their derivatives at that point, frame

$$
\left[\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{c}
Y\left(x_{0}\right) \\
Y^{\prime}\left(x_{0}\right)
\end{array}\right]
$$

and ask for solution $\left[\begin{array}{l}C_{1} \\ C_{2}\end{array}\right]$.
lathematical Methods in Engineering and Science

Pick a candidate solution $Y(x)$, choose a point x_{0}, evaluate functions y_{1}, y_{2}, Y and their derivatives at that point, frame

$$
\left[\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{c}
Y\left(x_{0}\right) \\
Y^{\prime}\left(x_{0}\right)
\end{array}\right]
$$

and ask for solution $\left[\begin{array}{l}C_{1} \\ C_{2}\end{array}\right]$.
Unique solution for C_{1}, C_{2}. Hence, particular solution

$$
y^{*}(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)
$$

is the "unique" solution of the IVP

$$
y^{\prime \prime}+P y^{\prime}+Q y=0, y\left(x_{0}\right)=Y\left(x_{0}\right), y^{\prime}\left(x_{0}\right)=Y^{\prime}\left(x_{0}\right) .
$$

lathematical Methods in Engineering and Science

Pick a candidate solution $Y(x)$, choose a point x_{0}, evaluate functions y_{1}, y_{2}, Y and their derivatives at that point, frame

$$
\left[\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{c}
Y\left(x_{0}\right) \\
Y^{\prime}\left(x_{0}\right)
\end{array}\right]
$$

and ask for solution $\left[\begin{array}{l}C_{1} \\ C_{2}\end{array}\right]$.
Unique solution for C_{1}, C_{2}. Hence, particular solution

$$
y^{*}(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)
$$

is the "unique" solution of the IVP

$$
y^{\prime \prime}+P y^{\prime}+Q y=0, y\left(x_{0}\right)=Y\left(x_{0}\right), y^{\prime}\left(x_{0}\right)=Y^{\prime}\left(x_{0}\right) .
$$

But, that is the candidate function $Y(x)$!
lathematical Methods in Engineering and Science
Theory of the Homogeneous Equationtsioduction E Equations with Constant coefficients
Pick a candidate solution $Y(x)$, choose a point x_{0}, evaluate functions y_{1}, y_{2}, Y and their derivatives at that point, frame

$$
\left[\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{c}
Y\left(x_{0}\right) \\
Y^{\prime}\left(x_{0}\right)
\end{array}\right]
$$

and ask for solution $\left[\begin{array}{l}C_{1} \\ C_{2}\end{array}\right]$.
Unique solution for C_{1}, C_{2}. Hence, particular solution

$$
y^{*}(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)
$$

is the "unique" solution of the IVP

$$
y^{\prime \prime}+P y^{\prime}+Q y=0, y\left(x_{0}\right)=Y\left(x_{0}\right), y^{\prime}\left(x_{0}\right)=Y^{\prime}\left(x_{0}\right) .
$$

But, that is the candidate function $Y(x)$! Hence, $Y(x)=y^{*}(x)$.

For completely describing the solutions, we theedd foltutions two linearly independent solutions.

No guaranteed procedure to identify two basis members!

Bashamatial methor in Solutionerion and

For completely describing the solutions, Theory of the Homogeneous Equations
For completely describing the solutions, we 服dr Solutions two linearly independent solutions.

No guaranteed procedure to identify two basis members!
If one solution $y_{1}(x)$ is available, then to find another?
Reduction of order

Bashamatial methor in Solutionerion and

For completely describing the solutions, we Theoed f the Homogeneus Equations two linearly independent solutions.

No guaranteed procedure to identify two basis members! If one solution $y_{1}(x)$ is available, then to find another?

Reduction of order

Assume the second solution as

$$
y_{2}(x)=u(x) y_{1}(x)
$$

and determine $u(x)$ such that $y_{2}(x)$ satisfies the ODE.

$$
u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q u y_{1}=0
$$

Bashamatial methor in Solutionerion and

For completely describing the solutions, we Theory of the Homogeneus Equations
For completely describing the solutions, we \&eedr Solutions two linearly independent solutions.

No guaranteed procedure to identify two basis members! If one solution $y_{1}(x)$ is available, then to find another?

Reduction of order

Assume the second solution as

$$
y_{2}(x)=u(x) y_{1}(x)
$$

and determine $u(x)$ such that $y_{2}(x)$ satisfies the ODE.

$$
\begin{gathered}
u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q u y_{1}=0 \\
\Rightarrow u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+P u^{\prime} y_{1}+u\left(y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}\right)=0
\end{gathered}
$$

Since $y_{1}^{\prime \prime}+P y_{1}^{\prime}+Q y_{1}=0$, we have $y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P y_{1}\right) u^{\prime}=0$

Basis for Solutions

Denoting $u^{\prime}=U, U^{\prime}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P\right) U=0 . \begin{aligned} & \text { Theorl of the thamogeneous Equations } \\ & \text { Basis for Solutions }\end{aligned}$
Rearrangement and integration of the reduced equation:

$$
\frac{d U}{U}+2 \frac{d y_{1}}{y_{1}}+P d x=0 \Rightarrow U y_{1}^{2} e^{\int P d x}=C=1 \quad \text { (choose). }
$$

Basis for Solutions

Denoting $u^{\prime}=U, U^{\prime}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P\right) U=0$.
Rearrangement and integration of the reduced equation:

$$
\frac{d U}{U}+2 \frac{d y_{1}}{y_{1}}+P d x=0 \Rightarrow U y_{1}^{2} e^{\int P d x}=C=1 \quad \text { (choose). }
$$

Then,

$$
u^{\prime}=U=\frac{1}{y_{1}^{2}} e^{-\int P d x}
$$

Integrating,

$$
u(x)=\int \frac{1}{y_{1}^{2}} e^{-\int P d x} d x
$$

and

$$
y_{2}(x)=y_{1}(x) \int \frac{1}{y_{1}^{2}} e^{-\int P d x} d x
$$

Bashamatial methor in Solutionerion and

Denoting $u^{\prime}=U, U^{\prime}+\left(2 \frac{y_{1}^{\prime}}{y_{1}}+P\right) U=0$.
Rearrangement and integration of the reduced equation:

$$
\frac{d U}{U}+2 \frac{d y_{1}}{y_{1}}+P d x=0 \Rightarrow U y_{1}^{2} e^{\int P d x}=C=1 \quad \text { (choose). }
$$

Then,

$$
u^{\prime}=U=\frac{1}{y_{1}^{2}} e^{-\int P d x}
$$

Integrating,

$$
u(x)=\int \frac{1}{y_{1}^{2}} e^{-\int P d x} d x
$$

and

$$
y_{2}(x)=y_{1}(x) \int \frac{1}{y_{1}^{2}} e^{-\int P d x} d x
$$

Note: The factor $u(x)$ is never constant!

Basis for Solutions
Function space perspective:

Operator 'D' means differentiation, operates on an infinite dimensional function space as a linear transformation.

- It maps all constant functions to zero.
- It has a one-dimensional null space.

Basis for Solutions

Function space perspective:

Operator 'D' means differentiation, operates on an infinite dimensional function space as a linear transformation.

- It maps all constant functions to zero.
- It has a one-dimensional null space.

Second derivative or D^{2} is an operator that has a two-dimensional null space, $c_{1}+c_{2} x$, with basis $\{1, x\}$.

Basis for Solutions

Function space perspective:

Operator 'D' means differentiation, operates on an infinite dimensional function space as a linear transformation.

- It maps all constant functions to zero.
- It has a one-dimensional null space.

Second derivative or D^{2} is an operator that has a two-dimensional null space, $c_{1}+c_{2} x$, with basis $\{1, x\}$.
Examples of composite operators

- $(D+a)$ has a null space $c e^{-a x}$.
- $(x D+a)$ has a null space $c x^{-a}$.

Basis for Solutions

Function space perspective:

Operator 'D' means differentiation, operates on an infinite dimensional function space as a linear transformation.

- It maps all constant functions to zero.
- It has a one-dimensional null space.

Second derivative or D^{2} is an operator that has a two-dimensional null space, $c_{1}+c_{2} x$, with basis $\{1, x\}$.
Examples of composite operators

- $(D+a)$ has a null space $c e^{-a x}$.
- $(x D+a)$ has a null space $c x^{-a}$.

A second order linear operator $D^{2}+P(x) D+Q(x)$ possesses a two-dimensional null space.

- Solution of $\left[D^{2}+P(x) D+Q(x)\right] y=0$: description of the null space, or a basis for it..
- Analogous to solution of $\mathbf{A x}=\mathbf{0}$, i.e. development of a basis for $\operatorname{Null}(\mathbf{A})$.
- Second order linear homogeneous ODE's
- Wronskian and related results
- Solution basis
- Reduction of order
- Null space of a differential operator

Necessary Exercises: 1,2,3,7,8

Second Order Linear Non-Homogeneous ODE's
 Linear ODE's and Their Solutions
 Method of Undetermined Coefficients
 Method of Variation of Parameters
 Closure

Linear ODE's and Their Solutions
 The Complete Analogy

Table: Linear systems and mappings: algebraic and differential

In ordinary vector space	In infinite-dimensional function space		
$\mathbf{A} \mathbf{x}=\mathbf{b}$	$y^{\prime \prime}+P y^{\prime}+Q y=R$		
The system is consistent.	$P(x), Q(x), R(x)$ are continuous.		
A solution \mathbf{x}^{*}	A solution $y_{p}(x)$		
Alternative solution: $\overline{\mathbf{x}}$	Alternative solution: $\bar{y}(x)$		
$\overline{\mathbf{x}}-\mathbf{x}^{*}$ satisfies $\mathbf{A x}=\mathbf{0}$,			
is in null space of \mathbf{A}.			$\bar{y}(x)-y_{p}(x)$ satisfies $y^{\prime \prime}+P y^{\prime}+Q y=0$,
:---			
is in null space of $D^{2}+P(x) D+Q(x)$.			
Complete solution: $\mathbf{x}=\mathbf{x}^{*}+\sum_{i} c_{i}\left(\mathbf{x}_{0}\right)_{i}$			
Complete solution: $y_{p}(x)+\sum_{i} c_{i} y_{i}(x)$			
Methodology: Find null space of \mathbf{A} i.e. basis members $\left(\mathbf{x}_{0}\right)_{i}$. Find \mathbf{x}^{*} and compose.			
Methodology: Find null space of $D^{2}+P(x) D+Q(x)$ i.e. basis members $y_{i}(x)$. Find $y_{p}(x)$ and compose.			

Procedure to solve $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y={ }^{\prime} R(x)$

1. First, solve the corresponding homogeneous equation, obtain a basis with two solutions and construct

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

2. Next, find one particular solution $y_{p}(x)$ of the NHE and compose the complete solution

$$
y(x)=y_{h}(x)+y_{p}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

3. If some initial or boundary conditions are known, they can be imposed now to determine c_{1} and c_{2}.

Procedure to solve $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y={ }^{\prime} R(x)$

1. First, solve the corresponding homogeneous equation, obtain a basis with two solutions and construct

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

2. Next, find one particular solution $y_{p}(x)$ of the NHE and compose the complete solution

$$
y(x)=y_{h}(x)+y_{p}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

3. If some initial or boundary conditions are known, they can be imposed now to determine c_{1} and c_{2}.
Caution: If y_{1} and y_{2} are two solutions of the NHE, then do not expect $c_{1} y_{1}+c_{2} y_{2}$ to satisfy the equation.

Procedure to solve $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y={ }^{\prime} R(x)$

1. First, solve the corresponding homogeneous equation, obtain a basis with two solutions and construct

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

2. Next, find one particular solution $y_{p}(x)$ of the NHE and compose the complete solution

$$
y(x)=y_{h}(x)+y_{p}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

3. If some initial or boundary conditions are known, they can be imposed now to determine c_{1} and c_{2}.
Caution: If y_{1} and y_{2} are two solutions of the NHE, then do not expect $c_{1} y_{1}+c_{2} y_{2}$ to satisfy the equation. Implication of linearity or superposition:

With zero initial conditions, if y_{1} and y_{2} are responses due to inputs $R_{1}(x)$ and $R_{2}(x)$, respectively, then the response due to input $c_{1} R_{1}+c_{2} R_{2}$ is $c_{1} y_{1}+c_{2} y_{2}$.

Method of Undetermined Coefficients
 Method of Variation of Parameters
 Closure
 $$
y^{\prime \prime}+a y^{\prime}+b y=R(x)
$$

- What kind of function to propose as $y_{p}(x)$ if $R(x)=x^{n}$?

Mathematical Methods in Engineering and Science
Second Order Linear Non-Homogeneous ODE's

Method of Variation of Parameters
Closure

$$
y^{\prime \prime}+a y^{\prime}+b y=R(x)
$$

- What kind of function to propose as $y_{p}(x)$ if $R(x)=x^{n}$?
- And what if $R(x)=e^{\lambda x}$?

athematical Methods in Engineering and Science
 Method of Undetermined Coefficientsinethor of of Undetermined
 $$
y^{\prime \prime}+a y^{\prime}+b y=R(x)
$$

- What kind of function to propose as $y_{p}(x)$ if $R(x)=x^{n}$?
- And what if $R(x)=e^{\lambda x}$?
- If $R(x)=x^{n}+e^{\lambda x}$, i.e. in the form $k_{1} R_{1}(x)+k_{2} R_{2}(x)$?

Second Order Linear Non-Homogeneous ODE's

$$
y^{\prime \prime}+a y^{\prime}+b y=R(x)
$$

- What kind of function to propose as $y_{p}(x)$ if $R(x)=x^{n}$?
- And what if $R(x)=e^{\lambda x}$?
- If $R(x)=x^{n}+e^{\lambda x}$, i.e. in the form $k_{1} R_{1}(x)+k_{2} R_{2}(x)$?

The principle of superposition (linearity)

Method of Undetermined Coefficients ininer odes ond Their Soluions

$$
y^{\prime \prime}+a y^{\prime}+b y=R(x)
$$

- What kind of function to propose as $y_{p}(x)$ if $R(x)=x^{n}$?
- And what if $R(x)=e^{\lambda x}$?
- If $R(x)=x^{n}+e^{\lambda x}$, i.e. in the form $k_{1} R_{1}(x)+k_{2} R_{2}(x)$?

The principle of superposition (linearity)
Table: Candidate solutions for linear non-homogeneous ODE's

RHS function $R(x)$	Candidate solution $y_{p}(x)$
$p_{n}(x)$	$q_{n}(x)$
$e^{\lambda x}$	$k e^{\lambda x}$
$\cos \omega x$ or $\sin \omega x$	$k_{1} \cos \omega x+k_{2} \sin \omega x$
$e^{\lambda x} \cos \omega x$ or $e^{\lambda x} \sin \omega x$	$k_{1} e^{\lambda x} \cos \omega x+k_{2} e^{\lambda x} \sin \omega x$
$p_{n}(x) e^{\lambda x}$	$q_{n}(x) e^{\lambda x}$
$p_{n}(x) \cos \omega x$ or $p_{n}(x) \sin \omega x$	$q_{n}(x) \cos \omega x+r_{n}(x) \sin \omega x$
$p_{n}(x) e^{\lambda x} \cos \omega x$ or $p_{n}(x) e^{\lambda x} \sin \omega x$	$q_{n}(x) e^{\lambda x} \cos \omega x+r_{n}(x) e^{\lambda x} \sin \omega x$

Mathematical Methods in Engineering and Science
Second Order Linear Non-Homogeneous ODE's

Example:

(a) $y^{\prime \prime}-6 y^{\prime}+5 y=e^{3 x}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

Example:

(a) $y^{\prime \prime}-6 y^{\prime}+5 y=e^{3 x}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

In each case, the first official proposal: $y_{p}=k e^{3 x}$

Example:

(a) $y^{\prime \prime}-6 y^{\prime}+5 y=e^{3 x}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

In each case, the first official proposal: $y_{p}=k e^{3 x}$
(a) $y(x)=c_{1} e^{x}+c_{2} e^{5 x}-e^{3 x} / 4$

Mathematical Methods in Engineering and Science

Method of Undetermined Coefficients

Example:

(a) $y^{\prime \prime}-6 y^{\prime}+5 y=e^{3 x}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

In each case, the first official proposal: $y_{p}=k e^{3 x}$
(a) $y(x)=c_{1} e^{x}+c_{2} e^{5 x}-e^{3 x} / 4$
(b) $y(x)=c_{1} e^{2 x}+c_{2} e^{3 x}+$

Mathematical Methods in Engineering and Science

Example:

(a) $y^{\prime \prime}-6 y^{\prime}+5 y=e^{3 x}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

In each case, the first official proposal: $y_{p}=k e^{3 x}$
(a) $y(x)=c_{1} e^{x}+c_{2} e^{5 x}-e^{3 x} / 4$
(b) $y(x)=c_{1} e^{2 x}+c_{2} e^{3 x}+x e^{3 x}$

athematical Methods in Engineering and Science

Example:

(a) $y^{\prime \prime}-6 y^{\prime}+5 y=e^{3 x}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

In each case, the first official proposal: $y_{p}=k e^{3 x}$
(a) $y(x)=c_{1} e^{x}+c_{2} e^{5 x}-e^{3 x} / 4$
(b) $y(x)=c_{1} e^{2 x}+c_{2} e^{3 x}+x e^{3 x}$
(c) $y(x)=c_{1} e^{3 x}+c_{2} x e^{3 x}+$

Mathematical Methods in Engineering and Science

Example:

(a) $y^{\prime \prime}-6 y^{\prime}+5 y=e^{3 x}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

In each case, the first official proposal: $y_{p}=k e^{3 x}$
(a) $y(x)=c_{1} e^{x}+c_{2} e^{5 x}-e^{3 x} / 4$
(b) $y(x)=c_{1} e^{2 x}+c_{2} e^{3 x}+x e^{3 x}$
(c) $y(x)=c_{1} e^{3 x}+c_{2} x e^{3 x}+\frac{1}{2} x^{2} e^{3 x}$

Second Order Linear Non-Homogeneous ODE's

Example:

(a) $y^{\prime \prime}-6 y^{\prime}+5 y=e^{3 x}$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=e^{3 x}$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

In each case, the first official proposal: $y_{p}=k e^{3 x}$
(a) $y(x)=c_{1} e^{x}+c_{2} e^{5 x}-e^{3 x} / 4$
(b) $y(x)=c_{1} e^{2 x}+c_{2} e^{3 x}+x e^{3 x}$
(c) $y(x)=c_{1} e^{3 x}+c_{2} x e^{3 x}+\frac{1}{2} x^{2} e^{3 x}$

Modification rule

- If the candidate function (ke ${ }^{\lambda x}, k_{1} \cos \omega x+k_{2} \sin \omega x$ or $\left.k_{1} e^{\lambda x} \cos \omega x+k_{2} e^{\lambda x} \sin \omega x\right)$ is a solution of the corresponding HE; with $\lambda, \pm i \omega$ or $\lambda \pm i \omega$ (respectively) satisfying the auxiliary equation; then modify it by multiplying with x.
- In the case of λ being a double root, i.e. both $e^{\lambda x}$ and $x e^{\lambda x}$ being solutions of the HE, choose $y_{p}=k x^{2} e^{\lambda x}$.

Mathematical Methods in Engineering and Science
Second Order Linear Non-Homogeneous ODE's

Method of Variation of Parameters

Solution of the HE:

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

in which c_{1} and c_{2} are constant 'parameters'.

Solution of the HE:

$$
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

in which c_{1} and c_{2} are constant 'parameters'.

For solution of the NHE, how about 'variable parameters'?

Propose

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

and force $y_{p}(x)$ to satisfy the ODE.
A single second order $O D E$ in $u_{1}(x)$ and $u_{2}(x)$.
We need one more condition to fix them.

Mathematical Methods in Engineering and Science
Method of Variation of Parameters
From $y_{p}=u_{1} y_{1}+u_{2} y_{2}$,

$$
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime} .
$$

Seca
Method of Variation of Parameters
From $y_{p}=u_{1} y_{1}+u_{2} y_{2}$,

$$
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime} .
$$

Condition

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \text { gives } \\
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}
\end{aligned}
$$

Order Linear Non-Homogeneous ODE's

Method of Variation of Parameters
From $y_{p}=u_{1} y_{1}+u_{2} y_{2}$,

$$
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}
$$

Condition

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \text { gives } \\
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} .
\end{aligned}
$$

Differentiating,

$$
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}
$$

Method of Variation of Parameters
From $y_{p}=u_{1} y_{1}+u_{2} y_{2}$,

$$
y_{p}^{\prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}
$$

Condition

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \text { gives } \\
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}
\end{aligned}
$$

Differentiating,

$$
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}
$$

Substitution into the ODE:
$u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+P(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=R(x)$
Rearranging,
$u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1}\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}\right)=R(x)$.
As y_{1} and y_{2} satisfy the associated $\mathrm{HE}, u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=R(x)$
 \title{
Method of Variation of Parameters
}
 \title{
Method of Variation of Parameters
}

Second Order Linear Non-Homogeneous ODE's

$$
\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
R
\end{array}\right]
$$

Sec

$$
\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
R
\end{array}\right]
$$

Since Wronskian is non-zero, this system has unique solution

$$
u_{1}^{\prime}=-\frac{y_{2} R}{W} \quad \text { and } \quad u_{2}^{\prime}=\frac{y_{1} R}{W}
$$

Direct quadrature:
$u_{1}(x)=-\int \frac{y_{2}(x) R(x)}{W\left[y_{1}(x), y_{2}(x)\right]} d x$ and $u_{2}(x)=\int \frac{y_{1}(x) R(x)}{W\left[y_{1}(x), y_{2}(x)\right]} d x$

Method of Variation of Parameters

$$
\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
R
\end{array}\right]
$$

Since Wronskian is non-zero, this system has unique solution

$$
u_{1}^{\prime}=-\frac{y_{2} R}{W} \quad \text { and } \quad u_{2}^{\prime}=\frac{y_{1} R}{W}
$$

Direct quadrature:
$u_{1}(x)=-\int \frac{y_{2}(x) R(x)}{W\left[y_{1}(x), y_{2}(x)\right]} d x$ and $u_{2}(x)=\int \frac{y_{1}(x) R(x)}{W\left[y_{1}(x), y_{2}(x)\right]} d x$

In contrast to the method of undetermined multipliers, variation of parameters is general. It is applicable for all continuous functions as $P(x), Q(x)$ and $R(x)$.

- Function space perspective of linear ODE's
- Method of undetermined coefficients
- Method of variation of parameters

Necessary Exercises: 1,3,5,6

Higher Order Linear ODE's
Theory of Linear ODE's
Homogeneous Equations with Constant Coefficients
Non-Homogeneous Equations
Euler-Cauchy Equation of Higher Order

Theory of Linear ODE's

$y^{(n)}+P_{1}(x) y^{(n-1)}+P_{2}(x) y^{(n-2)}+\cdots+P_{n-1}(x) y^{\prime}+P_{n}(x) y=R(x)$
General solution: $y(x)=y_{h}(x)+y_{p}(x)$, where

- $y_{p}(x)$: a particular solution
- $y_{h}(x)$: general solution of corresponding HE

$$
y^{(n)}+P_{1}(x) y^{(n-1)}+P_{2}(x) y^{(n-2)}+\cdots+P_{n-1}(x) y^{\prime}+P_{n}(x) y=0
$$

$y^{(n)}+P_{1}(x) y^{(n-1)}+P_{2}(x) y^{(n-2)}+\cdots+P_{n-1}(x) y^{\prime}+P_{n}(x) y=R(x)$
General solution: $y(x)=y_{h}(x)+y_{p}(x)$, where

- $y_{p}(x)$: a particular solution
- $y_{h}(x)$: general solution of corresponding HE

$$
y^{(n)}+P_{1}(x) y^{(n-1)}+P_{2}(x) y^{(n-2)}+\cdots+P_{n-1}(x) y^{\prime}+P_{n}(x) y=0
$$

For the HE, suppose we have n solutions $y_{1}(x), y_{2}(x), \cdots, y_{n}(x)$.
Assemble the state vectors in matrix

$$
\mathbf{Y}(x)=\left[\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & \cdots & y_{n}^{\prime \prime} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right]
$$

$y^{(n)}+P_{1}(x) y^{(n-1)}+P_{2}(x) y^{(n-2)}+\cdots+P_{n-1}(x) y^{\prime}+P_{n}(x) y=R(x)$
General solution: $y(x)=y_{h}(x)+y_{p}(x)$, where

- $y_{p}(x)$: a particular solution
- $y_{h}(x)$: general solution of corresponding HE

$$
y^{(n)}+P_{1}(x) y^{(n-1)}+P_{2}(x) y^{(n-2)}+\cdots+P_{n-1}(x) y^{\prime}+P_{n}(x) y=0
$$

For the HE, suppose we have n solutions $y_{1}(x), y_{2}(x), \cdots, y_{n}(x)$.
Assemble the state vectors in matrix

$$
\mathbf{Y}(x)=\left[\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & \cdots & y_{n}^{\prime \prime} \\
\vdots & \vdots & \ddots & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right]
$$

Wronskian:

$$
W\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\operatorname{det}[\mathbf{Y}(x)]
$$

Theory of Linear ODE's

- If solutions $y_{1}(x), y_{2}(x), \cdots, y_{n}(x)$ of EUEer-Cauchy Equation of dependent, then for a non-zero $\mathbf{k} \in R^{n}$,

$$
\begin{aligned}
\sum_{i=1}^{n} k_{i} y_{i}(x)=0 & \Rightarrow \sum_{i=1}^{n} k_{i} y_{i}^{(j)}(x)=0 \text { for } j=1,2,3, \cdots,(n-1) \\
& \Rightarrow[\mathbf{Y}(x)] \mathbf{k}=\mathbf{0} \Rightarrow[\mathbf{Y}(x)] \text { is singular } \\
& \Rightarrow W\left[y_{1}(x), y_{2}(x), \cdots, y_{n}(x)\right]=0 .
\end{aligned}
$$

Theory of Linear ODE's

- If solutions $y_{1}(x), y_{2}(x), \cdots, y_{n}(x)$ of HE are linearly dependent, then for a non-zero $\mathbf{k} \in R^{n}$,

$$
\begin{aligned}
\sum_{i=1}^{n} k_{i} y_{i}(x)=0 & \Rightarrow \sum_{i=1}^{n} k_{i} y_{i}^{(j)}(x)=0 \text { for } j=1,2,3, \cdots,(n-1) \\
& \Rightarrow[\mathbf{Y}(x)] \mathbf{k}=\mathbf{0} \Rightarrow[\mathbf{Y}(x)] \text { is singular } \\
& \Rightarrow W\left[y_{1}(x), y_{2}(x), \cdots, y_{n}(x)\right]=0
\end{aligned}
$$

- If Wronskian is zero at $x=x_{0}$, then $\mathbf{Y}\left(x_{0}\right)$ is singular and a non-zero $\mathbf{k} \in \operatorname{Null}\left[\mathbf{Y}\left(x_{0}\right)\right]$ gives $\sum_{i=1}^{n} k_{i} y_{i}(x)=0$, implying $y_{1}(x), y_{2}(x), \cdots, y_{n}(x)$ to be linearly dependent.
- Zero Wronskian at some $x=x_{0}$ implies zero Wronskian everywhere. Non-zero Wronskian at some $x=x_{1}$ ensures non-zero Wronskian everywhere and the corrseponding solutions as linearly independent.

Theory of Linear ODE's

- If solutions $y_{1}(x), y_{2}(x), \cdots, y_{n}(x)$ of HE are linearly dependent, then for a non-zero $\mathbf{k} \in R^{n}$,

$$
\begin{aligned}
\sum_{i=1}^{n} k_{i} y_{i}(x)=0 & \Rightarrow \sum_{i=1}^{n} k_{i} y_{i}^{(j)}(x)=0 \text { for } j=1,2,3, \cdots,(n-1) \\
& \Rightarrow[\mathbf{Y}(x)] \mathbf{k}=\mathbf{0} \Rightarrow[\mathbf{Y}(x)] \text { is singular } \\
& \Rightarrow W\left[y_{1}(x), y_{2}(x), \cdots, y_{n}(x)\right]=0 .
\end{aligned}
$$

- If Wronskian is zero at $x=x_{0}$, then $\mathbf{Y}\left(x_{0}\right)$ is singular and a non-zero $\mathbf{k} \in \operatorname{Null}\left[\mathbf{Y}\left(x_{0}\right)\right]$ gives $\sum_{i=1}^{n} k_{i} y_{i}(x)=0$, implying $y_{1}(x), y_{2}(x), \cdots, y_{n}(x)$ to be linearly dependent.
- Zero Wronskian at some $x=x_{0}$ implies zero Wronskian everywhere. Non-zero Wronskian at some $x=x_{1}$ ensures non-zero Wronskian everywhere and the corrseponding solutions as linearly independent.
- With n linearly independent solutions $y_{1}(x), y_{2}(x), \cdots, y_{n}(x)$ of the HE, we have its general solution $y_{h}(x)=\sum_{i=1}^{n} c_{i} y_{i}(x)$, acting as the complementary function for the NHE.

athematical Methods in Engineering and Science

Homogeneous Equations with Constahtoomediedilent $\delta_{\text {onstant coeficients }}$

Non-Homogeneous Equations
Euler-Cauchy Equation of Higher Order

$$
y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0
$$

With trial solution $y=e^{\lambda x}$, the auxiliary equation:

$$
\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\cdots+a_{n-1} \lambda+a_{n}=0
$$

Mathematical Methods in Engineering and Science
Higher Order Linear ODE's

$$
y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0
$$

With trial solution $y=e^{\lambda x}$, the auxiliary equation:

$$
\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\cdots+a_{n-1} \lambda+a_{n}=0
$$

Construction of the basis:

1. For every simple real root $\lambda=\gamma, e^{\gamma x}$ is a solution.
2. For every simple pair of complex roots $\lambda=\mu \pm i \omega$, $e^{\mu x} \cos \omega x$ and $e^{\mu x} \sin \omega x$ are linearly independent solutions.
3. For every real root $\lambda=\gamma$ of multiplicity r; $e^{\gamma x}, x e^{\gamma x}, x^{2} e^{\gamma x}$, $\cdots, x^{r-1} e^{\gamma x}$ are all linearly independent solutions.
4. For every complex pair of roots $\lambda=\mu \pm i \omega$ of multiplicity r; $e^{\mu x} \cos \omega x, e^{\mu x} \sin \omega x, x e^{\mu x} \cos \omega x, x e^{\mu x} \sin \omega x, \cdots$, $x^{r-1} e^{\mu x} \cos \omega x, x^{r-1} e^{\mu x} \sin \omega x$ are the required solutions.

Non-Homogeneous Equations Method of undetermined coefficients

$$
y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=R(x)
$$

Extension of the second order case

Method of undetermined coefficients

$$
y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=R(x)
$$

Extension of the second order case Method of variation of parameters

$$
y_{p}(x)=\sum_{i=1}^{n} u_{i}(x) y_{i}(x)
$$

Non-Homogeneous Equations

Method of undetermined coefficients

$$
y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=R(x)
$$

Extension of the second order case Method of variation of parameters

$$
y_{p}(x)=\sum_{i=1}^{n} u_{i}(x) y_{i}(x)
$$

Imposed condition
$\sum_{i=1}^{n} u_{i}^{\prime}(x) y_{i}(x)=0$

$$
\Rightarrow \quad y_{p}^{\prime}(x)=\sum_{i=1}^{n} u_{i}(x) y_{i}^{\prime}(x)
$$

Non-Homogeneous Equations
Method of undetermined coefficients

$$
y^{(n)}+a_{1} y^{(n-1)}+a_{2} y^{(n-2)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=R(x)
$$

Extension of the second order case Method of variation of parameters

$$
y_{p}(x)=\sum_{i=1}^{n} u_{i}(x) y_{i}(x)
$$

Imposed condition
$\sum_{i=1}^{n} u_{i}^{\prime}(x) y_{i}(x)=0$

Derivative

$$
\Rightarrow \quad y_{p}^{\prime}(x)=\sum_{i=1}^{n} u_{i}(x) y_{i}^{\prime}(x)
$$

$\sum_{i=1}^{n} u_{i}^{\prime}(x) y_{i}^{\prime}(x)=0$

$$
\Rightarrow \quad y_{p}^{\prime \prime}(x)=\sum_{i=1}^{n} u_{i}(x) y_{i}^{\prime \prime}(x)
$$

$$
\Rightarrow \quad \cdots \quad \cdots \quad \cdots
$$

$$
\sum_{i=1}^{n} u_{i}^{\prime}(x) y_{i}^{(n-2)}(x)=0 \Rightarrow y_{p}^{(n-1)}(x)=\sum_{i=1}^{n} u_{i}(x) y_{i}^{(n-1)}(x)
$$

Finally, $y_{p}^{(n)}(x)=\sum_{i=1}^{n} u_{i}^{\prime}(x) y_{i}^{(n-1)}(x)+\sum_{i=1}^{n} u_{i}(x) y_{i}^{(n)}(x)$
$\Rightarrow \sum^{n} u_{i}^{\prime}(x) y_{i}^{(n-1)}(x)+\sum^{n} u_{i}(x)\left[y_{i}^{(n)}+P_{1} y_{i}^{(n-1)}+\cdots+P_{n} y_{i}\right]=R(x)$

Non-Homogeneous Equations
Since each $y_{i}(x)$ is a solution of the HE ,

$$
\sum_{i=1}^{n} u_{i}^{\prime}(x) y_{i}^{(n-1)}(x)=R(x)
$$

Assembling all conditions on $\mathbf{u}^{\prime}(x)$ together,

$$
[\mathbf{Y}(x)] \mathbf{u}^{\prime}(x)=\mathbf{e}_{n} R(x) .
$$

Non-Homogeneous Equations

Since each $y_{i}(x)$ is a solution of the HE ,

$$
\sum_{i=1}^{n} u_{i}^{\prime}(x) y_{i}^{(n-1)}(x)=R(x)
$$

Assembling all conditions on $\mathbf{u}^{\prime}(x)$ together,

$$
[\mathbf{Y}(x)] \mathbf{u}^{\prime}(x)=\mathbf{e}_{n} R(x)
$$

Since $\mathbf{Y}^{-1}=\frac{\operatorname{adj} \mathbf{Y}}{\operatorname{det}(\mathbf{Y})}$,

$$
\mathbf{u}^{\prime}(x)=\frac{1}{\operatorname{det}[\mathbf{Y}(x)]}[\operatorname{adj} \mathbf{Y}(x)] \mathbf{e}_{n} R(x)=\frac{R(x)}{W(x)}[\text { last column of } \operatorname{adj} \mathbf{Y}(x)]
$$

Using cofactors of elements from last row only,

$$
u_{i}^{\prime}(x)=\frac{W_{i}(x)}{W(x)} R(x)
$$

with $W_{i}(x)=$ Wronskian evaluated with \mathbf{e}_{n} in place of i-th column.

Non-Homogeneous Equations

Since each $y_{i}(x)$ is a solution of the HE ,

$$
\sum_{i=1}^{n} u_{i}^{\prime}(x) y_{i}^{(n-1)}(x)=R(x)
$$

Assembling all conditions on $\mathbf{u}^{\prime}(x)$ together,

$$
[\mathbf{Y}(x)] \mathbf{u}^{\prime}(x)=\mathbf{e}_{n} R(x)
$$

Since $\mathbf{Y}^{-1}=\frac{\operatorname{adj} \mathbf{Y}}{\operatorname{det}(\mathbf{Y})}$,

$$
\mathbf{u}^{\prime}(x)=\frac{1}{\operatorname{det}[\mathbf{Y}(x)]}[\operatorname{adj} \mathbf{Y}(x)] \mathbf{e}_{n} R(x)=\frac{R(x)}{W(x)}[\text { last column of } \operatorname{adj} \mathbf{Y}(x)]
$$

Using cofactors of elements from last row only,

$$
u_{i}^{\prime}(x)=\frac{W_{i}(x)}{W(x)} R(x)
$$

with $W_{i}(x)=$ Wronskian evaluated with \mathbf{e}_{n} in place of i-th column.

$$
u_{i}(x)=\int \frac{W_{i}(x) R(x)}{W(x)} d x
$$

- Wronskian for a higher order ODE
- General theory of linear ODE's
- Variation for parameters for n-th order ODE

Necessary Exercises: 1,3,4

Laplace Transforms

Introduction
Basic Properties and Results
Application to Differential Equations
Handling Discontinuities
Convolution
Advanced Issues

Introduction
Classical perspective

- Entire differential equation is known in advance.
- Go for a complete solution first.
- Afterwards, use the initial (or other) conditions.

Classical perspective

- Entire differential equation is known in advance.
- Go for a complete solution first.
- Afterwards, use the initial (or other) conditions.

A practical situation

- You have a plant
- intrinsic dynamic model as well as the starting conditions.
- You may drive the plant with different kinds of inputs on different occasions.

Classical perspective

- Entire differential equation is known in advance.
- Go for a complete solution first.
- Afterwards, use the initial (or other) conditions.

A practical situation

- You have a plant
- intrinsic dynamic model as well as the starting conditions.
- You may drive the plant with different kinds of inputs on different occasions.

Implication

- Left-hand side of the ODE and the initial conditions are known a priori.
- Right-hand side, $R(x)$, changes from task to task.

Laplace Transforms

Another question: What if $R(x)$ is not contindious?

- When power is switched on or off, what happens?
- If there is a sudden voltage fluctuation, what happens to the equipment connected to the power line?
Or, does "anything" happen in the immediate future?

Another question: What if $R(x)$ is not contindious?

- When power is switched on or off, what happens?
- If there is a sudden voltage fluctuation, what happens to the equipment connected to the power line?
Or, does "anything" happen in the immediate future?
"Something" certainly happens. The IVP has a solution!
Laplace transforms provide a tool to find the solution, in spite of the discontinuity of $R(x)$.

Another question: What if $R(x)$ is not continullous?

- When power is switched on or off, what happens?
- If there is a sudden voltage fluctuation, what happens to the equipment connected to the power line?
Or, does "anything" happen in the immediate future?
"Something" certainly happens. The IVP has a solution!
Laplace transforms provide a tool to find the solution, in spite of the discontinuity of $R(x)$.

Integral transform:

$$
T[f(t)](s)=\int_{a}^{b} K(s, t) f(t) d t
$$

s : frequency variable
$K(s, t)$: kernel of the transform
Note: $T[f(t)]$ is a function of s, not t.

With kernel function $K(s, t)=e^{-s t}$, and limits $\begin{gathered}\text { convilution }\end{gathered} \theta, b=\infty$,

Laplace transform

$$
F(s)=L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} f(t) d t
$$

When this integral exists, $f(t)$ has its Laplace transform.

With kernel function $K(s, t)=e^{-s t}$, and limits $\operatorname{lin} \theta, b=\infty$, Laplace transform

$$
F(s)=L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} f(t) d t
$$

When this integral exists, $f(t)$ has its Laplace transform.
Sufficient condition:

- $f(t)$ is piecewise continuous, and
- it is of exponential order, i.e. $|f(t)|<M e^{c t}$ for some (finite) M and c.

With kernel function $K(s, t)=e^{-s t}$, and limits canvitan $\theta, b=\infty$, Laplace transform

$$
F(s)=L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} f(t) d t
$$

When this integral exists, $f(t)$ has its Laplace transform.
Sufficient condition:

- $f(t)$ is piecewise continuous, and
- it is of exponential order, i.e. $|f(t)|<M e^{c t}$ for some (finite) M and c.

Inverse Laplace transform:

$$
f(t)=L^{-1}\{F(s)\}
$$

Basiemaicic Pe Prossin Engineries and and Results
Ben Linearity:

$$
L\{a f(t)+b g(t)\}=a L\{f(t)\}+b L\{g(t)\}
$$

First shifting property or the frequency shifting rule:

$$
L\left\{e^{a t} f(t)\right\}=F(s-a)
$$

Laplace transforms of some elementary functions:

$$
\begin{aligned}
L(1) & =\int_{0}^{\infty} e^{-s t} d t=\left[\frac{e^{-s t}}{-s}\right]_{0}^{\infty}=\frac{1}{s} \\
L(t) & =\int_{0}^{\infty} e^{-s t} t d t=\left[t \frac{e^{-s t}}{-s}\right]_{0}^{\infty}+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t=\frac{1}{s^{2}}, \\
L\left(t^{n}\right) & =\frac{n!}{s^{n+1}} \quad(\text { for positive integer } n), \\
L\left(t^{a}\right) & =\frac{\Gamma(a+1)}{s^{a+1}} \quad\left(\text { for } a \in R^{+}\right) \\
\text {and } L\left(e^{a t}\right) & =\frac{1}{s-a} .
\end{aligned}
$$

Basic Properties and Results

$$
\begin{array}{ll}
L(\cos \omega t)=\frac{s}{s^{2}+\omega^{2}}, & L(\sin \omega t)=\frac{\text { Advanced Issues } \omega}{s^{2}+\omega^{2}} \\
L(\cosh a t)=\frac{s}{s^{2}-a^{2}}, & L(\sinh a t)=\frac{a}{s^{2}-a^{2}} \\
L\left(e^{\mu t} \cos \omega t\right)=\frac{s-\mu}{(s-\mu)^{2}+\omega^{2}}, & L\left(e^{\mu t} \sin \omega t\right)=\frac{\omega}{(s-\mu)^{2}+\omega^{2}}
\end{array}
$$

Basic Properties and Results

$$
\begin{array}{ll}
L(\cos \omega t)=\frac{s}{s^{2}+\omega^{2}}, & L(\sin \omega t)=\frac{\text { Advanced Issues } \omega}{s^{2}+\omega^{2}} \\
L(\cosh a t)=\frac{s}{s^{2}-a^{2}}, & L(\sinh a t)=\frac{a}{s^{2}-a^{2}} \\
L\left(e^{\mu t} \cos \omega t\right)=\frac{s-\mu}{(s-\mu)^{2}+\omega^{2}}, & L\left(e^{\mu t} \sin \omega t\right)=\frac{\omega}{(s-\mu)^{2}+\omega^{2}}
\end{array}
$$

Laplace transform of derivative:

$$
\begin{aligned}
L\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\left[e^{-s t} f(t)\right]_{0}^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t=s L\{f(t)\}-f(0)
\end{aligned}
$$

Using this process recursively,

$$
L\left\{f^{(n)}(t)\right\}=s^{n} L\{f(t)\}-s^{(n-1)} f(0)-s^{(n-2)} f^{\prime}(0)-\cdots-f^{(n-1)}(0)
$$

Basic Properties and Results

$$
\begin{array}{ll}
L(\cos \omega t)=\frac{s}{s^{2}+\omega^{2}}, & L(\sin \omega t)=\frac{\text { Advanced Issues } \omega}{s^{2}+\omega^{2}} \\
L(\cosh a t)=\frac{s}{s^{2}-a^{2}}, & L(\sinh a t)=\frac{a}{s^{2}-a^{2}} \\
L\left(e^{\mu t} \cos \omega t\right)=\frac{s-\mu}{(s-\mu)^{2}+\omega^{2}}, & L\left(e^{\mu t} \sin \omega t\right)=\frac{\omega}{(s-\mu)^{2}+\omega^{2}}
\end{array}
$$

Laplace transform of derivative:

$$
\begin{aligned}
L\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\left[e^{-s t} f(t)\right]_{0}^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t=s L\{f(t)\}-f(0)
\end{aligned}
$$

Using this process recursively,

$$
L\left\{f^{(n)}(t)\right\}=s^{n} L\{f(t)\}-s^{(n-1)} f(0)-s^{(n-2)} f^{\prime}(0)-\cdots-f^{(n-1)}(0)
$$

For integral $g(t)=\int_{0}^{t} f(t) d t, \quad g(0)=0$, and
$L\left\{g^{\prime}(t)\right\}=s L\{g(t)\}-g(0)=s L\{g(t)\} \Rightarrow L\{g(t)\}=\frac{1}{s} L\{f(t)\}$.

Mathematical Methods in Engineering and Science
Laplace Transforms

Application to Differential Equations $\begin{gathered}\text { Introduction } \\ \text { Basic Properies and Results } \\ \text { Per }\end{gathered}$

Example:

$$
y^{\prime \prime}+a y^{\prime}+b y=r(t), \quad y(0)=K_{0}, \quad y^{\prime}(0)=K_{1}
$$

athematical Methods in Engineering and Science
 Application to Differential Equations

Example:

Initial value problem of a linear constant coêficieded

$$
y^{\prime \prime}+a y^{\prime}+b y=r(t), \quad y(0)=K_{0}, \quad y^{\prime}(0)=K_{1}
$$

Laplace transforms of both sides of the ODE:

$$
\begin{gathered}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+a[s Y(s)-y(0)]+b Y(s)=R(s) \\
\Rightarrow\left(s^{2}+a s+b\right) Y(s)=(s+a) K_{0}+K_{1}+R(s)
\end{gathered}
$$

A differential equation in $y(t)$ has been converted to an algebraic equation in $Y(s)$.

Example:

Initial value problem of a linear constant coêficié ent "ODE

$$
y^{\prime \prime}+a y^{\prime}+b y=r(t), \quad y(0)=K_{0}, y^{\prime}(0)=K_{1}
$$

Laplace transforms of both sides of the ODE:

$$
\begin{gathered}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+a[s Y(s)-y(0)]+b Y(s)=R(s) \\
\Rightarrow\left(s^{2}+a s+b\right) Y(s)=(s+a) K_{0}+K_{1}+R(s)
\end{gathered}
$$

A differential equation in $y(t)$ has been converted to an algebraic equation in $Y(s)$.

Transfer function: ratio of Laplace transform of output function $y(t)$ to that of input function $r(t)$, with zero initial conditions

$$
\begin{gathered}
Q(s)=\frac{Y(s)}{R(s)}=\frac{1}{s^{2}+a s+b} \text { (in this case) } \\
Y(s)=\left[(s+a) K_{0}+K_{1}\right] Q(s)+Q(s) R(s)
\end{gathered}
$$

Solution of the given IVP: $y(t)=L^{-1}\{Y(s)\}$

Mathematical Methods in Engineering and Science

Unit step function

$$
u(t-a)=\left\{\begin{array}{lll}
0 & \text { if } & t<a \\
1 & \text { if } & t>a
\end{array}\right.
$$

Its Laplace transform:
$L\{u(t-a)\}=\int_{0}^{\infty} e^{-s t} u(t-a) d t=\int_{0}^{a} 0 \cdot d t+\int_{a}^{\infty} e^{-s t} d t=\frac{e^{-a s}}{s}$

Unit step function

$$
u(t-a)=\left\{\begin{array}{lll}
0 & \text { if } & t<a \\
1 & \text { if } & t>a
\end{array}\right.
$$

Its Laplace transform:
$L\{u(t-a)\}=\int_{0}^{\infty} e^{-s t} u(t-a) d t=\int_{0}^{a} 0 \cdot d t+\int_{a}^{\infty} e^{-s t} d t=\frac{e^{-a s}}{s}$
For input $f(t)$ with a time delay,

$$
f(t-a) u(t-a)=\left\{\begin{array}{rll}
0 & \text { if } & t<a \\
f(t-a) & \text { if } & t>a
\end{array}\right.
$$

has its Laplace transform as

$$
\begin{aligned}
L\{f(t-a) u(t-a)\} & =\int_{a}^{\infty} e^{-s t} f(t-a) d t \\
& =\int_{0}^{\infty} e^{-s(a+\tau)} f(\tau) d \tau=e^{-a s} L\{f(t)\}
\end{aligned}
$$

Second shifting property or the time shifting rule

Handling Discontinuities

Define

$$
\begin{aligned}
f_{k}(t-a) & =\left\{\begin{array}{cl}
1 / k \text { if } & a \leq t \leq a+k \\
0 & \text { otherwise }
\end{array}\right. \\
& =\frac{1}{k} u(t-a)-\frac{1}{k} u(t-a-k)
\end{aligned}
$$

(a) Unit step function

(b) Composition

(c) Function f_{k}

(d) Dirac's δ - function

Figure: Step and impulse functions

Laplace Transforms

Define

$$
\begin{aligned}
f_{k}(t-a) & =\left\{\begin{array}{cc}
1 / k \text { if } & a \leq t \leq a+k \\
0 & \text { otherwise }
\end{array}\right. \\
& =\frac{1}{k} u(t-a)-\frac{1}{k} u(t-a-k)
\end{aligned}
$$

Figure: Step and impulse functions and note that its integral

$$
I_{k}=\int_{0}^{\infty} f_{k}(t-a) d t=\int_{a}^{a+k} \frac{1}{k} d t=1
$$

does not depend on k.

In the limit,

$$
\begin{aligned}
\delta(t-a) & =\lim _{k \rightarrow 0} f_{k}(t-a) \\
\text { or, } \quad \delta(t-a) & =\left\{\begin{array}{cl}
\infty & \text { if } \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \int_{0}^{\infty} \delta(t-a) d t=1\right.
\end{aligned}
$$

Unit impulse function or Dirac's delta function

In the limit,

$$
\begin{aligned}
\delta(t-a) & =\lim _{k \rightarrow 0} f_{k}(t-a) \\
\text { or, } \quad \delta(t-a) & =\left\{\begin{array}{cl}
\infty & \text { if } \\
0 & t=a \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \int_{0}^{\infty} \delta(t-a) d t=1\right.
\end{aligned}
$$

Unit impulse function or Dirac's delta function

$$
\begin{aligned}
L\{\delta(t-a)\} & =\lim _{k \rightarrow 0} \frac{1}{k}[L\{u(t-a)\}-L\{u(t-a-k)\}] \\
& =\lim _{k \rightarrow 0} \frac{e^{-a s}-e^{-(a+k) s}}{k s}=e^{-a s}
\end{aligned}
$$

In the limit,

$$
\begin{aligned}
\delta(t-a) & =\lim _{k \rightarrow 0} f_{k}(t-a) \\
\text { or, } \delta(t-a) & =\left\{\begin{array}{cl}
\infty & \text { if } \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \int_{0}^{\infty} \delta(t-a) d t=1\right.
\end{aligned}
$$

Unit impulse function or Dirac's delta function

$$
\begin{aligned}
L\{\delta(t-a)\} & =\lim _{k \rightarrow 0} \frac{1}{k}[L\{u(t-a)\}-L\{u(t-a-k)\}] \\
& =\lim _{k \rightarrow 0} \frac{e^{-a s}-e^{-(a+k) s}}{k s}=e^{-a s}
\end{aligned}
$$

Through step and impulse functions, Laplace transform method can handle IVP's with discontinuous inputs.

Mathematical Methods in Engineering and Science
Convolution
A generalized product of two functions

$$
h(t)=f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

A generalized product of two functions

$$
h(t)=f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Laplace transform of the convolution:
$H(s)=\int_{0}^{\infty} e^{-s t} \int_{0}^{t} f(\tau) g(t-\tau) d \tau d t$

(a) Original order

(b) Changed order

Figure: Region of integration for $L\{h(t)\}$

A generalized product of two functions

$$
h(t)=f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Laplace transform of the convolution:

$$
H(s)=\int_{0}^{\infty} e^{-s t} \int_{0}^{t} f(\tau) g(t-\tau) d \tau d t=\int_{0}^{\infty} f(\tau) \int_{\tau}^{\infty} e^{-s t} g(t-\tau) d t d \tau
$$

(a) Original order

(b) Changed order

Figure: Region of integration for $L\{h(t)\}$

Mathematical Methods in Engineering and Science

Through substitution $t^{\prime}=t-\tau$,

$$
\begin{aligned}
H(s) & =\int_{0}^{\infty} f(\tau) \int_{0}^{\infty} e^{-s\left(t^{\prime}+\tau\right)} g\left(t^{\prime}\right) d t^{\prime} d \tau \\
& =\int_{0}^{\infty} f(\tau) e^{-s \tau}\left[\int_{0}^{\infty} e^{-s t^{\prime}} g\left(t^{\prime}\right) d t^{\prime}\right] d \tau
\end{aligned}
$$

Through substitution $t^{\prime}=t-\tau$,

$$
\begin{aligned}
H(s)= & \int_{0}^{\infty} f(\tau) \int_{0}^{\infty} e^{-s\left(t^{\prime}+\tau\right)} g\left(t^{\prime}\right) d t^{\prime} d \tau \\
= & \int_{0}^{\infty} f(\tau) e^{-s \tau}\left[\int_{0}^{\infty} e^{-s t^{\prime}} g\left(t^{\prime}\right) d t^{\prime}\right] d \tau \\
& H(s)=F(s) G(s)
\end{aligned}
$$

Convolution theorem:
Laplace transform of the convolution integral of two functions is given by the product of the Laplace transforms of the two functions.

Utilities:

- To invert $Q(s) R(s)$, one can convolute $y(t)=q(t) * r(t)$.
- In solving some integral equation.
- A paradigm shift in solution of IVP's
- Handling discontinuous input functions
- Extension to ODE systems
- The idea of integral transforms

Necessary Exercises: 1,2,4

ODE Systems
Fundamental Ideas
Linear Homogeneous Systems with Constant Coefficients Linear Non-Homogeneous Systems
Nonlinear Systems

Mathematical Methods in Engineering and Science

Fundamental Ideas

$$
\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y})
$$

Solution: a vector function $\mathbf{y}=\mathbf{h}(t)$

$$
\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y})
$$

Solution: a vector function $\mathbf{y}=\mathbf{h}(t)$
Autonomous system: $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$

- Points in \mathbf{y}-space where $\mathbf{f}(\mathbf{y})=0$:
equilibrium points or critical points

$$
\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y})
$$

Solution: a vector function $\mathbf{y}=\mathbf{h}(t)$
Autonomous system: $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$

- Points in \mathbf{y}-space where $\mathbf{f}(\mathbf{y})=0$:
equilibrium points or critical points
System of linear ODE's:

$$
\mathbf{y}^{\prime}=\mathbf{A}(t) \mathbf{y}+\mathbf{g}(t)
$$

- autonomous systems if \mathbf{A} and \mathbf{g} are constant
- homogeneous systems if $\mathbf{g}(t)=0$
- homogeneous constant coefficient systems if \mathbf{A} is constant and $\mathbf{g}(t)=0$

Mathematial Methods in nginiering and
Fundamental Ideas

For a homogeneous system,

$$
\mathbf{y}^{\prime}=\mathbf{A}(t) \mathbf{y}
$$

- Wronskian: $W\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \cdots, \mathbf{y}_{n}\right)=\left|\begin{array}{lllll}\mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3} & \cdots & \mathbf{y}_{n}\end{array}\right|$

For a homogeneous system,

$$
\mathbf{y}^{\prime}=\mathbf{A}(t) \mathbf{y}
$$

- Wronskian: $W\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \cdots, \mathbf{y}_{n}\right)=\left|\begin{array}{lllll}\mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3} & \cdots & \mathbf{y}_{n}\end{array}\right|$

If Wronskian is non-zero, then

- Fundamental matrix: $\mathcal{Y}(t)=\left[\begin{array}{lllll}\mathbf{y}_{1} & \mathbf{y}_{2} & \mathbf{y}_{3} & \cdots & \mathbf{y}_{n}\end{array}\right]$, giving a basis.

General solution:

$$
\mathbf{y}(t)=\sum_{i=1}^{n} c_{i} \mathbf{y}_{i}(t)=[\mathcal{Y}(t)] \mathbf{c}
$$

Mathematical Methods in Engineering and Science
Linear Homogeneous Systems with Canstanh ite oeefficients coffic
Linear Non-Homogeneous Systems
Nonlinear Systems

$$
\mathbf{y}^{\prime}=\mathbf{A y}
$$

Mathematical Methods in Engineering and Science
Linear Homogeneous Systems with Constanh ied eefficients coffic

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}
$$

Non-degenerate case: matrix A non-singular

- Origin $(\mathbf{y}=\mathbf{0})$ is the unique equilibrium point.

Mathematical Methods in Engineering and Science
Linear Homogeneous Systems with Conisturah toco pefficients coffic

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}
$$

Non-degenerate case: matrix A non-singular

- Origin $(\mathbf{y}=\mathbf{0})$ is the unique equilibrium point.

Attempt $\mathbf{y}=\mathbf{x} e^{\lambda t} \Rightarrow \mathbf{y}^{\prime}=\lambda \mathbf{x} e^{\lambda t}$.
Substitution: $\mathbf{A} \mathbf{x} e^{\lambda t}=\lambda \mathbf{x} e^{\lambda t}$

Mathematical Methods in Engineering and Science
Linear Homogeneous Systems with Constutah toicoerficients coffic

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}
$$

Non-degenerate case: matrix A non-singular

- Origin $(\mathbf{y}=\mathbf{0})$ is the unique equilibrium point.

Attempt $\mathbf{y}=\mathbf{x} e^{\lambda t} \Rightarrow \mathbf{y}^{\prime}=\lambda \mathbf{x} e^{\lambda t}$. Substitution: $\mathbf{A x} e^{\lambda t}=\lambda \mathbf{x} e^{\lambda t} \Rightarrow \mathbf{A x}=\lambda \mathbf{x}$

Mathematical Methods in Engineering and Science

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}
$$

Non-degenerate case: matrix A non-singular

- Origin $(\mathbf{y}=\mathbf{0})$ is the unique equilibrium point.

Attempt $\mathbf{y}=\mathbf{x} e^{\lambda t} \Rightarrow \mathbf{y}^{\prime}=\lambda \mathbf{x} e^{\lambda t}$.
Substitution: $\mathbf{A x} e^{\lambda t}=\lambda \mathbf{x} e^{\lambda t} \Rightarrow \mathbf{A x}=\lambda \mathbf{x}$
If \mathbf{A} is diagonalizable,

- n linearly independent solutions $\mathbf{y}_{i}=\mathbf{x}_{i} e^{\lambda_{i} t}$ corresponding to n eigenpairs

Mathematical Methods in Engineering and Science
Linear Homogeneous Systems with Constitah tee oefficients coffic

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}
$$

Non-degenerate case: matrix A non-singular

- Origin $(\mathbf{y}=\mathbf{0})$ is the unique equilibrium point.

Attempt $\mathbf{y}=\mathbf{x} e^{\lambda t} \Rightarrow \mathbf{y}^{\prime}=\lambda \mathbf{x} e^{\lambda t}$.
Substitution: $\mathbf{A} \mathbf{x} e^{\lambda t}=\lambda \mathbf{x} e^{\lambda t} \Rightarrow \mathbf{A} \mathbf{x}=\lambda \mathbf{x}$
If \mathbf{A} is diagonalizable,

- n linearly independent solutions $\mathbf{y}_{i}=\mathbf{x}_{i} e^{\lambda_{i} t}$ corresponding to n eigenpairs
If \mathbf{A} is not diagonalizable?

Mathematical Methods in Engineering and Science
Linear Homogeneous Systems with Coudstaintiee qeqficientsan coefic

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}
$$

Non-degenerate case: matrix A non-singular

- Origin $(\mathbf{y}=\mathbf{0})$ is the unique equilibrium point.

Attempt $\mathbf{y}=\mathbf{x} e^{\lambda t} \Rightarrow \mathbf{y}^{\prime}=\lambda \mathbf{x} e^{\lambda t}$.
Substitution: $\mathbf{A} \mathbf{x} e^{\lambda t}=\lambda \mathbf{x} e^{\lambda t} \Rightarrow \mathbf{A} \mathbf{x}=\lambda \mathbf{x}$
If \mathbf{A} is diagonalizable,

- n linearly independent solutions $\mathbf{y}_{i}=\mathbf{x}_{i} e^{\lambda_{i} t}$ corresponding to n eigenpairs
If \mathbf{A} is not diagonalizable?
All $\mathbf{x}_{i} e^{\lambda_{i} t}$ together will not complete the basis.
Try $\mathbf{y}=\mathbf{x} t e^{\mu t}$?

Wathematical Methods in Engineering and Science
Linear Homogeneous Systems with Constitah teocoefficients coffic

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}
$$

Non-degenerate case: matrix A non-singular

- Origin $(\mathbf{y}=\mathbf{0})$ is the unique equilibrium point.

Attempt $\mathbf{y}=\mathbf{x} e^{\lambda t} \Rightarrow \mathbf{y}^{\prime}=\lambda \mathbf{x} e^{\lambda t}$.
Substitution: $\mathbf{A} \mathbf{x} e^{\lambda t}=\lambda \mathbf{x} e^{\lambda t} \Rightarrow \mathbf{A} \mathbf{x}=\lambda \mathbf{x}$
If \mathbf{A} is diagonalizable,

- n linearly independent solutions $\mathbf{y}_{i}=\mathbf{x}_{i} e^{\lambda_{i} t}$ corresponding to n eigenpairs
If \mathbf{A} is not diagonalizable?
All $\mathbf{x}_{i} e^{\lambda_{i} t}$ together will not complete the basis.
Try $\mathbf{y}=\mathbf{x} t e^{\mu t} ?$ Substitution leads to

$$
\mathbf{x} e^{\mu t}+\mu \mathbf{x} t e^{\mu t}=\mathbf{A} \mathbf{x} t e^{\mu t} \Rightarrow \mathbf{x} e^{\mu t}=\mathbf{0} \Rightarrow \mathbf{x}=\mathbf{0}
$$

Absurd!

Mathematical Methods in Engineering and Science
Linear Homogeneous Systems with Constitah toicoerficients coffic
Try a linearly independent solution in the form

$$
\mathbf{y}=\mathbf{x} t e^{\mu t}+\mathbf{u} e^{\mu t}
$$

Linear independence here has two implications: in function space AND in ordinary vector space!
athematical Methods in Engineering and Science
Linear Homogeneous Systems with Constatah tede oefficients coffic
Try a linearly independent solution in the form

$$
\mathbf{y}=\mathbf{x} t e^{\mu t}+\mathbf{u} e^{\mu t}
$$

Linear independence here has two implications: in function space AND in ordinary vector space!

Substitution:

$$
\mathbf{x} e^{\mu t}+\mu \mathbf{x} t e^{\mu t}+\mu \mathbf{u} e^{\mu t}=\mathbf{A} \mathbf{x} t e^{\mu t}+\mathbf{A} \mathbf{u} e^{\mu t} \Rightarrow(\mathbf{A}-\mu \mathbf{I}) \mathbf{u}=\mathbf{x}
$$

Solve for \mathbf{u}, the generalized eigenvector of \mathbf{A}.

Tathematical Methods in Engineering and Science
Linear Homogeneous Systems with Condstaiblee qeqficientsien coeffic
Try a linearly independent solution in the form

$$
\mathbf{y}=\mathbf{x} t e^{\mu t}+\mathbf{u} e^{\mu t}
$$

Linear independence here has two implications: in function space AND in ordinary vector space!

Substitution:

$$
\mathbf{x} e^{\mu t}+\mu \mathbf{x} t e^{\mu t}+\mu \mathbf{u} e^{\mu t}=\mathbf{A} \mathbf{x} t e^{\mu t}+\mathbf{A} \mathbf{u} e^{\mu t} \Rightarrow(\mathbf{A}-\mu \mathbf{I}) \mathbf{u}=\mathbf{x}
$$

Solve for \mathbf{u}, the generalized eigenvector of \mathbf{A}.
For Jordan blocks of larger sizes,
$\mathbf{y}_{1}=\mathbf{x} e^{\mu t}, \mathbf{y}_{2}=\mathbf{x} t e^{\mu t}+\mathbf{u}_{1} e^{\mu t}, \mathbf{y}_{3}=\frac{1}{2} \mathbf{x} t^{2} e^{\mu t}+\mathbf{u}_{1} t e^{\mu t}+\mathbf{u}_{2} e^{\mu t}$ etc.
Jordan canonical form (JCF) of A provides a set of basis functions to describe the complete solution of the ODE system.

Mathematical Methods in Engineering and Science

Linear Non-Homogeneous Systems

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}+\mathbf{g}(t)
$$

Linear Non-Homogeneous Systems

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}+\mathbf{g}(t)
$$

Complementary function:

$$
\mathbf{y}_{h}(t)=\sum_{i=1}^{n} c_{i} \mathbf{y}_{i}(t)=[\mathcal{Y}(t)] \mathbf{c}
$$

Complete solution:

$$
\mathbf{y}(t)=\mathbf{y}_{h}(t)+\mathbf{y}_{p}(t)
$$

We need to develop one particular solution \mathbf{y}_{p}.

Linear Non-Homogeneous Systems

$$
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}+\mathbf{g}(t)
$$

Complementary function:

$$
\mathbf{y}_{h}(t)=\sum_{i=1}^{n} c_{i} \mathbf{y}_{i}(t)=[\mathcal{Y}(t)] \mathbf{c}
$$

Complete solution:

$$
\mathbf{y}(t)=\mathbf{y}_{h}(t)+\mathbf{y}_{p}(t)
$$

We need to develop one particular solution \mathbf{y}_{p}.

Method of undetermined coefficients

Based on $\mathbf{g}(t)$, select candidate function $G_{k}(t)$ and propose

$$
\mathbf{y}_{p}=\sum_{k} \mathbf{u}_{k} G_{k}(t),
$$

vector coefficients $\left(\mathbf{u}_{k}\right)$ to be determined by substitution.

Linear Non-Homogeneous Systems

Method of diagonalization

If \mathbf{A} is a diagonalizable constant matrix, with $\mathbf{X}^{-1} \mathbf{A X}=\mathbf{D}$, changing variables to $\mathbf{z}=\mathbf{X}^{-1} \mathbf{y}$, such that $\mathbf{y}=\mathbf{X} \mathbf{z}$,

$$
\mathbf{X z}^{\prime}=\mathbf{A X} \mathbf{z}+\mathbf{g}(t) \Rightarrow \mathbf{z}^{\prime}=\mathbf{X}^{-1} \mathbf{A} \mathbf{X} \mathbf{z}+\mathbf{X}^{-1} \mathbf{g}(t)=\mathbf{D} \mathbf{z}+\mathbf{h}(t) \text { (say) }
$$

Linear Non-Homogeneous Systems

Method of diagonalization

If \mathbf{A} is a diagonalizable constant matrix, with $\mathbf{X}^{-1} \mathbf{A X}=\mathbf{D}$, changing variables to $\mathbf{z}=\mathbf{X}^{-1} \mathbf{y}$, such that $\mathbf{y}=\mathbf{X} \mathbf{z}$,
$\mathbf{X} \mathbf{z}^{\prime}=\mathbf{A X} \mathbf{z}+\mathbf{g}(t) \Rightarrow \mathbf{z}^{\prime}=\mathbf{X}^{-1} \mathbf{A} \mathbf{X} \mathbf{z}+\mathbf{X}^{-1} \mathbf{g}(t)=\mathbf{D} \mathbf{z}+\mathbf{h}(t)$ (say).

Single decoupled Leibnitz equations

$$
z_{k}^{\prime}=d_{k} z_{k}+h_{k}(t), \quad k=1,2,3, \cdots, n ;
$$

leading to individual solutions

$$
z_{k}(t)=c_{k} e^{d_{k} t}+e^{d_{k} t} \int e^{-d_{k} t} h_{k}(t) d t
$$

Linear Non-Homogeneous Systems

Method of diagonalization

If \mathbf{A} is a diagonalizable constant matrix, with $\mathbf{X}^{-1} \mathbf{A X}=\mathbf{D}$, changing variables to $\mathbf{z}=\mathbf{X}^{-1} \mathbf{y}$, such that $\mathbf{y}=\mathbf{X} \mathbf{z}$,
$\mathbf{X} \mathbf{z}^{\prime}=\mathbf{A X} \mathbf{z}+\mathbf{g}(t) \Rightarrow \mathbf{z}^{\prime}=\mathbf{X}^{-1} \mathbf{A} \mathbf{X} \mathbf{z}+\mathbf{X}^{-1} \mathbf{g}(t)=\mathbf{D} \mathbf{z}+\mathbf{h}(t)$ (say).

Single decoupled Leibnitz equations

$$
z_{k}^{\prime}=d_{k} z_{k}+h_{k}(t), \quad k=1,2,3, \cdots, n ;
$$

leading to individual solutions

$$
z_{k}(t)=c_{k} e^{d_{k} t}+e^{d_{k} t} \int e^{-d_{k} t} h_{k}(t) d t
$$

After assembling $\mathbf{z}(t)$, we reconstruct $\mathbf{y}=\mathbf{X} \mathbf{z}$.

Mathematical Methods in Engineering and Science
Linear Non-Homogeneous Systems

Method of variation of parameters

If we can supply a basis $\mathcal{Y}(t)$ of the complementary function $\mathbf{y}_{h}(t)$, then we propose

$$
\mathbf{y}_{p}(t)=[\mathcal{Y}(t)] \mathbf{u}(t)
$$

Linear Non-Homogeneous Systems

Method of variation of parameters

If we can supply a basis $\mathcal{Y}(t)$ of the complementary function $\mathbf{y}_{h}(t)$, then we propose

$$
\mathbf{y}_{p}(t)=[\mathcal{Y}(t)] \mathbf{u}(t)
$$

Substitution leads to

$$
\mathcal{Y}^{\prime} \mathbf{u}+\mathcal{Y} \mathbf{u}^{\prime}=\mathbf{A} \mathcal{Y} \mathbf{u}+\mathbf{g} .
$$

Since $\mathcal{Y}^{\prime}=\mathbf{A} \mathcal{Y}$,

$$
\mathcal{Y} \mathbf{u}^{\prime}=\mathbf{g}, \quad \text { or, } \mathbf{u}^{\prime}=[\mathcal{Y}]^{-1} \mathbf{g}
$$

Linear Non-Homogeneous Systems

Method of variation of parameters

If we can supply a basis $\mathcal{Y}(t)$ of the complementary function $\mathbf{y}_{h}(t)$, then we propose

$$
\mathbf{y}_{p}(t)=[\mathcal{Y}(t)] \mathbf{u}(t)
$$

Substitution leads to

$$
\mathcal{Y}^{\prime} \mathbf{u}+\mathcal{Y} \mathbf{u}^{\prime}=\mathbf{A} \mathcal{Y} \mathbf{u}+\mathbf{g}
$$

Since $\mathcal{Y}^{\prime}=\mathbf{A} \mathcal{Y}$,

$$
\mathcal{Y} \mathbf{u}^{\prime}=\mathbf{g}, \quad \text { or, } \mathbf{u}^{\prime}=[\mathcal{Y}]^{-1} \mathbf{g}
$$

Complete solution:

$$
\mathbf{y}(t)=\mathbf{y}_{h}+\mathbf{y}_{p}=[\mathcal{Y}] \mathbf{c}+[\mathcal{Y}] \int[\mathcal{Y}]^{-1} \mathbf{g} d t
$$

This method is completely general.

- Theory of ODE's in terms of vector functions
- Methods to find
- complementary functions in the case of constant coefficients
- particular solutions for all cases

Necessary Exercises: 1

Stability of Dynamic Systems
Second Order Linear Systems
Nonlinear Dynamic Systems
Lyapunov Stability Analysis

Mathematical Methods in Engineering and Science

Second Order Linear Systems

A system of two first order linear differential equations:

$$
\begin{aligned}
y_{1}^{\prime} & =a_{11} y_{1}+a_{12} y_{2} \\
y_{2}^{\prime} & =a_{21} y_{1}+a_{22} y_{2}
\end{aligned}
$$

or, $\quad \mathbf{y}^{\prime}=\mathbf{A y}$

A system of two first order linear differential equations:

$$
\begin{aligned}
& y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2} \\
& y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}
\end{aligned}
$$

or, $\quad \mathbf{y}^{\prime}=\mathbf{A y}$
Phase: a pair of values of y_{1} and y_{2}
Phase plane: plane of y_{1} and y_{2}
Trajectory: a curve showing the evolution of the system for a particular initial value problem
Phase portrait: all trajectories together showing the complete picture of the behaviour of the dynamic system

Second Order Linear Systems

A system of two first order linear differential equations:

$$
\begin{aligned}
& y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2} \\
& y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}
\end{aligned}
$$

or, $\quad \mathbf{y}^{\prime}=\mathbf{A y}$
Phase: a pair of values of y_{1} and y_{2}
Phase plane: plane of y_{1} and y_{2}
Trajectory: a curve showing the evolution of the system for a particular initial value problem
Phase portrait: all trajectories together showing the complete picture of the behaviour of the dynamic system

Allowing only isolated equilibrium points,

- matrix \mathbf{A} is non-singular: origin is the only equilibrium point.

Eigenvalues of \mathbf{A} :

$$
\lambda^{2}-\left(a_{11}+a_{22}\right) \lambda+\left(a_{11} a_{22}-a_{12} a_{21}\right)=0
$$

Mathematical Methods in Engineering and Science

Stability of Dynamic Systems

Second Order Linear Systems

Characteristic equation:

$$
\lambda^{2}-p \lambda+q=0,
$$

$$
\text { with } p=\left(a_{11}+a_{22}\right)=\lambda_{1}+\lambda_{2} \text { and } q=a_{11} a_{22}-a_{12} a_{21}=\lambda_{1} \lambda_{2}
$$

Stability of Dynamic Systems

Characteristic equation:

$$
\lambda^{2}-p \lambda+q=0
$$

with $p=\left(a_{11}+a_{22}\right)=\lambda_{1}+\lambda_{2}$ and $q=a_{11} a_{22}-a_{12} a_{21}=\lambda_{1} \lambda_{2}$
Discriminant $D=p^{2}-4 q$ and

$$
\lambda_{1,2}=\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}=\frac{p}{2} \pm \frac{\sqrt{D}}{2} .
$$

Solution (for diagonalizable A):

$$
\mathbf{y}=c_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{x}_{2} e^{\lambda_{2} t}
$$

Second Order Linear Systems

Characteristic equation:

$$
\lambda^{2}-p \lambda+q=0
$$

with $p=\left(a_{11}+a_{22}\right)=\lambda_{1}+\lambda_{2}$ and $q=a_{11} a_{22}-a_{12} a_{21}=\lambda_{1} \lambda_{2}$
Discriminant $D=p^{2}-4 q$ and

$$
\lambda_{1,2}=\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2}-q}=\frac{p}{2} \pm \frac{\sqrt{D}}{2} .
$$

Solution (for diagonalizable A):

$$
\mathbf{y}=c_{1} \mathbf{x}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{x}_{2} e^{\lambda_{2} t}
$$

Solution for deficient A:

$$
\begin{aligned}
\mathbf{y} & =c_{1} \mathbf{x}_{1} e^{\lambda t}+c_{2}\left(t \mathbf{x}_{1}+\mathbf{u}\right) e^{\lambda t} \\
\Rightarrow \mathbf{y}^{\prime} & =c_{1} \lambda \mathbf{x}_{1} e^{\lambda t}+c_{2}\left(\mathbf{x}_{1}+\lambda \mathbf{u}\right) e^{\lambda t}+\lambda t c_{2} \mathbf{x}_{1} e^{\lambda t}
\end{aligned}
$$

Figure: Neighbourhood of critical points

Mathematical Methods in Engineering and Science
Stability of Dynamic Systems

Table: Critical points of linear systems

Type	Sub-type	Eigenvalues	Position in $p-q$ chart	Stability
Saddle pt		real, opposite signs	$q<0$	unstable
Centre		pure imaginary	$q>0, p=0$	stable
Spiral		complex, both non-zero components	$q>0, p \neq 0$ $D=p^{2}-4 q<0$	stable if $p<0$, unstable
		real, same sign	$q>0, p \neq 0, D \geq 0$	if $p>0$
		improper	unequal in magnitude	$D>0$

Second Order Linear Systems

Stability of Dynamic Systems

Table: Critical points of linear systems

Type	Sub-type	Eigenvalues	Position in $p-q$ chart	Stability
Saddle pt		real, opposite signs	$q<0$	unstable
Centre		pure imaginary	$q>0, p=0$	stable
Spiral		complex, both non-zero components	$\begin{aligned} & q>0, p \neq 0 \\ & D=p^{2}-4 q<0 \end{aligned}$	stable if $p<0$, unstable if $p>0$
Node		real, same sign	$q>0, p \neq 0, D \geq 0$	
	improper	unequal in magnitude	$D>0$	
	proper	equal, diagonalizable	$D=0$	
	degenerate	equal, deficient	$D=0$	

Figure: Zones of critical points in $p-q$ chart

Stability of Dynamic Systems

Phase plane analysis

- Determine all the critical points.
- Linearize the ODE system around each of them as

$$
\mathbf{y}^{\prime}=\mathbf{J}\left(\mathbf{y}_{0}\right)\left(\mathbf{y}-\mathbf{y}_{0}\right) .
$$

- With $\mathbf{z}=\mathbf{y}-\mathbf{y}_{0}$, analyze each neighbourhood from $\mathbf{z}^{\prime}=\mathbf{J} \mathbf{z}$.
- Assemble outcomes of local phase plane analyses.
'Features' of a dynamic system are typically captured by its critical points and their neighbourhoods.

Phase plane analysis

- Determine all the critical points.
- Linearize the ODE system around each of them as

$$
\mathbf{y}^{\prime}=\mathbf{J}\left(\mathbf{y}_{0}\right)\left(\mathbf{y}-\mathbf{y}_{0}\right)
$$

- With $\mathbf{z}=\mathbf{y}-\mathbf{y}_{0}$, analyze each neighbourhood from $\mathbf{z}^{\prime}=\mathbf{J} \mathbf{z}$.
- Assemble outcomes of local phase plane analyses.
'Features' of a dynamic system are typically captured by its critical points and their neighbourhoods.

Limit cycles

- isolated closed trajectories (only in nonlinear systems)

Phase plane analysis

- Determine all the critical points.
- Linearize the ODE system around each of them as

$$
\mathbf{y}^{\prime}=\mathbf{J}\left(\mathbf{y}_{0}\right)\left(\mathbf{y}-\mathbf{y}_{0}\right)
$$

- With $\mathbf{z}=\mathbf{y}-\mathbf{y}_{0}$, analyze each neighbourhood from $\mathbf{z}^{\prime}=\mathbf{J} \mathbf{z}$.
- Assemble outcomes of local phase plane analyses.
'Features' of a dynamic system are typically captured by its critical points and their neighbourhoods.

Limit cycles

- isolated closed trajectories (only in nonlinear systems)

Systems with arbitrary dimension of state space?

Important terms

Stability: If \mathbf{y}_{0} is a critical point of the dynamic system $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$ and for every $\epsilon>0, \exists \delta>0$ such that

$$
\left\|\mathbf{y}\left(t_{0}\right)-\mathbf{y}_{0}\right\|<\delta \Rightarrow\left\|\mathbf{y}(t)-\mathbf{y}_{0}\right\|<\epsilon \quad \forall t>t_{0}
$$

then \mathbf{y}_{0} is a stable critical point. If, further, $\mathbf{y}(t) \rightarrow \mathbf{y}_{0}$ as $t \rightarrow \infty$, then \mathbf{y}_{0} is said to be asymptotically stable.
Positive definite function: A function $V(\mathbf{y})$, with $V(\mathbf{0})=0$, is called positive definite if

$$
V(\mathbf{y})>0 \forall \mathbf{y} \neq \mathbf{0}
$$

Lyapunov function: A positive definite function $V(\mathbf{y})$, having continuous $\frac{\partial V}{\partial y_{i}}$, with a negative semi-definite rate of change

$$
V^{\prime}=[\nabla V(\mathbf{y})]^{T} \mathbf{f}(\mathbf{y})
$$

Lyapunov's stability criteria:
Theorem: For a system $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$ with the origin as a critical point, if there exists a Lyapunov function $V(\mathbf{y})$, then the system is stable at the origin, i.e. the origin is a stable critical point.
Further, if $V^{\prime}(\mathbf{y})$ is negative definite, then it is asymptotically stable.

A generalization of the notion of total energy: negativity of its rate correspond to trajectories tending to decrease this 'energy'.

Lyapunov's stability criteria:
Theorem: For a system $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$ with the origin as a critical point, if there exists a Lyapunov function $V(\mathbf{y})$, then the system is stable at the origin, i.e. the origin is a stable critical point.
Further, if $V^{\prime}(\mathbf{y})$ is negative definite, then it is asymptotically stable.

A generalization of the notion of total energy: negativity of its rate correspond to trajectories tending to decrease this 'energy'.

Note: Lyapunov's method becomes particularly important when a linearized model allows no analysis or when its results are suspect.

Lyapunov's stability criteria:
Theorem: For a system $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{y})$ with the origin as a critical point, if there exists a Lyapunov function $V(\mathbf{y})$, then the system is stable at the origin, i.e. the origin is a stable critical point.
Further, if $V^{\prime}(\mathbf{y})$ is negative definite, then it is asymptotically stable.

A generalization of the notion of total energy: negativity of its rate correspond to trajectories tending to decrease this 'energy'.

Note: Lyapunov's method becomes particularly important when a linearized model allows no analysis or when its results are suspect.

Caution: It is a one-way criterion only!

- Analysis of second order systems
- Classification of critical points
- Nonlinear systems and local linearization
- Phase plane analysis

Examples in physics, engineering, economics, biological and social systems

- Lyapunov's method of stability analysis

Necessary Exercises: 1,2,3,4,5

Series Solutions and Special Functions
Power Series Method
Frobenius' Method
Special Functions Defined as Integrals Special Functions Arising as Solutions of ODE's

Mathematical Methods in Engineering and Science
Series Solutions and Special Functions

Methods to solve an ODE in terms of elementary"fünctions. Solutions of ODE's

- restricted in scope

Theory allows study of the properties of solutions!

Power Series Method

Series Solutions and Special Functions

Methods to solve an ODE in terms of elementary"fünctions. Solutions of ODE's

- restricted in scope

Theory allows study of the properties of solutions!
When elementary methods fail,

- gain knowledge about solutions through properties, and
- for actual evaluation develop infinite series.

Power series:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\cdots
$$

or in powers of $\left(x-x_{0}\right)$.

Power Series Method

Methods to solve an ODE in terms of elementary"fünctions. Solutions of ODE's

- restricted in scope

Theory allows study of the properties of solutions!
When elementary methods fail,

- gain knowledge about solutions through properties, and
- for actual evaluation develop infinite series.

Power series:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\cdots
$$

or in powers of $\left(x-x_{0}\right)$.
A simple exercise:
Try developing power series solutions in the above form and study their properties for differential equations

$$
y^{\prime \prime}+y=0 \quad \text { and } \quad 4 x^{2} y^{\prime \prime}=y
$$

Mathematical Methods in Engineering and Science

Power Series Method

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

If $P(x)$ and $Q(x)$ are analytic at a point $x=x_{0}$,
i.e. if they possess convergent series expansions in powers of $\left(x-x_{0}\right)$ with some radius of convergence R,
then the solution is analytic at x_{0}, and a power series solution

$$
y(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\cdots
$$

is convergent at least for $\left|x-x_{0}\right|<R$.

Power Series Method

Series Solutions and Special Functions

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

If $P(x)$ and $Q(x)$ are analytic at a point $x=x_{0}$,
i.e. if they possess convergent series expansions in powers of $\left(x-x_{0}\right)$ with some radius of convergence R,
then the solution is analytic at x_{0}, and a power series solution

$$
y(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+\cdots
$$

is convergent at least for $\left|x-x_{0}\right|<R$.
For $x_{0}=0$ (without loss of generality), suppose

$$
\begin{aligned}
& P(x)=\sum_{n=0}^{\infty} p_{n} x^{n}=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}+\cdots, \\
& Q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}=q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}+\cdots,
\end{aligned}
$$

and assume $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Power Series Method

Differentiation of $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ as
$y^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \quad$ and $\quad y^{\prime \prime}(x)=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}$
leads to

$$
\begin{aligned}
P(x) y^{\prime} & =\sum_{n=0}^{\infty} p_{n} x^{n}\left[\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right]=\sum_{n=0}^{\infty} \sum_{k=0}^{n} p_{n-k}(k+1) a_{k+1} x^{n} \\
Q(x) y & =\sum_{n=0}^{\infty} q_{n} x^{n}\left[\sum_{n=0}^{\infty} a_{n} x^{n}\right]=\sum_{n=0}^{\infty} \sum_{k=0}^{n} q_{n-k} a_{k} x^{n}
\end{aligned}
$$

Power Series Method

Power Series Method

Differentiation of $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ as
$y^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \quad$ and $\quad y^{\prime \prime}(x)=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}$
leads to

$$
\begin{aligned}
& P(x) y^{\prime}=\sum_{n=0}^{\infty} p_{n} x^{n}\left[\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right]=\sum_{n=0}^{\infty} \sum_{k=0}^{n} p_{n-k}(k+1) a_{k+1} x^{n} \\
& Q(x) y=\sum_{n=0}^{\infty} q_{n} x^{n}\left[\sum_{n=0}^{\infty} a_{n} x^{n}\right]=\sum_{n=0}^{\infty} \sum_{k=0}^{n} q_{n-k} a_{k} x^{n} \\
& \Rightarrow \sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+\sum_{k=0}^{n} p_{n-k}(k+1) a_{k+1}+\sum_{k=0}^{n} q_{n-k} a_{k}\right] x^{n}=0
\end{aligned}
$$

Power Series Method
Series Solutions and Special Functions
1099,

Differentiation of $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ as

Power Series Method

Frobenius' Method
Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE's
$y^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \quad$ and $\quad y^{\prime \prime}(x)=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}$
leads to

$$
\begin{aligned}
& P(x) y^{\prime}=\sum_{n=0}^{\infty} p_{n} x^{n}\left[\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right]=\sum_{n=0}^{\infty} \sum_{k=0}^{n} p_{n-k}(k+1) a_{k+1} x^{n} \\
& Q(x) y=\sum_{n=0}^{\infty} q_{n} x^{n}\left[\sum_{n=0}^{\infty} a_{n} x^{n}\right]=\sum_{n=0}^{\infty} \sum_{k=0}^{n} q_{n-k} a_{k} x^{n} \\
& \Rightarrow \sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+\sum_{k=0}^{n} p_{n-k}(k+1) a_{k+1}+\sum_{k=0}^{n} q_{n-k} a_{k}\right] x^{n}=0
\end{aligned}
$$

Recursion formula:

$$
a_{n+2}=-\frac{1}{(n+2)(n+1)} \sum_{k=0}^{n}\left[(k+1) p_{n-k} a_{k+1}+q_{n-k} a_{k}\right]
$$

For the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, a point $x=x_{0}$ is
ordinary point if $P(x)$ and $Q(x)$ are analytic at $x=x_{0}$: power series solution is analytic
singular point if any of the two is non-analytic (singular) at $x=x_{0}$

- regular singularity: $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are analytic at the point
- irregular singularity

Frobenius' Method

For the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, a point $x=x_{0}$ is
ordinary point if $P(x)$ and $Q(x)$ are analytic at $x=x_{0}$: power series solution is analytic
singular point if any of the two is non-analytic (singular) at $x=x_{0}$

- regular singularity: $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are analytic at the point
- irregular singularity

The case of regular singularity

For $x_{0}=0$, with $P(x)=\frac{b(x)}{x}$ and $Q(x)=\frac{c(x)}{x^{2}}$,

$$
x^{2} y^{\prime \prime}+x b(x) y^{\prime}+c(x) y=0
$$

in which $b(x)$ and $c(x)$ are analytic at the origin.

Frobenius' Method

Working steps:

1. Assume the solution in the form $y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$.
2. Differentiate to get the series expansions for $y^{\prime}(x)$ and $y^{\prime \prime}(x)$.
3. Substitute these series for $y(x), y^{\prime}(x)$ and $y^{\prime \prime}(x)$ into the given ODE and collect coefficients of x^{r}, x^{r+1}, x^{r+2} etc.
4. Equate the coefficient of x^{r} to zero to obtain an equation in the index r, called the indicial equation as

$$
r(r-1)+b_{0} r+c_{0}=0
$$

allowing a_{0} to become arbitrary.
5. For each solution r, equate other coefficients to obtain a_{1}, a_{2}, a_{3} etc in terms of a_{0}.
Note: The need is to develop two solutions.

Special Functions Defined as Integrals
Series Solutions and Special Functions
Power Series Method

Gamma function: $\Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x$, convergent for $n>0$.
Recurrence relation $\Gamma(1)=1, \Gamma(n+1)=n \Gamma(n)$ allows extension of the definition for the entire real line except for zero and negative integers.
$\Gamma(n+1)=n!$ for non-negative integers.
(A generalization of the factorial function.)
Beta function: $B(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x=$

$$
\begin{aligned}
& 2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta ; m, n>0 . \\
& B(m, n)=B(n, m) ; \quad B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}
\end{aligned}
$$

Error function: $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$.
(Area under the normal or Gaussian distribution)
Sine integral function: $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t$.

Special Functions Arising as Solutionsof ODE's

Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE's
In the study of some important problems in physics, some variable-coefficient ODE's appear recurrently, defying analytical solution!

Special Functions Arising as Solutionsof ODE's

Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE's
In the study of some important problems in physics, some variable-coefficient ODE's appear recurrently, defying analytical solution!

Series solutions \Rightarrow properties and connections
\Rightarrow further problems \Rightarrow further solutions $\Rightarrow \cdots$

Mathematical Methods in Engineering and Science
Series Solutions and Special Functions

Special Functions Arising as Solutions? ODE's

In the study of some important problems in physics, some variable-coefficient ODE's appear recurrently, defying analytical solution!
Series solutions \Rightarrow properties and connections
\Rightarrow further problems \Rightarrow further solutions $\Rightarrow \cdots$

Table: Special functions of mathematical physics

Name of the ODE	Form of the ODE	Resulting functions
Legendre's equation	$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+k(k+1) y=0$	Legendre functions Legendre polynomials
Airy's equation	$y^{\prime \prime} \pm k^{2} x y=0$	Airy functions
Chebyshev's equation	$\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+k^{2} y=0$	Chebyshev polynomials
Hermite's equation	$y^{\prime \prime}-2 x y^{\prime}+2 k y=0$	Hermite functions Hermite polynomials
Bessel's equation	$x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-k^{2}\right) y=0$	Bessel functions Neumann functions Hankel functions
Gauss's hypergeometric equation	$x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0$	Hypergeometric function
Laguerre's equation	$x y^{\prime \prime}+(1-x) y^{\prime}+k y=0$	Laguerre polynomials

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+k(k+1) y=0
$$

$P(x)=-\frac{2 x}{1-x^{2}}$ and $Q(x)=\frac{k(k+1)}{1-x^{2}}$ are analytic at $x=0$ with radius of convergence $R=1$.

$$
\begin{aligned}
& x=0 \text { is an ordinary point and a power series solution } \\
& y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \text { is convergent at least for }|x|<1
\end{aligned}
$$

Special Functions Arising as Solutions Of: OEN

Legendre's equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+k(k+1) y=0
$$

$P(x)=-\frac{2 x}{1-x^{2}}$ and $Q(x)=\frac{k(k+1)}{1-x^{2}}$ are analytic at $x=0$ with radius of convergence $R=1$.

$$
\begin{aligned}
& x=0 \text { is an ordinary point and a power series solution } \\
& y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \text { is convergent at least for }|x|<1
\end{aligned}
$$

Apply power series method:

$$
\begin{aligned}
a_{2} & =-\frac{k(k+1)}{2!} a_{0}, \\
a_{3} & =-\frac{(k+2)(k-1)}{3!} a_{1} \\
\text { and } \quad a_{n+2} & =-\frac{(k-n)(k+n+1)}{(n+2)(n+1)} a_{n} \quad \text { for } n \geq 2 .
\end{aligned}
$$

Solution: $y(x)=a_{0} y_{1}(x)+a_{1} y_{2}(x)$

Mathematical Methods in Engineering and Science
Series Solutions and Special Functions

Special Functions Arising as Solutions of OEAs

Legendre functions

$$
\begin{aligned}
& y_{1}(x)=1-\frac{k(k+1)}{2!} x^{2}+\frac{k(k-2)(k+1)(k+3)}{4!} x^{4}-\cdots \\
& y_{2}(x)=x-\frac{(k-1)(k+2)}{3!} x^{3}+\frac{(k-1)(k-3)(k+2)(k+4)}{5!} x^{5}-\cdots
\end{aligned}
$$

Mathematical Methods in Engineering and Science
Series Solutions and Special Functions

Special Functions Arising as Solutionsofo.oness

Special Functions Defined as Integrals

Legendre functions

$$
\begin{aligned}
& y_{1}(x)=1-\frac{k(k+1)}{2!} x^{2}+\frac{k(k-2)(k+1)(k+3)}{4!} x^{4}-\cdots \\
& y_{2}(x)=x-\frac{(k-1)(k+2)}{3!} x^{3}+\frac{(k-1)(k-3)(k+2)(k+4)}{5!} x^{5}-\cdots
\end{aligned}
$$

Special significance: non-negative integral values of k

Mathematical Methods in Engineering and Science

Special Functions Arising as Solutions Of: ODE's

Legendre functions

$$
\begin{aligned}
& y_{1}(x)=1-\frac{k(k+1)}{2!} x^{2}+\frac{k(k-2)(k+1)(k+3)}{4!} x^{4}-\cdots \\
& y_{2}(x)=x-\frac{(k-1)(k+2)}{3!} x^{3}+\frac{(k-1)(k-3)(k+2)(k+4)}{5!} x^{5}-\cdots
\end{aligned}
$$

Special significance: non-negative integral values of k
For each $k=0,1,2,3, \cdots$,
one of the series terminates at the term containing x^{k}.
Polynomial solution: valid for the entire real line!

Mathematical Methods in Engineering and Science

Legendre functions

$$
\begin{aligned}
& y_{1}(x)=1-\frac{k(k+1)}{2!} x^{2}+\frac{k(k-2)(k+1)(k+3)}{4!} x^{4}-\cdots \\
& y_{2}(x)=x-\frac{(k-1)(k+2)}{3!} x^{3}+\frac{(k-1)(k-3)(k+2)(k+4)}{5!} x^{5}-\cdots
\end{aligned}
$$

Special significance: non-negative integral values of k
For each $k=0,1,2,3, \cdots$,
one of the series terminates at the term containing x^{k}.
Polynomial solution: valid for the entire real line!
Recurrence relation in reverse:

$$
a_{k-2}=-\frac{k(k-1)}{2(2 k-1)} a_{k}
$$

Special Functions Arising as Solutionsofionexs

Legendre polynomial
Choosing $a_{k}=\frac{(2 k-1)(2 k-3) \cdots 3 \cdot 1}{k!}$,

$$
\begin{aligned}
& P_{k}(x)=\frac{(2 k-1)(2 k-3) \cdots 3 \cdot 1}{k!} \\
& \quad \times\left[x^{k}-\frac{k(k-1)}{2(2 k-1)} x^{k-2}+\frac{k(k-1)(k-2)(k-3)}{2 \cdot 4(2 k-1)(2 k-3)} x^{k-4}-\cdots\right] .
\end{aligned}
$$

This choice of a_{k} ensures $P_{k}(1)=1$ and implies $P_{k}(-1)=(-1)^{k}$.

Special Functions Arising as Solutionsoofion ss

Legendre polynomial

Choosing $a_{k}=\frac{(2 k-1)(2 k-3) \cdots 3 \cdot 1}{k!}$,

$$
\begin{aligned}
& P_{k}(x)=\frac{(2 k-1)(2 k-3) \cdots 3 \cdot 1}{k!} \\
& \quad \times\left[x^{k}-\frac{k(k-1)}{2(2 k-1)} x^{k-2}+\frac{k(k-1)(k-2)(k-3)}{2 \cdot 4(2 k-1)(2 k-3)} x^{k-4}-\cdots\right] .
\end{aligned}
$$

This choice of a_{k} ensures $P_{k}(1)=1$ and implies $P_{k}(-1)=(-1)^{k}$. Initial Legendre polynomials:

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \text { etc. }
\end{aligned}
$$

Mathematical Methods in Engineering and Science
Series Solutions and Special Functions

Special Functions Arising as Solutions Of: DEs

Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE's

Figure: Legendre polynomials

Mathematical Methods in Engineering and Science
Series Solutions and Special Functions

Special Functions Arising as Solutionsof ODEs

Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE's

Figure: Legendre polynomials

All roots of a Legendre polynomial are real and they lie in $[-1,1]$.

Mathematical Methods in Engineering and Science
Series Solutions and Special Functions
Special Functions Arising as Solutionsofiones
Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE's

Figure: Legendre polynomials

All roots of a Legendre polynomial are real and they lie in $[-1,1]$.
Orthogonality?

Mathematical Methods in Engineering and Science
Series Solutions and Special Functions
Special Functions Arising as Solutions ${ }^{\circ} \mathrm{F}^{\circ} \mathrm{ODE}^{*} \mathrm{~S}$

Bessel's equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-k^{2}\right) y=0
$$

$x=0$ is a regular singular point.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-k^{2}\right) y=0
$$

$x=0$ is a regular singular point.
Frobenius' method: carrying out the early steps,
$\left(r^{2}-k^{2}\right) a_{0} x^{r}+\left[(r+1)^{2}-k^{2}\right] a_{1} x^{r+1}+\sum_{n=2}^{\infty}\left[a_{n-2}+\left\{r^{2}-k^{2}+n(n+2 r)\right\} a_{n}\right] x^{r+n}=0$
Indicial equation: $r^{2}-k^{2}=0 \Rightarrow r= \pm k$

Special Functions Arising as Solutionsof ODE

Bessel's equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-k^{2}\right) y=0
$$

$x=0$ is a regular singular point.
Frobenius' method: carrying out the early steps,
$\left(r^{2}-k^{2}\right) a_{0} x^{r}+\left[(r+1)^{2}-k^{2}\right] a_{1} x^{r+1}+\sum_{n=2}^{\infty}\left[a_{n-2}+\left\{r^{2}-k^{2}+n(n+2 r)\right\} a_{n}\right] x^{r+n}=0$
Indicial equation: $r^{2}-k^{2}=0 \Rightarrow r= \pm k$
With $r=k, \quad(r+1)^{2}-k^{2} \neq 0 \Rightarrow a_{1}=0$ and

$$
a_{n}=-\frac{a_{n-2}}{n(n+2 r)} \quad \text { for } n \geq 2
$$

Odd coefficients are zero and

$$
a_{2}=-\frac{a_{0}}{2(2 k+2)}, \quad a_{4}=\frac{a_{0}}{2 \cdot 4(2 k+2)(2 k+4)}, \text { etc. }
$$

Bessel functions:

Selecting $a_{0}=\frac{1}{2^{k} \Gamma(k+1)}$ and using $n=2 m$,

$$
a_{m}=\frac{(-1)^{m}}{2^{k+2 m} m!\Gamma(k+m+1)}
$$

Bessel function of the first kind of order k :

$$
J_{k}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{x^{k+2 m}}{2^{k+2 m} m!\Gamma(k+m+1)}=\sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{x}{2}\right)^{k+2 m}}{m!\Gamma(k+m+1)}
$$

Mathematical Methods in Engineering and Science

Bessel functions:

Selecting $a_{0}=\frac{1}{2^{k} \Gamma(k+1)}$ and using $n=2 m$,

$$
a_{m}=\frac{(-1)^{m}}{2^{k+2 m} m!\Gamma(k+m+1)}
$$

Bessel function of the first kind of order k :

$$
J_{k}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{x^{k+2 m}}{2^{k+2 m} m!\Gamma(k+m+1)}=\sum_{m=0}^{\infty} \frac{(-1)^{m}\left(\frac{x}{2}\right)^{k+2 m}}{m!\Gamma(k+m+1)}
$$

When k is not an integer, $J_{-k}(x)$ completes the basis.
For integer $k, \quad J_{-k}(x)=(-1)^{k} J_{k}(x)$, linearly dependent! Reduction of order can be used to find another solution. Bessel function of the second kind or Neumann function

Points to note

- Solution in power series
- Ordinary points and singularities
- Definition of special functions
- Legendre polynomials
- Bessel functions

Necessary Exercises: 2,3,4,5

Sturm-Liouville Theory
Preliminary Ideas
Sturm-Liouville Problems
Eigenfunction Expansions

Mathematical Methods in Engineering and Science
Sturm-Liouville Theory

A simple boundary value problem:

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0, \quad y(\pi)=0
$$

A simple boundary value problem:

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0, \quad y(\pi)=0
$$

General solution of the ODE:

$$
y(x)=a \sin (x \sqrt{2})+b \cos (x \sqrt{2})
$$

Condition $y(0)=0 \Rightarrow b=0$. Hence, $y(x)=a \sin (x \sqrt{2})$.
Then, $y(\pi)=0 \Rightarrow a=0$. Only solution is $y(x)=0$.

A simple boundary value problem:

$$
y^{\prime \prime}+2 y=0, \quad y(0)=0, \quad y(\pi)=0
$$

General solution of the ODE:

$$
y(x)=a \sin (x \sqrt{2})+b \cos (x \sqrt{2})
$$

Condition $y(0)=0 \Rightarrow b=0$. Hence, $y(x)=a \sin (x \sqrt{2})$.
Then, $y(\pi)=0 \Rightarrow a=0$. Only solution is $y(x)=0$.
Now, consider the BVP

$$
y^{\prime \prime}+4 y=0, \quad y(0)=0, \quad y(\pi)=0
$$

The same steps give $y(x)=a \sin (2 x)$, with arbitrary value of a.
Infinite number of non-trivial solutions!

Mathematical Methods in Engineering and Science

Boundary value problems as eigenvalue problems

Explore the possible solutions of the BVP

$$
y^{\prime \prime}+k y=0, \quad y(0)=0, \quad y(\pi)=0
$$

Boundary value problems as eigenvalue problems

Explore the possible solutions of the BVP

$$
y^{\prime \prime}+k y=0, \quad y(0)=0, \quad y(\pi)=0
$$

- With $k \leq 0$, no hope for a non-trivial solution. Consider $k=\nu^{2}>0$.
- Solutions: $y=a \sin (\nu x)$, only for specific values of ν (or k): $\nu=0, \pm 1, \pm 2, \pm 3, \cdots$; i.e. $k=0,1,4,9, \cdots$.

Boundary value problems as eigenvalue problems
Explore the possible solutions of the BVP

$$
y^{\prime \prime}+k y=0, \quad y(0)=0, \quad y(\pi)=0
$$

- With $k \leq 0$, no hope for a non-trivial solution. Consider $k=\nu^{2}>0$.
- Solutions: $y=a \sin (\nu x)$, only for specific values of ν (or k): $\nu=0, \pm 1, \pm 2, \pm 3, \cdots$; i.e. $k=0,1,4,9, \cdots$.

Question:

- For what values of k (eigenvalues), does the given BVP possess non-trivial solutions, and
- what are the corresponding solutions (eigenfunctions), up to arbitrary scalar multiples?
Analogous to the algebraic eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$!

Boundary value problems as eigenvalue problems
Explore the possible solutions of the BVP

$$
y^{\prime \prime}+k y=0, \quad y(0)=0, \quad y(\pi)=0
$$

- With $k \leq 0$, no hope for a non-trivial solution. Consider $k=\nu^{2}>0$.
- Solutions: $y=a \sin (\nu x)$, only for specific values of ν (or k): $\nu=0, \pm 1, \pm 2, \pm 3, \cdots$; i.e. $k=0,1,4,9, \cdots$.

Question:

- For what values of k (eigenvalues), does the given BVP possess non-trivial solutions, and
- what are the corresponding solutions (eigenfunctions), up to arbitrary scalar multiples?
Analogous to the algebraic eigenvalue problem $\mathbf{A v}=\lambda \mathbf{v}$! Analogy of a Hermitian matrix: self-adjoint differential operator.

Consider the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$. Question:

Is it possible to find functions $F(x)$ and $G(x)$ such that

$$
F(x) y^{\prime \prime}+F(x) P(x) y^{\prime}+F(x) Q(x) y
$$

gets reduced to the derivative of $F(x) y^{\prime}+G(x) y$?

Preliminary Ideas

Consider the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$.
Question:
Is it possible to find functions $F(x)$ and $G(x)$ such that

$$
F(x) y^{\prime \prime}+F(x) P(x) y^{\prime}+F(x) Q(x) y
$$

gets reduced to the derivative of $F(x) y^{\prime}+G(x) y$?
Comparing with

$$
\begin{gathered}
\frac{d}{d x}\left[F(x) y^{\prime}+G(x) y\right]=F(x) y^{\prime \prime}+\left[F^{\prime}(x)+G(x)\right] y^{\prime}+G^{\prime}(x) y \\
F^{\prime}(x)+G(x)=F(x) P(x) \quad \text { and } \quad G^{\prime}(x)=F(x) Q(x)
\end{gathered}
$$

Preliminary Ideas

Sturm-Liouville Theory

Consider the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$.
Question:
Is it possible to find functions $F(x)$ and $G(x)$ such that

$$
F(x) y^{\prime \prime}+F(x) P(x) y^{\prime}+F(x) Q(x) y
$$

gets reduced to the derivative of $F(x) y^{\prime}+G(x) y$?
Comparing with

$$
\begin{gathered}
\frac{d}{d x}\left[F(x) y^{\prime}+G(x) y\right]=F(x) y^{\prime \prime}+\left[F^{\prime}(x)+G(x)\right] y^{\prime}+G^{\prime}(x) y \\
F^{\prime}(x)+G(x)=F(x) P(x) \quad \text { and } \quad G^{\prime}(x)=F(x) Q(x)
\end{gathered}
$$

Elimination of $G(x)$:

$$
F^{\prime \prime}(x)-P(x) F^{\prime}(x)+\left[Q(x)-P^{\prime}(x)\right] F(x)=0
$$

This is the adjoint of the original ODE.

Mathematical methods in Engineering a
Preliminary Ider

The adjoint ODE

- The adjoint of the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ is

$$
F^{\prime \prime}+P_{1} F^{\prime}+Q_{1} F=0
$$

where $P_{1}=-P$ and $Q_{1}=Q-P^{\prime}$.

Preliminary Ideas

The adjoint ODE

- The adjoint of the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ is

$$
F^{\prime \prime}+P_{1} F^{\prime}+Q_{1} F=0
$$

where $P_{1}=-P$ and $Q_{1}=Q-P^{\prime}$.

- Then, the adjoint of $F^{\prime \prime}+P_{1} F^{\prime}+Q_{1} F=0$ is

$$
\phi^{\prime \prime}+P_{2} \phi^{\prime}+Q_{2} \phi=0,
$$

where $P_{2}=-P_{1}=P$ and
$Q_{2}=Q_{1}-P_{1}^{\prime}=Q-P^{\prime}-\left(-P^{\prime}\right)=Q$.

The adjoint ODE

- The adjoint of the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ is

$$
F^{\prime \prime}+P_{1} F^{\prime}+Q_{1} F=0
$$

where $P_{1}=-P$ and $Q_{1}=Q-P^{\prime}$.

- Then, the adjoint of $F^{\prime \prime}+P_{1} F^{\prime}+Q_{1} F=0$ is

$$
\phi^{\prime \prime}+P_{2} \phi^{\prime}+Q_{2} \phi=0,
$$

where $P_{2}=-P_{1}=P$ and
$Q_{2}=Q_{1}-P_{1}^{\prime}=Q-P^{\prime}-\left(-P^{\prime}\right)=Q$.
The adjoint of the adjoint of a second order linear homogeneous equation is the original equation itself.

Preliminary Ideas

The adjoint ODE

- The adjoint of the ODE $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ is

$$
F^{\prime \prime}+P_{1} F^{\prime}+Q_{1} F=0
$$

where $P_{1}=-P$ and $Q_{1}=Q-P^{\prime}$.

- Then, the adjoint of $F^{\prime \prime}+P_{1} F^{\prime}+Q_{1} F=0$ is

$$
\phi^{\prime \prime}+P_{2} \phi^{\prime}+Q_{2} \phi=0,
$$

where $P_{2}=-P_{1}=P$ and
$Q_{2}=Q_{1}-P_{1}^{\prime}=Q-P^{\prime}-\left(-P^{\prime}\right)=Q$.
The adjoint of the adjoint of a second order linear homogeneous equation is the original equation itself.

- When is an ODE its own adjoint?
- $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ is self-adjoint only in the trivial case of $P(x)=0$.
- What about $F(x) y^{\prime \prime}+F(x) P(x) y^{\prime}+F(x) Q(x) y=0$?

Mathematical Methods in Engineering and Science

Second order self-adjoint ODE

Question: What is the adjoint of $F y^{\prime \prime}+F P y^{\prime}+F Q y=0$?

Second order self-adjoint ODE

Question: What is the adjoint of $F y^{\prime \prime}+F P y^{\prime}+F Q y=0$?
Rephrased question: What is the ODE that $\phi(x)$ has to satisfy if

$$
\phi F y^{\prime \prime}+\phi F P y^{\prime}+\phi F Q y=\frac{d}{d x}\left[\phi F y^{\prime}+\xi(x) y\right] ?
$$

Sturm-Liouville Theory

Second order self-adjoint ODE

Question: What is the adjoint of $F y^{\prime \prime}+F P y^{\prime}+F Q y=0$?
Rephrased question: What is the ODE that $\phi(x)$ has to satisfy if

$$
\phi F y^{\prime \prime}+\phi F P y^{\prime}+\phi F Q y=\frac{d}{d x}\left[\phi F y^{\prime}+\xi(x) y\right] ?
$$

Comparing terms,

$$
\frac{d}{d x}(\phi F)+\xi(x)=\phi F P \quad \text { and } \quad \xi^{\prime}(x)=\phi F Q
$$

Eliminating $\xi(x)$, we have $\frac{d^{2}}{d x^{2}}(\phi F)+\phi F Q=\frac{d}{d x}(\phi F P)$.

Sturm-Liouville Theory

Second order self-adjoint ODE

Question: What is the adjoint of $F y^{\prime \prime}+F P y^{\prime}+F Q y=0$?
Rephrased question: What is the ODE that $\phi(x)$ has to satisfy if

$$
\phi F y^{\prime \prime}+\phi F P y^{\prime}+\phi F Q y=\frac{d}{d x}\left[\phi F y^{\prime}+\xi(x) y\right] ?
$$

Comparing terms,

$$
\frac{d}{d x}(\phi F)+\xi(x)=\phi F P \quad \text { and } \quad \xi^{\prime}(x)=\phi F Q
$$

Eliminating $\xi(x)$, we have $\frac{d^{2}}{d x^{2}}(\phi F)+\phi F Q=\frac{d}{d x}(\phi F P)$.

$$
\begin{aligned}
& F \phi^{\prime \prime}+2 F^{\prime} \phi^{\prime}+F^{\prime \prime} \phi+F Q \phi=F P \phi^{\prime}+(F P)^{\prime} \phi \\
\Rightarrow & F \phi^{\prime \prime}+\left(2 F^{\prime}-F P\right) \phi^{\prime}+\left[F^{\prime \prime}-(F P)^{\prime}+F Q\right] \phi=0
\end{aligned}
$$

This is the same as the original ODE, when

$$
F^{\prime}(x)=F(x) P(x)
$$

Casting a given ODE into the self-adjoint form:
Equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ is converted to the self-adjoint form through the multiplication of $F(x)=e^{\int P(x) d x}$.

General form of self-adjoint equations:

$$
\frac{d}{d x}\left[F(x) y^{\prime}\right]+R(x) y=0
$$

Preliminary Ideas

Casting a given ODE into the self-adjoint form:
Equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ is converted to the self-adjoint form through the multiplication of

$$
F(x)=e^{\int P(x) d x}
$$

General form of self-adjoint equations:

$$
\frac{d}{d x}\left[F(x) y^{\prime}\right]+R(x) y=0
$$

Working rules:

- To determine whether a given ODE is in the self-adjoint form, check whether the coefficient of y^{\prime} is the derivative of the coefficient of $y^{\prime \prime}$.
- To convert an ODE into the self-adjoint form, first obtain the equation in normal form by dividing with the coefficient of $y^{\prime \prime}$. If the coefficient of y^{\prime} now is $P(x)$, then next multiply the resulting equation with $e^{\int P d x}$.

Mathematical Methods in Engineering and Science
Sturm-Liouville Problems

Sturm-Liouville equation

$$
\left[r(x) y^{\prime}\right]^{\prime}+[q(x)+\lambda p(x)] y=0
$$

where p, q, r and r^{\prime} are continuous on $[a, b]$, with $p(x)>0$ on $[a, b]$ and $r(x)>0$ on (a, b).

Sturm-Liouville equation

$$
\left[r(x) y^{\prime}\right]^{\prime}+[q(x)+\lambda p(x)] y=0
$$

where p, q, r and r^{\prime} are continuous on $[a, b]$, with $p(x)>0$ on $[a, b]$ and $r(x)>0$ on (a, b).

With different boundary conditions,
Regular S-L problem:

$$
\begin{aligned}
& a_{1} y(a)+a_{2} y^{\prime}(a)=0 \text { and } b_{1} y(b)+b_{2} y^{\prime}(b)=0, \\
& \text { vectors }\left[\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right]^{T} \text { and }\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]^{T} \text { being non-zero. }
\end{aligned}
$$

Periodic S-L problem: With $r(a)=r(b)$,

$$
y(a)=y(b) \text { and } y^{\prime}(a)=y^{\prime}(b)
$$

Singular S-L problem: If $r(a)=0$, no boundary condition is needed at $x=a$. If $r(b)=0$, no boundary condition is needed at $x=b$.
(We just look for bounded solutions over $[a, b]$.)

Orthogonality of eigenfunctions
Theorem: If $y_{m}(x)$ and $y_{n}(x)$ are eigenfunctions (solutions) of a Sturm-Liouville problem corresponding to distinct eigenvalues λ_{m} and λ_{n} respectively, then

$$
\left(y_{m}, y_{n}\right) \equiv \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x=0
$$

i.e. they are orthogonal with respect to the weight function $p(x)$.

Orthogonality of eigenfunctions
Theorem: If $y_{m}(x)$ and $y_{n}(x)$ are eigenfunctions (solutions) of a Sturm-Liouville problem corresponding to distinct eigenvalues λ_{m} and λ_{n} respectively, then

$$
\left(y_{m}, y_{n}\right) \equiv \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x=0
$$

i.e. they are orthogonal with respect to the weight function $p(x)$.

From the hypothesis,

$$
\begin{aligned}
\left(r y_{m}^{\prime}\right)^{\prime}+\left(q+\lambda_{m} p\right) y_{m}=0 & \Rightarrow \quad\left(q+\lambda_{m} p\right) y_{m} y_{n}=-\left(r y_{m}^{\prime}\right)^{\prime} y_{n} \\
\left(r y_{n}^{\prime}\right)^{\prime}+\left(q+\lambda_{n} p\right) y_{n}=0 \quad & \Rightarrow \quad\left(q+\lambda_{n} p\right) y_{m} y_{n}=-\left(r y_{n}^{\prime}\right)^{\prime} y_{m}
\end{aligned}
$$

Orthogonality of eigenfunctions
Theorem: If $y_{m}(x)$ and $y_{n}(x)$ are eigenfunctions (solutions) of a Sturm-Liouville problem corresponding to distinct eigenvalues λ_{m} and λ_{n} respectively, then

$$
\left(y_{m}, y_{n}\right) \equiv \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x=0
$$

i.e. they are orthogonal with respect to the weight function $p(x)$.

From the hypothesis,

$$
\begin{aligned}
\left(r y_{m}^{\prime}\right)^{\prime}+\left(q+\lambda_{m} p\right) y_{m}=0 & \Rightarrow \quad\left(q+\lambda_{m} p\right) y_{m} y_{n}=-\left(r y_{m}^{\prime}\right)^{\prime} y_{n} \\
\left(r y_{n}^{\prime}\right)^{\prime}+\left(q+\lambda_{n} p\right) y_{n}=0 \quad & \Rightarrow \quad\left(q+\lambda_{n} p\right) y_{m} y_{n}=-\left(r y_{n}^{\prime}\right)^{\prime} y_{m}
\end{aligned}
$$

Subtracting,

$$
\begin{aligned}
\left(\lambda_{m}-\lambda_{n}\right) p y_{m} y_{n} & =\left(r y_{n}^{\prime}\right)^{\prime} y_{m}+\left(r y_{n}^{\prime}\right) y_{m}^{\prime}-\left(r y_{m}^{\prime}\right) y_{n}^{\prime}-\left(r y_{m}^{\prime}\right)^{\prime} y_{n} \\
& =\left[r\left(y_{m} y_{n}^{\prime}-y_{n} y_{m}^{\prime}\right)\right]^{\prime}
\end{aligned}
$$

Mathematical Methods in Engineering and Science
Sturm-Liouville Problems
Integrating both sides,

$$
\begin{aligned}
\left(\lambda_{m}\right. & \left.-\lambda_{n}\right) \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x \\
& =r(b)\left[y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)\right]-r(a)\left[y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)\right]
\end{aligned}
$$

Sturm-Liouville Problems

Integrating both sides,

$$
\begin{aligned}
\left(\lambda_{m}\right. & \left.-\lambda_{n}\right) \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x \\
& =r(b)\left[y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)\right]-r(a)\left[y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)\right]
\end{aligned}
$$

- In a regular S-L problem, from the boundary condition at $x=a$, the homogeneous system $\left[\begin{array}{cc}y_{m}(a) & y_{m}^{\prime}(a) \\ y_{n}(a) & y_{n}^{\prime}(a)\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has non-trivial solutions.
Therefore, $y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)=0$.
Similarly, $y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)=0$.
- In a singular S-L problem, zero value of $r(x)$ at a boundary makes the corresponding term vanish even without a BC.
- In a periodic S-L problem, the two terms cancel out together.

Sturm-Liouville Problems

Integrating both sides,

$$
\begin{aligned}
\left(\lambda_{m}\right. & \left.-\lambda_{n}\right) \int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x \\
& =r(b)\left[y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)\right]-r(a)\left[y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)\right]
\end{aligned}
$$

- In a regular S-L problem, from the boundary condition at $x=a$, the homogeneous system
$\left[\begin{array}{cc}y_{m}(a) & y_{m}^{\prime}(a) \\ y_{n}(a) & y_{n}^{\prime}(a)\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has non-trivial solutions.
Therefore, $y_{m}(a) y_{n}^{\prime}(a)-y_{n}(a) y_{m}^{\prime}(a)=0$.
Similarly, $y_{m}(b) y_{n}^{\prime}(b)-y_{n}(b) y_{m}^{\prime}(b)=0$.
- In a singular S-L problem, zero value of $r(x)$ at a boundary makes the corresponding term vanish even without a BC.
- In a periodic S-L problem, the two terms cancel out together.

Since $\lambda_{m} \neq \lambda_{n}$, in all cases,

$$
\int_{a}^{b} p(x) y_{m}(x) y_{n}(x) d x=0
$$

Mathematical methods in Enginering and science
Sturm-Liouville Problems
Example: Legendre polynomials over $[-1,1]$
Legendre's equation

$$
\frac{d}{d x}\left[\left(1-x^{2}\right) y^{\prime}\right]+k(k+1) y=0
$$

is self-adjoint and defines a singular Sturm Liouville problem over
$[-1,1]$ with $p(x)=1, q(x)=0, r(x)=1-x^{2}$ and $\lambda=k(k+1)$.

Example: Legendre polynomials over $[-1,1]$
Legendre's equation

$$
\frac{d}{d x}\left[\left(1-x^{2}\right) y^{\prime}\right]+k(k+1) y=0
$$

is self-adjoint and defines a singular Sturm Liouville problem over
$[-1,1]$ with $p(x)=1, q(x)=0, r(x)=1-x^{2}$ and $\lambda=k(k+1)$.

$$
(m-n)(m+n+1) \int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\left[\left(1-x^{2}\right)\left(P_{m} P_{n}^{\prime}-P_{n} P_{m}^{\prime}\right)\right]_{-1}^{1}=0
$$

Sturm-Liouville Problems

Example: Legendre polynomials over $[-1,1]$
Legendre's equation

$$
\frac{d}{d x}\left[\left(1-x^{2}\right) y^{\prime}\right]+k(k+1) y=0
$$

is self-adjoint and defines a singular Sturm Liouville problem over
$[-1,1]$ with $p(x)=1, q(x)=0, r(x)=1-x^{2}$ and $\lambda=k(k+1)$.

$$
(m-n)(m+n+1) \int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\left[\left(1-x^{2}\right)\left(P_{m} P_{n}^{\prime}-P_{n} P_{m}^{\prime}\right)\right]_{-1}^{1}=0
$$

From orthogonal decompositions $1=P_{0}(x), x=P_{1}(x)$,

$$
\begin{aligned}
x^{2} & =\frac{1}{3}\left(3 x^{2}-1\right)+\frac{1}{3}=\frac{2}{3} P_{2}(x)+\frac{1}{3} P_{0}(x) \\
x^{3} & =\frac{1}{5}\left(5 x^{3}-3 x\right)+\frac{3}{5} x=\frac{2}{5} P_{3}(x)+\frac{3}{5} P_{1}(x) \\
x^{4} & =\frac{8}{35} P_{4}(x)+\frac{4}{7} P_{2}(x)+\frac{1}{5} P_{0}(x) \text { etc }
\end{aligned}
$$

$P_{k}(x)$ is orthogonal to all polynomials of degree less than k.

Mathematical Methods in Engineering and Science

Sturm-Liouville Problems

Real eigenvalues

Eigenvalues of a Sturm-Liouville problem are real.

Sthematiar Methods in inginilering and science

Real eigenvalues

Eigenvalues of a Sturm-Liouville problem are real.
Let eigenvalue $\lambda=\mu+i \nu$ and eigenfunction $y(x)=u(x)+i v(x)$. Substitution leads to

$$
\left[r\left(u^{\prime}+i v^{\prime}\right)\right]^{\prime}+[q+(\mu+i \nu) p](u+i v)=0 .
$$

Sturm-Liouville Problems

Real eigenvalues

Eigenvalues of a Sturm-Liouville problem are real.
Let eigenvalue $\lambda=\mu+i \nu$ and eigenfunction $y(x)=u(x)+i v(x)$. Substitution leads to

$$
\left[r\left(u^{\prime}+i v^{\prime}\right)\right]^{\prime}+[q+(\mu+i \nu) p](u+i v)=0
$$

Separation of real and imaginary parts:

$$
\begin{aligned}
& {\left[r u^{\prime}\right]^{\prime}+(q+\mu p) u-\nu p v=0 \quad \Rightarrow \quad \nu p v^{2}=\left[r u^{\prime}\right]^{\prime} v+(q+\mu p) u v} \\
& {\left[r v^{\prime}\right]^{\prime}+(q+\mu p) v+\nu p u=0 \quad \Rightarrow \quad \nu p u^{2}=-\left[r v^{\prime}\right]^{\prime} u-(q+\mu p) u v}
\end{aligned}
$$

Adding together,
$\nu p\left(u^{2}+v^{2}\right)=\left[r u^{\prime}\right]^{\prime} v+\left[r u^{\prime}\right] v^{\prime}-\left[r v^{\prime}\right] u^{\prime}-\left[r v^{\prime}\right]^{\prime} u=-\left[r\left(u v^{\prime}-v u^{\prime}\right)\right]^{\prime}$

Sturm-Liouville Problems

Real eigenvalues

Eigenvalues of a Sturm-Liouville problem are real.
Let eigenvalue $\lambda=\mu+i \nu$ and eigenfunction $y(x)=u(x)+i v(x)$. Substitution leads to

$$
\left[r\left(u^{\prime}+i v^{\prime}\right)\right]^{\prime}+[q+(\mu+i \nu) p](u+i v)=0 .
$$

Separation of real and imaginary parts:

$$
\begin{aligned}
& {\left[r u^{\prime}\right]^{\prime}+(q+\mu p) u-\nu p v=0 \quad \Rightarrow \quad \nu p v^{2}=\left[r u^{\prime}\right]^{\prime} v+(q+\mu p) u v} \\
& {\left[r v^{\prime}\right]^{\prime}+(q+\mu p) v+\nu p u=0 \quad \Rightarrow \quad \nu p u^{2}=-\left[r v^{\prime}\right]^{\prime} u-(q+\mu p) u v}
\end{aligned}
$$

Adding together,
$\nu p\left(u^{2}+v^{2}\right)=\left[r u^{\prime}\right]^{\prime} v+\left[r u^{\prime}\right] v^{\prime}-\left[r v^{\prime}\right] u^{\prime}-\left[r v^{\prime}\right]^{\prime} u=-\left[r\left(u v^{\prime}-v u^{\prime}\right)\right]^{\prime}$
Integration and application of boundary conditions leads to

$$
\begin{gathered}
\nu \int_{a}^{b} p(x)\left[u^{2}(x)+v^{2}(x)\right] d x=0 . \\
\nu=0 \text { and } \lambda=\mu
\end{gathered}
$$

Eigenfunctions of Sturm-Liouville problems:
convenient and powerful instruments to represent and manipulate fairly general classes of functions

Inquinering and science

Eigenfunctions of Sturm-Liouville problems:
convenient and powerful instruments to represent and manipulate fairly general classes of functions
$\left\{y_{0}, y_{1}, y_{2}, y_{3}, \cdots\right\}$: a family of continuous functions over $[a, b]$, mutually orthogonal with respect to $p(x)$.

Representation of a function $f(x)$ on $[a, b]$:
$f(x)=\sum_{m=0}^{\infty} a_{m} y_{m}(x)=a_{0} y_{0}(x)+a_{1} y_{1}(x)+a_{2} y_{2}(x)+a_{3} y_{3}(x)+\cdots$

Generalized Fourier series

Analogous to the representation of a vector as a linear combination of a set of mutually orthogonal vectors.

Question: How to determine the coefficients $\left(a_{n}\right)$?

Inner product:

$$
\begin{aligned}
\left(f, y_{n}\right) & =\int_{a}^{b} p(x) f(x) y_{n}(x) d x \\
& =\int_{a}^{b} \sum_{m=0}^{\infty}\left[a_{m} p(x) y_{m}(x) y_{n}(x)\right] d x=\sum_{m=0}^{\infty} a_{m}\left(y_{m}, y_{n}\right)=a_{n}\left\|y_{n}\right\|^{2}
\end{aligned}
$$

where

$$
\left\|y_{n}\right\|=\sqrt{\left(y_{n}, y_{n}\right)}=\sqrt{\int_{a}^{b} p(x) y_{n}^{2}(x) d x}
$$

Fourier coefficients: $a_{n}=\frac{\left(f, y_{n}\right)}{\left\|y_{n}\right\|^{2}}$

Inner product:

$$
\begin{aligned}
\left(f, y_{n}\right) & =\int_{a}^{b} p(x) f(x) y_{n}(x) d x \\
& =\int_{a}^{b} \sum_{m=0}^{\infty}\left[a_{m} p(x) y_{m}(x) y_{n}(x)\right] d x=\sum_{m=0}^{\infty} a_{m}\left(y_{m}, y_{n}\right)=a_{n}\left\|y_{n}\right\|^{2}
\end{aligned}
$$

where

$$
\left\|y_{n}\right\|=\sqrt{\left(y_{n}, y_{n}\right)}=\sqrt{\int_{a}^{b} p(x) y_{n}^{2}(x) d x}
$$

Fourier coefficients: $a_{n}=\frac{\left(f, y_{n}\right)}{\left\|y_{n}\right\|^{2}}$
Normalized eigenfunctions:

$$
\phi_{m}(x)=\frac{y_{m}(x)}{\left\|y_{m}(x)\right\|}
$$

Generalized Fourier series (in orthonormal basis):

$$
f(x)=\sum^{\infty} c_{m} \phi_{m}(x)=c_{0} \phi_{0}(x)+c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+c_{3} \phi_{3}(x)+\cdots
$$

In terms of a finite number of members of the family $\left\{\phi_{k}(x)\right\}$,
$\Phi_{N}(x)=\sum_{m=0}^{N} \alpha_{m} \phi_{m}(x)=\alpha_{0} \phi_{0}(x)+\alpha_{1} \phi_{1}(x)+\alpha_{2} \phi_{2}(x)+\cdots+\alpha_{N} \phi_{N}(x)$.
Error

$$
E=\left\|f-\Phi_{N}\right\|^{2}=\int_{a}^{b} p(x)\left[f(x)-\sum_{m=0}^{N} \alpha_{m} \phi_{m}(x)\right]^{2} d x
$$

IEnineerina and Scienco

In terms of a finite number of members of the family $\left\{\phi_{k}(x)\right\}$,

$$
\Phi_{N}(x)=\sum_{m=0}^{N} \alpha_{m} \phi_{m}(x)=\alpha_{0} \phi_{0}(x)+\alpha_{1} \phi_{1}(x)+\alpha_{2} \phi_{2}(x)+\cdots+\alpha_{N} \phi_{N}(x) .
$$

Error

$$
E=\left\|f-\Phi_{N}\right\|^{2}=\int_{a}^{b} p(x)\left[f(x)-\sum_{m=0}^{N} \alpha_{m} \phi_{m}(x)\right]^{2} d x
$$

Error is minimized when

$$
\begin{aligned}
& \frac{\partial E}{\partial \alpha_{n}}=\int_{a}^{b} 2 p(x)\left[f(x)-\sum_{m=0}^{N} \alpha_{m} \phi_{m}(x)\right]\left[-\phi_{n}(x)\right] d x=0 \\
& \Rightarrow \int_{a}^{b} \alpha_{n} p(x) \phi_{n}^{2}(x) d x=\int_{a}^{b} p(x) f(x) \phi_{n}(x) d x . \\
& \alpha_{n}=c_{n}
\end{aligned}
$$

best approximation in the mean or least square approximation

Using the Fourier coefficients, error

$$
\begin{gathered}
E=(f, f)-2 \sum_{n=0}^{N} c_{n}\left(f, \phi_{n}\right)+\sum_{n=0}^{N} c_{n}^{2}\left(\phi_{n}, \phi_{n}\right)=\|f\|^{2}-2 \sum_{n=0}^{N} c_{n}^{2}+\sum_{n=0}^{N} c_{n}^{2} \\
E=\|f\|^{2}-\sum_{n=0}^{N} c_{n}^{2} \geq 0
\end{gathered}
$$

Bessel's inequality:

$$
\sum_{n=0}^{N} c_{n}^{2} \leq\|f\|^{2}=\int_{a}^{b} p(x) f^{2}(x) d x
$$

Eigenfunction Expansions

Using the Fourier coefficients, error

$$
\begin{gathered}
E=(f, f)-2 \sum_{n=0}^{N} c_{n}\left(f, \phi_{n}\right)+\sum_{n=0}^{N} c_{n}^{2}\left(\phi_{n}, \phi_{n}\right)=\|f\|^{2}-2 \sum_{n=0}^{N} c_{n}^{2}+\sum_{n=0}^{N} c_{n}^{2} \\
E=\|f\|^{2}-\sum_{n=0}^{N} c_{n}^{2} \geq 0
\end{gathered}
$$

Bessel's inequality:

$$
\sum_{n=0}^{N} c_{n}^{2} \leq\|f\|^{2}=\int_{a}^{b} p(x) f^{2}(x) d x
$$

Partial sum

$$
s_{k}(x)=\sum_{m=0}^{k} a_{m} \phi_{m}(x)
$$

Question: Does the sequence of $\left\{s_{k}\right\}$ converge?
Answer: The bound in Bessel's inequality ensures convergence.

Eigenfunction Expansions
Question: Does it converge to f ?

$$
\lim _{k \rightarrow \infty} \int_{a}^{b} p(x)\left[s_{k}(x)-f(x)\right]^{2} d x=0 ?
$$

Answer: Depends on the basis used.

Eigenfunction Expansions

Question: Does it converge to f ?

$$
\lim _{k \rightarrow \infty} \int_{a}^{b} p(x)\left[s_{k}(x)-f(x)\right]^{2} d x=0 ?
$$

Answer: Depends on the basis used.
Convergence in the mean or mean-square convergence:
An orthonormal set of functions $\left\{\phi_{k}(x)\right\}$ on an interval $a \leq x \leq b$ is said to be complete in a class of functions, or to form a basis for it, if the corresponding generalized Fourier series for a function converges in the mean to the function, for every function belonging to that class.

Parseval's identity: $\sum_{n=0}^{\infty} c_{n}^{2}=\|f\|^{2}$

Eigenfunction Expansions

Question: Does it converge to f ?

$$
\lim _{k \rightarrow \infty} \int_{a}^{b} p(x)\left[s_{k}(x)-f(x)\right]^{2} d x=0 ?
$$

Answer: Depends on the basis used.
Convergence in the mean or mean-square convergence:
An orthonormal set of functions $\left\{\phi_{k}(x)\right\}$ on an interval $a \leq x \leq b$ is said to be complete in a class of functions, or to form a basis for it, if the corresponding generalized Fourier series for a function converges in the mean to the function, for every function belonging to that class.

Parseval's identity: $\sum_{n=0}^{\infty} c_{n}^{2}=\|f\|^{2}$
Eigenfunction expansion: generalized Fourier series in terms of eigenfunctions of a Sturm-Liouville problem

- convergent for continuous functions with piecewise continuous derivatives, i.e. they form a basis for this class.
- Eigenvalue problems in ODE's
- Self-adjoint differential operators
- Sturm-Liouville problems
- Orthogonal eigenfunctions
- Eigenfunction expansions

Necessary Exercises: 1,2,4,5

Fourier Series and Integrals
Basic Theory of Fourier Series
Extensions in Application
Fourier Integrals

Mathemaicici Methods in Engineering an Science
Basier Series
Fourier Series and Integrals

With $q(x)=0$ and $p(x)=r(x)=1$, periodic S-L problem:

$$
y^{\prime \prime}+\lambda y=0, \quad y(-L)=y(L), \quad y^{\prime}(-L)=y^{\prime}(L)
$$

Basic Theory of Fourier Series

With $q(x)=0$ and $p(x)=r(x)=1$, periodic S-L problem:

$$
y^{\prime \prime}+\lambda y=0, \quad y(-L)=y(L), \quad y^{\prime}(-L)=y^{\prime}(L)
$$

Eigenfunctions 1, $\cos \frac{\pi x}{L}, \sin \frac{\pi x}{L}, \cos \frac{2 \pi x}{L}, \sin \frac{2 \pi x}{L}, \cdots$ constitute an orthogonal basis for representing functions.

Basic Theory of Fourier Series

With $q(x)=0$ and $p(x)=r(x)=1$, periodic S-L problem:

$$
y^{\prime \prime}+\lambda y=0, \quad y(-L)=y(L), \quad y^{\prime}(-L)=y^{\prime}(L)
$$

Eigenfunctions $1, \cos \frac{\pi x}{L}, \sin \frac{\pi x}{L}, \cos \frac{2 \pi x}{L}, \sin \frac{2 \pi x}{L}, \cdots$ constitute an orthogonal basis for representing functions. For a periodic function $f(x)$ of period $2 L$, we propose

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)
$$

and determine the Fourier coefficients from Euler formulae

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
& a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x \text { and } b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} d x
\end{aligned}
$$

Basic Theory of Fourier Series

With $q(x)=0$ and $p(x)=r(x)=1$, periodic S-L problem:

$$
y^{\prime \prime}+\lambda y=0, \quad y(-L)=y(L), \quad y^{\prime}(-L)=y^{\prime}(L)
$$

Eigenfunctions $1, \cos \frac{\pi x}{L}, \sin \frac{\pi x}{L}, \cos \frac{2 \pi x}{L}, \sin \frac{2 \pi x}{L}$, constitute an orthogonal basis for representing functions. For a periodic function $f(x)$ of period $2 L$, we propose

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}\right)
$$

and determine the Fourier coefficients from Euler formulae

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
& a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x \text { and } b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} d x
\end{aligned}
$$

Question: Does the series converge?

Basic Theory of Fourier Series

Dirichlet's conditions:

If $f(x)$ and its derivative are piecewise continuous on $[-L, L]$ and are periodic with a period $2 L$, then the series converges to the mean $\frac{f(x+)+f(x-)}{2}$ of one-sided limits, at all points.

Fourier series

Basic Theory of Fourier Series

Dirichlet's conditions:

If $f(x)$ and its derivative are piecewise continuous on $[-L, L]$ and are periodic with a period $2 L$, then the series converges to the mean $\frac{f(x+)+f(x-)}{2}$ of one-sided limits, at all points.

Fourier series

Note: The interval of integration can be $\left[x_{0}, x_{0}+2 L\right]$ for any x_{0}.

Basic Theory of Fourier Series

Dirichlet's conditions:
If $f(x)$ and its derivative are piecewise continuous on $[-L, L]$ and are periodic with a period $2 L$, then the series converges to the mean $\frac{f(x+)+f(x-)}{2}$ of one-sided limits, at all points.

Fourier series

Note: The interval of integration can be $\left[x_{0}, x_{0}+2 L\right]$ for any x_{0}.

- It is valid to integrate the Fourier series term by term.
- The Fourier series uniformly converges to $f(x)$ over an interval on which $f(x)$ is continuous. At a jump discontinuity, convergence to $\frac{f(x+)+f(x-)}{2}$ is not uniform. Mismatch peak shifts with inclusion of more terms (Gibb's phenomenon).
- Term-by-term differentiation of the Fourier series at a point requires $f(x)$ to be smooth at that point.

athematical Methods in Engineering and Science

Multiplying the Fourier series with $f(x)$,

$$
f^{2}(x)=a_{0} f(x)+\sum_{n=1}^{\infty}\left[a_{n} f(x) \cos \frac{n \pi x}{L}+b_{n} f(x) \sin \frac{n \pi x}{L}\right]
$$

Basic Theory of Fourier Series

Multiplying the Fourier series with $f(x)$,

$$
f^{2}(x)=a_{0} f(x)+\sum_{n=1}^{\infty}\left[a_{n} f(x) \cos \frac{n \pi x}{L}+b_{n} f(x) \sin \frac{n \pi x}{L}\right]
$$

Parseval's identity:

$$
\Rightarrow a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{2 L} \int_{-L}^{L} f^{2}(x) d x
$$

The Fourier series representation is complete.

Basic Theory of Fourier Series

Multiplying the Fourier series with $f(x)$,

$$
f^{2}(x)=a_{0} f(x)+\sum_{n=1}^{\infty}\left[a_{n} f(x) \cos \frac{n \pi x}{L}+b_{n} f(x) \sin \frac{n \pi x}{L}\right]
$$

Parseval's identity:

$$
\Rightarrow a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{2 L} \int_{-L}^{L} f^{2}(x) d x
$$

The Fourier series representation is complete.

- A periodic function $f(x)$ is composed of its mean value and several sinusoidal components, or harmonics.
- Fourier coefficients are corresponding amplitudes.
- Parseval's identity is simply a statement on energy balance!

Basic Theory of Fourier Series

Multiplying the Fourier series with $f(x)$,

$$
f^{2}(x)=a_{0} f(x)+\sum_{n=1}^{\infty}\left[a_{n} f(x) \cos \frac{n \pi x}{L}+b_{n} f(x) \sin \frac{n \pi x}{L}\right]
$$

Parseval's identity:

$$
\Rightarrow a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{2 L} \int_{-L}^{L} f^{2}(x) d x
$$

The Fourier series representation is complete.

- A periodic function $f(x)$ is composed of its mean value and several sinusoidal components, or harmonics.
- Fourier coefficients are corresponding amplitudes.
- Parseval's identity is simply a statement on energy balance!

Bessel's inequality

$$
a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{N}\left(a_{n}^{2}+b_{n}^{2}\right) \leq \frac{1}{2 L}\|f(x)\|^{2}
$$

Original spirit of Fouries series

- representation of periodic functions over $(-\infty, \infty)$.

Question: What about a function $f(x)$ defined only on $[-L, L]$?

Extensions in Application

Original spirit of Fouries series

- representation of periodic functions over $(-\infty, \infty)$.

Question: What about a function $f(x)$ defined only on $[-L, L]$?
Answer: Extend the function as

$$
F(x)=f(x) \text { for }-L \leq x \leq L, \quad \text { and } \quad F(x+2 L)=F(x) .
$$

Fourier series of $F(x)$ acts as the Fourier series representation of $f(x)$ in its own domain.

Extensions in Application

Original spirit of Fouries series

- representation of periodic functions over $(-\infty, \infty)$.

Question: What about a function $f(x)$ defined only on $[-L, L]$?
Answer: Extend the function as

$$
F(x)=f(x) \text { for }-L \leq x \leq L, \quad \text { and } \quad F(x+2 L)=F(x) .
$$

Fourier series of $F(x)$ acts as the Fourier series representation of $f(x)$ in its own domain.
In Euler formulae, notice that $b_{m}=0$ for an even function.
The Fourier series of an even function is a Fourier cosine series

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

where $a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x$ and $a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x$.

Extensions in Application

Original spirit of Fouries series

- representation of periodic functions over $(-\infty, \infty)$.

Question: What about a function $f(x)$ defined only on $[-L, L]$?
Answer: Extend the function as

$$
F(x)=f(x) \text { for }-L \leq x \leq L, \quad \text { and } \quad F(x+2 L)=F(x) .
$$

Fourier series of $F(x)$ acts as the Fourier series representation of $f(x)$ in its own domain.
In Euler formulae, notice that $b_{m}=0$ for an even function.
The Fourier series of an even function is a Fourier cosine series

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

$$
\text { where } a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \text { and } a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

Similarly, for an odd function, Fourier sine series.

Mathematical Methods in Engineering and Science
Extensions in Application
Over $[0, L]$, sometimes we need a series of sine terms only, or cosine terms only!

athematical Methods in Engineering and Science
 Extensions in Application

Over $[0, L]$, sometimes we need a series of sine terms only, or cosine terms only!

(a) Function over $(0, L)$

(b) Even periodic extension

(c) Odd periodic extension

Figure: Periodic extensions for cosine and sine series

Extensions in Application

Half-range expansions

- For Fourier cosine series of a function $f(x)$ over $[0, L]$, even periodic extension:

$$
f_{c}(x)=\left\{\begin{array}{ll}
f(x) & \text { for } \\
f(-x) & \text { for } \\
-L \leq x<L,
\end{array} \quad \text { and } \quad f_{c}(x+2 L)=f_{c}(x)\right.
$$

- For Fourier sine series of a function $f(x)$ over $[0, L]$, odd periodic extension:

$$
f_{s}(x)=\left\{\begin{array}{ll}
f(x) & \text { for } \quad 0 \leq x \leq L, \\
-f(-x) & \text { for } \quad-L \leq x<0,
\end{array} \quad \text { and } \quad f_{s}(x+2 L)=f_{s}(x)\right.
$$

Extensions in Application

Half-range expansions

- For Fourier cosine series of a function $f(x)$ over $[0, L]$, even periodic extension:

$$
f_{c}(x)=\left\{\begin{array}{lll}
f(x) & \text { for } & 0 \leq x \leq L, \\
f(-x) & \text { for } & -L \leq x<0,
\end{array} \quad \text { and } \quad f_{c}(x+2 L)=f_{c}(x)\right.
$$

- For Fourier sine series of a function $f(x)$ over $[0, L]$, odd periodic extension:

$$
f_{s}(x)=\left\{\begin{array}{ll}
f(x) & \text { for } \quad 0 \leq x \leq L, \\
-f(-x) & \text { for } \quad-L \leq x<0,
\end{array} \quad \text { and } \quad f_{s}(x+2 L)=f_{s}(x)\right.
$$

To develop the Fourier series of a function, which is available as a set of tabulated values or a black-box library routine, integrals in the Euler formulae are evaluated numerically.

Extensions in Application

Half-range expansions

- For Fourier cosine series of a function $f(x)$ over $[0, L]$, even periodic extension:

$$
f_{c}(x)=\left\{\begin{array}{lll}
f(x) & \text { for } & 0 \leq x \leq L, \\
f(-x) & \text { for } & -L \leq x<0,
\end{array} \quad \text { and } \quad f_{c}(x+2 L)=f_{c}(x)\right.
$$

- For Fourier sine series of a function $f(x)$ over $[0, L]$, odd periodic extension:

$$
f_{s}(x)=\left\{\begin{array}{ll}
f(x) & \text { for } \quad 0 \leq x \leq L, \\
-f(-x) & \text { for } \quad-L \leq x<0,
\end{array} \quad \text { and } \quad f_{s}(x+2 L)=f_{s}(x)\right.
$$

To develop the Fourier series of a function, which is available as a set of tabulated values or a black-box library routine, integrals in the Euler formulae are evaluated numerically.

Important: Fourier series representation is richer and more powerful compared to interpolatory or least square approximation in many contexts.

Mathematical Methods in Engineering and Science
Fourier Series and Integrals
Fourier Integrals
Question: How to apply the idea of Fourier series to a non-periodic function over an infinite domain?

Question: How to apply the idea of Fourier series to a non-periodic function over an infinite domain?
Answer: Magnify a single period to an infinite length.
Fourier series of function $f_{L}(x)$ of period $2 L$:

$$
f_{L}(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos p_{n} x+b_{n} \sin p_{n} x\right)
$$

where $p_{n}=\frac{n \pi}{L}$ is the frequency of the n-th harmonic.

Fourier Integrals

Question: How to apply the idea of Fourier series to a non-periodic function over an infinite domain?
Answer: Magnify a single period to an infinite length.
Fourier series of function $f_{L}(x)$ of period $2 L$:

$$
f_{L}(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos p_{n} x+b_{n} \sin p_{n} x\right)
$$

where $p_{n}=\frac{n \pi}{L}$ is the frequency of the n-th harmonic.
Inserting the expressions for the Fourier coefficients,
$f_{L}(x)=\frac{1}{2 L} \int_{-L}^{L} f_{L}(x) d x$
$+\frac{1}{\pi} \sum_{n=1}^{\infty}\left[\cos p_{n} x \int_{-L}^{L} f_{L}(v) \cos p_{n} v d v+\sin p_{n} x \int_{-L}^{L} f_{L}(v) \sin p_{n} v d v\right] \Delta p$,
where $\Delta p=p_{n+1}-p_{n}=\frac{\pi}{L}$.

Mathematial Methors in ingineering
Forier Integrals
Fourier Series and Integrals

In the limit (if it exists), as $L \rightarrow \infty, \Delta p \rightarrow 0$,

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\cos p x \int_{-\infty}^{\infty} f(v) \cos p v d v+\sin p x \int_{-\infty}^{\infty} f(v) \sin p v d v\right] d p
$$

Fourier Integrals

In the limit (if it exists), as $L \rightarrow \infty, \Delta p \rightarrow 0$,
$f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\cos p x \int_{-\infty}^{\infty} f(v) \cos p v d v+\sin p x \int_{-\infty}^{\infty} f(v) \sin p v d v\right] d p$
Fourier integral of $f(x)$:

$$
f(x)=\int_{0}^{\infty}[A(p) \cos p x+B(p) \sin p x] d p,
$$

where amplitude functions

$$
A(p)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos p v d v \text { and } B(p)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin p v d v
$$

are defined for a continuous frequency variable p.

Fourier Integrals

In the limit (if it exists), as $L \rightarrow \infty, \Delta p \rightarrow 0$,
$f(x)=\frac{1}{\pi} \int_{0}^{\infty}\left[\cos p x \int_{-\infty}^{\infty} f(v) \cos p v d v+\sin p x \int_{-\infty}^{\infty} f(v) \sin p v d v\right] d p$
Fourier integral of $f(x)$:

$$
f(x)=\int_{0}^{\infty}[A(p) \cos p x+B(p) \sin p x] d p
$$

where amplitude functions

$$
A(p)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos p v d v \text { and } B(p)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin p v d v
$$

are defined for a continuous frequency variable p.
In phase angle form,

$$
f(x)=\frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(v) \cos p(x-v) d v d p
$$

Fourier Integrals

Using $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$ in the phase angle form,

$$
f(x)=\frac{1}{2 \pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(v)\left[e^{i p(x-v)}+e^{-i p(x-v)}\right] d v d p
$$

With substitution $p=-q$,

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} f(v) e^{-i p(x-v)} d v d p=\int_{-\infty}^{0} \int_{-\infty}^{\infty} f(v) e^{i q(x-v)} d v d q
$$

Fourier Integrals

Using $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$ in the phase angle form,

$$
f(x)=\frac{1}{2 \pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(v)\left[e^{i p(x-v)}+e^{-i p(x-v)}\right] d v d p
$$

With substitution $p=-q$,

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} f(v) e^{-i p(x-v)} d v d p=\int_{-\infty}^{0} \int_{-\infty}^{\infty} f(v) e^{i q(x-v)} d v d q
$$

Complex form of Fourier integral

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v) e^{i p(x-v)} d v d p=\int_{-\infty}^{\infty} C(p) e^{i p x} d p
$$

in which the complex Fourier integral coefficient is

$$
C(p)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(v) e^{-i p v} d v
$$

- Fourier series arising out of a Sturm-Liouville problem
- A versatile tool for function representation
- Fourier integral as the limiting case of Fourier series

Necessary Exercises: 1,3,6,8

Fourier Transforms

Definition and Fundamental Properties
Important Results on Fourier Transforms
Discrete Fourier Transform

Mathematical Methods in Engineering and Science
Definition and Fundamental Propertieffinition ned findananatid popentiss
Complex form of the Fourier integral:

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(v) e^{-i w v} d v\right] e^{i w t} d w
$$

Composition of an infinite number of functions in the form $\frac{e^{i w t}}{\sqrt{2 \pi}}$, over a continuous distribution of frequency w.

athematical Methods in Engineering and Science

 }

Complex form of the Fourier integral:

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(v) e^{-i w v} d v\right] e^{i w t} d w
$$

Composition of an infinite number of functions in the form $\frac{e^{i w t}}{\sqrt{2 \pi}}$, over a continuous distribution of frequency w.

Fourier transform: Amplitude of a frequency component:

$$
\mathcal{F}(f) \equiv \hat{f}(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i w t} d t
$$

Function of the frequency variable.

athematical Methods in Engineering and Science

Complex form of the Fourier integral:

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(v) e^{-i w v} d v\right] e^{i w t} d w
$$

Composition of an infinite number of functions in the form $\frac{e^{i w t}}{\sqrt{2 \pi}}$, over a continuous distribution of frequency w.

Fourier transform: Amplitude of a frequency component:

$$
\mathcal{F}(f) \equiv \hat{f}(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i w t} d t
$$

Function of the frequency variable.

Inverse Fourier transform

$$
\mathcal{F}^{-1}(\hat{f}) \equiv f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{i w t} d w
$$

recovers the original function.

Mathematical Methods in Engineering and Science

Example: Fourier transform of $f(t)=1$?

Example: Fourier transform of $f(t)=1$?
Let us find out the inverse Fourier transform of $\hat{f}(w)=k \delta(w)$.

$$
\begin{gathered}
f(t)=\mathcal{F}^{-1}(\hat{f})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} k \delta(w) e^{i w t} d w=\frac{k}{\sqrt{2 \pi}} \\
\mathcal{F}(1)=\sqrt{2 \pi} \delta(w)
\end{gathered}
$$

athematical Methods in Engineering and Science
 Fourier Transforms

 Definition and Fundamental Propertiefsinition and fundanental Rosperitise

 Definition and Fundamental Propertiefsinition and fundanental Rosperitise}

Example: Fourier transform of $f(t)=1$?
Let us find out the inverse Fourier transform of $\hat{f}(w)=k \delta(w)$.

$$
\begin{gathered}
f(t)=\mathcal{F}^{-1}(\hat{f})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} k \delta(w) e^{i w t} d w=\frac{k}{\sqrt{2 \pi}} \\
\mathcal{F}(1)=\sqrt{2 \pi} \delta(w)
\end{gathered}
$$

Linearity of Fourier transforms:

$$
\mathcal{F}\left\{\alpha f_{1}(t)+\beta f_{2}(t)\right\}=\alpha \hat{f}_{1}(w)+\beta \hat{f}_{2}(w)
$$

athematical Methods in Engineering and Science
 Fourier Transforms

 }

Example: Fourier transform of $f(t)=1$?
Let us find out the inverse Fourier transform of $\hat{f}(w)=k \delta(w)$.

$$
\begin{gathered}
f(t)=\mathcal{F}^{-1}(\hat{f})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} k \delta(w) e^{i w t} d w=\frac{k}{\sqrt{2 \pi}} \\
\mathcal{F}(1)=\sqrt{2 \pi} \delta(w)
\end{gathered}
$$

Linearity of Fourier transforms:

$$
\mathcal{F}\left\{\alpha f_{1}(t)+\beta f_{2}(t)\right\}=\alpha \hat{f}_{1}(w)+\beta \hat{f}_{2}(w)
$$

Scaling:

$$
\mathcal{F}\{f(a t)\}=\frac{1}{|a|} \hat{f}\left(\frac{w}{a}\right) \quad \text { and } \quad \mathcal{F}^{-1}\left\{\hat{f}\left(\frac{w}{a}\right)\right\}=|a| f(a t)
$$

athematical Methods in Engineering and Science
 Definition and Fundamental Propertiefsinition and fundamental Properties

Example: Fourier transform of $f(t)=1$?
Let us find out the inverse Fourier transform of $\hat{f}(w)=k \delta(w)$.

$$
\begin{gathered}
f(t)=\mathcal{F}^{-1}(\hat{f})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} k \delta(w) e^{i w t} d w=\frac{k}{\sqrt{2 \pi}} \\
\mathcal{F}(1)=\sqrt{2 \pi} \delta(w)
\end{gathered}
$$

Linearity of Fourier transforms:

$$
\mathcal{F}\left\{\alpha f_{1}(t)+\beta f_{2}(t)\right\}=\alpha \hat{f}_{1}(w)+\beta \hat{f}_{2}(w)
$$

Scaling:

$$
\mathcal{F}\{f(a t)\}=\frac{1}{|a|} \hat{f}\left(\frac{w}{a}\right) \quad \text { and } \quad \mathcal{F}^{-1}\left\{\hat{f}\left(\frac{w}{a}\right)\right\}=|a| f(a t)
$$

Shifting rules:

$$
\begin{aligned}
\mathcal{F}\left\{f\left(t-t_{0}\right)\right\} & =e^{-i w t_{0}} \mathcal{F}\{f(t)\} \\
\mathcal{F}^{-1}\left\{\hat{f}\left(w-w_{0}\right)\right\} & =e^{i w_{0} t} \mathcal{F}^{-1}\{\hat{f}(w)\}
\end{aligned}
$$

 Discrete Fourier Transform
Fourier transform of the derivative of a function:
If $f(t)$ is continuous in every interval and $f^{\prime}(t)$ is piecewise continuous, $\int_{-\infty}^{\infty}|f(t)| d t$ converges and $f(t)$ approaches zero as $t \rightarrow \pm \infty$, then

$$
\begin{aligned}
\mathcal{F}\left\{f^{\prime}(t)\right\} & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime}(t) e^{-i w t} d t \\
& =\frac{1}{\sqrt{2 \pi}}\left[f(t) e^{-i w t}\right]_{-\infty}^{\infty}-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(-i w) f(t) e^{-i w t} d t \\
& =i w \hat{f}(w)
\end{aligned}
$$

 Discrete Fourier Transform
Fourier transform of the derivative of a function:
If $f(t)$ is continuous in every interval and $f^{\prime}(t)$ is piecewise continuous, $\int_{-\infty}^{\infty}|f(t)| d t$ converges and $f(t)$ approaches zero as $t \rightarrow \pm \infty$, then

$$
\begin{aligned}
\mathcal{F}\left\{f^{\prime}(t)\right\} & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime}(t) e^{-i w t} d t \\
& =\frac{1}{\sqrt{2 \pi}}\left[f(t) e^{-i w t}\right]_{-\infty}^{\infty}-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(-i w) f(t) e^{-i w t} d t \\
& =i w \hat{f}(w)
\end{aligned}
$$

Alternatively, differentiating the inverse Fourier transform,

$$
\begin{aligned}
\frac{d}{d t}[f(t)] & =\frac{d}{d t}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{i w t} d w\right] \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{\partial}{\partial t}\left[\hat{f}(w) e^{i w t}\right] d w=\mathcal{F}^{-1}\{i w \hat{f}(w)\}
\end{aligned}
$$

Mathematical Methods in Engineering and Science

Under appropriate premises,

$$
\mathcal{F}\left\{f^{\prime \prime}(t)\right\}=(i w)^{2} \hat{f}(w)=-w^{2} \hat{f}(w)
$$

In general, $\mathcal{F}\left\{f^{(n)}(t)\right\}=(i w)^{n} \hat{f}(w)$.

Mathematical Methods in Engineering and Science

Under appropriate premises,

$$
\mathcal{F}\left\{f^{\prime \prime}(t)\right\}=(i w)^{2} \hat{f}(w)=-w^{2} \hat{f}(w)
$$

In general, $\mathcal{F}\left\{f^{(n)}(t)\right\}=(i w)^{n} \hat{f}(w)$.
Fourier transform of an integral:
If $f(t)$ is piecewise continuous on every interval, $\int_{-\infty}^{\infty}|f(t)| d t$ converges and $\hat{f}(0)=0$, then

$$
\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau) d \tau\right\}=\frac{1}{i w} \hat{f}(w)
$$

athematical Methods in Engineering and Science

Important Results on Fourier Transforffehisinn ne fesuldamental fopenties

Under appropriate premises,

$$
\mathcal{F}\left\{f^{\prime \prime}(t)\right\}=(i w)^{2} \hat{f}(w)=-w^{2} \hat{f}(w)
$$

In general, $\mathcal{F}\left\{f^{(n)}(t)\right\}=(i w)^{n} \hat{f}(w)$.
Fourier transform of an integral:

$$
\begin{aligned}
& \text { If } f(t) \text { is piecewise continuous on every interval, } \\
& \int_{-\infty}^{\infty}|f(t)| d t \text { converges and } \hat{f}(0)=0 \text {, then } \\
& \qquad \mathcal{F}\left\{\int_{-\infty}^{t} f(\tau) d \tau\right\}=\frac{1}{i w} \hat{f}(w) .
\end{aligned}
$$

Derivative of a Fourier transform (with respect to the frequency variable):

$$
\mathcal{F}\left\{t^{n} f(t)\right\}=i^{n} \frac{d^{n}}{d w^{n}} \hat{f}(w)
$$

if $f(t)$ is piecewise continuous and $\int_{-\infty}^{\infty}\left|t^{n} f(t)\right| d t$ converges.

Mathematical Methods in Engineering and Science

Discrete Fourier Transform

Convolution of two functions:

$$
h(t)=f(t) * g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

Mathematical Methods in Engineering and Science
Important Results on Fourier Transfor
Convolution of two functions:

$$
\begin{aligned}
& h(t)=f(t) * g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau \\
\hat{h}(w)= & \mathcal{F}\{h(t)\} \\
= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau) g(t-\tau) e^{-i w t} d \tau d t \\
= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(\tau) e^{-i w \tau}\left[\int_{-\infty}^{\infty} g(t-\tau) e^{-i w(t-\tau)} d t\right] d \tau \\
= & \int_{-\infty}^{\infty} f(\tau) e^{-i w \tau}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g\left(t^{\prime}\right) e^{-i w t^{\prime}} d t^{\prime}\right] d \tau
\end{aligned}
$$

athematical Methods in Engineering and Science

Important Results on Fourier Transforffermidin

Convolution of two functions:

$$
\begin{aligned}
& h(t)=f(t) * g(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau \\
\hat{h}(w)= & \mathcal{F}\{h(t)\} \\
= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau) g(t-\tau) e^{-i w t} d \tau d t \\
= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(\tau) e^{-i w \tau}\left[\int_{-\infty}^{\infty} g(t-\tau) e^{-i w(t-\tau)} d t\right] d \tau \\
= & \int_{-\infty}^{\infty} f(\tau) e^{-i w \tau}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g\left(t^{\prime}\right) e^{-i w t^{\prime}} d t^{\prime}\right] d \tau
\end{aligned}
$$

Convolution theorem for Fourier transforms:

$$
\hat{h}(w)=\sqrt{2 \pi} \hat{f}(w) \hat{g}(w)
$$

Mathematical Methods in Engineering and Science

Conjugate of the Fourier transform:

$$
\hat{f}^{*}(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{*}(t) e^{i w t} d t
$$

Inner product of $\hat{f}(w)$ and $\hat{g}(w)$:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \hat{f}^{*}(w) \hat{g}(w) d w & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{*}(t) e^{i w t} d t \hat{g}(w) d w \\
& =\int_{-\infty}^{\infty} f^{*}(t)\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{g}(w) e^{i w t} d w\right] d t \\
& =\int_{-\infty}^{\infty} f^{*}(t) g(t) d t
\end{aligned}
$$

Conjugate of the Fourier transform:

$$
\hat{f}^{*}(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{*}(t) e^{i w t} d t
$$

Inner product of $\hat{f}(w)$ and $\hat{g}(w)$:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \hat{f}^{*}(w) \hat{g}(w) d w & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{*}(t) e^{i w t} d t \hat{g}(w) d w \\
& =\int_{-\infty}^{\infty} f^{*}(t)\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{g}(w) e^{i w t} d w\right] d t \\
& =\int_{-\infty}^{\infty} f^{*}(t) g(t) d t
\end{aligned}
$$

Parseval's identity: For $g(t)=f(t)$ in the above,

$$
\int_{-\infty}^{\infty}\|\hat{f}(w)\|^{2} d w=\int_{-\infty}^{\infty}\|f(t)\|^{2} d t
$$

equating the total energy content of the frequency spectrum of a wave or a signal to the total energy flow over time.

athematical Methods in Engineering and Science

Consider a signal $f(t)$ from actual measurement or sampling. We want to analyze its amplitude spectrum (versus frequency).
For the FT , how to evaluate the integral over $(-\infty, \infty)$?

athematical Methods in Engineering and Science
 Discrete Fourier Transform

Consider a signal $f(t)$ from actual measurement or sampling. We want to analyze its amplitude spectrum (versus frequency).

For the FT, how to evaluate the integral over $(-\infty, \infty)$?
Windowing: Sample the signal $f(t)$ over a finite interval.
A window function:

$$
g(t)= \begin{cases}1 & \text { for } a \leq t \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Actual processing takes place on the windowed function $f(t) g(t)$.

Discrete Fourier Transform

Consider a signal $f(t)$ from actual measurement or sampling. We want to analyze its amplitude spectrum (versus frequency).
For the FT , how to evaluate the integral over $(-\infty, \infty)$?
Windowing: Sample the signal $f(t)$ over a finite interval.
A window function:

$$
g(t)= \begin{cases}1 & \text { for } a \leq t \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Actual processing takes place on the windowed function $f(t) g(t)$.
Next question: Do we need to evaluate the amplitude for all
$w \in(-\infty, \infty)$?

Discrete Fourier Transform

Consider a signal $f(t)$ from actual measurement or sampling. We want to analyze its amplitude spectrum (versus frequency).

For the FT, how to evaluate the integral over $(-\infty, \infty)$?
Windowing: Sample the signal $f(t)$ over a finite interval.
A window function:

$$
g(t)= \begin{cases}1 & \text { for } a \leq t \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Actual processing takes place on the windowed function $f(t) g(t)$.
Next question: Do we need to evaluate the amplitude for all $w \in(-\infty, \infty)$?

Most useful signals are particularly rich only in their own characteristic frequency bands.

Decide on an expected frequency band, say $\left[-w_{c}, w_{c}\right]$.

Mathematical Methods in Engineering and Science
Discrete Fourier Transform

Mathematical Methods in Engineering and Science

Time step for sampling?
With N sampling over $[a, b)$,

$$
w_{c} \Delta \leq \pi
$$

data being collected at $t=a, a+\Delta, a+2 \Delta, \cdots, a+(N-1) \Delta$, with $N \Delta=b-a$.

Mathematical Methods in Engineering and Science

Time step for sampling?
With N sampling over $[a, b)$,

$$
w_{c} \Delta \leq \pi
$$

data being collected at $t=a, a+\Delta, a+2 \Delta, \cdots, a+(N-1) \Delta$, with $N \Delta=b-a$.

Nyquist critical frequency

Discrete Fourier Transform

Time step for sampling?

With N sampling over $[a, b)$,

$$
w_{c} \Delta \leq \pi
$$

data being collected at $t=a, a+\Delta, a+2 \Delta, \cdots, a+(N-1) \Delta$, with $N \Delta=b-a$.

Nyquist critical frequency
Note the duality.

- Decision of sampling rate Δ determines the band of frequency content that can be accommodated.
- Decision of the interval $[a, b)$ dictates how finely the frequency spectrum can be developed.

Discrete Fourier Transform

Time step for sampling?

With N sampling over $[a, b)$,

$$
w_{c} \Delta \leq \pi
$$

data being collected at $t=a, a+\Delta, a+2 \Delta, \cdots, a+(N-1) \Delta$, with $N \Delta=b-a$.

Nyquist critical frequency
Note the duality.

- Decision of sampling rate Δ determines the band of frequency content that can be accommodated.
- Decision of the interval $[a, b)$ dictates how finely the frequency spectrum can be developed.

Shannon's sampling theorem
A band-limited signal can be reconstructed from a finite number of samples.

athematical Methods in Engineering and Science

With discrete data at $t_{k}=k \Delta$ for $k=0,1,2,3, \cdots, N-1$,

$$
\hat{\mathbf{f}}(\mathbf{w})=\frac{\Delta}{\sqrt{2 \pi}}\left[m_{j}^{k}\right] \mathbf{f}(\mathbf{t}),
$$

where $m_{j}=e^{-i w_{j} \Delta}$ and $\left[m_{j}^{k}\right]$ is an $N \times N$ matrix.

athematical Methods in Engineering and Science
 Discrete Fourier Transform

With discrete data at $t_{k}=k \Delta$ for $k=0,1,2,3, \cdots, N-1$,

$$
\hat{\mathbf{f}}(\mathbf{w})=\frac{\Delta}{\sqrt{2 \pi}}\left[m_{j}^{k}\right] \mathbf{f}(\mathbf{t})
$$

where $m_{j}=e^{-i w_{j} \Delta}$ and $\left[m_{j}^{k}\right]$ is an $N \times N$ matrix.
A similar discrete version of inverse Fourier transform.

Discrete Fourier Transform

With discrete data at $t_{k}=k \Delta$ for $k=0,1,2,3, \cdots, N-1$,

$$
\hat{\mathbf{f}}(\mathbf{w})=\frac{\Delta}{\sqrt{2 \pi}}\left[m_{j}^{k}\right] \mathbf{f}(\mathbf{t}),
$$

where $m_{j}=e^{-i v_{j} \Delta}$ and $\left[m_{j}^{k}\right]$ is an $N \times N$ matrix.
A similar discrete version of inverse Fourier transform.
Reconstruction: a trigonometric interpolation of sampled data.

- Structure of Fourier and inverse Fourier transforms reduces the problem with a system of linear equations [$\mathcal{O}\left(N^{3}\right)$ operations] to that of a matrix-vector multiplication $\left[\mathcal{O}\left(N^{2}\right)\right.$ operations].

Discrete Fourier Transform

With discrete data at $t_{k}=k \Delta$ for $k=0,1,2,3, \cdots, N-1$,

$$
\hat{\mathbf{f}}(\mathbf{w})=\frac{\Delta}{\sqrt{2 \pi}}\left[m_{j}^{k}\right] \mathbf{f}(\mathbf{t}),
$$

where $m_{j}=e^{-i v_{j} \Delta}$ and $\left[m_{j}^{k}\right]$ is an $N \times N$ matrix.
A similar discrete version of inverse Fourier transform.
Reconstruction: a trigonometric interpolation of sampled data.

- Structure of Fourier and inverse Fourier transforms reduces the problem with a system of linear equations [$\mathcal{O}\left(N^{3}\right)$ operations] to that of a matrix-vector multiplication $\left[\mathcal{O}\left(N^{2}\right)\right.$ operations].
- Structure of matrix $\left[m_{j}^{k}\right]$, with patterns of redundancies, opens up a trick to reduce it further to $\mathcal{O}(N \log N)$ operations.

Discrete Fourier Transform

With discrete data at $t_{k}=k \Delta$ for $k=0,1,2,3, \cdots, N-1$,

$$
\hat{\mathbf{f}}(\mathbf{w})=\frac{\Delta}{\sqrt{2 \pi}}\left[m_{j}^{k}\right] \mathbf{f}(\mathbf{t}),
$$

where $m_{j}=e^{-i v_{j} \Delta}$ and $\left[m_{j}^{k}\right]$ is an $N \times N$ matrix.
A similar discrete version of inverse Fourier transform.
Reconstruction: a trigonometric interpolation of sampled data.

- Structure of Fourier and inverse Fourier transforms reduces the problem with a system of linear equations [$\mathcal{O}\left(N^{3}\right)$ operations] to that of a matrix-vector multiplication $\left[\mathcal{O}\left(N^{2}\right)\right.$ operations].
- Structure of matrix $\left[m_{j}^{k}\right]$, with patterns of redundancies, opens up a trick to reduce it further to $\mathcal{O}(N \log N)$ operations.

Cooley-Tuckey algorithm:

Discrete Fourier Transform

With discrete data at $t_{k}=k \Delta$ for $k=0,1,2,3, \cdots, N-1$,

$$
\hat{\mathbf{f}}(\mathbf{w})=\frac{\Delta}{\sqrt{2 \pi}}\left[m_{j}^{k}\right] \mathbf{f}(\mathbf{t}),
$$

where $m_{j}=e^{-i v_{j} \Delta}$ and $\left[m_{j}^{k}\right]$ is an $N \times N$ matrix.
A similar discrete version of inverse Fourier transform.
Reconstruction: a trigonometric interpolation of sampled data.

- Structure of Fourier and inverse Fourier transforms reduces the problem with a system of linear equations [$\mathcal{O}\left(N^{3}\right)$ operations] to that of a matrix-vector multiplication $\left[\mathcal{O}\left(N^{2}\right)\right.$ operations].
- Structure of matrix $\left[m_{j}^{k}\right]$, with patterns of redundancies, opens up a trick to reduce it further to $\mathcal{O}(N \log N)$ operations.

Cooley-Tuckey algorithm: fast Fourier transform (FFT)

athematical Methods in Engineering and Science
 Discrete Fourier Transform

DFT representation reliable only if the incoming signal is really band-limited in the interval $\left[-w_{c}, w_{c}\right]$. Frequencies beyond $\left[-w_{c}, w_{c}\right.$] distort the spectrum near $w= \pm w_{c}$ by folding back.

> Aliasing

Detection: a posteriori

Discrete Fourier Transform

DFT representation reliable only if the incoming signal is really band-limited in the interval $\left[-w_{c}, w_{c}\right]$.
Frequencies beyond $\left[-w_{c}, w_{c}\right]$ distort the spectrum near $w= \pm w_{c}$ by folding back.

> Aliasing

Detection: a posteriori
Bandpass filtering: If we expect a signal having components only in certain frequency bands and want to get rid of unwanted noise frequencies,

$$
\begin{aligned}
& \text { for every band }\left[w_{1}, w_{2}\right] \text { of our interest, we define window } \\
& \text { function } \hat{\phi}(w) \text { with intervals }\left[-w_{2},-w_{1}\right] \text { and }\left[w_{1}, w_{2}\right] \text {. }
\end{aligned}
$$

Windowed Fourier transform $\hat{\phi}(w) \hat{f}(w)$ filters out frequency components outside this band.

Discrete Fourier Transform

DFT representation reliable only if the incoming signal is really band-limited in the interval $\left[-w_{c}, w_{c}\right]$.
Frequencies beyond $\left[-w_{c}, w_{c}\right]$ distort the spectrum near $w= \pm w_{c}$ by folding back.

> Aliasing

Detection: a posteriori
Bandpass filtering: If we expect a signal having components only in certain frequency bands and want to get rid of unwanted noise frequencies,
for every band $\left[w_{1}, w_{2}\right]$ of our interest, we define window function $\hat{\phi}(w)$ with intervals $\left[-w_{2},-w_{1}\right]$ and $\left[w_{1}, w_{2}\right]$.

Windowed Fourier transform $\hat{\phi}(w) \hat{f}(w)$ filters out frequency components outside this band.
For recovery,
convolve raw signal $f(t)$ with IFT $\phi(t)$ of $\hat{\phi}(w)$.

- Fourier transform as amplitude function in Fourier integral
- Basic operational tools in Fourier and inverse Fourier transforms
- Conceptual notions of discrete Fourier transform (DFT)

Necessary Exercises: 1,3,6

Minimax Approximation*
Approximation with Chebyshev polynomials Minimax Polynomial Approximation

Mathematical Methods in Engineering and Science
Minimax Approximation*

Chebyshev polynomials:
Polynomial solutions of the singular Sturm-Liouville problem

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0 \quad \text { or } \quad\left[\sqrt{1-x^{2}} y^{\prime}\right]^{\prime}+\frac{n^{2}}{\sqrt{1-x^{2}}} y=0
$$

over $-1 \leq x \leq 1$, with $T_{n}(1)=1$ for all n.

athematical Methods in Engineering and Science

 }

Chebyshev polynomials:
Polynomial solutions of the singular Sturm-Liouville problem
$\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$ or $\left[\sqrt{1-x^{2}} y^{\prime}\right]^{\prime}+\frac{n^{2}}{\sqrt{1-x^{2}}} y=0$
over $-1 \leq x \leq 1$, with $T_{n}(1)=1$ for all n.

Closed-form expressions:

$$
T_{n}(x)=\cos \left(n \cos ^{-1} x\right)
$$

or,

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{2}(x)=2 x^{2}-1, \quad T_{3}(x)=4 x^{3}-3 x, \cdots
$$

with the three-term recurrence relation

$$
T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)
$$

Mathematical Methods in Engineering and Science

Immediate observations

- Coefficients in a Chebyshev polynomial are integers. In particular, the leading coefficient of $T_{n}(x)$ is 2^{n-1}.
- For even $n, T_{n}(x)$ is an even function, while for odd n it is an odd function.
- $T_{n}(1)=1, T_{n}(-1)=(-1)^{n}$ and $\left|T_{n}(x)\right| \leq 1$ for $-1 \leq x \leq 1$.
- Zeros of a Chebyshev polynomial $T_{n}(x)$ are real and lie inside the interval $[-1,1]$ at locations $x=\cos \frac{(2 k-1) \pi}{2 n}$ for $k=1,2,3, \cdots, n$.
These locations are also called Chebyshev accuracy points. Further, zeros of $T_{n}(x)$ are interlaced by those of $T_{n+1}(x)$.
- Extrema of $T_{n}(x)$ are of magnitude equal to unity, alternate in sign and occur at $x=\cos \frac{k \pi}{n}$ for $k=0,1,2,3, \cdots, n$.
- Orthogonality and norms:

$$
\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x=\left\{\begin{array}{lll}
0 & \text { if } \quad m \neq n \\
\frac{\pi}{2} & \text { if } \quad m=n \neq 0, \\
\pi & \text { if } \quad m=n=0
\end{array}\right. \text { and }
$$

Approximation with Chebyshev polynêfritiation with cheesshev polynomials nomial Approximation

Figure: Extrema and zeros of $T_{3}(x)$ Figure: Contrast: $P_{8}(x)$ and $T_{8}(x)$

Figure: Extrema and zeros of $T_{3}(x)$ Figure: Contrast: $P_{8}(x)$ and $T_{8}(x)$
Being cosines and polynomials at the same time, Chebyshev polynomials possess a wide variety of interesting properties!

Figure: Extrema and zeros of $T_{3}(x)$ Figure: Contrast: $P_{8}(x)$ and $T_{8}(x)$
Being cosines and polynomials at the same time, Chebyshev polynomials possess a wide variety of interesting properties!

Most striking property:
equal-ripple oscillations, leading to minimax property

Mathematical Methods in Engineering and Science
Minimax Approximation*

Minimax property

Theorem: Among all polynomials $p_{n}(x)$ of degree $n>0$ with the leading coefficient equal to unity, $2^{1-n} T_{n}(x)$ deviates least from zero in $[-1,1]$. That is,

$$
\max _{-1 \leq x \leq 1}\left|p_{n}(x)\right| \geq \max _{-1 \leq x \leq 1}\left|2^{1-n} T_{n}(x)\right|=2^{1-n}
$$

athematical Methods in Engineering and Science

 }

Minimax property

Theorem: Among all polynomials $p_{n}(x)$ of degree $n>0$ with the leading coefficient equal to unity, $2^{1-n} T_{n}(x)$ deviates least from zero in $[-1,1]$. That is,

$$
\max _{-1 \leq x \leq 1}\left|p_{n}(x)\right| \geq \max _{-1 \leq x \leq 1}\left|2^{1-n} T_{n}(x)\right|=2^{1-n}
$$

If there exists a monic polynomial $p_{n}(x)$ of degree n such that

$$
\max _{-1 \leq x \leq 1}\left|p_{n}(x)\right|<2^{1-n},
$$

then at $(n+1)$ locations of alternating extrema of $2^{1-n} T_{n}(x)$, the polynomial

$$
q_{n}(x)=2^{1-n} T_{n}(x)-p_{n}(x)
$$

will have the same sign as $2^{1-n} T_{n}(x)$.

Mathematical Methods in Engineering and Science

Minimax property

Theorem: Among all polynomials $p_{n}(x)$ of degree $n>0$ with the leading coefficient equal to unity, $2^{1-n} T_{n}(x)$ deviates least from zero in $[-1,1]$. That is,

$$
\max _{-1 \leq x \leq 1}\left|p_{n}(x)\right| \geq \max _{-1 \leq x \leq 1}\left|2^{1-n} T_{n}(x)\right|=2^{1-n}
$$

If there exists a monic polynomial $p_{n}(x)$ of degree n such that

$$
\max _{-1 \leq x \leq 1}\left|p_{n}(x)\right|<2^{1-n},
$$

then at $(n+1)$ locations of alternating extrema of $2^{1-n} T_{n}(x)$, the polynomial

$$
q_{n}(x)=2^{1-n} T_{n}(x)-p_{n}(x)
$$

will have the same sign as $2^{1-n} T_{n}(x)$.
With alternating signs at $(n+1)$ locations in sequence, $q_{n}(x)$ will have n intervening zeros, even though it is a polynomial of degree at most $(n-1)$: CONTRADICTION!

Mathematical Methods in Engineering and Science
Minimax Approximation*
Approximation with Chebyshev polynốhniizdtis with Chebyshev polvnomials

Chebyshev series

$$
f(x)=a_{0} T_{0}(x)+a_{1} T_{1}(x)+a_{2} T_{2}(x)+a_{3} T_{3}(x)+\cdots
$$

with coefficients

$$
a_{0}=\frac{1}{\pi} \int_{-1}^{1} \frac{f(x) T_{0}(x)}{\sqrt{1-x^{2}}} d x \text { and } a_{n}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x \text { for } n=1,2,3, \cdots
$$

Chebyshev series

$$
f(x)=a_{0} T_{0}(x)+a_{1} T_{1}(x)+a_{2} T_{2}(x)+a_{3} T_{3}(x)+\cdots
$$

with coefficients

$$
a_{0}=\frac{1}{\pi} \int_{-1}^{1} \frac{f(x) T_{0}(x)}{\sqrt{1-x^{2}}} d x \text { and } a_{n}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x \text { for } n=1,2,3, \cdots
$$

A truncated series $\sum_{k=0}^{n} a_{k} T_{k}(x)$:
Chebyshev economization
Leading error term $a_{n+1} T_{n+1}(x)$ deviates least from zero over $[-1,1]$ and is qualitatively similar to the error function.

Mathematical Methods in Engineering and Science

Chebyshev series

$$
f(x)=a_{0} T_{0}(x)+a_{1} T_{1}(x)+a_{2} T_{2}(x)+a_{3} T_{3}(x)+\cdots
$$

with coefficients

$$
a_{0}=\frac{1}{\pi} \int_{-1}^{1} \frac{f(x) T_{0}(x)}{\sqrt{1-x^{2}}} d x \text { and } a_{n}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x \text { for } n=1,2,3, \cdots
$$

A truncated series $\sum_{k=0}^{n} a_{k} T_{k}(x)$:
Chebyshev economization
Leading error term $a_{n+1} T_{n+1}(x)$ deviates least from zero over $[-1,1]$ and is qualitatively similar to the error function.

Question: How to develop a Chebyshev series approximation?
Find out so many Chebyshev polynomials and evaluate coefficients?

For approximating $f(t)$ over $[a, b]$, scale the variable as $t=\frac{a+b}{2}+\frac{b-a}{2} x$, with $x \in[-1,1]$.
Remark: The economized series $\sum_{k=0}^{n} a_{k} T_{k}(x)$ gives minimax deviation of the leading error term $a_{n+1} T_{n+1}(x)$.

Mathematical Methods in Engineering and Science

For approximating $f(t)$ over $[a, b]$, scale the variable as $t=\frac{a+b}{2}+\frac{b-a}{2} x$, with $x \in[-1,1]$.
Remark: The economized series $\sum_{k=0}^{n} a_{k} T_{k}(x)$ gives minimax deviation of the leading error term $a_{n+1} T_{n+1}(x)$.
Assuming $a_{n+1} T_{n+1}(x)$ to be the error, at the zeros of $T_{n+1}(x)$, the error will be 'officially' zero, i.e.

$$
\sum_{k=0}^{n} a_{k} T_{k}\left(x_{j}\right)=f\left(t\left(x_{j}\right)\right)
$$

where $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ are the roots of $T_{n+1}(x)$.

Mathematical Methods in Engineering and Science

For approximating $f(t)$ over $[a, b]$, scale the variable as $t=\frac{a+b}{2}+\frac{b-a}{2} x$, with $x \in[-1,1]$.
Remark: The economized series $\sum_{k=0}^{n} a_{k} T_{k}(x)$ gives minimax deviation of the leading error term $a_{n+1} T_{n+1}(x)$.
Assuming $a_{n+1} T_{n+1}(x)$ to be the error, at the zeros of $T_{n+1}(x)$, the error will be 'officially' zero, i.e.

$$
\sum_{k=0}^{n} a_{k} T_{k}\left(x_{j}\right)=f\left(t\left(x_{j}\right)\right)
$$

where $x_{0}, x_{1}, x_{2}, \cdots, x_{n}$ are the roots of $T_{n+1}(x)$.
Recall: Values of an n-th degree polynomial at $n+1$ points uniquely fix the entire polynomial.

Interpolation of these $n+1$ values leads to the same polynomial!
Chebyshev-Lagrange approximation

athematical Methods in Engineering and Science

Situations in which minimax approximation is desirable:

- Develop the approximation once and keep it for use in future.

Requirement: Uniform quality control over the entire domain

Minimax approximation:

deviation limited by the constant amplitude of ripple

Minimax Polynomial Approximation

Situations in which minimax approximation is desirable:

- Develop the approximation once and keep it for use in future.

Requirement: Uniform quality control over the entire domain

Minimax approximation:

deviation limited by the constant amplitude of ripple
Chebyshev's minimax theorem
Theorem: Of all polynomials of degree up to $n, p(x)$ is the minimax polynomial approximation of $f(x)$, i.e. it minimizes

$$
\max |f(x)-p(x)|,
$$

if and only if there are $n+2$ points x_{i} such that

$$
a \leq x_{1}<x_{2}<x_{3}<\cdots<x_{n+2} \leq b
$$

where the difference $f(x)-p(x)$ takes its extreme values of the same magnitude and alternating signs.

Minimax Approximation*

Utilize any gap to reduce the deviation at the other extrema with values at the bound.

Figure: Schematic of an approximation that is not minimax

Construction of the minimax polynomial: Remez algorithm

Minimax Polynomial Approximation
Mathentien in ingineering and sience
Minimax Approximation*

Utilize any gap to reduce the deviation at the other extrema with values at the bound.

Figure: Schematic of an approximation that is not minimax

Construction of the minimax polynomial: Remez algorithm

Note: In the light of this theorem and algorithm, examine how $T_{n+1}(x)$ is qualitatively similar to the complete error function!

- Unique features of Chebyshev polynomials
- The equal-ripple and minimax properties
- Chebyshev series and Chebyshev-Lagrange approximation
- Fundamental ideas of general minimax approximation

Necessary Exercises: 2,3,4

Partial Differential Equations

Introduction
Hyperbolic Equations
Parabolic Equations
Elliptic Equations
Two-Dimensional Wave Equation

Quasi-linear second order PDE's

$$
a \frac{\partial^{2} u}{\partial x^{2}}+2 b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=F\left(x, y, u, u_{x}, u_{y}\right)
$$

hyperbolic if $b^{2}-a c>0$, modelling phenomena which evolve in time perpetually and do not approach a steady state parabolic if $b^{2}-a c=0$, modelling phenomena which evolve in time in a transient manner, approaching steady state elliptic if $b^{2}-a c<0$, modelling steady-state configurations, without evolution in time

$$
a \frac{\partial^{2} u}{\partial x^{2}}+2 b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=F\left(x, y, u, u_{x}, u_{y}\right)
$$

hyperbolic if $b^{2}-a c>0$, modelling phenomena which evolve in time perpetually and do not approach a steady state parabolic if $b^{2}-a c=0$, modelling phenomena which evolve in time in a transient manner, approaching steady state elliptic if $b^{2}-a c<0$, modelling steady-state configurations, without evolution in time
If $F\left(x, y, u, u_{x}, u_{y}\right)=0$,
second order linear homogeneous differential equation
Principle of superposition: A linear combination of different solutions is also a solution.

$$
a \frac{\partial^{2} u}{\partial x^{2}}+2 b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=F\left(x, y, u, u_{x}, u_{y}\right)
$$

hyperbolic if $b^{2}-a c>0$, modelling phenomena which evolve in time perpetually and do not approach a steady state parabolic if $b^{2}-a c=0$, modelling phenomena which evolve in time in a transient manner, approaching steady state
elliptic if $b^{2}-a c<0$, modelling steady-state configurations, without evolution in time
If $F\left(x, y, u, u_{x}, u_{y}\right)=0$,
second order linear homogeneous differential equation
Principle of superposition: A linear combination of different solutions is also a solution.
Solutions are often in the form of infinite series.

- Solution techniques in PDE's typically attack the boundary value problem directly.

Mathematical Methods in Engineering and Science
Partial Differential Equations

Initial and boundary conditions

Time and space variables are qualitatively different.

Initial and boundary conditions

Time and space variables are qualitatively different.

- Conditions in time: typically initial conditions. For second order PDE's, u and u_{t} over the entire space domain: Cauchy conditions
- Time is a single variable and is decoupled from the space variables.

Partial Differential Equations

Initial and boundary conditions

Time and space variables are qualitatively different.

- Conditions in time: typically initial conditions. For second order PDE's, u and u_{t} over the entire space domain: Cauchy conditions
- Time is a single variable and is decoupled from the space variables.
- Conditions in space: typically boundary conditions. For $u(t, x, y)$, boundary conditions over the entire curve in the $x-y$ plane that encloses the domain. For second order PDE's,
- Dirichlet condition: value of the function
- Neumann condition: derivative normal to the boundary
- Mixed (Robin) condition

Partial Differential Equations

Initial and boundary conditions

Time and space variables are qualitatively different.

- Conditions in time: typically initial conditions. For second order PDE's, u and u_{t} over the entire space domain: Cauchy conditions
- Time is a single variable and is decoupled from the space variables.
- Conditions in space: typically boundary conditions. For $u(t, x, y)$, boundary conditions over the entire curve in the $x-y$ plane that encloses the domain. For second order PDE's,
- Dirichlet condition: value of the function
- Neumann condition: derivative normal to the boundary
- Mixed (Robin) condition

> Dirichlet, Neumann and Cauchy problems

Method of separation of variables

For $u(x, y)$, propose a solution in the form

$$
u(x, y)=X(x) Y(y)
$$

and substitute

$$
u_{x}=X^{\prime} Y, u_{y}=X Y^{\prime}, u_{x x}=X^{\prime \prime} Y, u_{x y}=X^{\prime} Y^{\prime}, u_{y y}=X Y^{\prime \prime}
$$

to cast the equation into the form

$$
\phi\left(x, X, X^{\prime}, X^{\prime \prime}\right)=\psi\left(y, Y, Y^{\prime}, Y^{\prime \prime}\right)
$$

Method of separation of variables

For $u(x, y)$, propose a solution in the form

$$
u(x, y)=X(x) Y(y)
$$

and substitute

$$
u_{x}=X^{\prime} Y, u_{y}=X Y^{\prime}, u_{x x}=X^{\prime \prime} Y, u_{x y}=X^{\prime} Y^{\prime}, u_{y y}=X Y^{\prime \prime}
$$

to cast the equation into the form

$$
\phi\left(x, X, X^{\prime}, X^{\prime \prime}\right)=\psi\left(y, Y, Y^{\prime}, Y^{\prime \prime}\right)
$$

If the manoeuvre succeeds then, x and y being independent variables, it implies

$$
\phi\left(x, X, X^{\prime}, X^{\prime \prime}\right)=\psi\left(y, Y, Y^{\prime}, Y^{\prime \prime}\right)=k
$$

Method of separation of variables

For $u(x, y)$, propose a solution in the form

$$
u(x, y)=X(x) Y(y)
$$

and substitute

$$
u_{x}=X^{\prime} Y, u_{y}=X Y^{\prime}, u_{x x}=X^{\prime \prime} Y, u_{x y}=X^{\prime} Y^{\prime}, u_{y y}=X Y^{\prime \prime}
$$

to cast the equation into the form

$$
\phi\left(x, X, X^{\prime}, X^{\prime \prime}\right)=\psi\left(y, Y, Y^{\prime}, Y^{\prime \prime}\right)
$$

If the manoeuvre succeeds then, x and y being independent variables, it implies

$$
\phi\left(x, X, X^{\prime}, X^{\prime \prime}\right)=\psi\left(y, Y, Y^{\prime}, Y^{\prime \prime}\right)=k
$$

Nature of the separation constant k is decided based on the context, resulting ODE's are solved in consistency with the boundary conditions and assembled to construct $u(x, y)$.

Partial Differential Equations

Transverse vibrations of a string

Figure: Transverse vibration of a stretched string

Small deflection and slope: $\cos \theta \approx 1, \sin \theta \approx \theta \approx \tan \theta$

Partial Differential Equations

Transverse vibrations of a string

Figure: Transverse vibration of a stretched string

Small deflection and slope: $\cos \theta \approx 1, \sin \theta \approx \theta \approx \tan \theta$
Horizontal (longitudinal) forces on $P Q$ balance.
From Newton's second law, vertical (transverse) deflection $u(x, t)$:

$$
T \sin (\theta+\delta \theta)-T \sin \theta=\rho \delta x \frac{\partial^{2} u}{\partial t^{2}}
$$

Hyperbolic Equations

Under the assumptions, denoting $c^{2}=\frac{T}{\rho}$,

$$
\delta x \frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left[\left.\frac{\partial u}{\partial x}\right|_{Q}-\left.\frac{\partial u}{\partial x}\right|_{P}\right] .
$$

In the limit, as $\delta x \rightarrow 0$, PDE of transverse vibration:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

one-dimensional wave equation

Hyperbolic Equations

Partial Differential Equations

Under the assumptions, denoting $c^{2}=\frac{T}{\rho}$,

$$
\delta x \frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left[\left.\frac{\partial u}{\partial x}\right|_{Q}-\left.\frac{\partial u}{\partial x}\right|_{P}\right] .
$$

In the limit, as $\delta x \rightarrow 0$, PDE of transverse vibration:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

one-dimensional wave equation
Boundary conditions (in this case): $u(0, t)=u(L, t)=0$
Initial configuration and initial velocity:

$$
u(x, 0)=f(x) \text { and } u_{t}(x, 0)=g(x)
$$

Cauchy problem: Determine $u(x, t)$ for $0 \leq x \leq L, t \geq 0$.

Solution by separation of variables

$u_{t t}=c^{2} u_{x x}, u(0, t)=u(L, t)=0, u(x, 0)=f(x), u_{t}(x, 0)=g(x)$
Assuming

$$
u(x, t)=X(x) T(t)
$$

and substituting $u_{t t}=X T^{\prime \prime}$ and $u_{x x}=X^{\prime \prime} T$, variables are separated as

$$
\frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-p^{2}
$$

The PDE splits into two ODE's

$$
X^{\prime \prime}+p^{2} X=0 \quad \text { and } \quad T^{\prime \prime}+c^{2} p^{2} T=0
$$

Solution by separation of variables

$u_{t t}=c^{2} u_{x x}, u(0, t)=u(L, t)=0, u(x, 0)=f(x), u_{t}(x, 0)=g(x)$
Assuming

$$
u(x, t)=X(x) T(t)
$$

and substituting $u_{t t}=X T^{\prime \prime}$ and $u_{x x}=X^{\prime \prime} T$, variables are separated as

$$
\frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-p^{2}
$$

The PDE splits into two ODE's

$$
X^{\prime \prime}+p^{2} X=0 \quad \text { and } \quad T^{\prime \prime}+c^{2} p^{2} T=0
$$

Eigenvalues of BVP $X^{\prime \prime}+p^{2} X=0, X(0)=X(L)=0$ are $p=\frac{n \pi}{L}$ and eigenfunctions

$$
X_{n}(x)=\sin p x=\sin \frac{n \pi x}{L} \quad \text { for } n=1,2,3, \cdots
$$

Second ODE: $T^{\prime \prime}+\lambda_{n}^{2} T=0$, with $\lambda_{n}=\frac{c n \pi}{L}$

Mathematical Methods in Engineering and Science
Partial Differential Equations
Hyperbolic Equations
Corresponding solution:

$$
T_{n}(t)=A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t
$$

Corresponding solution:

$$
T_{n}(t)=A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t
$$

Then, for $n=1,2,3, \cdots$,

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=\left(A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t\right) \sin \frac{n \pi x}{L}
$$

satisfies the PDE and the boundary conditions.

Corresponding solution:

$$
T_{n}(t)=A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t
$$

Then, for $n=1,2,3, \cdots$,

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=\left(A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t\right) \sin \frac{n \pi x}{L}
$$

satisfies the PDE and the boundary conditions.
Since the PDE and the BC's are homogeneous, by superposition,

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t\right] \sin \frac{n \pi x}{L}
$$

Question: How to determine coefficients A_{n} and B_{n} ?

Hyperbolic Equations
Corresponding solution:

$$
T_{n}(t)=A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t
$$

Then, for $n=1,2,3, \cdots$,

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=\left(A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t\right) \sin \frac{n \pi x}{L}
$$

satisfies the PDE and the boundary conditions.
Since the PDE and the BC's are homogeneous, by superposition,

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \lambda_{n} t+B_{n} \sin \lambda_{n} t\right] \sin \frac{n \pi x}{L}
$$

Question: How to determine coefficients A_{n} and B_{n} ?
Answer: By imposing the initial conditions.

athematical Methods in Engineering and Science
 Hyperbolic Equations

Partial Differential Equations

Initial conditions: Fourier sine series of $f(x)$ tand $g(x)$ (x) Wave Equation

$$
\begin{gathered}
u(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} \\
u_{t}(x, 0)=g(x)=\sum_{n=1}^{\infty} \lambda_{n} B_{n} \sin \frac{n \pi x}{L}
\end{gathered}
$$

Partial Differential Equations

Initial conditions: Fourier sine series of $f(x)$ 期indid $g(x)$ (x) Wave Equation

$$
\begin{aligned}
& u(x, 0)=f(x) \\
&=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} \\
& u_{t}(x, 0)=g(x)=\sum_{n=1}^{\infty} \lambda_{n} B_{n} \sin \frac{n \pi x}{L}
\end{aligned}
$$

Hence, coefficients:

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \quad \text { and } \quad B_{n}=\frac{2}{c n \pi} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
$$

Initial conditions: Fourier sine series of $f(x)$ 期itid $g(x)$ (x) Wave Equation

$$
\begin{aligned}
& u(x, 0)=f(x) \\
&=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} \\
& u_{t}(x, 0)=g(x)=\sum_{n=1}^{\infty} \lambda_{n} B_{n} \sin \frac{n \pi x}{L}
\end{aligned}
$$

Hence, coefficients:

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \quad \text { and } \quad B_{n}=\frac{2}{c n \pi} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
$$

Related problems:

- Different boundary conditions: other kinds of series
- Long wire: infinite domain, continuous frequencies and solution from Fourier integrals Alternative: Reduce the problem using Fourier transforms.
- General wave equation in 3-d: $u_{t t}=c^{2} \nabla^{2} u$
- Membrane equation: $u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right)$

D'Alembert's solution of the wave equation

Method of characteristics

Canonical form

By coordinate transformation from (x, y) to (ξ, η), with $U(\xi, \eta)=u[x(\xi, \eta), y(\xi, \eta)]$, hyperbolic equation: $U_{\xi \eta}=\Phi$
parabolic equation: $U_{\xi \xi}=\Phi$
elliptic equation: $U_{\xi \xi}+U_{\eta \eta}=\Phi$
in which $\Phi\left(\xi, \eta, U, U_{\xi}, U_{\eta}\right)$ is free from second derivatives.

D'Alembert's solution of the wave equation

Method of characteristics

Canonical form

By coordinate transformation from (x, y) to (ξ, η), with $U(\xi, \eta)=u[x(\xi, \eta), y(\xi, \eta)]$, hyperbolic equation: $U_{\xi \eta}=\Phi$
parabolic equation: $U_{\xi \xi}=\Phi$
elliptic equation: $U_{\xi \xi}+U_{\eta \eta}=\Phi$
in which $\Phi\left(\xi, \eta, U, U_{\xi}, U_{\eta}\right)$ is free from second derivatives.
For a hyperbolic equation, entire domain becomes a network of $\xi-\eta$ coordinate curves, known as characteristic curves, along which decoupled solutions can be tracked!

Hyperbolic Equations

For a hyperbolic equation in the form

$$
a \frac{\partial^{2} u}{\partial x^{2}}+2 b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=F\left(x, y, u, u_{x}, u_{y}\right)
$$

roots of $a m^{2}+2 b m+c$ are

$$
m_{1,2}=\frac{-b \pm \sqrt{b^{2}-a c}}{a}
$$

real and distinct.
Coordinate transformation

$$
\xi=y+m_{1} x, \quad \eta=y+m_{2} x
$$

leads to $U_{\xi \eta}=\Phi\left(\xi, \eta, U, U_{\xi}, U_{\eta}\right)$.

Hyperbolic Equations

For a hyperbolic equation in the form

$$
a \frac{\partial^{2} u}{\partial x^{2}}+2 b \frac{\partial^{2} u}{\partial x \partial y}+c \frac{\partial^{2} u}{\partial y^{2}}=F\left(x, y, u, u_{x}, u_{y}\right)
$$

roots of $a m^{2}+2 b m+c$ are

$$
m_{1,2}=\frac{-b \pm \sqrt{b^{2}-a c}}{a}
$$

real and distinct.
Coordinate transformation

$$
\xi=y+m_{1} x, \quad \eta=y+m_{2} x
$$

leads to $U_{\xi \eta}=\Phi\left(\xi, \eta, U, U_{\xi}, U_{\eta}\right)$.
For the BVP
$u_{t t}=c^{2} u_{x x}, u(0, t)=u(L, t)=0, u(x, 0)=f(x), u_{t}(x, 0)=g(x)$,
canonical coordinate transformation:

$$
\xi=x-c t, \eta=x+c t, \quad \text { with } \quad x=\frac{1}{2}(\xi+\eta), t=\frac{1}{2 c}(\eta-\xi) .
$$

Substitution of derivatives

$$
\begin{aligned}
u_{x}=U_{\xi} \xi_{x}+U_{\eta} \eta_{x}=U_{\xi}+U_{\eta} & \Rightarrow u_{x x}=U_{\xi \xi}+2 U_{\xi \eta}+U_{\eta \eta} \\
u_{t}=U_{\xi} \xi_{t}+U_{\eta} \eta_{t}=-c U_{\xi}+c U_{\eta} & \Rightarrow u_{t t}=c^{2} U_{\xi \xi}-2 c^{2} U_{\xi \eta}+c^{2} U_{\eta \eta}
\end{aligned}
$$

$$
\text { into the } \operatorname{PDE} u_{t t}=c^{2} u_{x x} \text { gives }
$$

$$
c^{2}\left(U_{\xi \xi}-2 U_{\xi \eta}+U_{\eta \eta}\right)=c^{2}\left(U_{\xi \xi}+2 U_{\xi \eta}+U_{\eta \eta}\right) .
$$

Canonical form: $U_{\xi \eta}=0$

athematical Methods in Engineering and Science

Substitution of derivatives

$$
\begin{aligned}
u_{x}=U_{\xi} \xi_{x}+U_{\eta} \eta_{x}=U_{\xi}+U_{\eta} & \Rightarrow u_{x x}=U_{\xi \xi}+2 U_{\xi \eta}+U_{\eta \eta} \\
u_{t}=U_{\xi} \xi_{t}+U_{\eta} \eta_{t}=-c U_{\xi}+c U_{\eta} & \Rightarrow u_{t t}=c^{2} U_{\xi \xi}-2 c^{2} U_{\xi \eta}+c^{2} U_{\eta \eta}
\end{aligned}
$$

into the PDE $u_{t t}=c^{2} u_{x x}$ gives

$$
c^{2}\left(U_{\xi \xi}-2 U_{\xi \eta}+U_{\eta \eta}\right)=c^{2}\left(U_{\xi \xi}+2 U_{\xi \eta}+U_{\eta \eta}\right) .
$$

Canonical form: $U_{\xi \eta}=0$
Integration:

$$
\begin{aligned}
U_{\xi} & =\int U_{\xi \eta} d \eta+\psi(\xi)=\psi(\xi) \\
\Rightarrow U(\xi, \eta) & =\int \psi(\xi) d \xi+f_{2}(\eta)=f_{1}(\xi)+f_{2}(\eta)
\end{aligned}
$$

Hyperbolic Equations

Substitution of derivatives

$$
\begin{aligned}
u_{x}=U_{\xi} \xi_{x}+U_{\eta} \eta_{x}=U_{\xi}+U_{\eta} & \Rightarrow u_{x x}=U_{\xi \xi}+2 U_{\xi \eta}+U_{\eta \eta} \\
u_{t}=U_{\xi} \xi_{t}+U_{\eta} \eta_{t}=-c U_{\xi}+c U_{\eta} & \Rightarrow u_{t t}=c^{2} U_{\xi \xi}-2 c^{2} U_{\xi \eta}+c^{2} U_{\eta \eta}
\end{aligned}
$$

into the PDE $u_{t t}=c^{2} u_{x x}$ gives

$$
c^{2}\left(U_{\xi \xi}-2 U_{\xi \eta}+U_{\eta \eta}\right)=c^{2}\left(U_{\xi \xi}+2 U_{\xi \eta}+U_{\eta \eta}\right)
$$

Canonical form: $U_{\xi \eta}=0$
Integration:

$$
\begin{aligned}
U_{\xi} & =\int U_{\xi \eta} d \eta+\psi(\xi)=\psi(\xi) \\
\Rightarrow U(\xi, \eta) & =\int \psi(\xi) d \xi+f_{2}(\eta)=f_{1}(\xi)+f_{2}(\eta)
\end{aligned}
$$

D'Alembert's solution: $u(x, t)=f_{1}(x-c t)+f_{2}(x+c t)$

Physical insight from D'Alembert's solution:
$f_{1}(x-c t)$: a progressive wave in forward direction with speed c
Reflection at boundary:
in a manner depending upon the boundary condition
Reflected wave $f_{2}(x+c t)$: another progressive wave, this one in backward direction with speed c

Hyperbolic Equations

Physical insight from D'Alembert's solution:
$f_{1}(x-c t)$: a progressive wave in forward direction with speed c
Reflection at boundary:
in a manner depending upon the boundary condition
Reflected wave $f_{2}(x+c t)$: another progressive wave, this one in backward direction with speed c

Superposition of two waves: complete solution (response)

Hyperbolic Equations

Physical insight from D'Alembert's solution:

$f_{1}(x-c t)$: a progressive wave in forward direction with speed c
Reflection at boundary:
in a manner depending upon the boundary condition
Reflected wave $f_{2}(x+c t)$: another progressive wave, this one in backward direction with speed c

Superposition of two waves: complete solution (response)
Note: Components of the earlier solution: with $\lambda_{n}=\frac{c n \pi}{L}$,

$$
\begin{aligned}
\cos \lambda_{n} t \sin \frac{n \pi x}{L} & =\frac{1}{2}\left[\sin \frac{n \pi}{L}(x-c t)+\sin \frac{n \pi}{L}(x+c t)\right] \\
\sin \lambda_{n} t \sin \frac{n \pi x}{L} & =\frac{1}{2}\left[\cos \frac{n \pi}{L}(x-c t)-\cos \frac{n \pi}{L}(x+c t)\right]
\end{aligned}
$$

Parabolic Equations

Heat conduction equation or diffusion equationations Wave Equation $^{\text {a }}$

$$
\frac{\partial u}{\partial t}=c^{2} \nabla^{2} u
$$

One-dimensional heat (diffusion) equation:

$$
u_{t}=c^{2} u_{x x}
$$

Heat conduction in a finite bar: For a thin bar of length L with end-points at zero temperature,

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, \quad u(x, 0)=f(x)
$$

Heat conduction equation or diffusion equationations Wave Equation $^{\text {a }}$

$$
\frac{\partial u}{\partial t}=c^{2} \nabla^{2} u
$$

One-dimensional heat (diffusion) equation:

$$
u_{t}=c^{2} u_{x x}
$$

Heat conduction in a finite bar: For a thin bar of length L with end-points at zero temperature,

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, \quad u(x, 0)=f(x)
$$

Assumption $u(x, t)=X(x) T(t)$ leads to

$$
X T^{\prime}=c^{2} X^{\prime \prime} T \Rightarrow \frac{T^{\prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-p^{2}
$$

giving rise to two ODE's as

$$
X^{\prime \prime}+p^{2} X=0 \quad \text { and } \quad T^{\prime}+c^{2} p^{2} T=0
$$

Mathematical Methods in Engineering and Science
Partial Differential Equations
Parabolic Equations
 has solutions

$$
X_{n}(x)=\sin \frac{n \pi x}{L}
$$

Parabolic Equations

BVP in the space coordinate $X^{\prime \prime}+p^{2} X=\hat{0}_{0-D}$ has solutions

$$
X_{n}(x)=\sin \frac{n \pi x}{L}
$$

With $\lambda_{n}=\frac{c n \pi}{L}$, the ODE in $T(t)$ has the corresponding solutions

$$
T_{n}(t)=A_{n} e^{-\lambda_{n}^{2} t} .
$$

By superposition,

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} e^{-\lambda_{n}^{2} t}
$$

coefficients being determined from initial condition as

$$
u(x, 0)=f(x)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L}
$$

a Fourier sine series.
As $t \rightarrow \infty, \quad u(x, t) \rightarrow 0$ (steady state)

Mathematical Methods in Engineering and Science
Partial Differential Equations

Parabolic Equations

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=u_{1}, u(L, t)=u_{2}, \quad u(x, 0)=f(x)
$$

For $u_{1} \neq u_{2}$, with $u(x, t)=X(x) T(t)$, BC's do not separate!

Non-homogeneous boundary conditions: $\begin{gathered}\text { Parabobic Elic Equations } \\ \text { Two-Dimentions } \\ \text {. }\end{gathered}$

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=u_{1}, u(L, t)=u_{2}, \quad u(x, 0)=f(x)
$$

For $u_{1} \neq u_{2}$, with $u(x, t)=X(x) T(t)$, BC's do not separate! Assume

$$
u(x, t)=U(x, t)+u_{s s}(x)
$$

where component $u_{s s}(x)$, steady-state temperature (distribution), does not enter the differential equation.
$u_{s s}^{\prime \prime}(x)=0, \quad u_{s s}(0)=u_{1}, \quad u_{s s}(L)=u_{2} \Rightarrow \quad u_{s s}(x)=u_{1}+\frac{u_{2}-u_{1}}{L} x$

Parabolic Equations

$$
u_{t}=c^{2} u_{x x}, \quad u(0, t)=u_{1}, u(L, t)=u_{2}, \quad u(x, 0)=f(x)
$$

For $u_{1} \neq u_{2}$, with $u(x, t)=X(x) T(t)$, BC's do not separate! Assume

$$
u(x, t)=U(x, t)+u_{s s}(x)
$$

where component $u_{s s}(x)$, steady-state temperature (distribution), does not enter the differential equation.
$u_{s s}^{\prime \prime}(x)=0, \quad u_{s s}(0)=u_{1}, \quad u_{s s}(L)=u_{2} \Rightarrow \quad u_{s s}(x)=u_{1}+\frac{u_{2}-u_{1}}{L} x$
Substituting into the BVP,

$$
U_{t}=c^{2} U_{x x}, \quad U(0, t)=U(L, t)=0, \quad U(x, 0)=f(x)-u_{s s}(x)
$$

Final solution:

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} e^{-\lambda_{n}^{2} t}+u_{s s}(x)
$$

B_{n} being coefficients of Fourier sine series of $f(x)-u_{s s}(x)$.

Mathematical Methods in Engineering and Science
Partial Differential Equations
Parabolic Equations

Heat conduction in an infinite wire

$$
u_{t}=c^{2} u_{x x}, \quad u(x, 0)=f(x)
$$

Parabolic Equations

Heat conduction in an infinite wire

$$
u_{t}=c^{2} u_{x x}, \quad u(x, 0)=f(x)
$$

In place of $\frac{n \pi}{L}$, now we have continuous frequency p.
Solution as superposition of all frequencies:
$u(x, t)=\int_{0}^{\infty} u_{p}(x, t) d p=\int_{0}^{\infty}[A(p) \cos p x+B(p) \sin p x] e^{-c^{2} p^{2} t} d p$
Initial condition

$$
u(x, 0)=f(x)=\int_{0}^{\infty}[A(p) \cos p x+B(p) \sin p x] d p
$$

gives the Fourier integral of $f(x)$ and amplitude functions
$A(p)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos p v d v$ and $B(p)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin p v d v$.

Mathematical Methods in Engineering and Science
Partial Differential Equations

Parabolic Equations
Solution using Fourier transforms

$$
u_{t}=c^{2} u_{x x}, \quad u(x, 0)=f(x)
$$

Parabolic Equations

Solution using Fourier transforms

$$
u_{t}=c^{2} u_{x x}, \quad u(x, 0)=f(x)
$$

Using derivative formula of Fourier transforms,

$$
\mathcal{F}\left(u_{t}\right)=c^{2}(i w)^{2} \mathcal{F}(u) \Rightarrow \frac{\partial \hat{u}}{\partial t}=-c^{2} w^{2} \hat{u}
$$

since variables x and t are independent.
Initial value problem in $\hat{u}(w, t)$:

$$
\frac{\partial \hat{u}}{\partial t}=-c^{2} w^{2} \hat{u}, \quad \hat{u}(0)=\hat{f}(w)
$$

Solution: $\hat{u}(w, t)=\hat{f}(w) e^{-c^{2} w^{2} t}$

Parabolic Equations

Solution using Fourier transforms

$$
u_{t}=c^{2} u_{x x}, \quad u(x, 0)=f(x)
$$

Using derivative formula of Fourier transforms,

$$
\mathcal{F}\left(u_{t}\right)=c^{2}(i w)^{2} \mathcal{F}(u) \Rightarrow \frac{\partial \hat{u}}{\partial t}=-c^{2} w^{2} \hat{u}
$$

since variables x and t are independent.
Initial value problem in $\hat{u}(w, t)$:

$$
\frac{\partial \hat{u}}{\partial t}=-c^{2} w^{2} \hat{u}, \quad \hat{u}(0)=\hat{f}(w)
$$

Solution: $\hat{u}(w, t)=\hat{f}(w) e^{-c^{2} w^{2} t}$
Inverse Fourier transform gives solution of the original problem as

$$
\begin{aligned}
u(x, t) & =\mathcal{F}^{-1}\{\hat{u}(w, t)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{-c^{2} w^{2} t} e^{i w x} d w \\
\Rightarrow u(x, t) & =\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \int_{0}^{\infty} \cos (w x-w v) e^{-c^{2} w^{2} t} d w d v
\end{aligned}
$$

Elliptic Equations
andemer
Heat flow in a plate: two-dimensional heat Ellioquatituanion

$$
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Steady-state temperature distribution:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Laplace's equation

Elliptic Equations

$$
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Steady-state temperature distribution:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Laplace's equation

Steady-state heat flow in a rectangular plate:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(a, y)=u(x, 0)=0, u(x, b)=f(x)
$$

a Dirichlet problem over the domain $0 \leq x \leq a, 0 \leq y \leq b$.

Elliptic Equations

$$
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Steady-state temperature distribution:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Laplace's equation

Steady-state heat flow in a rectangular plate:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(a, y)=u(x, 0)=0, u(x, b)=f(x)
$$

a Dirichlet problem over the domain $0 \leq x \leq a, 0 \leq y \leq b$.
Proposal $u(x, y)=X(x) Y(y)$ leads to

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=0 \Rightarrow \frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-p^{2}
$$

Elliptic Equations

$$
\frac{\partial u}{\partial t}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Steady-state temperature distribution:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Laplace's equation

Steady-state heat flow in a rectangular plate:

$$
u_{x x}+u_{y y}=0, \quad u(0, y)=u(a, y)=u(x, 0)=0, u(x, b)=f(x)
$$

a Dirichlet problem over the domain $0 \leq x \leq a, 0 \leq y \leq b$.
Proposal $u(x, y)=X(x) Y(y)$ leads to

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=0 \Rightarrow \frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-p^{2}
$$

Separated ODE's:

$$
X^{\prime \prime}+p^{2} X=0 \quad \text { and } \quad Y^{\prime \prime}-p^{2} Y=0
$$

Elliptic Equations

Partial Differential Equations

Corresponding solution of $Y^{\prime \prime}-p^{2} Y=0$:

$$
Y_{n}(y)=A_{n} \cosh \frac{n \pi y}{a}+B_{n} \sinh \frac{n \pi y}{a}
$$

Elliptic Equations

Corresponding solution of $Y^{\prime \prime}-p^{2} Y=0$:

$$
Y_{n}(y)=A_{n} \cosh \frac{n \pi y}{a}+B_{n} \sinh \frac{n \pi y}{a}
$$

Condition $Y(0)=0 \Rightarrow A_{n}=0$, and

$$
u_{n}(x, y)=B_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi y}{a}
$$

The complete solution:

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi y}{a}
$$

Elliptic Equations

Corresponding solution of $Y^{\prime \prime}-p^{2} Y=0$:

$$
Y_{n}(y)=A_{n} \cosh \frac{n \pi y}{a}+B_{n} \sinh \frac{n \pi y}{a}
$$

Condition $Y(0)=0 \Rightarrow A_{n}=0$, and

$$
u_{n}(x, y)=B_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi y}{a}
$$

The complete solution:

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi y}{a}
$$

The last boundary condition $u(x, b)=f(x)$ fixes the coefficients from the Fourier sine series of $f(x)$.

Elliptic Equations

 Corresponding solution of $Y^{\prime \prime}-p^{2} Y=0$:

$$
Y_{n}(y)=A_{n} \cosh \frac{n \pi y}{a}+B_{n} \sinh \frac{n \pi y}{a}
$$

Condition $Y(0)=0 \Rightarrow A_{n}=0$, and

$$
u_{n}(x, y)=B_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi y}{a}
$$

The complete solution:

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{a} \sinh \frac{n \pi y}{a}
$$

The last boundary condition $u(x, b)=f(x)$ fixes the coefficients from the Fourier sine series of $f(x)$.

Note: In the example, BC's on three sides were homogeneous. How did it help? What if there are more non-homogeneous BC's?

Mathematical Methods in Engineering and Science
Partial Differential Equations

Elliptic Equations

Steady-state heat flow with internal heat generation

$$
\nabla^{2} u=\phi(x, y)
$$

Poisson's equation
Separation of variables impossible!

Elliptic Equations

Steady-state heat flow with internal heat generation

$$
\nabla^{2} u=\phi(x, y)
$$

Poisson's equation

Separation of variables impossible!
Consider function $u(x, y)$ as

$$
u(x, y)=u_{h}(x, y)+u_{p}(x, y)
$$

Sequence of steps

- one particular solution $u_{p}(x, y)$ that may or may not satisfy some or all of the boundary conditions
- solution of the corresponding homogeneous equation, namely $u_{x x}+u_{y y}=0$ for $u_{h}(x, y)$
- such that $u=u_{h}+u_{p}$ satisfies all the boundary conditions

Two-Dimensional Wave Equation

Transverse vibration of a rectangular mémbranie? Wave Equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

A Cauchy problem of the membrane:

$$
\begin{gathered}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right) ; \quad u(x, y, 0)=f(x, y), \quad u_{t}(x, y, 0)=g(x, y) \\
u(0, y, t)=u(a, y, t)=u(x, 0, t)=u(x, b, t)=0
\end{gathered}
$$

Transverse vibration of a rectangular mémbranie? Wave Equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

A Cauchy problem of the membrane:

$$
\begin{gathered}
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right) ; \quad u(x, y, 0)=f(x, y), \quad u_{t}(x, y, 0)=g(x, y) ; \\
u(0, y, t)=u(a, y, t)=u(x, 0, t)=u(x, b, t)=0
\end{gathered}
$$

Separate the time variable from the space variables:

$$
u(x, y, t)=F(x, y) T(t) \Rightarrow \frac{F_{x x}+F_{y y}}{F}=\frac{T^{\prime \prime}}{c^{2} T}=-\lambda^{2}
$$

Helmholtz equation:

$$
F_{x x}+F_{y y}+\lambda^{2} F=0
$$

Assuming $F(x, y)=X(x) Y(y)$,

$$
\begin{gathered}
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}+\lambda^{2} Y}{Y}=-\mu^{2} \\
\Rightarrow X^{\prime \prime}+\mu^{2} X=0 \quad \text { and } \quad Y^{\prime \prime}+\nu^{2} Y=0,
\end{gathered}
$$

such that $\lambda=\sqrt{\mu^{2}+\nu^{2}}$.

Two-Dimensional Wave Equation
Assuming $F(x, y)=X(x) Y(y)$,

$$
\begin{gathered}
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}+\lambda^{2} Y}{Y}=-\mu^{2} \\
\Rightarrow X^{\prime \prime}+\mu^{2} X=0 \quad \text { and } \quad Y^{\prime \prime}+\nu^{2} Y=0
\end{gathered}
$$

such that $\lambda=\sqrt{\mu^{2}+\nu^{2}}$.
With BC's $X(0)=X(a)=0$ and $Y(0)=Y(b)=0$,

$$
X_{m}(x)=\sin \frac{m \pi x}{a} \quad \text { and } \quad Y_{n}(y)=\sin \frac{n \pi y}{b}
$$

Corresponding values of λ are

$$
\lambda_{m n}=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}
$$

with solutions of $T^{\prime \prime}+c^{2} \lambda^{2} T=0$ as

$$
T_{m n}(t)=A_{m n} \cos c \lambda_{m n} t+B_{m n} \sin c \lambda_{m n} t
$$

Composing $X_{m}(x), Y_{n}(y)$ and $T_{m n}(t)$ and sulipicieftiaiting
$u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[A_{m n} \cos c \lambda_{m n} t+B_{m n} \sin c \lambda_{m n} t\right] \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}$,
coefficients being determined from the double Fourier series

$$
\begin{aligned}
f(x, y) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \\
\text { and } g(x, y) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c \lambda_{m n} B_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}
\end{aligned}
$$

$$
u(x, y, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[A_{m n} \cos c \lambda_{m n} t+B_{m n} \sin c \lambda_{m n} t\right] \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}
$$

coefficients being determined from the double Fourier series

$$
\begin{aligned}
f(x, y) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \\
\text { and } g(x, y) & =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c \lambda_{m n} B_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} .
\end{aligned}
$$

BVP's modelled in polar coordinates

For domains of circular symmetry, important in many practical systems, the BVP is conveniently modelled in polar coordinates, the separation of variables quite often producing

- Bessel's equation, in cylindrical coordinates, and
- Legendre's equation, in spherical coordinates

Points to note

- PDE's in physically relevant contexts
- Initial and boundary conditions
- Separation of variables
- Examples of boundary value problems with hyperbolic, parabolic and elliptic equations
- Modelling, solution and interpretation
- Cascaded application of separation of variables for problems with more than two independent variables

Necessary Exercises: 1,2,4,7,9,10

Analytic Functions
Analyticity of Complex Functions
Conformal Mapping
Potential Theory

Mathematical Methods in Engineering and Science

Analyticity of Complex Functions

Function f of a complex variable z
gives a rule to associate a unique complex number
$w=u+i v$ to every $z=x+i y$ in a set.

Analyticity of Complex Functions

Function f of a complex variable z
gives a rule to associate a unique complex number
$w=u+i v$ to every $z=x+i y$ in a set.
Limit: If $f(z)$ is defined in a neighbourhood of z_{0} (except possibly at z_{0} itself) and $\exists l \in C$ such that $\forall \epsilon>0, \exists \delta>0$ such that

$$
0<\left|z-z_{0}\right|<\delta \Rightarrow|f(z)-\ell|<\epsilon
$$

then

$$
I=\lim _{z \rightarrow z_{0}} f(z)
$$

Analyticity of Complex Functions

Function f of a complex variable z
gives a rule to associate a unique complex number

$$
w=u+i v \text { to every } z=x+i y \text { in a set. }
$$

Limit: If $f(z)$ is defined in a neighbourhood of z_{0} (except possibly at z_{0} itself) and $\exists I \in C$ such that $\forall \epsilon>0, \exists \delta>0$ such that

$$
0<\left|z-z_{0}\right|<\delta \Rightarrow|f(z)-I|<\epsilon
$$

then

$$
I=\lim _{z \rightarrow z_{0}} f(z)
$$

Crucial difference from real functions: z can approach z_{0} in all possible manners in the complex plane.

Definition of the limit is more restrictive.

Analyticity of Complex Functions

Function f of a complex variable z
gives a rule to associate a unique complex number
$w=u+i v$ to every $z=x+i y$ in a set.
Limit: If $f(z)$ is defined in a neighbourhood of z_{0} (except possibly at z_{0} itself) and $\exists l \in C$ such that $\forall \epsilon>0, \exists \delta>0$ such that

$$
0<\left|z-z_{0}\right|<\delta \Rightarrow|f(z)-I|<\epsilon
$$

then

$$
I=\lim _{z \rightarrow z_{0}} f(z)
$$

Crucial difference from real functions: z can approach z_{0} in all possible manners in the complex plane.

Definition of the limit is more restrictive.
Continuity: $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$
Continuity in a domain D : continuity at every point in D

Analyticity of Complex Functions

Derivative of a complex function:

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\delta z \rightarrow 0} \frac{f\left(z_{0}+\delta z\right)-f\left(z_{0}\right)}{\delta z}
$$

When this limit exists, function $f(z)$ is said to be differentiable.
Extremely restrictive definition!

Analyticity of Complex Functions

Derivative of a complex function:

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\delta z \rightarrow 0} \frac{f\left(z_{0}+\delta z\right)-f\left(z_{0}\right)}{\delta z}
$$

When this limit exists, function $f(z)$ is said to be differentiable.
Extremely restrictive definition!

Analytic function

A function $f(z)$ is called analytic in a domain D if it is defined and differentiable at all points in D.

Analyticity of Complex Functions

Derivative of a complex function:

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\delta z \rightarrow 0} \frac{f\left(z_{0}+\delta z\right)-f\left(z_{0}\right)}{\delta z}
$$

When this limit exists, function $f(z)$ is said to be differentiable.
Extremely restrictive definition!
Analytic function
A function $f(z)$ is called analytic in a domain D if it is defined and differentiable at all points in D.

Points to be settled later:

- Derivative of an analytic function is also analytic.
- An analytic function possesses derivatives of all orders.

Analyticity of Complex Functions

Derivative of a complex function:

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\delta z \rightarrow 0} \frac{f\left(z_{0}+\delta z\right)-f\left(z_{0}\right)}{\delta z}
$$

When this limit exists, function $f(z)$ is said to be differentiable.
Extremely restrictive definition!

Analytic function

A function $f(z)$ is called analytic in a domain D if it is defined and differentiable at all points in D.

Points to be settled later:

- Derivative of an analytic function is also analytic.
- An analytic function possesses derivatives of all orders.

A great qualitative difference between functions of a real variable and those of a complex variable!

Analyticity of Complex Functions

Cauchy-Riemann conditions

If $f(z)=u(x, y)+i v(x, y)$ is analytic then

$$
f^{\prime}(z)=\lim _{\delta x, \delta y \rightarrow 0} \frac{\delta u+i \delta v}{\delta x+i \delta y}
$$

along all paths of approach for $\delta z=\delta x+i \delta y \rightarrow 0$ or $\delta x, \delta y \rightarrow 0$.

Figure: Paths approaching z_{0}
Figure: Paths in C-R equations

Analyticity of Complex Functions

Cauchy-Riemann conditions

If $f(z)=u(x, y)+i v(x, y)$ is analytic then

$$
f^{\prime}(z)=\lim _{\delta x, \delta y \rightarrow 0} \frac{\delta u+i \delta v}{\delta x+i \delta y}
$$

along all paths of approach for $\delta z=\delta x+i \delta y \rightarrow 0$ or $\delta x, \delta y \rightarrow 0$.

Figure: Paths approaching z_{0}
Figure: Paths in C-R equations
Two expressions for the derivative:

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

Mathematical Methods in Engineering and Science

Analyticity of Complex Functions

Cauchy-Riemann equations or conditions

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

are necessary for analyticity.
Question: Do the C-R conditions imply analyticity?

Analyticity of Complex Functions

Cauchy-Riemann equations or conditions

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

are necessary for analyticity.
Question: Do the C-R conditions imply analyticity?
Consider $u(x, y)$ and $v(x, y)$ having continuous first order partial derivatives that satisfy the Cauchy-Riemann conditions.
By mean value theorem,

$$
\delta u=u(x+\delta x, y+\delta y)-u(x, y)=\delta x \frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)+\delta y \frac{\partial u}{\partial y}\left(x_{1}, y_{1}\right)
$$

with $x_{1}=x+\xi \delta x, y_{1}=y+\xi \delta y$ for some $\xi \in[0,1] ; \quad$ and

$$
\delta v=v(x+\delta x, y+\delta y)-v(x, y)=\delta x \frac{\partial v}{\partial x}\left(x_{2}, y_{2}\right)+\delta y \frac{\partial v}{\partial y}\left(x_{2}, y_{2}\right)
$$

with $x_{2}=x+\eta \delta x, y_{2}=y+\eta \delta y$ for some $\eta \in[0,1]$.

Analyticity of Complex Functions

Cauchy-Riemann equations or conditions

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

are necessary for analyticity.
Question: Do the C-R conditions imply analyticity?
Consider $u(x, y)$ and $v(x, y)$ having continuous first order partial derivatives that satisfy the Cauchy-Riemann conditions.
By mean value theorem,

$$
\delta u=u(x+\delta x, y+\delta y)-u(x, y)=\delta x \frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)+\delta y \frac{\partial u}{\partial y}\left(x_{1}, y_{1}\right)
$$

with $x_{1}=x+\xi \delta x, y_{1}=y+\xi \delta y$ for some $\xi \in[0,1] ; \quad$ and

$$
\delta v=v(x+\delta x, y+\delta y)-v(x, y)=\delta x \frac{\partial v}{\partial x}\left(x_{2}, y_{2}\right)+\delta y \frac{\partial v}{\partial y}\left(x_{2}, y_{2}\right)
$$

with $x_{2}=x+\eta \delta x, y_{2}=y+\eta \delta y$ for some $\eta \in[0,1]$.
Then,
$\delta f=\left[\delta x \frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)+i \delta y \frac{\partial v}{\partial y}\left(x_{2}, y_{2}\right)\right]+i\left[\delta x \frac{\partial v}{\partial x}\left(x_{2}, y_{2}\right)-i \delta y \frac{\partial u}{\partial y}\left(x_{1}, y_{1}\right)\right]$

Analyticity of Complex Functions

Using C-R conditions $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$,

$$
\begin{aligned}
\delta f= & (\delta x+i \delta y) \frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)+i \delta y\left[\frac{\partial u}{\partial x}\left(x_{2}, y_{2}\right)-\frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)\right] \\
& +i(\delta x+i \delta y) \frac{\partial v}{\partial x}\left(x_{1}, y_{1}\right)+i \delta x\left[\frac{\partial v}{\partial x}\left(x_{2}, y_{2}\right)-\frac{\partial v}{\partial x}\left(x_{1}, y_{1}\right)\right] \\
\Rightarrow \frac{\delta f}{\delta z}= & \frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)+i \frac{\partial v}{\partial x}\left(x_{1}, y_{1}\right)+ \\
& i \frac{\delta x}{\delta z}\left[\frac{\partial v}{\partial x}\left(x_{2}, y_{2}\right)-\frac{\partial v}{\partial x}\left(x_{1}, y_{1}\right)\right]+i \frac{\delta y}{\delta z}\left[\frac{\partial u}{\partial x}\left(x_{2}, y_{2}\right)-\frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)\right]
\end{aligned}
$$

Analyticity of Complex Functions

Using C-R conditions $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$,

$$
\begin{aligned}
\delta f= & (\delta x+i \delta y) \frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)+i \delta y\left[\frac{\partial u}{\partial x}\left(x_{2}, y_{2}\right)-\frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)\right] \\
& +i(\delta x+i \delta y) \frac{\partial v}{\partial x}\left(x_{1}, y_{1}\right)+i \delta x\left[\frac{\partial v}{\partial x}\left(x_{2}, y_{2}\right)-\frac{\partial v}{\partial x}\left(x_{1}, y_{1}\right)\right] \\
\Rightarrow \frac{\delta f}{\delta z}= & \frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)+i \frac{\partial v}{\partial x}\left(x_{1}, y_{1}\right)+ \\
& i \frac{\delta x}{\delta z}\left[\frac{\partial v}{\partial x}\left(x_{2}, y_{2}\right)-\frac{\partial v}{\partial x}\left(x_{1}, y_{1}\right)\right]+i \frac{\delta y}{\delta z}\left[\frac{\partial u}{\partial x}\left(x_{2}, y_{2}\right)-\frac{\partial u}{\partial x}\left(x_{1}, y_{1}\right)\right]
\end{aligned}
$$

Since $\left|\frac{\delta x}{\delta z}\right|,\left|\frac{\delta y}{\delta z}\right| \leq 1$, as $\delta z \rightarrow 0$, the limit exists and

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
$$

Cauchy-Riemann conditions are necessary and sufficient for function $w=f(z)=u(x, y)+i v(x, y)$ to be analytic.

Analyticity of Complex Functions

Harmonic function

Differentiating C-R equations $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$,

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}, \quad \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x}, \quad \frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} v}{\partial y^{2}}, \quad \frac{\partial^{2} u}{\partial x \partial y}=-\frac{\partial^{2} v}{\partial x^{2}}
$$

$$
\Rightarrow \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}
$$

Real and imaginary components of an analytic functions are harmonic functions.

Conjugate harmonic function of $u(x, y): v(x, y)$

Analyticity of Complex Functions

Harmonic function

Differentiating C-R equations $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$,

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y}, \\
, \quad \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial y \partial x}, \quad \frac{\partial^{2} u}{\partial y \partial x}=\frac{\partial^{2} v}{\partial y^{2}}, \quad \frac{\partial^{2} u}{\partial x \partial y}=-\frac{\partial^{2} v}{\partial x^{2}} \\
\Rightarrow \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}
\end{gathered}
$$

Real and imaginary components of an analytic functions are harmonic functions.

Conjugate harmonic function of $u(x, y): v(x, y)$
Families of curves $u(x, y)=c$ and $v(x, y)=k$ are mutually orthogonal, except possibly at points where $f^{\prime}(z)=0$.
Question: If $u(x, y)$ is given, then how to develop the complete analytic function $w=f(z)=u(x, y)+i v(x, y)$?

Function: mapping of elements in domain to their images in range

Conformal Mapping

Function: mapping of elements in domain to their images in range Depiction of a complex variable requires a plane with two axes. Mapping of a complex function $w=f(z)$ is shown in two planes.

Conformal Mapping

Function: mapping of elements in domain to their images in range Depiction of a complex variable requires a plane with two axes. Mapping of a complex function $w=f(z)$ is shown in two planes. Example: mapping of a rectangle under transformation $w=e^{z}$

(a) The z-plane

(b) The w-plane

Figure: Mapping corresponding to function $w=e^{z}$

Conformal mapping: a mapping that preserves the angle between any two directions in magnitude and sense.
Verify: $w=e^{z}$ defines a conformal mapping.
Through relative orientations of curves at the points of intersection, 'local' shape of a figure is preserved.

Conformal Mapping

Conformal mapping: a mapping that preserves the angle between any two directions in magnitude and sense.
Verify: $w=e^{z}$ defines a conformal mapping.
Through relative orientations of curves at the points of intersection, 'local' shape of a figure is preserved.

Take curve $z(t), z(0)=z_{0}$ and image $w(t)=f[z(t)], w_{0}=f\left(z_{0}\right)$. For analytic $f(z), \quad \dot{w}(0)=f^{\prime}\left(z_{0}\right) \dot{z}(0)$, implying

$$
|\dot{w}(0)|=\left|f^{\prime}\left(z_{0}\right)\right||\dot{z}(0)| \quad \text { and } \quad \arg \dot{w}(0)=\arg f^{\prime}\left(z_{0}\right)+\arg \dot{z}(0)
$$

For several curves through z_{0},
image curves pass through w_{0} and all of them turn by the same angle $\arg f^{\prime}\left(z_{0}\right)$.

Cautions

- $f^{\prime}(z)$ varies from point to point. Different scaling and turning effects take place at different points. 'Global' shape changes.
- For $f^{\prime}(z)=0$, argument is undefined and conformality is lost.

An analytic function defines a conformal mapping except at its critical points where its derivative vanishes.

Except at critical points, an analytic function is invertible.
We can establish an inverse of any conformal mapping.

Conformal Mapping

An analytic function defines a conformal mapping except at its critical points where its derivative vanishes.

Except at critical points, an analytic function is invertible.
We can establish an inverse of any conformal mapping.

Examples

- Linear function $w=a z+b($ for $a \neq 0)$
- Linear fractional transformation

$$
w=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0
$$

- Other elementary functions like z^{n}, e^{z} etc

An analytic function defines a conformal mapping except at its critical points where its derivative vanishes.

Except at critical points, an analytic function is invertible.
We can establish an inverse of any conformal mapping.

Examples

- Linear function $w=a z+b($ for $a \neq 0)$
- Linear fractional transformation

$$
w=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0
$$

- Other elementary functions like z^{n}, e^{z} etc Special significance of conformal mappings:

A harmonic function $\phi(u, v)$ in the w-plane is also a harmonic function, in the form $\phi(x, y)$ in the z-plane, as long as the two planes are related through a conformal mapping.

Riemann mapping theorem: Let D be a simply connected domain in the z-plane bounded by a closed curve C. Then there exists a conformal mapping that gives a one-to-one correspondence between D and the unit disc $|w|<1$ as well as between C and the unit circle $|w|=1$, bounding the unit disc.

Riemann mapping theorem: Let D be a simply connected domain in the z-plane bounded by a closed curve C. Then there exists a conformal mapping that gives a one-to-one correspondence between D and the unit disc $|w|<1$ as well as between C and the unit circle $|w|=1$, bounding the unit disc.

Application to boundary value problems

- First, establish a conformal mapping between the given domain and a domain of simple geometry.
- Next, solve the BVP in this simple domain.
- Finally, using the inverse of the conformal mapping, construct the solution for the given domain.

Riemann mapping theorem: Let D be a simply connected domain in the z-plane bounded by a closed curve C. Then there exists a conformal mapping that gives a one-to-one correspondence between D and the unit disc $|w|<1$ as well as between C and the unit circle $|w|=1$, bounding the unit disc.

Application to boundary value problems

- First, establish a conformal mapping between the given domain and a domain of simple geometry.
- Next, solve the BVP in this simple domain.
- Finally, using the inverse of the conformal mapping, construct the solution for the given domain.

Example: Dirichlet problem with Poisson's integral formula

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(R^{2}-r^{2}\right) f\left(R e^{i \phi}\right)}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} d \phi
$$

Potential Theory

Two-dimensional potential flow

- Velocity potential $\phi(x, y)$ gives velocity components $V_{x}=\frac{\partial \phi}{\partial x}$ and $V_{y}=\frac{\partial \phi}{\partial y}$.
- A streamline is a curve in the flow field, the tangent to which at any point is along the local velocity vector.
- Stream function $\psi(x, y)$ remains constant along a streamline.
- $\psi(x, y)$ is the conjugate harmonic function of $\phi(x, y)$.
- Complex potential function $\Phi(z)=\phi(x, y)+i \psi(x, y)$ defines the flow.

Two-dimensional potential flow

- Velocity potential $\phi(x, y)$ gives velocity components $V_{x}=\frac{\partial \phi}{\partial x}$ and $V_{y}=\frac{\partial \phi}{\partial y}$.
- A streamline is a curve in the flow field, the tangent to which at any point is along the local velocity vector.
- Stream function $\psi(x, y)$ remains constant along a streamline.
- $\psi(x, y)$ is the conjugate harmonic function of $\phi(x, y)$.
- Complex potential function $\Phi(z)=\phi(x, y)+i \psi(x, y)$ defines the flow.

If a flow field encounters a solid boundary of a complicated shape, transform the boundary conformally to a simple boundary
to facilitate the study of the flow pattern.

Analytic Functions

- Analytic functions and Cauchy-Riemann conditions
- Conformality of analytic functions
- Applications in solving BVP's and flow description

Necessary Exercises: 1,2,3,4,7,9

Integrals in the Complex Plane
Line Integral
Cauchy's Integral Theorem
Cauchy's Integral Formula

Mathematical Methods in Engineering and Science
Line Integral
For $w=f(z)=u(x, y)+i v(x, y)$, over a smooth curve C,

$$
\int_{C} f(z) d z=\int_{C}(u+i v)(d x+i d y)=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)
$$

Extension to piecewise smooth curves is obvious.

Line Integral

For $w=f(z)=u(x, y)+i v(x, y)$, over a smooth curve C,

$$
\int_{C} f(z) d z=\int_{C}(u+i v)(d x+i d y)=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)
$$

Extension to piecewise smooth curves is obvious.
With parametrization, for $z=z(t), a \leq t \leq b$, with $\dot{z}(t) \neq 0$,

$$
\int_{C} f(z) d z=\int_{a}^{b} f[z(t)] \dot{z}(t) d t
$$

athematian Inthoos in ing Ling

For $w=f(z)=u(x, y)+i v(x, y)$, over a smooth curve C,

$$
\int_{C} f(z) d z=\int_{C}(u+i v)(d x+i d y)=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y) .
$$

Extension to piecewise smooth curves is obvious.
With parametrization, for $z=z(t), a \leq t \leq b$, with $\dot{z}(t) \neq 0$,

$$
\int_{C} f(z) d z=\int_{a}^{b} f[z(t)] \dot{z}(t) d t .
$$

Over a simple closed curve, contour integral: $\oint_{C} f(z) d z$

aitemanata Metiosisin Eng Line Integral

For $w=f(z)=u(x, y)+i v(x, y)$, over a smooth curve C,

$$
\int_{C} f(z) d z=\int_{C}(u+i v)(d x+i d y)=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)
$$

Extension to piecewise smooth curves is obvious.
With parametrization, for $z=z(t), a \leq t \leq b$, with $\dot{z}(t) \neq 0$,

$$
\int_{C} f(z) d z=\int_{a}^{b} f[z(t)] \dot{z}(t) d t
$$

Over a simple closed curve, contour integral: $\oint_{C} f(z) d z$ Example: $\oint_{C} z^{n} d z$ for integer n, around circle $z=\rho e^{i \theta}$

$$
\oint_{C} z^{n} d z=i \rho^{n+1} \int_{0}^{2 \pi} e^{i(n+1) \theta} d \theta=\left\{\begin{aligned}
0 & \text { for } n \neq-1 \\
2 \pi i & \text { for } n=-1
\end{aligned}\right.
$$

For $w=f(z)=u(x, y)+i v(x, y)$, over a smooth curve C,

$$
\int_{C} f(z) d z=\int_{C}(u+i v)(d x+i d y)=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)
$$

Extension to piecewise smooth curves is obvious.
With parametrization, for $z=z(t), a \leq t \leq b$, with $\dot{z}(t) \neq 0$,

$$
\int_{C} f(z) d z=\int_{a}^{b} f[z(t)] \dot{z}(t) d t
$$

Over a simple closed curve, contour integral: $\oint_{C} f(z) d z$ Example: $\oint_{C} z^{n} d z$ for integer n, around circle $z=\rho e^{i \theta}$

$$
\oint_{C} z^{n} d z=i \rho^{n+1} \int_{0}^{2 \pi} e^{i(n+1) \theta} d \theta=\left\{\begin{aligned}
0 & \text { for } n \neq-1 \\
2 \pi i & \text { for } n=-1
\end{aligned}\right.
$$

The $M-L$ inequality: If C is a curve of finite length L and $|f(z)|<M$ on C, then

$$
\left|\int_{C} f(z) d z\right| \leq \int_{C}|f(z)||d z|<M \int_{C}|d z|=M L
$$

- C is a simple closed curve in a simply connected domain D.
- Function $f(z)=u+i v$ is analytic in D.

Contour integral $\oint_{C} f(z) d z=$?

Cauchy's Integral Theorem

- C is a simple closed curve in a simply connected domain D.
- Function $f(z)=u+i v$ is analytic in D.

Contour integral $\oint_{C} f(z) d z=$?
If $f^{\prime}(z)$ is continuous, then by Green's theorem in the plane,
$\oint_{C} f(z) d z=\int_{R} \int\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y+i \int_{R} \int\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y$,
where R is the region enclosed by C.

Cauchy's Integral Theorem

- C is a simple closed curve in a simply connected domain D.
- Function $f(z)=u+i v$ is analytic in D.

Contour integral $\oint_{C} f(z) d z=$?
If $f^{\prime}(z)$ is continuous, then by Green's theorem in the plane,
$\oint_{C} f(z) d z=\int_{R} \int\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y+i \int_{R} \int\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y$,
where R is the region enclosed by C.
From C-R conditions, $\quad \oint_{C} f(z) d z=0$.
Proof by Goursat: without the hypothesis of continuity of $f^{\prime}(z)$

Cauchy-Goursat theorem

If $f(z)$ is analytic in a simply connected domain D, then $\oint_{C} f(z) d z=0$ for every simple closed curve C in D.

Importance of Goursat's contribution:

- continuity of $f^{\prime}(z)$ appears as consequence!

Cauchy's Integral Theorem

Principle of path independence

Two points z_{1} and z_{2} on the close curve C

- two open paths C_{1} and C_{2} from z_{1} to z_{2}

Cauchy's theorem on C, comprising of C_{1} in the forward direction and C_{2} in the reverse direction:

$$
\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=0 \Rightarrow \int_{z_{1}}^{z_{2}} f(z) d z=\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Cauchy's Integral Theorem

Principle of path independence

Two points z_{1} and z_{2} on the close curve C

- two open paths C_{1} and C_{2} from z_{1} to z_{2}

Cauchy's theorem on C, comprising of C_{1} in the forward direction and C_{2} in the reverse direction:

$$
\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=0 \Rightarrow \int_{z_{1}}^{z_{2}} f(z) d z=\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

For an analytic function $f(z)$ in a simply connected domain $D, \int_{z_{1}}^{z_{2}} f(z) d z$ is independent of the path and depends only on the end-points, as long as the path is completely contained in D.

Cauchy's Integral Theorem

Principle of path independence

Two points z_{1} and z_{2} on the close curve C

- two open paths C_{1} and C_{2} from z_{1} to z_{2}

Cauchy's theorem on C, comprising of C_{1} in the forward direction and C_{2} in the reverse direction:
$\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z=0 \Rightarrow \int_{z_{1}}^{z_{2}} f(z) d z=\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z$
For an analytic function $f(z)$ in a simply connected domain $D, \int_{z_{1}}^{z_{2}} f(z) d z$ is independent of the path and depends only on the end-points, as long as the path is completely contained in D.

Consequence: Definition of the function

$$
F(z)=\int_{z_{0}}^{z} f(\xi) d \xi
$$

What does the formulation suggest?

Mathematical Methods in Engineering and Science
Integrals in the Complex Plane
Cauchy's Integral Theorem

Indefinite integral

Question: Is $F(z)$ analytic? Is $F^{\prime}(z)=f(z)$?

Cauchy's Integral Theorem

Indefinite integral

Question: Is $F(z)$ analytic? Is $F^{\prime}(z)=f(z)$?

$$
\begin{aligned}
\frac{F(z+\delta z)-F(z)}{\delta z}-f(z) & =\frac{1}{\delta z}\left[\int_{z_{0}}^{z+\delta z} f(\xi) d \xi-\int_{z_{0}}^{z} f(\xi) d \xi\right]-f(z) \\
& =\frac{1}{\delta z} \int_{z}^{z+\delta z}[f(\xi)-f(z)] d \xi
\end{aligned}
$$

athematical Methods in Engineering and Science
 Cauchy's Integral Theorem

Indefinite integral

Question: Is $F(z)$ analytic? Is $F^{\prime}(z)=f(z)$?

$$
\begin{aligned}
\frac{F(z+\delta z)-F(z)}{\delta z}-f(z) & =\frac{1}{\delta z}\left[\int_{z_{0}}^{z+\delta z} f(\xi) d \xi-\int_{z_{0}}^{z} f(\xi) d \xi\right]-f(z) \\
& =\frac{1}{\delta z} \int_{z}^{z+\delta z}[f(\xi)-f(z)] d \xi
\end{aligned}
$$

f is continuous $\Rightarrow \forall \epsilon, \exists \delta$ such that $|\xi-z|<\delta \Rightarrow|f(\xi)-f(z)|<\epsilon$

Cauchy's Integral Theorem

Indefinite integral

Question: Is $F(z)$ analytic? Is $F^{\prime}(z)=f(z)$?

$$
\begin{aligned}
\frac{F(z+\delta z)-F(z)}{\delta z}-f(z) & =\frac{1}{\delta z}\left[\int_{z_{0}}^{z+\delta z} f(\xi) d \xi-\int_{z_{0}}^{z} f(\xi) d \xi\right]-f(z) \\
& =\frac{1}{\delta z} \int_{z}^{z+\delta z}[f(\xi)-f(z)] d \xi
\end{aligned}
$$

f is continuous $\Rightarrow \forall \epsilon, \exists \delta$ such that $|\xi-z|<\delta \Rightarrow|f(\xi)-f(z)|<\epsilon$ Choosing $\delta z<\delta$,

$$
\left|\frac{F(z+\delta z)-F(z)}{\delta z}-f(z)\right|<\frac{\epsilon}{\delta z} \int_{z}^{z+\delta z} d \xi=\epsilon
$$

If $f(z)$ is analytic in a simply connected domain D, then there exists an analytic function $F(z)$ in D such that

$$
F^{\prime}(z)=f(z) \text { and } \int_{z_{1}}^{z_{2}} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

Vathemaical Methods in Ingineering and Science
Caurem

Principle of deformation of paths

$f(z)$ analytic everywhere other than isolated points s_{1}, s_{2}, s_{3}

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z=\int_{C_{3}} f(z) d z
$$

Not so for path C^{*}.

Figure: Path deformation

Principle of deformation of paths

$f(z)$ analytic everywhere other than isolated points s_{1}, s_{2}, s_{3}

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z=\int_{C_{3}} f(z) d z
$$

Not so for path C^{*}.

Figure: Path deformation

The line integral remains unaltered through a continuous deformation of the path of integration with fixed end-points, as long as the sweep of the deformation includes no point where the integrand is non-analytic.

Matemanacan Mexiodsinim ingeeirig gand siene
Cauchy's Integral Theorem
Integrals in the Complex Plane

Cauchy's theorem in multiply connected domain

Figure: Contour for multiply connected domain

$$
\oint_{C} f(z) d z-\oint_{C_{1}} f(z) d z-\oint_{C_{2}} f(z) d z-\oint_{C_{3}} f(z) d z=0
$$

Cauchy's theorem in multiply connected domain

Figure: Contour for multiply connected domain

$$
\oint_{C} f(z) d z-\oint_{C_{1}} f(z) d z-\oint_{C_{2}} f(z) d z-\oint_{C_{3}} f(z) d z=0
$$

If $f(z)$ is analytic in a region bounded by the contour C as the outer boundary and non-overlapping contours C_{1}, $C_{2}, C_{3}, \cdots, C_{n}$ as inner boundaries, then

$$
\oint_{C} f(z) d z=\sum_{i=1}^{n} \oint_{C_{i}} f(z) d z .
$$

$f(z)$: analytic function in a simply connected domain D
For $z_{0} \in D$ and simple closed curve C in D,

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) .
$$

$f(z)$: analytic function in a simply connected domain D
For $z_{0} \in D$ and simple closed curve C in D,

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) .
$$

Consider C as a circle with centre at z_{0} and radius ρ, with no loss of generality (why?).

Cauchy's Integral Formula

$f(z)$: analytic function in a simply connected domain D
For $z_{0} \in D$ and simple closed curve C in D,

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) .
$$

Consider C as a circle with centre at z_{0} and radius ρ, with no loss of generality (why?).

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right) \oint_{C} \frac{d z}{z-z_{0}}+\oint_{C} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
$$

Cauchy's Integral Formula

$f(z)$: analytic function in a simply connected domain D
For $z_{0} \in D$ and simple closed curve C in D,

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) .
$$

Consider C as a circle with centre at z_{0} and radius ρ, with no loss of generality (why?).

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right) \oint_{C} \frac{d z}{z-z_{0}}+\oint_{C} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
$$

From continuity of $f(z), \exists \delta$ such that for any ϵ,

$$
\left|z-z_{0}\right|<\delta \Rightarrow\left|f(z)-f\left(z_{0}\right)\right|<\epsilon \text { and }\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|<\frac{\epsilon}{\rho}
$$

with $\rho<\delta$.

Cauchy's Integral Formula

$f(z)$: analytic function in a simply connected domain D
For $z_{0} \in D$ and simple closed curve C in D,

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) .
$$

Consider C as a circle with centre at z_{0} and radius ρ, with no loss of generality (why?).

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right) \oint_{C} \frac{d z}{z-z_{0}}+\oint_{C} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
$$

From continuity of $f(z), \exists \delta$ such that for any ϵ,

$$
\left|z-z_{0}\right|<\delta \Rightarrow\left|f(z)-f\left(z_{0}\right)\right|<\epsilon \text { and }\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|<\frac{\epsilon}{\rho},
$$

with $\rho<\delta$. From $M-L$ inequality, the second integral vanishes.

Cauchy's Integral Formula

Direct applications

- Evaluation of contour integral:
- If $g(z)$ is analytic on the contour and in the enclosed region, the Cauchy's theorem implies $\oint_{C} g(z) d z=0$.
- If the contour encloses a singularity at z_{0}, then Cauchy's formula supplies a non-zero contribution to the integral, if $f(z)=g(z)\left(z-z_{0}\right)$ is analytic.
- Evaluation of function at a point: If finding the integral on the left-hand-side is relatively simple, then we use it to evaluate $f\left(z_{0}\right)$.

Significant in the solution of boundary value problems!

Example: Poisson's integral formula

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(R^{2}-r^{2}\right) u(R, \phi)}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} d \phi
$$

for the Dirichlet problem over a circular disc.

Cauchy's Integral Formula

Poisson's integral formula

Taking $z_{0}=r e^{i \theta}$ and $z=\operatorname{Re}^{i \phi}$ (with $r<R$) in Cauchy's formula,

$$
2 \pi i f\left(r e^{i \theta}\right)=\int_{0}^{2 \pi} \frac{f\left(R e^{i \phi}\right)}{R e^{i \phi}-r e^{i \theta}}\left(i R e^{i \phi}\right) d \phi
$$

How to get rid of imaginary quantities from the expression?

Poisson's integral formula

Taking $z_{0}=r e^{i \theta}$ and $z=R e^{i \phi}$ (with $r<R$) in Cauchy's formula,

$$
2 \pi i f\left(r e^{i \theta}\right)=\int_{0}^{2 \pi} \frac{f\left(R e^{i \phi}\right)}{R e^{i \phi}-r e^{i \theta}}\left(i R e^{i \phi}\right) d \phi
$$

How to get rid of imaginary quantities from the expression?
Develop a complement. With $\frac{R^{2}}{r}$ in place of r,
$0=\int_{0}^{2 \pi} \frac{f\left(R^{i \phi}\right)}{R e^{i \phi}-\frac{R^{2}}{r} e^{i \theta}}\left(i e^{i \phi}\right) d \phi=\int_{0}^{2 \pi} \frac{f\left(R^{i \phi}\right)}{r e^{-i \theta}-R e^{-i \phi}}\left(i r e^{-i \theta}\right) d \phi$.
Subtracting,

$$
\begin{aligned}
& 2 \pi i f\left(r e^{i \theta}\right)=i \int_{0}^{2 \pi} f\left(R e^{i \phi}\right)\left[\frac{R e^{i \phi}}{R e^{i \phi}-r e^{i \theta}}+\frac{r e^{-i \theta}}{R e^{-i \phi}-r e^{-i \theta}}\right] d \phi \\
&=i \int_{0}^{2 \pi} \frac{\left(R^{2}-r^{2}\right) f\left(R e^{i \phi}\right)}{\left(R e^{i \phi}-r e^{i \theta}\right)\left(R e^{-i \phi}-r e^{-i \theta}\right)} d \phi \\
& \Rightarrow f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(R^{2}-r^{2}\right) f\left(R e^{i \phi}\right)}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} d \phi
\end{aligned}
$$

Cauchy's Integral Formula

Integrals in the Complex Plane

Cauchy's integral formula evaluates contour integral of $g(z)$,
if the contour encloses a point z_{0} where $g(z)$ is non-analytic but $g(z)\left(z-z_{0}\right)$ is analytic.

If $g(z)\left(z-z_{0}\right)$ is also non-analytic, but $g(z)\left(z-z_{0}\right)^{2}$ is analytic?

Cauchy's integral formula evaluates contour integral of $g(z)$,
if the contour encloses a point z_{0} where $g(z)$ is non-analytic but $g(z)\left(z-z_{0}\right)$ is analytic.

If $g(z)\left(z-z_{0}\right)$ is also non-analytic, but $g(z)\left(z-z_{0}\right)^{2}$ is analytic?

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z, \\
f^{\prime}\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z, \\
f^{\prime \prime}\left(z_{0}\right) & =\frac{2!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z, \\
\cdots & =\cdots \\
f^{(n)}\left(z_{0}\right) & =\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z .
\end{aligned}
$$

Cauchy's integral formula evaluates contour integral of $g(z)$, if the contour encloses a point z_{0} where $g(z)$ is non-analytic but $g(z)\left(z-z_{0}\right)$ is analytic.

If $g(z)\left(z-z_{0}\right)$ is also non-analytic, but $g(z)\left(z-z_{0}\right)^{2}$ is analytic?

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z, \\
f^{\prime}\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z, \\
f^{\prime \prime}\left(z_{0}\right) & =\frac{2!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z, \\
\cdots & =\cdots \\
f^{(n)}\left(z_{0}\right) & =\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z .
\end{aligned}
$$

The formal expressions can be established through differentiation under the integral sign.

Cauchy's Integral Formula

Cauchy's Integral Formula

$$
\begin{aligned}
& \begin{aligned}
\frac{f\left(z_{0}+\delta z\right)-f\left(z_{0}\right)}{\delta z} & =\frac{1}{2 \pi i \delta z} \oint_{C} f(z)\left[\frac{1}{z-z_{0}-\delta z}-\frac{1}{z-z_{0}}\right] d z \\
& =\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}-\delta z\right)\left(z-z_{0}\right)} \\
= & \frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}+\frac{1}{2 \pi i} \oint_{C} f(z)\left[\frac{1}{\left(z-z_{0}-\delta z\right)\left(z-z_{0}\right)}-\frac{1}{\left(z-z_{0}\right)^{2}}\right] d z \\
= & \frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}+\frac{1}{2 \pi i} \delta z \oint_{C} \frac{f(z) d z}{\left(z-z_{0}-\delta z\right)\left(z-z_{0}\right)^{2}} \\
& \text { If }|f(z)|<M \text { on } C, L \text { is path length and } d_{0}=\min \left|z-z_{0}\right|, \\
& \left|\delta z \oint_{C} \frac{f(z) d z}{\left(z-z_{0}-\delta z\right)\left(z-z_{0}\right)^{2}}\right|<\frac{M L|\delta z|}{d_{0}^{2}\left(d_{0}-|\delta z|\right)} \rightarrow 0 \quad \text { as } \delta z \rightarrow 0 .
\end{aligned}
\end{aligned}
$$

An analytic function possesses derivatives of all orders at every point in its domain.

Analyticity implies much more than mere differentiability!

- Concept of line integral in complex plane
- Cauchy's integral theorem
- Consequences of analyticity
- Cauchy's integral formula
- Derivatives of arbitrary order for analytic functions

Necessary Exercises: 1,2,5,7

Singularities of Complex Functions
Series Representations of Complex Functions
Zeros and Singularities
Residues
Evaluation of Real Integrals

Mathematical Methods in Engineering and Science
Singularities of Complex Functions
1391,

Series Representations of Complex Funficticisify anion of complex functions

Taylor's series of function $f(z)$, analytic in Ealution nf Boal Irhels of z_{0} :

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+a_{3}\left(z-z_{0}\right)^{3}+\cdots
$$

with coefficients

$$
a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}}
$$

where C is a circle with centre at z_{0}.
Form of the series and coefficients: similar to real functions

Series Representations of Complex Funicicticiditisanites of Complex functions
Residues
Taylor's series of function $f(z)$, analytic in Eal netionfibourhorad of z_{0} :

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+a_{3}\left(z-z_{0}\right)^{3}+\cdots,
$$

with coefficients

$$
a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}},
$$

where C is a circle with centre at z_{0}.
Form of the series and coefficients: similar to real functions
The series representation is convergent within a disc $\left|z-z_{0}\right|<R$, where radius of convergence R is the distance of the nearest singularity from z_{0}.

Series Representations of Complex Funficticifisizain of complex functions
Residues
Taylor's series of function $f(z)$, analytic in Eal netionf beal letrals of z_{0} :

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+a_{3}\left(z-z_{0}\right)^{3}+\cdots,
$$

with coefficients

$$
a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}},
$$

where C is a circle with centre at z_{0}.
Form of the series and coefficients: similar to real functions
The series representation is convergent within a disc $\left|z-z_{0}\right|<R$, where radius of convergence R is the distance of the nearest singularity from z_{0}.

Note: No valid power series representation around z_{0}, i.e. in powers of $\left(z-z_{0}\right)$, if $f(z)$ is not analytic at z_{0}

Series Representations of Complex Funficticiefsitaion of complex functions
Residues
Taylor's series of function $f(z)$, analytic in Eal netionf beal letrals of z_{0} :

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+a_{3}\left(z-z_{0}\right)^{3}+\cdots,
$$

with coefficients

$$
a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}},
$$

where C is a circle with centre at z_{0}.
Form of the series and coefficients: similar to real functions
The series representation is convergent within a disc $\left|z-z_{0}\right|<R$, where radius of convergence R is the distance of the nearest singularity from z_{0}.

Note: No valid power series representation around z_{0}, i.e. in powers of $\left(z-z_{0}\right)$, if $f(z)$ is not analytic at z_{0}
Question: In that case, what about a series representation that includes negative powers of $\left(z-z_{0}\right)$ as well?

Mathematical Methods in Engineering and Science
Singularities of Complex Functions

Residues
Laurent's series: If $f(z)$ is analytic on circles $C_{1}^{\text {E }}$ (outer) and C_{2} (inner) with centre at z_{0}, and in the annulus in between, then

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{m=0}^{\infty} b_{m}\left(z-z_{0}\right)^{m}+\sum_{m=1}^{\infty} \frac{c_{m}}{\left(z-z_{0}\right)^{m}}
$$

with coefficients

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{n+1}} \\
\text { or, } \quad b_{m} & =\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{m+1}}, \quad c_{m}=\frac{1}{2 \pi i} \oint_{C} f(w)\left(w-z_{0}\right)^{m-1} d w ;
\end{aligned}
$$

the contour C lying in the annulus and enclosing C_{2}.

athematical Methods in Engineering and Science

Series Representations of Complex Fufficticiesigitains s fomplex functions

Laurent's series: If $f(z)$ is analytic on circles C_{1} (outer) and C_{2} (inner) with centre at z_{0}, and in the annulus in between, then

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{m=0}^{\infty} b_{m}\left(z-z_{0}\right)^{m}+\sum_{m=1}^{\infty} \frac{c_{m}}{\left(z-z_{0}\right)^{m}}
$$

with coefficients
or, $\quad b_{m}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{m+1}}, \quad c_{m}=\frac{1}{2 \pi i} \oint_{C} f(w)\left(w-z_{0}\right)^{m-1} d w$;
the contour C lying in the annulus and enclosing C_{2}.
Validity of this series representation: in annular region obtained by growing C_{1} and shrinking C_{2} till $f(z)$ ceases to be analytic.

athematical Methods in Engineering and Science

Series Representations of Complex Fufficticidifysainion of complex functions

Laurent's series: If $f(z)$ is analytic on circles C_{1} (outer) and C_{2} (inner) with centre at z_{0}, and in the annulus in between, then

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{m=0}^{\infty} b_{m}\left(z-z_{0}\right)^{m}+\sum_{m=1}^{\infty} \frac{c_{m}}{\left(z-z_{0}\right)^{m}}
$$

with coefficients
or, $\quad b_{m}=\frac{1}{2 \pi i} \oint_{C} \frac{f(w) d w}{\left(w-z_{0}\right)^{m+1}}, \quad c_{m}=\frac{1}{2 \pi i} \oint_{C} f(w)\left(w-z_{0}\right)^{m-1} d w$;
the contour C lying in the annulus and enclosing C_{2}.
Validity of this series representation: in annular region obtained by growing C_{1} and shrinking C_{2} till $f(z)$ ceases to be analytic. Observation: If $f(z)$ is analytic inside C_{2} as well, then $c_{m}=0$ and Laurent's series reduces to Taylor's series.

Mathematical Methods in Engineering and Science
Singularities of Complex Functions

Series Representations of Complex Fubictiedeityations of complex functions

Proof of Laurent's series

Cauchy's integral formula for any point z in the annulus,

$$
f(z)=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w) d w}{w-z}-\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(w) d w}{w-z} .
$$

Mathematical Methods in Engineering and Science
Singularities of Complex Functions
Series Representations of Complex Fufhictiofits Santions of Complex functions
Residues

Proof of Laurent's series

Cauchy's integral formula for any point z in the annulus,

$$
f(z)=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w) d w}{w-z}-\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(w) d w}{w-z}
$$

Organization of the series:

$$
\begin{aligned}
& \frac{1}{w-z}=\frac{1}{\left(w-z_{0}\right)\left[1-\left(z-z_{0}\right) /\left(w-z_{0}\right)\right]} \\
& \frac{1}{w-z}=-\frac{1}{\left(z-z_{0}\right)\left[1-\left(w-z_{0}\right) /\left(z-z_{0}\right)\right]}
\end{aligned}
$$

Figure: The annulus

Mathematical Methods in Engineering and Science
Series Representations of Complex Fufhictioditisarion of Complex functions
Residues

Proof of Laurent's series

Evaluation of Real Integrals

Cauchy's integral formula for any point z in the annulus,

$$
f(z)=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w) d w}{w-z}-\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(w) d w}{w-z}
$$

Organization of the series:
$\frac{1}{w-z}=\frac{1}{\left(w-z_{0}\right)\left[1-\left(z-z_{0}\right) /\left(w-z_{0}\right)\right]}$
$\frac{1}{w-z}=-\frac{1}{\left(z-z_{0}\right)\left[1-\left(w-z_{0}\right) /\left(z-z_{0}\right)\right]}$
Figure: The annulus

Using the expression for the sum of a geometric series,
$1+q+q^{2}+\cdots+q^{n-1}=\frac{1-q^{n}}{1-q} \Rightarrow \frac{1}{1-q}=1+q+q^{2}+\cdots+q^{n-1}+\frac{q^{n}}{1-q}$.

Series Representations of Complex Fuffictipesityaidion sf complex functions

Proof of Laurent's series

Cauchy's integral formula for any point z in the annulus,

$$
f(z)=\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w) d w}{w-z}-\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(w) d w}{w-z}
$$

Organization of the series:

$$
\begin{aligned}
& \frac{1}{w-z}=\frac{1}{\left(w-z_{0}\right)\left[1-\left(z-z_{0}\right) /\left(w-z_{0}\right)\right]} \\
& \frac{1}{w-z}=-\frac{1}{\left(z-z_{0}\right)\left[1-\left(w-z_{0}\right) /\left(z-z_{0}\right)\right]}
\end{aligned}
$$

Figure: The annulus

Using the expression for the sum of a geometric series,
$1+q+q^{2}+\cdots+q^{n-1}=\frac{1-q^{n}}{1-q} \Rightarrow \frac{1}{1-q}=1+q+q^{2}+\cdots+q^{n-1}+\frac{q^{n}}{1-q}$.
We use $q=\frac{z-z_{0}}{w-z_{0}}$ for integral over C_{1} and $q=\frac{w-z_{0}}{z-z_{0}}$ over C_{2}.

Mathematical Methods in Engineering and Science
Singularities of Complex Functions

Series Representations of Complex Fufficticidifysainion of complex functions

Proof of Laurent's series (contd)
Using $q=\frac{z-z_{0}}{w-z_{0}}$,

$$
\begin{aligned}
& \frac{1}{w-z}=\frac{1}{w-z_{0}}+\frac{z-z_{0}}{\left(w-z_{0}\right)^{2}}+\cdots+\frac{\left(z-z_{0}\right)^{n-1}}{\left(w-z_{0}\right)^{n}}+\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \frac{1}{w-z} \\
& \Rightarrow \frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w) d w}{w-z}=a_{0}+a_{1}\left(z-z_{0}\right)+\cdots+a_{n-1}\left(z-z_{0}\right)^{n-1}+T_{n}
\end{aligned}
$$

with coefficients as required and

$$
T_{n}=\frac{1}{2 \pi i} \oint_{C_{1}}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \frac{f(w)}{w-z} d w
$$

Series Representations of Complex Fuficictiobitystains of Complex functions

Proof of Laurent's series (contd)

Using $q=\frac{z-z_{0}}{w-z_{0}}$,
$\frac{1}{w-z}=\frac{1}{w-z_{0}}+\frac{z-z_{0}}{\left(w-z_{0}\right)^{2}}+\cdots+\frac{\left(z-z_{0}\right)^{n-1}}{\left(w-z_{0}\right)^{n}}+\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \frac{1}{w-z}$
$\Rightarrow \frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(w) d w}{w-z}=a_{0}+a_{1}\left(z-z_{0}\right)+\cdots+a_{n-1}\left(z-z_{0}\right)^{n-1}+T_{n}$,
with coefficients as required and

$$
T_{n}=\frac{1}{2 \pi i} \oint_{C_{1}}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \frac{f(w)}{w-z} d w
$$

Similarly, with $q=\frac{w-z_{0}}{z-z_{0}}$,
$-\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(w) d w}{w-z}=a_{-1}\left(z-z_{0}\right)^{-1}+\cdots+a_{-n}\left(z-z_{0}\right)^{-n}+T_{-n}$,
with appropriate coefficients and the remainder term

$$
T_{-n}=\frac{1}{2 \pi i} \oint_{C_{2}}\left(\frac{w-z_{0}}{z-z_{0}}\right)^{n} \frac{f(w)}{z-w} d w
$$

Mathematical Methods in Engineering and Science
Singularities of Complex Functions

1404,

Series Representations of Complex Fuffictiferifitaion of Complex functions
Convergence of Laurent's series

Evaluation of Real Integrals

$$
f(z)=\sum_{k=-n}^{n-1} a_{k}\left(z-z_{0}\right)^{k}+T_{n}+T_{-n}
$$

where

$$
\begin{aligned}
T_{n} & =\frac{1}{2 \pi i} \oint_{C_{1}}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \frac{f(w)}{w-z} d w \\
\text { and } \quad T_{-n} & =\frac{1}{2 \pi i} \oint_{C_{2}}\left(\frac{w-z_{0}}{z-z_{0}}\right)^{n} \frac{f(w)}{z-w} d w .
\end{aligned}
$$

Mathematical Methods in Engineering and Science
Series Representations of Complex Fuficictiondes ianion of Complex functions
Residues
Convergence of Laurent's series

$$
f(z)=\sum_{k=-n}^{n-1} a_{k}\left(z-z_{0}\right)^{k}+T_{n}+T_{-n}
$$

where

$$
\begin{aligned}
T_{n} & =\frac{1}{2 \pi i} \oint_{C_{1}}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \frac{f(w)}{w-z} d w \\
\text { and } \quad T_{-n} & =\frac{1}{2 \pi i} \oint_{C_{2}}\left(\frac{w-z_{0}}{z-z_{0}}\right)^{n} \frac{f(w)}{z-w} d w .
\end{aligned}
$$

- $f(w)$ is bounded
- $\left|\frac{z-z_{0}}{w-z_{0}}\right|<1$ over C_{1} and $\left|\frac{w-z_{0}}{z-z_{0}}\right|<1$ over C_{2}

Use $M-L$ inequality to show that
remainder terms T_{n} and T_{-n} approach zero as $n \rightarrow \infty$.

Series Representations of Complex Fuficictiobitystains of Complex functions
Convergence of Laurent's series

$$
f(z)=\sum_{k=-n}^{n-1} a_{k}\left(z-z_{0}\right)^{k}+T_{n}+T_{-n}
$$

where

$$
\begin{aligned}
T_{n} & =\frac{1}{2 \pi i} \oint_{C_{1}}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \frac{f(w)}{w-z} d w \\
\text { and } T_{-n} & =\frac{1}{2 \pi i} \oint_{C_{2}}\left(\frac{w-z_{0}}{z-z_{0}}\right)^{n} \frac{f(w)}{z-w} d w .
\end{aligned}
$$

- $f(w)$ is bounded
- $\left|\frac{z-z_{0}}{w-z_{0}}\right|<1$ over C_{1} and $\left|\frac{w-z_{0}}{z-z_{0}}\right|<1$ over C_{2}

Use $M-L$ inequality to show that
remainder terms T_{n} and T_{-n} approach zero as $n \rightarrow \infty$.
Remark: For actually developing Taylor's or Laurent's series of a function, algebraic manipulation of known facts are employed quite often, rather than evaluating so many contour integrals!

Zeros and Singularities

Zeros of an analytic function: points where the function vanishes If, at a point z_{0},
a function $f(z)$ vanishes along with first $m-1$ of its derivatives, but $f^{(m)}\left(z_{0}\right) \neq 0$;
then z_{0} is a zero of $f(z)$ of order m, giving the Taylor's series as

$$
f(z)=\left(z-z_{0}\right)^{m} g(z)
$$

Zeros of an analytic function: points where the function vanishes If, at a point z_{0},
a function $f(z)$ vanishes along with first $m-1$ of its derivatives, but $f^{(m)}\left(z_{0}\right) \neq 0$;
then z_{0} is a zero of $f(z)$ of order m, giving the Taylor's series as

$$
f(z)=\left(z-z_{0}\right)^{m} g(z)
$$

An isolated zero has a neighbourhood containing no other zero.
For an analytic function, not identically zero, every point has a neighbourhood free of zeros of the function, except possibly for that point itself. In particular, zeros of such an analytic function are always isolated.

Implication: If $f(z)$ has a zero in every neighbourhood around z_{0} then it cannot be analytic at z_{0}, unless it is the zero function [i.e. $f(z)=0$ everywhere].

Singularities of Complex Functions

1409,

Entire function: A function which is analytic everitionvihere Examples: z^{n} (for positive integer n), $e^{z}, \sin z$ etc.

The Taylor's series of an entire function has an infinite radius of convergence.

Entire function: A function which is analytic everywhere
Examples: z^{n} (for positive integer n), $e^{z}, \sin z$ etc.
The Taylor's series of an entire function has an infinite radius of convergence.

Singularities: points where a function ceases to be analytic
Removable singularity: If $f(z)$ is not defined at z_{0}, but has a limit.
Example: $f(z)=\frac{e^{z}-1}{z}$ at $z=0$.
Pole: If $f(z)$ has a Laurent's series around z_{0}, with a finite number of terms with negative powers. If $a_{n}=0$ for $n<-m$, but $a_{-m} \neq 0$, then z_{0} is a pole of order m, $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{m} f(z)$ being a non-zero finite number. A simple pole: a pole of order one.
Essential singularity: A singularity which is neither a removable singularity nor a pole. If the function has a Laurent's series, then it has infinite terms with negative powers. Example: $f(z)=e^{1 / z}$ at $z=0$.

Zeros and Singularities

Zeros and poles: complementary to each other ${ }^{\text {of }}$ Real Integrals

- Poles are necessarily isolated singularities.
- A zero of $f(z)$ of order m is a pole of $\frac{1}{f(z)}$ of the same order and vice versa.
- If $f(z)$ has a zero of order m at z_{0} where $g(z)$ has a pole of the same order, then $f(z) g(z)$ is either analytic at z_{0} or has a removable singularity there.
- Argument theorem:

If $f(z)$ is analytic inside and on a simple closed curve C except for a finite number of poles inside and $f(z) \neq 0$ on C, then

$$
\frac{1}{2 \pi i} \oint_{C} \frac{f^{\prime}(z)}{f(z)} d z=N-P
$$

where N and P are total numbers of zeros and poles inside C respectively, counting multiplicities (orders).

Mathematical Methods in Engineering and Science
Singularities of Complex Functions

Term by term integration of Laurent's series. ${ }^{v a l} \oint_{C}^{\text {tio }} f\left(z^{f}\right) d z^{t a n a l} 2 \pi i a_{-1}$

Mathematical Methods in Engineering and Science
Residues
Term by term integration of Laurent's series.al $\oint_{C}^{\text {tio }} f(z) d z^{+2} 2 \pi i a_{-1}$ Residue: $\quad \underset{z_{0}}{\operatorname{Res}} f(z)=a_{-1}=\frac{1}{2 \pi i} \oint_{C} f(z) d z$

Singularities of Complex Functions

Term by term integration of Laurent's series. $\oint_{C}^{\text {tio }} f(z) d z^{t} 2 \pi i a_{-1}$ Residue: $\quad \underset{z_{0}}{\operatorname{Res}} f(z)=a_{-1}=\frac{1}{2 \pi i} \oint_{C} f(z) d z$
If $f(z)$ has a pole (of order m) at z_{0}, then

$$
\left(z-z_{0}\right)^{m} f(z)=\sum_{n=-m}^{\infty} a_{n}\left(z-z_{0}\right)^{m+n}
$$

is analytic at z_{0}, and

$$
\frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]=\sum_{n=-1}^{\infty} \frac{(m+n)!}{(n+1)!} a_{n}\left(z-z_{0}\right)^{n+1}
$$

Singularities of Complex Functions

Term by term integration of Laurent's series.al $\oint_{C}^{\text {tio }} f\left(z_{z}\right) d z^{t} 2 \pi i a_{-1}$ Residue: $\quad \underset{z_{0}}{\text { Res }} f(z)=a_{-1}=\frac{1}{2 \pi i} \oint_{C} f(z) d z$ If $f(z)$ has a pole (of order m) at z_{0}, then

$$
\left(z-z_{0}\right)^{m} f(z)=\sum_{n=-m}^{\infty} a_{n}\left(z-z_{0}\right)^{m+n}
$$

is analytic at z_{0}, and

$$
\begin{aligned}
& \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]=\sum_{n=-1}^{\infty} \frac{(m+n)!}{(n+1)!} a_{n}\left(z-z_{0}\right)^{n+1} \\
\Rightarrow & \quad \underset{z_{0}}{\operatorname{Res} f}(z)=a_{-1}=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right] .
\end{aligned}
$$

Residues

Term by term integration of Laurent's series.al $\oint_{C}^{\text {tio }} f(\xi) d z=2 \pi i a_{-1}$ Residue: $\quad \underset{z_{0}}{\operatorname{Res}} f(z)=a_{-1}=\frac{1}{2 \pi i} \oint_{C} f(z) d z$ If $f(z)$ has a pole (of order m) at z_{0}, then

$$
\left(z-z_{0}\right)^{m} f(z)=\sum_{n=-m}^{\infty} a_{n}\left(z-z_{0}\right)^{m+n}
$$

is analytic at z_{0}, and

$$
\begin{aligned}
& \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]=\sum_{n=-1}^{\infty} \frac{(m+n)!}{(n+1)!} a_{n}\left(z-z_{0}\right)^{n+1} \\
\Rightarrow & \quad \operatorname{Res}_{z_{0}} f(z)=a_{-1}=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right] .
\end{aligned}
$$

Residue theorem: If $f(z)$ is analytic inside and on simple closed curve C, with singularities at $z_{1}, z_{2}, z_{3}, \cdots, z_{k}$ inside C; then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{i=1}^{k} \operatorname{Res}_{z_{i}} f(z)
$$

Evaluation of Real Integrals
Etatin

General strategy

- Identify the required integral as a contour integral of a complex function, or a part thereof.
- If the domain of integration is infinite, then extend the contour infinitely, without enclosing new singularities.

General strategy

- Identify the required integral as a contour integral of a complex function, or a part thereof.
- If the domain of integration is infinite, then extend the contour infinitely, without enclosing new singularities.

Example:

$$
I=\int_{0}^{2 \pi} \phi(\cos \theta, \sin \theta) d \theta
$$

With $z=e^{i \theta}$ and $d z=i z d \theta$,

$$
I=\oint_{C} \phi\left[\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2 i}\left(z-\frac{1}{z}\right)\right] \frac{d z}{i z}=\oint_{C} f(z) d z
$$

where C is the unit circle centred at the origin.
Denoting poles falling inside the unit circle C as p_{j},

$$
I=2 \pi i \sum_{j} \underset{p_{j}}{\operatorname{Res}} f(z)
$$

Evaluation of Real Integrals
Etatin
Example: For real rational function $f(x)$,

$$
I=\int_{-\infty}^{\infty} f(x) d x
$$

denominator of $f(x)$ being of degree two higher than numerator.

Evaluation of Real Integrals
Eate ind
Example: For real rational function $f(x)$,

$$
I=\int_{-\infty}^{\infty} f(x) d x,
$$

denominator of $f(x)$ being of degree two higher than numerator.
Consider contour C enclosing semi-circular region $|z| \leq R, y \geq 0$, large enough to enclose all singularities above the x-axis.

Figure: The contour

Example: For real rational function $f(x)$,

$$
I=\int_{-\infty}^{\infty} f(x) d x
$$

denominator of $f(x)$ being of degree two higher than numerator.
Consider contour C enclosing semi-circular region $|z| \leq R, y \geq 0$, large enough to enclose all singularities above the x-axis.

$$
\oint_{C} f(z) d z=\int_{-R}^{R} f(x) d x+\int_{S} f(z) d z
$$

For finite $M,|f(z)|<\frac{M}{R^{2}}$ on C

$$
\left|\int_{S} f(z) d z\right|<\frac{M}{R^{2}} \pi R=\frac{\pi M}{R} .
$$

Figure: The contour

Evaluation of Real Integrals

Example: For real rational function $f(x)$,

$$
I=\int_{-\infty}^{\infty} f(x) d x
$$

denominator of $f(x)$ being of degree two higher than numerator.
Consider contour C enclosing semi-circular region $|z| \leq R, y \geq 0$, large enough to enclose all singularities above the x-axis.

$$
\oint_{C} f(z) d z=\int_{-R}^{R} f(x) d x+\int_{S} f(z) d z
$$

For finite $M,|f(z)|<\frac{M}{R^{2}}$ on C

$$
\begin{aligned}
&\left|\int_{S} f(z) d z\right|<\frac{M}{R^{2}} \pi R=\frac{\pi M}{R} . \\
& I= \int_{-\infty}^{\infty} f(x) d x=2 \pi i \sum_{i} \operatorname{Resp}_{j} f(z) \quad \text { as } R \rightarrow \infty .
\end{aligned}
$$

Figure: The contour

Evaluation of Real Integrals
Example: Fourier integral coefficients

$$
A(s)=\int_{-\infty}^{\infty} f(x) \cos s x d x \text { and } \quad B(s)=\int_{-\infty}^{\infty} f(x) \sin s x d x
$$

Evaluation of Real Integrals

Example: Fourier integral coefficients

$$
A(s)=\int_{-\infty}^{\infty} f(x) \cos s x d x \text { and } \quad B(s)=\int_{-\infty}^{\infty} f(x) \sin s x d x
$$

Consider

$$
I=A(s)+i B(s)=\int_{-\infty}^{\infty} f(x) e^{i s x} d x
$$

Similar to the previous case,

$$
\oint_{C} f(z) e^{i s z} d z=\int_{-R}^{R} f(x) e^{i s x} d x+\int_{S} f(z) e^{i s z} d z
$$

As $\left|e^{i s z}\right|=\left|e^{i s x}\right|\left|e^{-s y}\right|=\left|e^{-s y}\right| \leq 1$ for $y \geq 0$, we have

$$
\left|\int_{S} f(z) e^{i s z} d z\right|<\frac{M}{R^{2}} \pi R=\frac{\pi M}{R}
$$

which yields, as $R \rightarrow \infty$,

$$
I=2 \pi i \sum_{j} \operatorname{Res}_{p_{j}}\left[f(z) e^{i s z}\right] .
$$

- Taylor's series and Laurent's series
- Zeros and poles of analytic functions
- Residue theorem
- Evaluation of real integrals through contour integration of suitable complex functions

Necessary Exercises: 1,2,3,5,8,9,10

Variational Calculus*

Introduction
Euler's Equation

Direct Methods

Consider a particle moving on a smooth surface $z=\psi\left(q_{1}, q_{2}\right)$.
With position $\mathbf{r}=\left[q_{1}(t) q_{2}(t) \psi\left(q_{1}(t), q_{2}(t)\right)\right]^{T}$ on the surface and $\delta \mathbf{r}=\left[\delta q_{1} \delta q_{2}(\nabla \psi)^{T} \delta \mathbf{q}\right]^{T}$ in the tangent plane, length of the path from $\mathbf{q}_{i}=\mathbf{q}\left(t_{i}\right)$ to $\mathbf{q}_{f}=\mathbf{q}\left(t_{f}\right)$ is

$$
I=\int\|\delta \mathbf{r}\|=\int_{t_{i}}^{t_{f}}\|\dot{\mathbf{r}}\| d t=\int_{t_{i}}^{t_{f}}\left[\dot{q}_{1}^{2}+\dot{q}_{2}^{2}+\left(\nabla \psi^{T} \dot{\mathbf{q}}\right)^{2}\right]^{1 / 2} d t
$$

For shortest path or geodesic, minimize the path length $/$.

Consider a particle moving on a smooth surface $z=\psi\left(q_{1}, q_{2}\right)$.
With position $\mathbf{r}=\left[q_{1}(t) q_{2}(t) \psi\left(q_{1}(t), q_{2}(t)\right)\right]^{T}$ on the surface and $\delta \mathbf{r}=\left[\delta q_{1} \delta q_{2}(\nabla \psi)^{T} \delta \mathbf{q}\right]^{T}$ in the tangent plane, length of the path from $\mathbf{q}_{i}=\mathbf{q}\left(t_{i}\right)$ to $\mathbf{q}_{f}=\mathbf{q}\left(t_{f}\right)$ is

$$
I=\int\|\delta \mathbf{r}\|=\int_{t_{i}}^{t_{f}}\|\dot{\mathbf{r}}\| d t=\int_{t_{i}}^{t_{f}}\left[\dot{q}_{1}^{2}+\dot{q}_{2}^{2}+\left(\nabla \psi^{T} \dot{\mathbf{q}}\right)^{2}\right]^{1 / 2} d t
$$

For shortest path or geodesic, minimize the path length I.
Question: What are the variables of the problem?

Consider a particle moving on a smooth surface $z=\psi\left(q_{1}, q_{2}\right)$.
With position $\mathbf{r}=\left[q_{1}(t) q_{2}(t) \psi\left(q_{1}(t), q_{2}(t)\right)\right]^{T}$ on the surface and $\delta \mathbf{r}=\left[\delta q_{1} \delta q_{2}(\nabla \psi)^{T} \delta \mathbf{q}\right]^{T}$ in the tangent plane, length of the path from $\mathbf{q}_{i}=\mathbf{q}\left(t_{i}\right)$ to $\mathbf{q}_{f}=\mathbf{q}\left(t_{f}\right)$ is

$$
I=\int\|\delta \mathbf{r}\|=\int_{t_{i}}^{t_{f}}\|\dot{\mathbf{r}}\| d t=\int_{t_{i}}^{t_{f}}\left[\dot{q}_{1}^{2}+\dot{q}_{2}^{2}+\left(\nabla \psi^{T} \dot{\mathbf{q}}\right)^{2}\right]^{1 / 2} d t
$$

For shortest path or geodesic, minimize the path length $/$.
Question: What are the variables of the problem?
Answer: The entire curve or function $\mathbf{q}(t)$.
Variational problem:
Optimization of a function of functions, i.e. a functional.

Functionals and their extremization

Suppose that a candidate curve is represented as a sequence of points $\mathbf{q}_{j}=\mathbf{q}\left(t_{j}\right)$ at time instants

$$
t_{i}=t_{0}<t_{1}<t_{2}<t_{3}<\cdots<t_{N-1}<t_{N}=t_{f} .
$$

Geodesic problem: a multivariate optimization problem with the $2(N-1)$ variables in $\left\{\mathbf{q}_{j}, 1 \leq j \leq N-1\right\}$.

With $N \rightarrow \infty$, we obtain the actual function.

Functionals and their extremization

Suppose that a candidate curve is represented as a sequence of points $\mathbf{q}_{j}=\mathbf{q}\left(t_{j}\right)$ at time instants

$$
t_{i}=t_{0}<t_{1}<t_{2}<t_{3}<\cdots<t_{N-1}<t_{N}=t_{f}
$$

Geodesic problem: a multivariate optimization problem with the $2(N-1)$ variables in $\left\{\mathbf{q}_{j}, 1 \leq j \leq N-1\right\}$.

With $N \rightarrow \infty$, we obtain the actual function.

First order necessary condition: Functional is stationary with respect to arbitrary small variations in $\left\{\mathbf{q}_{j}\right\}$.
[Equivalent to vanishing of the gradient]

Functionals and their extremization

Suppose that a candidate curve is represented as a sequence of points $\mathbf{q}_{j}=\mathbf{q}\left(t_{j}\right)$ at time instants

$$
t_{i}=t_{0}<t_{1}<t_{2}<t_{3}<\cdots<t_{N-1}<t_{N}=t_{f} .
$$

Geodesic problem: a multivariate optimization problem with the $2(N-1)$ variables in $\left\{\mathbf{q}_{j}, 1 \leq j \leq N-1\right\}$.

With $N \rightarrow \infty$, we obtain the actual function.

First order necessary condition: Functional is stationary with respect to arbitrary small variations in $\left\{\mathbf{q}_{j}\right\}$.
[Equivalent to vanishing of the gradient]
This gives equations for the stationary points.
Here, these equations are differential equations!

Examples of variational problems

Geodesic path: Minimize $I=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t$
Minimal surface of revolution: Minimize

$$
S=\int 2 \pi y d s=2 \pi \int_{a}^{b} y \sqrt{1+y^{\prime 2}} d x
$$

The brachistochrone problem: To find the curve along which the descent is fastest.
Minimize $T=\int \frac{d s}{v}=\int_{a}^{b} \sqrt{\frac{1+y^{\prime 2}}{2 g y}} d x$
Fermat's principle: Light takes the fastest path.
Minimize $T=\int_{u_{1}}^{u_{2}} \frac{\sqrt{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}}{c(x, y, z)} d u$
Isoperimetric problem: Largest area in the plane enclosed by a closed curve of given perimeter. By extension, extremize a functional under one or more equality constraints.
Hamilton's principle of least action: Evolution of a dynamic system through the minimization of the action

$$
s=\int_{t_{1}}^{t_{2}} L d t=\int_{t_{1}}^{t_{2}}(K-P) d t
$$

Find out a function $y(x)$, that will make the functional

$$
I[y(x)]=\int_{x_{1}}^{x_{2}} f\left[x, y(x), y^{\prime}(x)\right] d x
$$

stationary, with boundary conditions $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$.

Find out a function $y(x)$, that will make the functional

$$
I[y(x)]=\int_{x_{1}}^{x_{2}} f\left[x, y(x), y^{\prime}(x)\right] d x
$$

stationary, with boundary conditions $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$.
Consider variation $\delta y(x)$ with $\delta y\left(x_{1}\right)=\delta y\left(x_{2}\right)=0$ and consistent variation $\delta y^{\prime}(x)$.

$$
\delta I=\int_{x_{1}}^{x_{2}}\left(\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \delta y^{\prime}\right) d x
$$

Euler's Equation

Find out a function $y(x)$, that will make the functional

$$
I[y(x)]=\int_{x_{1}}^{x_{2}} f\left[x, y(x), y^{\prime}(x)\right] d x
$$

stationary, with boundary conditions $y\left(x_{1}\right)=y_{1}$ and $y\left(x_{2}\right)=y_{2}$.
Consider variation $\delta y(x)$ with $\delta y\left(x_{1}\right)=\delta y\left(x_{2}\right)=0$ and consistent variation $\delta y^{\prime}(x)$.

$$
\delta I=\int_{x_{1}}^{x_{2}}\left(\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \delta y^{\prime}\right) d x
$$

Integration of the second term by parts:
$\int_{x_{1}}^{x_{2}} \frac{\partial f}{\partial y^{\prime}} \delta y^{\prime} d x=\int_{x_{1}}^{x_{2}} \frac{\partial f}{\partial y^{\prime}} \frac{d}{d x}(\delta y) d x=\left[\frac{\partial f}{\partial y^{\prime}} \delta y\right]_{x_{1}}^{x_{2}}-\int_{x_{1}}^{x_{2}} \frac{d}{d x} \frac{\partial f}{\partial y^{\prime}} \delta y d x$
With $\delta y\left(x_{1}\right)=\delta y\left(x_{2}\right)=0$, the first term vanishes identically, and

$$
\delta I=\int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}\right] \delta y d x
$$

For $\delta /$ to vanish for arbitrary $\delta y(x)$,

$$
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\frac{\partial f}{\partial y}=0
$$

Euler's Equation

For $\delta \mathrm{l}$ to vanish for arbitrary $\delta y(x)$,

$$
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\frac{\partial f}{\partial y}=0
$$

Functions involving higher order derivatives

$$
I[y(x)]=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}\right) d x
$$

with prescribed boundary values for $y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n-1)}$

Euler's Equation
For δI to vanish for arbitrary $\delta y(x)$,

$$
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\frac{\partial f}{\partial y}=0
$$

Functions involving higher order derivatives

$$
I[y(x)]=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}\right) d x
$$

with prescribed boundary values for $y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n-1)}$

$$
\delta I=\int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \delta y^{\prime}+\frac{\partial f}{\partial y^{\prime \prime}} \delta y^{\prime \prime}+\cdots+\frac{\partial f}{\partial y^{(n)}} \delta y^{(n)}\right] d x
$$

Working rule: Starting from the last term, integrate one term at a time by parts, using consistency of variations and BC's.

For $\delta /$ to vanish for arbitrary $\delta y(x)$,

$$
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\frac{\partial f}{\partial y}=0
$$

Functions involving higher order derivatives

$$
I[y(x)]=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}\right) d x
$$

with prescribed boundary values for $y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n-1)}$

$$
\delta I=\int_{x_{1}}^{x_{2}}\left[\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \delta y^{\prime}+\frac{\partial f}{\partial y^{\prime \prime}} \delta y^{\prime \prime}+\cdots+\frac{\partial f}{\partial y^{(n)}} \delta y^{(n)}\right] d x
$$

Working rule: Starting from the last term, integrate one term at a time by parts, using consistency of variations and BC's.
Euler's equation:

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}-\cdots+(-1)^{n} \frac{d^{n}}{d x^{n}} \frac{\partial f}{\partial y^{(n)}}=0
$$

an ODE of order $2 n$, in general.

Functionals of a vector function

$$
l[\mathbf{r}(t)]=\int_{t_{1}}^{t_{2}} f(t, \mathbf{r}, \dot{\mathbf{r}}) d t
$$

Functionals of a vector function

$$
I[\mathbf{r}(t)]=\int_{t_{1}}^{t_{2}} f(t, \mathbf{r}, \dot{\mathbf{r}}) d t
$$

In terms of partial gradients $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \dot{r}}$,

$$
\begin{aligned}
\delta l & =\int_{t_{1}}^{t_{2}}\left[\left(\frac{\partial f}{\partial \mathbf{r}}\right)^{T} \delta \mathbf{r}+\left(\frac{\partial f}{\partial \dot{\mathbf{r}}}\right)^{T} \delta \dot{\mathbf{r}}\right] d t \\
& =\int_{t_{1}}^{t_{2}}\left(\frac{\partial f}{\partial \mathbf{r}}\right)^{T} \delta \mathbf{r} d t+\left[\left(\frac{\partial f}{\partial \dot{\mathbf{r}}}\right)^{T} \delta \mathbf{r}\right]_{t_{1}}^{t_{2}}-\int_{t_{1}}^{t_{2}} \frac{d}{d t}\left(\frac{\partial f}{\partial \dot{\mathbf{r}}}\right)^{T} \delta \mathbf{r} d t \\
& =\int_{t_{1}}^{t_{2}}\left[\frac{\partial f}{\partial \mathbf{r}}-\frac{d}{d t} \frac{\partial f}{\partial \dot{\mathbf{r}}}\right]^{T} \delta \mathbf{r} d t .
\end{aligned}
$$

Functionals of a vector function

$$
I[\mathbf{r}(t)]=\int_{t_{1}}^{t_{2}} f(t, \mathbf{r}, \dot{\mathbf{r}}) d t
$$

In terms of partial gradients $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \dot{r}}$,

$$
\begin{aligned}
\delta l & =\int_{t_{1}}^{t_{2}}\left[\left(\frac{\partial f}{\partial \mathbf{r}}\right)^{T} \delta \mathbf{r}+\left(\frac{\partial f}{\partial \dot{\mathbf{r}}}\right)^{T} \delta \dot{\mathbf{r}}\right] d t \\
& =\int_{t_{1}}^{t_{2}}\left(\frac{\partial f}{\partial \mathbf{r}}\right)^{T} \delta \mathbf{r} d t+\left[\left(\frac{\partial f}{\partial \dot{\mathbf{r}}}\right)^{T} \delta \mathbf{r}\right]_{t_{1}}^{t_{2}}-\int_{t_{1}}^{t_{2}} \frac{d}{d t}\left(\frac{\partial f}{\partial \dot{\mathbf{r}}}\right)^{T} \delta \mathbf{r} d t \\
& =\int_{t_{1}}^{t_{2}}\left[\frac{\partial f}{\partial \mathbf{r}}-\frac{d}{d t} \frac{\partial f}{\partial \dot{\mathbf{r}}}\right]^{T} \delta \mathbf{r} d t .
\end{aligned}
$$

Euler's equation: a system of second order ODE's

$$
\frac{d}{d t} \frac{\partial f}{\partial \dot{\mathbf{r}}}-\frac{\partial f}{\partial \mathbf{r}}=\mathbf{0} \quad \text { or } \quad \frac{d}{d t} \frac{\partial f}{\partial \dot{r}_{i}}-\frac{\partial f}{\partial r_{i}}=0 \text { for each } i .
$$

Functionals of functions of several variables

$$
I[u(x, y)]=\int_{D} \int f\left(x, y, u, u_{x}, u_{y}\right) d x d y
$$

Functionals of functions of several variables

$$
I[u(x, y)]=\int_{D} \int f\left(x, y, u, u_{x}, u_{y}\right) d x d y
$$

Euler's equation: $\frac{\partial}{\partial x} \frac{\partial f}{\partial u_{x}}+\frac{\partial}{\partial y} \frac{\partial f}{\partial u_{y}}-\frac{\partial f}{\partial u}=0$

Functionals of functions of several variables

$$
I[u(x, y)]=\int_{D} \int f\left(x, y, u, u_{x}, u_{y}\right) d x d y
$$

Euler's equation: $\frac{\partial}{\partial x} \frac{\partial f}{\partial u_{x}}+\frac{\partial}{\partial y} \frac{\partial f}{\partial u_{y}}-\frac{\partial f}{\partial u}=0$
Moving boundaries
Revision of the basic case: allowing non-zero $\delta y\left(x_{1}\right), \delta y\left(x_{2}\right)$

Functionals of functions of several variables

$$
I[u(x, y)]=\int_{D} \int f\left(x, y, u, u_{x}, u_{y}\right) d x d y
$$

Euler's equation: $\frac{\partial}{\partial x} \frac{\partial f}{\partial u_{x}}+\frac{\partial}{\partial y} \frac{\partial f}{\partial u_{y}}-\frac{\partial f}{\partial u}=0$
Moving boundaries
Revision of the basic case: allowing non-zero $\delta y\left(x_{1}\right), \delta y\left(x_{2}\right)$
At an end-point, $\frac{\partial f}{\partial y^{\prime}} \delta y$ has to vanish for arbitrary $\delta y(x)$.
$\frac{\partial f}{\partial y^{\prime}}$ vanishes at the boundary.
Euler boundary condition or natural boundary condition

Functionals of functions of several variables

$$
I[u(x, y)]=\int_{D} \int f\left(x, y, u, u_{x}, u_{y}\right) d x d y
$$

Euler's equation: $\frac{\partial}{\partial x} \frac{\partial f}{\partial u_{x}}+\frac{\partial}{\partial y} \frac{\partial f}{\partial u_{y}}-\frac{\partial f}{\partial u}=0$

Moving boundaries

Revision of the basic case: allowing non-zero $\delta y\left(x_{1}\right), \delta y\left(x_{2}\right)$
At an end-point, $\frac{\partial f}{\partial y^{\prime}} \delta y$ has to vanish for arbitrary $\delta y(x)$.
$\frac{\partial f}{\partial y^{\prime}}$ vanishes at the boundary.
Euler boundary condition or natural boundary condition
Equality constraints and isoperimetric problems
Minimize $I=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x$ subject to $J=\int_{x_{1}}^{x_{2}} g\left(x, y, y^{\prime}\right) d x=J_{0}$. In another level of generalization, constraint $\phi\left(x, y, y^{\prime}\right)=0$.

Functionals of functions of several variables

$$
I[u(x, y)]=\int_{D} \int f\left(x, y, u, u_{x}, u_{y}\right) d x d y
$$

Euler's equation: $\frac{\partial}{\partial x} \frac{\partial f}{\partial u_{x}}+\frac{\partial}{\partial y} \frac{\partial f}{\partial u_{y}}-\frac{\partial f}{\partial u}=0$

Moving boundaries

Revision of the basic case: allowing non-zero $\delta y\left(x_{1}\right), \delta y\left(x_{2}\right)$
At an end-point, $\frac{\partial f}{\partial y^{\prime}} \delta y$ has to vanish for arbitrary $\delta y(x)$.
$\frac{\partial f}{\partial y^{\prime}}$ vanishes at the boundary.
Euler boundary condition or natural boundary condition
Equality constraints and isoperimetric problems
Minimize $I=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x$ subject to $J=\int_{x_{1}}^{x_{2}} g\left(x, y, y^{\prime}\right) d x=J_{0}$. In another level of generalization, constraint $\phi\left(x, y, y^{\prime}\right)=0$.
Operate with $f^{*}\left(x, y, y^{\prime}, \lambda\right)=f\left(x, y, y^{\prime}\right)+\lambda(x) g\left(x, y, y^{\prime}\right)$.

Direct Methods

Finite difference method

With given boundary values $y(a)$ and $y(b)$,

$$
I[y(x)]=\int_{a}^{b} f\left[x, y(x), y^{\prime}(x)\right] d x
$$

- Represent $y(x)$ by its values over $x_{i}=a+i h$ with $i=0,1,2, \cdots, N$, where $b-a=N h$.
- Approximate the functional by

$$
I[y(x)] \approx \phi\left(y_{1}, y_{2}, y_{3}, \cdots, y_{N-1}\right)=\sum_{i=1}^{N} f\left(\bar{x}_{i}, \bar{y}_{i}, \bar{y}_{i}^{\prime}\right) h
$$

where $\bar{x}_{i}=\frac{x_{i}+x_{i-1}}{2}, \bar{y}_{i}=\frac{y_{i}+y_{i-1}}{2}$ and $\bar{y}_{i}^{\prime}=\frac{y_{i}-y_{i-1}}{h}$.

- Minimize $\phi\left(y_{1}, y_{2}, y_{3}, \cdots, y_{N-1}\right)$ with respect to y_{i}; for example, by solving $\frac{\partial \phi}{\partial y_{i}}=0$ for all i.

Finite difference method

With given boundary values $y(a)$ and $y(b)$,

$$
I[y(x)]=\int_{a}^{b} f\left[x, y(x), y^{\prime}(x)\right] d x
$$

- Represent $y(x)$ by its values over $x_{i}=a+i h$ with $i=0,1,2, \cdots, N$, where $b-a=N h$.
- Approximate the functional by

$$
I[y(x)] \approx \phi\left(y_{1}, y_{2}, y_{3}, \cdots, y_{N-1}\right)=\sum_{i=1}^{N} f\left(\bar{x}_{i}, \bar{y}_{i}, \bar{y}_{i}^{\prime}\right) h
$$

where $\bar{x}_{i}=\frac{x_{i}+x_{i-1}}{2}, \bar{y}_{i}=\frac{y_{i}+y_{i-1}}{2}$ and $\bar{y}_{i}^{\prime}=\frac{y_{i}-y_{i-1}}{h}$.

- Minimize $\phi\left(y_{1}, y_{2}, y_{3}, \cdots, y_{N-1}\right)$ with respect to y_{i}; for example, by solving $\frac{\partial \phi}{\partial y_{i}}=0$ for all i.
Exercise: Show that $\frac{\partial \phi}{\partial y_{i}}=0$ is equivalent to Euler's equation.

Rayleigh-Ritz method

In terms of a set of basis functions, express the solution as

$$
y(x)=\sum_{i=1}^{N} \alpha_{i} w_{i}(x)
$$

Represent functional $I[y(x)]$ as a multivariate function $\phi(\boldsymbol{\alpha})$.
Optimize $\phi(\boldsymbol{\alpha})$ to determine α_{i} 's.

Variational Calculus*

Rayleigh-Ritz method

In terms of a set of basis functions, express the solution as

$$
y(x)=\sum_{i=1}^{N} \alpha_{i} w_{i}(x)
$$

Represent functional $I[y(x)]$ as a multivariate function $\phi(\boldsymbol{\alpha})$.
Optimize $\phi(\boldsymbol{\alpha})$ to determine α_{i} 's.
Note: As $N \rightarrow \infty$, the numerical solution approaches exactitude.
For a particular tolerance, one can truncate appropriately.

Rayleigh-Ritz method

In terms of a set of basis functions, express the solution as

$$
y(x)=\sum_{i=1}^{N} \alpha_{i} w_{i}(x)
$$

Represent functional $I[y(x)]$ as a multivariate function $\phi(\boldsymbol{\alpha})$.
Optimize $\phi(\boldsymbol{\alpha})$ to determine α_{i} 's.
Note: As $N \rightarrow \infty$, the numerical solution approaches exactitude. For a particular tolerance, one can truncate appropriately.

Observation: With these direct methods, no need to reduce the variational (optimization) problem to Euler's equation!

Rayleigh-Ritz method

In terms of a set of basis functions, express the solution as

$$
y(x)=\sum_{i=1}^{N} \alpha_{i} w_{i}(x)
$$

Represent functional $I[y(x)]$ as a multivariate function $\phi(\boldsymbol{\alpha})$.
Optimize $\phi(\boldsymbol{\alpha})$ to determine α_{i} 's.
Note: As $N \rightarrow \infty$, the numerical solution approaches exactitude. For a particular tolerance, one can truncate appropriately.

Observation: With these direct methods, no need to reduce the variational (optimization) problem to Euler's equation!

Question: Is it possible to reformulate a BVP as a variational problem and then use a direct method?

Mathematical Methods in Engineering and Science
Direct Methods

The inverse problem: From

$$
I[y(x)] \approx \phi(\boldsymbol{\alpha})=\int_{a}^{b} f\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}(x), \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}(x)\right) d x
$$

Mathematical Methods in Engineering and Science
Variational Calculus*
Direct Methods

The inverse problem: From

$$
\begin{aligned}
& I[y(x)] \approx \phi(\boldsymbol{\alpha})=\int_{a}^{b} f\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}(x), \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}(x)\right) d x \\
& \frac{\partial \phi}{\partial \alpha_{i}}=\int_{a}^{b}\left[\frac{\partial f}{\partial y}\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}, \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}\right) w_{i}(x)+\frac{\partial f}{\partial y^{\prime}}\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}, \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}\right) w_{i}^{\prime}(x)\right] d x .
\end{aligned}
$$

The inverse problem: From

$$
\begin{aligned}
& I[y(x)] \approx \phi(\boldsymbol{\alpha})=\int_{a}^{b} f\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}(x), \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}(x)\right) d x \\
& \frac{\partial \phi}{\partial \alpha_{i}}=\int_{a}^{b}\left[\frac{\partial f}{\partial y}\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}, \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}\right) w_{i}(x)+\frac{\partial f}{\partial y^{\prime}}\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}, \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}\right) w_{i}^{\prime}(x)\right] d x .
\end{aligned}
$$

Integrating the second term by parts and using $w_{i}(a)=w_{i}(b)=0$,

$$
\frac{\partial \phi}{\partial \alpha_{i}}=\int_{a}^{b} \mathcal{R}\left[\sum_{i=1}^{N} \alpha_{i} w_{i}\right] w_{i}(x) d x
$$

where $\mathcal{R}[y] \equiv \frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0$ is the Euler's equation of the variational problem.

The inverse problem: From

$$
\begin{aligned}
& I[y(x)] \approx \phi(\boldsymbol{\alpha})=\int_{a}^{b} f\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}(x), \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}(x)\right) d x, \\
& \frac{\partial \phi}{\partial \alpha_{i}}=\int_{a}^{b}\left[\frac{\partial f}{\partial y}\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}, \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}\right) w_{i}(x)+\frac{\partial f}{\partial y^{\prime}}\left(x, \sum_{i=1}^{N} \alpha_{i} w_{i}, \sum_{i=1}^{N} \alpha_{i} w_{i}^{\prime}\right) w_{i}^{\prime}(x)\right] d x .
\end{aligned}
$$

Integrating the second term by parts and using $w_{i}(a)=w_{i}(b)=0$,

$$
\frac{\partial \phi}{\partial \alpha_{i}}=\int_{a}^{b} \mathcal{R}\left[\sum_{i=1}^{N} \alpha_{i} w_{i}\right] w_{i}(x) d x
$$

where $\mathcal{R}[y] \equiv \frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0$ is the Euler's equation of the variational problem.
Def.: $\mathcal{R}[z(x)]$: residual of the differential equation $\mathcal{R}[y]=0$ operated over the function $z(x)$

Residual of the Euler's equation of a variational problem operated upon the solution obtained by Rayleigh-Ritz method is orthogonal to basis functions $w_{i}(x)$.

Galerkin method

Question: What if we cannot find a 'corresponding' variational problem for the differential equation?
Answer: Work with the residual directly and demand

$$
\int_{a}^{b} \mathcal{R}[z(x)] w_{i}(x) d x=0 .
$$

Variational Calculus*

Galerkin method

Question: What if we cannot find a 'corresponding' variational problem for the differential equation?
Answer: Work with the residual directly and demand

$$
\int_{a}^{b} \mathcal{R}[z(x)] w_{i}(x) d x=0 .
$$

Freedom to choose two different families of functions as basis functions $\psi_{j}(x)$ and trial functions $w_{i}(x)$:

$$
\int_{a}^{b} \mathcal{R}\left[\sum_{j} \alpha_{j} \psi_{j}(x)\right] w_{i}(x) d x=0
$$

Galerkin method

Question: What if we cannot find a 'corresponding' variational problem for the differential equation?
Answer: Work with the residual directly and demand

$$
\int_{a}^{b} \mathcal{R}[z(x)] w_{i}(x) d x=0 .
$$

Freedom to choose two different families of functions as basis functions $\psi_{j}(x)$ and trial functions $w_{i}(x)$:

$$
\int_{a}^{b} \mathcal{R}\left[\sum_{j} \alpha_{j} \psi_{j}(x)\right] w_{i}(x) d x=0
$$

A singular case of the Galerkin method: delta functions, at discrete points, as trial functions

Direct Methods

Galerkin method

Question: What if we cannot find a 'corresponding' variational problem for the differential equation?
Answer: Work with the residual directly and demand

$$
\int_{a}^{b} \mathcal{R}[z(x)] w_{i}(x) d x=0
$$

Freedom to choose two different families of functions as basis functions $\psi_{j}(x)$ and trial functions $w_{i}(x)$:

$$
\int_{a}^{b} \mathcal{R}\left[\sum_{j} \alpha_{j} \psi_{j}(x)\right] w_{i}(x) d x=0
$$

A singular case of the Galerkin method: delta functions, at discrete points, as trial functions

Satisfaction of the differential equation exactly at the chosen points, known as collocation points:

Collocation method

Finite element methods

- discretization of the domain into elements of simple geometry
- basis functions of low order polynomials with local scope
- design of basis functions so as to achieve enough order of continuity or smoothness across element boundaries
- piecewise continuous/smooth basis functions for entire domain, with a built-in sparse structure
- some weighted residual method to frame the algebraic equations
- solution gives coefficients which are actually the nodal values

Direct Methods

Finite element methods

- discretization of the domain into elements of simple geometry
- basis functions of low order polynomials with local scope
- design of basis functions so as to achieve enough order of continuity or smoothness across element boundaries
- piecewise continuous/smooth basis functions for entire domain, with a built-in sparse structure
- some weighted residual method to frame the algebraic equations
- solution gives coefficients which are actually the nodal values

Suitability of finite element analysis in software environments

- effectiveness and efficiency
- neatness and modularity
- Optimization with respect to a function
- Concept of a functional
- Euler's equation
- Rayleigh-Ritz and Galerkin methods
- Optimization and equation-solving in the infinite-dimensional function space: practical methods and connections

Necessary Exercises: 1,2,4,5

Mathematical Methods in Engineering and Science

Epilogue

Source for further information:
http://home.iitk.ac.in/~ dasgupta/MathBook
Destination for feedback: dasgupta@iitk.ac.in

Epilogue

Source for further information:
http://home.iitk.ac.in/~ dasgupta/MathBook
Destination for feedback:
dasgupta@iitk.ac.in

Some general courses in immediate continuation

- Advanced Mathematical Methods
- Scientific Computing
- Advanced Numerical Analysis
- Optimization
- Advanced Differential Equations
- Partial Differential Equations
- Finite Element Methods

Some specialized courses in immediate continuation

- Linear Algebra and Matrix Theory
- Approximation Theory
- Variational Calculus and Optimal Control
- Advanced Mathematical Physics
- Geometric Modelling
- Computational Geometry
- Computer Graphics
- Signal Processing
- Image Processing

Mathematical Methods in Engineering and Science

Selected References

Selected References I

图 F. S. Acton.
Numerical Methods that usually Work. The Mathematical Association of America (1990).
R C. M. Bender and S. A. Orszag.
Advanced Mathematical Methods for Scientists and Engineers.
Springer-Verlag (1999).
圊 G. Birkhoff and G.-C. Rota.
Ordinary Differential Equations.
John Wiley and Sons (1989).
© G. H. Golub and C. F. Van Loan.
Matrix Computations.
The John Hopkins University Press (1983).

Selected References II

國 M. T. Heath.
Scientific Computing.
Tata McGraw-Hill Co. Ltd (2000).
E. Kreyszig.

Advanced Engineering Mathematics.
John Wiley and Sons (2002).
E. V. Krishnamurthy and S. K. Sen.

Numerical Algorithms.
Affiliated East-West Press Pvt Ltd (1986).
© D. G. Luenberger.
Linear and Nonlinear Programming.
Addison-Wesley (1984).
國 P. V. O'Neil.
Advanced Engineering Mathematics.
Thomson Books (2004).

E W. H. Press, S. A. Teukolsky, W. T. Vellerling and B. P. Flannery.
Numerical Recipes.
Cambridge University Press (1998).
固 G. F. Simmons.
Differential Equations with Applications and Historical Notes. Tata McGraw-Hill Co. Ltd (1991).

围 J. Stoer and R. Bulirsch. Introduction to Numerical Analysis.
Springer-Verlag (1993).
(R. C. Wylie and L. C. Barrett. Advanced Engineering Mathematics. Tata McGraw-Hill Co. Ltd (2003).

