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Applied linear algebra

Multivariate calculus and vector calculus
Numerical methods

Differential equations + +

Complex analysis
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Theme of the Course

Theme of the Course

To develop a firm mathematical background necessary for graduate
studies and research
> a fast-paced recapitulation of UG mathematics

> extension with supplementary advanced ideas for a mature
and forward orientation

» exposure and highlighting of interconnections

To pre-empt needs of the future challenges

» trade-off between sufficient and reasonable

> target mid-spectrum majority of students

Notable beneficiaries (at two ends)
» would-be researchers in analytical /computational areas

» students who are till now somewhat afraid of mathematics
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Sources for More Detailed Study

Sources for More Detailed Study

If you have the time, need and interest, then you may consult
» individual books on individual topics;

» another “umbrella” volume, like Kreyszig, McQuarrie, O’Neil
or Wylie and Barrett;

» a good book of numerical analysis or scientific computing, like
Acton, Heath, Hildebrand, Krishnamurthy and Sen, Press et
al, Stoer and Bulirsch;

» friends, in joint-study groups.

10,
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Logistic Strategy

Logistic Strategy
» Study in the given sequence, to the extent possible.
» Do not read mathematics.

» Use lots of pen and paper.
Read “mathematics books” and do mathematics.
» Exercises are must.
» Use as many methods as you can think of, certainly including
the one which is recommended.
» Consult the Appendix after you work out the solution. Follow
the comments, interpretations and suggested extensions.
» Think. Get excited. Discuss. Bore everybody in your known
circles.
» Not enough time to attempt all? Want a ?

» Program implementation is needed in algorithmic exercises.

» Master a programming environment.
» Use mathematical /numerical library/software.

Take a MATLAB tutorial session?

Applied Mathematical Methods Preliminary Background

Expected Background

Expected Background

» moderate background of undergraduate mathematics

» firm understanding of school mathematics and undergraduate
calculus

Take the preliminary test.
Grade yourself sincerely.

Prerequisite Problem Sets*

Applied Mathematical Methods Preliminary Background

Logistic Strategy

Logistic Strategy

Tutorial Plan
Chapter | Selection Tutorial [Chapter| Selection [Tutorial
2 23 3 26 1246 4
3 2456 45 27 1234 34
4 12457 45 28 256 6
5 145 4 29 1,256 6
6 1247 4 30 12345 4
7 1234 2 31 12 1(d)
8 1,234,6 4 32 1357 7
9 124 4 33 12378 8
10 234 4 34 1356 5
11 245 5 35 134 3
12 13 3 36 124 4
13 12 1 37 1 1(c)
14 24567 4 38 12345 5
15 6,7 7 39 2345 4
16 2348 8 40 1245 4
17 1236 6 41 1,368 8
18 1,2,36,7 3 42 136 6
19 1346 6 43 234 3
20 123 2 a4 1247910 | 7,10
21 12578 7 45 1,234,79 49
22 123456 34 46 1,257 7
23 123 3 47 12358910 9,10
24 123456 1 48 1245 5
25 12345 5
Applied Mathematical Methods Preliminary Background

Points to note

Expected Background

» Put in effort, keep pace.
> Stress concept as well as problem-solving.
» Follow methods diligently.

» Ensure background skills.

Necessary Exercises: Prerequisite problem sets 7?7

14,

16,
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Matrices Matrices
Consider these definitions:
>y =f(x)
>y = f(x) = f(X1,X2,"' ’Xn)
>y = () = fulxi %, o xn), k=1,2,--.m
>y =f(x)
> y=Ax

Further Answer:
A matrix is the definition of a linear vector function of a
vector variable.

Anything deeper?

Caution: Matrices do not define vector functions whose components are
of the form

Yk = ako + ak1X1 + akax2 + - -+ + akpXn.

17, Applied Mathematical Methods Matrices and Linear Transformations

Matrices

Matrices

Question: What is a "matrix"?
Answers:
> a rectangular array of numbers/elements 7
» a mapping f : M x N — F, where M = {1,2,3,--- , m},
N =1{1,2,3,--- ,n} and F is the set of real numbers or
complex numbers 7

Question: What does a matrix do?
Explore: With an m x n matrix A,

Y1 = auxi+awpxe+ -+ ainXs
Yo = aoix1+axnxg+ -+ aanXy
or Ax =
Ym = amiX1+ ameXe + -+ amnXn
19, Applied Mathematical Methods Matrices and Linear Transformations

Geometry and Algebra

Geometry and Algebra

Let vector x = [x; xo x3]' denote a point (x1, X2, X3) in
3-dimensional space in frame of reference OX1.X>.X3.
Example: With m =2 and n =3,

n =

ai1x1 + ai2xe + a13x3
Y2 =

ax1X1 + axnXe + a23x3

Plot y; and y» in the OY7Y5 plane.

A RE.R?

Domain Co-domain

Figure: Linear transformation: schematic illustration

What is matrix A doing?‘

18,

20,
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Geometry and Algebra Geometry and Algebra Linear Transformations
Linear Transformations
Operate A on a large number of points x; € R3.
Operating on point x in R3, matrix A transforms it to y in R. Obtain corresponding images y; € R?.

The linear transformation represented by A implies the totality of
Point y is the image of point x under the mapping defined by these correspondences.

matrix A.
We decide to use a different frame of reference OX{X3X} for R3.
[And, possibly OY] Y, for R? at the same time.]

Note domain R3, co-domain R? with reference to the and
verify that A : R3 — R? fulfils the requirements of a mapping, by Coordinates change, i.e. x; changes to ! (and possibly y; to y/).
definition.

Now, we need a different matrix, say A’, to get back the
correspondence as y' = A'x’.

A matrix gives a definition of a linear transformation

from one vector space to another. A matrix: just one description. ‘

Question: How to get the new matrix A’?

Applied Mathematical Methods Matrices and Linear Transformations 23, Applied Mathematical Methods Matrices and Linear Transformations

Matrix Terminology Points to note

Matrix Terminology Matrix Terminology

» A matrix defines a linear transformation from one vector space

Matrix product to another.

» Matrix representation of a linear transformation depends on
the selected bases (or frames of reference) of the source and
target spaces.

Transpose

Conjugate transpose

Symmetric and skew-symmetric matrices . ) )
. . . Important: Revise matrix algebra basics as necessary tools.
Hermitian and skew-Hermitian matrices

Determinant of a square matrix

Inverse of a square matrix Necessary Exercises: 2,3
Adjoint of a square matrix

vV vV vV V. Y VvV VvV v VY
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Range and Null Space: Rank and Nulfjg™ " spece: fenkcend Rty

Operational Fundamentals of Linear Algebra

Domain Co-domain

Figure: Range and null space: schematic representation

Question: What is the dimension of a vector space?
Linear dependence and independence: Vectors x1, X2, -+, X,
in a vector space are called linearly independent if

kixt+koxo+---+kx, =0 = k=k=---=k =0.

Range(A) = {y:y=Ax, x€R"}
Null(A) = {x:x€R", Ax=0}

(A)
(A)
Rank(A) = dim Range(A)
Nullity(A) dim Null(A)

25, Applied Mathematical Methods Operational Fundamentals of Linear Algebra

Range and Null Space: Rank and Nulfjg™ " spece: fenkcend Rty

Consider A € R™*" as a mapping

A:R"— R™ Ax =y, x € R, yeR™.

Observations

1. Every x € R™ has an imagey € R™, but every y € R™ need
not have a pre-image in R".

Range (or range space) as subset/subspace of
co-domain: containing images of all x € R".

2. Image of x € R" in R™ is unique, but pre-image of y € R™
need not be.
It may be non-existent, unique or infinitely many.

Null space as subset/subspace of domain:
containing pre-images of only 0 € R™.
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BaSIS Basis
Take a set of vectors vy, vp, --+, Vv, in a vector space.
Question: Given a vector v in the vector space, can we describe it
as

v = kivi + kovo + - - - + kv, = VK,

where V = [v; vy v/ and k = [k ko k]T?

Answer: Not necessarily.

Span, denoted as < vy, vy, - ,v, >: the subspace
described/generated by a set of vectors.

Basis:
A basis of a vector space is composed of an ordered
minimal set of vectors spanning the entire space.

The basis for an n-dimensional space will have exactly n
members, all linearly independent.
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BaSIS Basis
,Vpt with
vivi=0 Vj#k

Orthogonal basis: {v1,vs,---

Orthonormal basis:
Ty, — 5u — 0 if j#k
Vi Vie= Ok { 1 if j=k
Members of an orthonormal basis form an orthogonal matrix.
Properties of an orthogonal matrix:

Vi = vT or VW =1, and
detV +lor —1,

Natural basis:

O O =

(1]

N

|

o = O
o O

e; = : e,=| 0

Applied Mathematical Methods

Change of Basis

Operational Fundamentals of Linear Algebra

Change of Basis

Question: And, how does basis change affect the representation of
a linear transformation?

Consider the mapping A:R" > R™ Ax=y.

Change the basis of the domain through P € R"™" and that of the
co-domain through Q € R™*™.

New and old vector representations are related as

Px=x and Qy=vy.
Then, Ax =y = Ax = y, with
A=Q AP

Special case: m = n and P = Q gives a similarity transformation

A=P AP

29, Applied Mathematical Methods

Change of Basis

Operational Fundamentals of Linear Algebra 30,

Change of Basis
Suppose x represents a vector (point) in R in"some'basis.

Question: If we change over to a new basis {c1,cp, -+ ,c,}, how
does the representation of a vector change?
X = X1€1 + XoCo + -+ 4+ XnCpy
X1
X2
= [cl c2 PR cn]
Xn
WithC=1[c; ¢ - ¢y,
new to old coordinates: CXx = x and
old to new coordinates: X = C™1x.
Note: Matrix C is invertible. How?
Special case with C orthogonal:
orthogonal coordinate transformation.
31, Applied Mathematical Methods Operational Fundamentals of Linear Algebra 32,

Elementary Transformations

Elementary Transformations

Observation: Certain reorganizations of equations in a system
have no effect on the solution(s).

Elementary Row Transformations:
1. interchange of two rows,
2. scaling of a row, and

3. addition of a scalar multiple of a row to another.

Elementary Column Transformations: Similar operations with
columns, equivalent to a corresponding shuffling of the variables
(unknowns).
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Elementary Transformations

Operational Fundamentals of Linear Algebra

Elementary Transformations

Equivalence of matrices: An elementary transformation defines
an equivalence relation between two matrices.

Reduction to normal form:
o
m=5 o

Rank invariance: Elementary transformations do not alter the
rank of a matrix.

Elementary transformation as matrix multiplication:

an elementary row transformation on a matrix is
equivalent to a pre-multiplication with an elementary
matrix, obtained through the same row transformation on
the identity matrix (of appropriate size).

Similarly, an elementary column transformation is equivalent to
post-multiplication with the corresponding elementary matrix.

Applied Mathematical Methods

Outline

Systems of Linear Equations

Systems of Linear Equations
Nature of Solutions
Basic Idea of Solution Methodology
Homogeneous Systems
Pivoting
Partitioning and Block Operations
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Points to note

Operational Fundamentals of Linear Algebra

Elementary Transformations

» Concepts of range and null space of a linear transformation.

» Effects of change of basis on representations of vectors and
linear transformations.

» Elementary transformations as tools to modify (simplify)
systems of (simultaneous) linear equations.

Necessary Exercises: 2,4,5,6

35, Applied Mathematical Methods

Nature of Solutions

Systems of Linear Equations

Nature of Solutions

Ax =Db

Coefficient matrix: A, augmented matrix: [A | b].
Existence of solutions or consistency:

Ax = b has a solution
& b € Range(A)
& Rank(A) = Rank([A | b])

Uniqueness of solutions:
Rank(A) = Rank([A |b]) = n

< Solution of Ax = b is unique.

< Ax =0 has only the trivial (zero) solution.
Infinite solutions: For Rank(A) = Rank([A|b]) = k < n, solution
with AX =b

X =X+ Xp, and xy € Null(A)
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BaSIC Idea Of SOlUtIOﬂ Methodology Basic Idea of Solution Methodology
To diagnose the non-existence of a solution,
To determine the unique solution, or

To describe infinite solutions;

decouple the equations using elementary transformations.

For solving Ax = b, apply suitable elementary row transformations
on both sides, leading to
RqRq—l s R2R1AX RqRq—l ce R2R1b,
or, [RA]x = Rb;
such that matrix [RA] is greatly simplified.

In the best case, with complete reduction, RA =1, and
components of x can be read off from Rb.

For inverting matrix A, treat AA 1=, similarly.

Applied Mathematical Methods

Pivoting

Systems of Linear Equations

Pivoting

Attempt:
To get ‘1" at diagonal (or leading) position, with ‘0" elsewhere.
Key step: division by the diagonal (or leading) entry.
Consider

Lk

BIG

p~]|
I

big

Cannot divide by zero. Should not divide by 4.

» partial pivoting: row interchange to get ‘big’ in place of §
» complete pivoting: row and column interchanges to get
‘BIG' in place of §

Complete pivoting does not give a huge advantage over partial pivoting,
but requires maintaining of variable permutation for later unscrambling.

37, Applied Mathematical Methods

Homogeneous Systems

Systems of Linear Equations 38,

Homogeneous Systems

To solve Ax = 0 or to describe Null(A),
apply a series of elementary row transformations on A to reduce it

to the A,
the row-reduced echelon form or RREF.

Features of RREF:
1. The first non-zero entry in any row is a ‘1’, the leading ‘1’.
2. In the same column as the leading ‘1’, other entries are zero.

3. Non-zero entries in a lower row appear later.

Variables corresponding to columns having leading ‘1's
are expressed in terms of the remaining variables.

u1
. uz
Solution of Ax =0: x = [ 21 2 Zn_k ]
Un—k
Basis of Null(A): {z1,z2,- -+ ,Zn_k}
39, Applied Mathematical Methods Systems of Linear Equations 40,

Partitioning and Block Operations
Partitioning and Block Operations

Equation Ax =y can be written as

X
A Ap A13} ! _[h]

X2
Ay Axn Ay y2
X3

with x1, X etc being themselves vectors (or matrices).
For a valid partitioning, block sizes should be consistent.
Elementary transformations can be applied over blocks.

Block operations can be computationally economical at times.

vV v. v .Yy

Conceptually, different blocks of contributions/equations can
be assembled for mathematical modelling of complicated
coupled systems.
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Points to note

Systems of Linear Equations

Partitioning and Block Operations

» Solution(s) of Ax = b may be non-existent, unique or
infinitely many.

» Complete solution can be described by composing a particular
solution with the null space of A.

» Null space basis can be obtained conveniently from the
row-reduced echelon form of A.

» For a strategy of solution, pivoting is an important step.

Necessary Exercises: 1,2,4,5,7

Applied Mathematical Methods

Gauss-Jordan Elimination

Gauss Elimination Family of Methods

Gauss-Jordan Elimination

Task: Solve Ax = by, Ax = by and Ax = bgs; find A1l and
evaluate A~1B, where A € R™" and B € R"*P.

Assemble C=[A b; by bz 1, B] € Rnx(2n+3+p)
and follow the

Collect solutions from the result
C—C=[l, Alb, Alb, Alb; Al AlB]

Remarks:
» Premature termination: matrix A singular — decision?

» If you use complete pivoting, unscramble permutation.

» Identity matrix in both C and C? Store A~1 ‘in place’.
» For evaluating A~1b, do not develop A~!.

» Gauss-Jordan elimination an overkill? Want something
?

41, Applied Mathematical Methods

Outline

Gauss Elimination Family of Methods

Gauss Elimination Family of Methods
Gauss-Jordan Elimination
Gaussian Elimination with Back-Substitution
LU Decomposition

43, Applied Mathematical Methods

Gauss-Jordan Elimination

Gauss Elimination Family of Methods

Gauss-Jordan Elimination

Gauss-Jordan Algorithm
» A=1
» For k=1,2,3,--- ,(n—1)
1. Pivot : identify / such that |cx| = max|cj| for k < j < n.
If ¢y =0, then A =0 and exit.
Else, interchange row k and row /.
2. A — cu A,
Divide row k by cy.
3. Subtract cjc times row k from row j, Vj # k.
> A — cnA
If chn = 0, then exit.
Else, divide row n by cp,.

In case of non-singular A,

This outline is for partial pivoting.

42,

44,
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Ga USSIB n Ellm | natIOn Wlth BaCk-SU bstltsutm;xtlon with Back-Substitution Ga USSIB n Ellm | natIOn Wlth BaCk-SU bstltsu;tmn\atlon with Back-Substitution
Gaussian elimination: Anatomy of the Gaussian elimination:
Ax — b The process of Gaussian elimination (with no pivoting) leads to
N l:x _ E U=R4R;_1---R2R;A = RA.
ay, ap, - 4, x1 4 The steps given by
a2 925 X2 > fork =1,2,3,--- ,(n—1)
or, . . = . .
: : ; Jj-th row «— j-th row — a‘%x k-th row for
al, Xn b, j=k+1,k+2,--.,n
Back-substitutions: ) )
L involve elementary matrices
Xn = bn/anm 1 00 --- 0
1 , n , ) _a1 1 .0
xi = — |bj— ayxj| for i=n—-1n-2---,2/1 a
aii j,z_;’_l Rk|k:1 = ai O 1 O etc.
Remarks - 0 O ’ 1
» Computational cost half compared to G-J elimination. S an
» Like G-J elimination, prior knowledge of RHS needed. WithL=R™!, A=LU.
Applied Mathematical Methods Gauss Elimination Family of Methods 47, Applied Mathematical Methods Gauss Elimination Family of Methods 48,
LU Decomposition LU Decomposition
LU Decomposition LU Decomposition
‘A square matrix with non-zero leading minors is LU-decomposable. Question: How to LU-decompose a given matrix?
No reference to a right-hand-side (RHS) vector!
To solve Ax = b, denote y = Ux and split as hiy 0 0 --- 0 1 thy 3 - Uin
b1 hy 0 - 0 0 wuxp w3 -+ w2
Ax=b = LUx=b L=| b1 he hs 0 and U=| 0 0 us Usp
= Ly=b and Ux=y. :
lnl /n2 ln3 /nn 0 0 0 Upn

Forward substitutions:
1 i—1 Elements of the product give
y,-:E b;—;/,-jyj fori=1,2,3,--- ,n l_
= Z/,-kukj =a; for i<y,
Back-substitutions: k=1

J
1 n and E lixuyj = aj; for i>j.
xi=—\|yi— E ujjX; fori=nn—-1n-2,.-- 1 =1

ujj i
Jj=i+1
n? equations in n? 4+ n unknowns: choice of n unknowns
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LU Decomposition

Gauss Elimination Family of Methods

LU Decomposition

Doolittle’s algorithm
» Choose [;; =1
» For j=1,23,--- |n
1. uj=a;— Z;;ll liugg for 1<i<j
2. Iy = (a5 — ST lpuyg) for P>

Evaluation proceeds in column order of the matrix (for storage)

U1l U U3 - Ui
b1 uxp w3 - U
A*=| Bt ko uz -+ w3,
I In2 In3 c++  Upn

Applied Mathematical Methods

Points to note

Gauss Elimination Family of Methods

LU Decomposition

For invertible coefficient matrices, use

» Gauss-Jordan elimination for large number of RHS vectors
available all together and also for matrix inversion,

» Gaussian elimination with back-substitution for small number
of RHS vectors available together,

» LU decomposition method to develop and maintain factors to
be used as and when RHS vectors are available.

Pivoting is almost necessary (without further special structure).

Necessary Exercises: 1,4,5

49, Applied Mathematical Methods

LU Decomposition

Gauss Elimination Family of Methods 50,

LU Decomposition
Question: What about matrices which are not LU-decomposable?
Question: What about pivoting?

Consider the non-singular matrix

01 2 1 0 0 U11=0 uip Uiz

312 = /21 =7 1 0 0 upp U3

2 1 3 /31 /32 1 0 0 uss3

LU-decompose a permutation of its rows

01 2 0 1 0 31 2
31 2 = 1 00 01 2
2 1 3 0 0 1 2 1 3

0 1 0 1 00 31 2

= 1 00 0 10 01 2

001 2 11 001

In this PLU decomposition, permutation P is recorded in a vector.

51, Applied Mathematical Methods

Outline

Special Systems and Special Methods 52,

Special Systems and Special Methods
Quadratic Forms, Symmetry and Positive Definiteness
Cholesky Decomposition
Sparse Systems*
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Quadratic Forms, Symmetry and Posidfi@ Defiriitenags ™ Cholesky Decomposition Cholesky Decomposition

Quadratic form If A € R™"is symmetric and positive definite, then there exists a
n n non-singular lower triangular matrix L € R"*" such that
qg(x) =x"Ax = Z Z ajjXix;

== A=LL".
defined with respect to a symmetric matrix. Algorithm For i =1,2,3,--- | n
. . . . . —1
Quadratic form g(x), equivalently matrix A, is called positive > Li=1/ai—> 1 L,?k

definit .d.) wh ;
efinite (p.d.) when > L= Li“ (aj,- — Z;::ll ijL,'k) for i<j<n

.
x"Ax >0 Vx#0 For solving Ax = b,

and positive semi-definite (p.s.d.) when Forward substitutions: Ly = b

x"TAx >0 Vx#0. Back-substitutions: LTx =y
Sylvester's criteria: Remarks
ay Ao > Test of positive definiteness.
a1 >0, >0, ---, detA >0; . ) . |
a1 ax» » Stable algorithm: no pivoting necessary!
i.e. all leading minors non-negative, for p.s.d. » Economy of space and time.
Applied Mathematical Methods Special Systems and Special Methods 55, Applied Mathematical Methods Special Systems and Special Methods
Sparse Systems* Points to note
Sparse Systems* Sparse Systems*
» What is a sparse matrix? » Concepts and criteria of positive definiteness and positive
» Bandedness and bandwidth semi-definiteness
» Efficient storage and processing » Cholesky decomposition method in symmetric positive definite
» Updates systems
» Sherman-Morrison formula » Nature of sparsity and its exploitation
A~ lu)(vTA-?
(A + uvT)—l — A—l _ ( )( )
1+vTA-lu
» Woodbury formula Necessary Exercises: 1,2,4,7
» Conjugate gradient method

» efficiently implemented matrix-vector products
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Numerical Aspects in Linear Systems
Norms and Condition Numbers
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Rectangular Systems
Singularity-Robust Solutions
Iterative Methods

Applied Mathematical Methods

Norms and Condition Numbers

Numerical Aspects in Linear Systems

Norms and Condition Numbers

Norm of a matrix: magnitude or scale of the transformation

Matrix norm (induced by a vector norm) is given by the largest
magnification it can produce on a vector

A
A] = max 2L o ag
x| k)=

Direct consequence: ||Ax| < [|A]|l ||x]|
Index of closeness to singularity: Condition number

R(A) = [ALIIAT, 1< k(A) < oo

** |sotropic, well-conditioned, ill-conditioned and singular matrices

57, Applied Mathematical Methods
Norms and Condition Numbers
Norm of a vector: a measure of size

Numerical Aspects in Linear Systems

Norms and Condition Numbers

» Euclidean norm or 2-norm

1
||X|| = ||X||2 = [X12 +X22 +...+Xs]2 = +/xTx

» The p-norm

1
1x[lp = [Ixal? + Pl + - - + [xa|P]7

» The 1-norm: ||x||1 = |x1| + |x2| + -+ + |xn]
» The oco-norm:

1
[Xlloo = lim [[x1|” + [x2[” + - + [xn[P]P = max |x;]
p—o0 J

» Weighted norm
Il = \/xTWx

where weight matrix W is symmetric and positive definite.

59, Applied Mathematical Methods

[ll-conditioning and Sensitivity

Numerical Aspects in Linear Systems

lll-conditioning and Sensitivity

0.9999x; — 1.0001x, = 1
Xy = X2 = l+4e
Solution: X1 = %’ Xp = 99992671

> sensitive to small changes in the RHS
> insensitive to error in a guess

For the system Ax = b, solution is x = A~1b and
ox = A"16b — A716A x

If the matrix A is exactly known, then

™ bl ob]
DX A A=t iRl a) o2l
) < IAIHIATI G = () T
If the RHS is known exactly, then
x| RN 1oA]
< A At PAT_ L ay IoAT
I 1Al Y

58,

60,
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[ll-conditioning and Sensitivity

Numerical Aspects in Linear Systems

Ill-conditioning and Sensitivity

@)
@

(2d)
(&)}

%/ e

(d) Singularity

% i :

(c) Guess validation

Figure: lll-conditioning: a geometric perspective

Applied Mathematical Methods

Rectangular Systems
Rectangular Systems

Consider Ax = b with A € R™*" and Rank(A).=m-< n.
Look for A € R™ that satisfies AT\ = x and

AA" XA =b

Numerical Aspects in Linear Systems

Solution
x=A"TA=AT(AAT) b
Consider the problem

minimize U(x) = 3xTx  subject to Ax =b.

Extremum of the Lagrangian £(x,A) = 3x"x — AT(Ax —b)is
given by
oL oL T
o 0, X 0=x , Ax
Solution x = AT(AAT)~!b gives foot of the perpendicular on the
solution ‘plane’ and the pseudoinverse
A* = AT(AAT) !

here ic a richt-invercel
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Rectangular Systems

Numerical Aspects in Linear Systems

Rectangular Systems

Consider Ax = b with A € R™*" and Rank{A)-=:n<"m.

A'TAx=A"b = x=(ATA)!A'b

Square of error norm

1 1
Ux) = SlAx- b|? = 5 (Ax — b)"(Ax —b)
1 1
= ExTATAx ~x"ATb + EbTb
Least square error solution:

8—U:ATAx—ATb:O
ox

Pseudoinverse or Moore-Penrose inverse or left-inverse

A#* = (ATA)IAT
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Singularity-Robust Solutions

Numerical Aspects in Linear Systems

Singularity-Robust Solutions

lll-posed problems: Tikhonov regularization
» recipe for any linear system (m > n, m = n or m < n), with
any condition!
Ax = b may have conflict: form ATAx = ATb.

AT A may be ill-conditioned: rig the system as

(ATA +221,)x=A"b
Coefficient matrix: symmetric and positive definite!
The idea: Immunize the system, paying a small price.
Issues:

» The choice of v?

» When m < n, computational advantage by

(AAT +221,)A =b, x=ATX

62,

64,



Applied Mathematical Methods

[terative Methods

Numerical Aspects in Linear Systems

Iterative Methods

Jacobi’'s iteration method:

1
e _ 1
aji

n
b; — Z aUXJ'(k) for i=1,2,3,---,n.
J=1, j#i

Gauss-Seidel method:

ajj

1 i—1 n
2 S a3 ) for =123,
j=1

j=i+1

The category of relaxation methods:

diagonal dominance and availability of good initial
approximations

Applied Mathematical Methods

Outline

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors
Eigenvalue Problem
Generalized Eigenvalue Problem
Some Basic Theoretical Results
Power Method
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Points to note

Numerical Aspects in Linear Systems

Iterative Methods

Solutions are unreliable when the coefficient matrix is
ill-conditioned.

v

v

Finding pseudoinverse of a full-rank matrix is ‘easy’.

v

Tikhonov regularization provides singularity-robust solutions.

v

Iterative methods may have an edge in certain situations!

n.

Necessary Exercises: 1,2,3,4
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Eigenvalue Problem

Eigenvalues and Eigenvectors

Eigenvalue Problem

In mapping A : R" — R", special vectors of matrix A € R"*"

» mapped to scalar multiples, i.e. undergo pure scaling

Av = \v

Eigenvector (v) and eigenvalue (\): eigenpair (\,v)

‘ algebraic eigenvalue problem ‘

(M—Aw=0
For non-trivial (non-zero) solution v,
det(A\l —A) =0

Characteristic equation: characteristic polynomial: n roots
» n eigenvalues — for each, find eignevector(s)

Multiplicity of an eigenvalue: algebraic and geometric
Multiplicity mismatch: diagonalizable and defective matrices

66,
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Generalized Eigenvalue Problem

Applied Mathematical Methods

Some Basic Theoretical Results

Eigenvalues and Eigenvectors

Generalized Eigenvalue Problem

1-dof mass-spring system: mx + kx =0

m

Natural frequency of vibration: w, = 1/ %

Free vibration of n-dof system:
Mx + Kx =0,

Natural frequencies and corresponding modes?
Assuming a vibration mode x = ®sin(wt + ),

(—w?MO + Kd)sin(wt +a) =0 = | K& =w?’Md

Reduce as (M7!K) ® = w?®? Why is it not a good idea?

‘ K symmetric, M symmetric and positive definite!! ‘

With M = LLT, & = L7 and K = L-1KL- T,

Ko = o’

Eigenvalues and Eigenvectors

Some Basic Theoretical Results
Triangular and block triangular matrices
Eigenvalues of a triangular matrix are its diagonal entries.

Eigenvalues of a block triangular matrix are the collection of
eigenvalues of its diagonal blocks.

Take

H:[ﬁ (B:}, Ac R™ and C ¢ R®*®

If Av = \v, then

(HERHRCI R

If 11 is an eigenvalue of C, then it is also an eigenvalue of C' and

T {07 [AT 0 ][0 0 ]
Cw=pw=H [w]{BT CT||w M w

69,
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Some Basic Theoretical Results

Applied Mathematical Methods

Some Basic Theoretical Results

Eigenvalues and Eigenvectors

Some Basic Theoretical Results

Eigenvalues of transpose

Eigenvalues of AT are the same as those of A.

Caution: Eigenvectors of A and AT need not be same.

Diagonal and block diagonal matrices
Eigenvalues of a diagonal matrix are its diagonal entries.
Corresponding eigenvectors: natural basis members (e;, e, etc).

Eigenvalues of a block diagonal matrix: those of diagonal blocks.
Eigenvectors: coordinate extensions of individual eigenvectors.
With (A2, v2) as eigenpair of block Ay,

N A; 0 O 0 0 0
AV2 = 0 A2 0 Vo = A2V2 = )\2 Vo
0 0 A3 0 0 0

Eigenvalues and Eigenvectors

Some Basic Theoretical Results

Shift theorem
Eigenvectors of A + ul are the same as those of A.
Eigenvalues: shifted by p.

Deflation
For a symmetric matrix A, with mutually orthogonal eigenvectors,
having ()}, v;) as an eigenpair,
T
vV
T

Vj Vj

B=A-)

has the same eigenstructure as A, except that the eigenvalue
corresponding to v; is zero.

70,

72,



Applied Mathematical Methods

Some Basic Theoretical Results

Eigenvalues and Eigenvectors

Some Basic Theoretical Results

Eigenspace
If vi, vp, - -+, vg are eigenvectors of A corresponding to the same
eigenvalue ), then

eigenspace: < Vi,V - Vi >

Similarity transformation
B = S~!AS: same transformation expressed in new basis.

det(M — A) = det S~! det(Al — A) detS = det(\l — B)

Same characteristic polynomial!
Eigenvalues are the property of a linear transformation,
not of the basis.

An eigenvector v of A transforms to S™1v, as the corresponding
eigenvector of B.

Applied Mathematical Methods

Points to note

Eigenvalues and Eigenvectors

Power Method

» Meaning and context of the algebraic eigenvalue problem
» Fundamental deductions and vital relationships

» Power method as an inexpensive procedure to determine
extremal magnitude eigenvalues

Necessary Exercises: 1,2,3,4,6
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Power Method

Eigenvalues and Eigenvectors 74,

. . . Power Method
Consider matrix A with

Ail > X2l = [As] = -+ = [Apoa| > [

and a full set of n eigenvectors vy, vo, -+, V.

For vector x = av1vi + aava + -+ - + apVp,

p P P
APx = /\IlJ a1Vv] + & QoVo + ﬁ @3V3 + -+ ﬁ QapVp
Al )\1 A].

As p — oo, APx — Alayvy, and

p
A= lim A

T :123,’ .
p—00 (Ap_1X),«7 r T 7

At convergence, n ratios will be the same.

Question: How to find the least magnitude eigenvalue?

75, Applied Mathematical Methods

Outline

Diagonalization and Similarity Transformations 76,

Diagonalization and Similarity Transformations
Diagonalizability
Canonical Forms
Symmetric Matrices
Similarity Transformations
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Diagonalizability

Diagonalization and Similarity Transformations

Diagonalizability

Consider A € R"™" having n eigenvectors vy, Vo, -+, Vp;
with corresponding eigenvalues A1, Ag, -+, Ap.
AS = A[Vl Vo V,-,] = [)\1V1 )\2V2 )\nV,-,]
M O - 0
0 A -~ 0
= [vi vo - v . o . =SA
0 0 - X\,
=A=SAS"! and S !AS=A

Diagonalization: The process of changing the basis of a linear
transformation so that its new matrix representation is diagonal,
i.e. so that it is decoupled among its coordinates.

Applied Mathematical Methods

Canonical Forms

Diagonalization and Similarity Transformations

Canonical Forms

Jordan canonical form (JCF)
Diagonal (canonical) form

Triangular (canonical) form

Other convenient forms
Tridiagonal form
Hessenberg form

77, Applied Mathematical Methods

Diagonalizability

Diagonalization and Similarity Transformations

Diagonalizability

Diagonalizability:
A matrix having a complete set of n linearly independent
eigenvectors is diagonalizable.

Existence of a complete set of eigenvectors:

A diagonalizable matrix possesses a complete set of n
linearly independent eigenvectors.

» All distinct eigenvalues implies diagonalizability.
» But, diagonalizability does not imply distinct eigenvalues!

» However, a lack of diagonalizability certainly implies a
multiplicity mismatch.

79, Applied Mathematical Methods
Canonical Forms

Jordan canonical form (JCF): composed of'Jordan“blocks

(21
3 A1
Jo
J= _ . )= A

Diagonalization and Similarity Transformations

Canonical Forms

Jk o1

The key equation AS = SJ in extended form gives
Al S, - ]=[- S -] J, ’

where Jordan block J, is associated with the subspace of

S, =[v wy wz -]

78,
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Canonical Forms
Equating blocks as AS, = S,J, gives

Canonical Forms

[Av Aw; Awz - ][=[v wy w3 - -]
Columnwise equality leads to
Av = v, Aws =v + wy, Awsz = w) + Awsg,

Generalized eigenvectors wy, ws etc:

(A =) =0,
(A-=X)wy=v and (A —A)>w, =0,
(A-=X)wz=w, and (A —\)w3=0,

Applied Mathematical Methods

Canonical Forms

Canonical Forms

Triangular form
Triangularization: Change of basis of a linear tranformation so as
to get its matrix in the triangular form

» For real eigenvalues, always possible to accomplish with
orthogonal similarity transformation

» Always possible to accomplish with unitary similarity
transformation, with complex arithmetic

» Determination of eigenvalues

Note: The case of complex eigenvalues: 2 x 2 real diagonal block

a —f a+ip 0
8 « ~ 0 a—if

Diagonalization and Similarity Transformations 81, Applied Mathematical Methods

Diagonalization and Similarity Transformations

Diagonalization and Similarity Transformations

Canonical Forms

Canonical Forms

Diagonal form
» Special case of Jordan form, with each Jordan block of 1 x 1
size
» Matrix is diagonalizable

» Similarity transformation matrix S is composed of n linearly
independent eigenvectors as columns

» None of the eigenvectors admits any generalized eigenvector

» Equal geometric and algebraic multiplicities for every
eigenvalue

83, Applied Mathematical Methods Diagonalization and Similarity Transformations

Canonical Forms

Canonical Forms

Forms that can be obtained with pre-determined number of
arithmetic operations (without iteration):

Tridiagonal form: non-zero entries only in the (leading) diagonal,
sub-diagonal and super-diagonal
» useful for symmetric matrices

Hessenberg form: A slight generalization of a triangular matrix

Note: Tridiagonal and Hessenberg forms do not fall in the
category of canonical forms.

82,
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Symmetric Matrices

Diagonalization and Similarity Transformations

Symmetric Matrices

A real symmetric matrix has all real eigenvalues and
is diagonalizable through an orthogonal similarity
transformation.

Eigenvalues must be real.

A complete set of eigenvectors exists.

Eigenvectors corresponding to distinct eigenvalues are
necessarily orthogonal.

Corresponding to repeated eigenvalues, orthogonal eigenvectors
are available.

In all cases of a symmetric matrix, we can form an
orthogonal matrix VI, such that VT AV = A is a real
diagonal matrix.

A=VAVT.

Similar results for complex Hermitian matrices.

Applied Mathematical Methods

Symmetric Matrices

Diagonalization and Similarity Transformations

Symmetric Matrices
Proposition: A symmetric matrix possesses a complete set of
eigenvectors.

Consider a repeated real eigenvalue A of A and examine its Jordan
block(s).

Suppose Av = \v.

The first generalized eigenvector w satisfies (A — Al)w = v, giving

vVIA-Mw=v'v = v'AT
= (Av)"w — v w = |jv|]?

= v =0

w- w'w=v'v

which is absurd.
An eigenvector will not admit a generalized eigenvector.

All Jordan blocks will be of 1 x 1 size.

Applied Mathematical Methods

Symmetric Matrices

Diagonalization and Similarity Transformations

Symmetric Matrices
Proposition: Eigenvalues of a real symmetric matrix must be real.
Take A € R™" such that A = AT, with eigenvalue A = h + ik.
Since Al — A is singular, so is

B = (Ml—A) (M —A)=(hl —A +ikl)(hl — A — ikl)
= (hl —A)? 4 K2l

For some x #0, Bx =0, and
x"Bx =0=x"(hl = A)T(hl —A)x + k’>x"x =0

Thus, [|(hl — A)x||2 + | kx||> =0

| k=0and A=h |

Applied Mathematical Methods

Symmetric Matrices

Diagonalization and Similarity Transformations

Symmetric Matrices
Proposition: Eigenvectors of a symmetric matrix corresponding to
distinct eigenvalues are necessarily orthogonal.

Take two eigenpairs (A1,v1) and (Az,v2), with A1 # Xo.

vlTsz = vlT()\gv2) = )\gvlTv2
vlTsz = vlTATVQ = (Avl)Tv2 = ()\1v1)Tv2 = )\1V1Tv2

From the two expressions, (A1 — A2)v{ vy =0

vlTv2:O

Proposition: Corresponding to a repeated eigenvalue of a
symmetric matrix, an appropriate number of orthogonal
eigenvectors can be selected.

If A1 = A2, then the entire subspace < vi,vy > is an eigenspace.
Select any two mutually orthogonal eigenvectors for the basis.
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Symmetric Matrices

Diagonalization and Similarity Transformations

Symmetric Matrices

Facilities with the ‘omnipresent’ symmetric matrices:

» Expression

A = VAVT
/\1 Vir
)\2 V2T
f— [vl V2 Vn] :
An v/

n

T T T T

= Avivy +dovovy + - Apvpv, = E AiViV;
i=1

v

Reconstruction from a sum of rank-one components

Efficient storage with only large eigenvalues and corresponding
eigenvectors

Deflation technique

Stable and effective methods: easier to solve the eigenvalue
problem

v

vy

Applied Mathematical Methods

Points to note

Diagonalization and Similarity Transformations

Similarity Transformations

v

Generally possible reduction: Jordan canonical form

v

Condition of diagonalizability and the diagonal form

v

Possible with orthogonal similarity transformations: triangular
form

v

Useful non-canonical forms: tridiagonal and Hessenberg

v

Orthogonal diagonalization of symmetric matrices

Caution: Each step in this context to be effected through
similarity transformations

Necessary Exercises: 1,2,4
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Similarity Transformations

Similarity Transformations

\"
Tridiagonal
Symmetric Tridiagonal

Triangular

>

>

Figure: Eigenvalue problem: forms and steps

How to find suitable similarity transformations?
1. rotation
2. reflection
3. matrix decomposition or factorization
4

. elementary transformation

91, Applied Mathematical Methods

Outline

Jacobi and Givens Rotation Methods
(for symmetric matrices)
Plane Rotations
Jacobi Rotation Method
Givens Rotation Method

Diagonalization and Similarity Transformations

Jacobi and Givens Rotation Methods
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Plane Rotations

Jacobi and Givens Rotation Methods

Plane Rotations

Figure: Rotation of axes and change of basis

= OL+LM = 0L+ KN =x"cos¢+y'sing
— PN—MN=PN— LK =y cosh— x'sin ¢

Applied Mathematical Methods
Plane Rotations

Generalizing to n-dimensional Euclidean space (R"),

Jacobi and Givens Rotation Methods

Plane Rotations

1 0 0
1 0 0
1
00 0 0 0 s 0
Poy = 0 1 0
0 10
00 0 —s 0 0 0
I 0 0 1|

Matrix A is transformed as
- T
A’ =P,AP,; =P] AP,

only the p-th and g-th rows and columns being affected.
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Plane Rotations

Plane Rotations

Orthogonal change of basis:
x| cos¢ sing P
r_{y]_{—sin¢ cosq&][y’}_%r

Mapping of position vectors with

Rl — pT — cos¢ —sing
sing  cos¢
In three-dimensional (ambient) space,
cos¢ sing 0 cos¢ 0 sing
Ry =| —sing cos¢p 0 |, RN, = 0 1
0 01 —sing 0 cos¢
95, Applied Mathematical Methods Jacobi and Givens Rotation Methods

Jacobi Rotation Method

Jacobi Rotation Method

/ /

ay =a, = Cap—Sagforp#r#aq,
dgy=ay = Cagt+sapforp#r#aq,
a;,p = c2app + s2aqq — 25Capq,
g = S°app+ C’agq +25capq, and
Aoy = dgp = (¢® = %) apq + 5c(app — aqq)

In a Jacobi rotation,

2 2
/ € —s dqq — dpp
a. . =0= = =k (say).
pa 2sc 2apq (say)
Left side is cot 2¢: solve this equation for ¢.
Jacobi rotation transformations P15, P13, -+, P1n; Pos3, -+, Pop;

-7 Pp_1,, complete a full sweep.
Note: The resulting matrix is far from diagonal!

Jacobi and Givens Rotation Methods
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Jacobi Rotation Method

Sum of squares of off-diagonal terms before the transformation

Sl =2|TA+ Y 4

r#s r#p p#r#q

Jacobi Rotation Method

S

2 Z (afp + a%q) + afz;q

pF#r#q
and that afterwards
S =20 > (aptan)tay
p#r#q
= 2 Z (afp—f—afq)
p#r#q

differ by
AS=S—-5=-2a,<0; and$S— 0.

Applied Mathematical Methods Jacobi and Givens Rotation Methods

Givens Rotation Method

Givens Rotation Method

Contrast between Jacobi and Givens rotation methods

v

What happens to intermediate zeros?

What do we get after a complete sweep?

How many sweeps are to be applied?

What is the intended final form of the matrix?

vV v. vy

How is size of the matrix relevant in the choice of the method?

» Housholder method accomplishes ‘tridiagonalization” more
efficiently than Givens rotation method.

» But, with a half-processed matrix, there come situations in
which Givens rotation method turns out to be more efficient!

97,
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Givens Rotation Method

Givens Rotation Method

While applying the rotation P4, demand a’,q =0: tangp = — 29

arp
r = p — 1: Givens rotation

» Once ap_1,q is annihilated, it is never updated again!

Sweep Pa3, P2y, -+, Pap; P3g, -+, P3p; -+ Ppog,to
annihilate ai3, a4, -+, ain; a4, "+, @n; 07 An-2,n-

Symmetric tridiagonal matrix ‘

How do eigenvectors transform through Jacobi/Givens rotation
steps?
A—...p@QTpA)T ApMPQ) ...

Product matrix POP®) ... gives the basis.

To record it, initialize V by identity and keep multiplying new
rotation matrices on the right side.

Applied Mathematical Methods Jacobi and Givens Rotation Methods

Points to note

Givens Rotation Method

Rotation transformation on symmetric matrices

> Plane rotations provide orthogonal change of basis that can
be used for diagonalization of matrices.

» For small matrices (say 4 < n < 8), Jacobi rotation sweeps
are competitive enough for diagonalization upto a reasonable
tolerance.

» For large matrices, one sweep of Givens rotations can be
applied to get a symmetric tridiagonal matrix, for efficient
further processing.

Necessary Exercises: 2,3,4
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Householder Transformation and Tridiagonal Matrices

Householder Transformation and Tridiagonal Matrices
Householder Reflection Transformation
Householder Method
Eigenvalues of Symmetric Tridiagonal Matrices

Applied Mathematical Methods

Householder Method

Householder Transformation and Tridiagonal Matrices

Householder Method

Consider n x n symmetric matrix A.
Let u = [ax1 a3 am]” € R™ 1 and v = |julle; € R" L.

1 0
Construct Py = [ 0 H, . ] and operate as
A(l) — P.AP o 1 0 all uT 1 0
-1 = 0 Hn,1 u A1 0 Hn,1

[
v H,_;AH,; |’

Reorganizing and re-naming,

d1 (Sy) 0
AV = | & dy ul
0 us A2

101,
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Householder Reflection Transformatiof§iis e Transformation

Figure: Vectors in Householder reflection

Consider u,v € R, |ju|| = ||v| and w = TR

Householder reflection matrix
He =1, — 2ww '

is symmetric and orthogonal.

For any vector x orthogonal to w,

Hix = (I, —2ww’)x =x  and

How = (I, —2ww " w = —w.

Hence, Hyy = Hi(yw + Y1) = —yw + Y1, Hu =v and Hyv = u.

Applied Mathematical Methods
Householder Method

Next, with vo = ||uz|le1, we form

L0
=[5
and operate as A = P,AP,.
After j steps,

Householder Transformation and Tridiagonal Matrices

Householder Method

d e
" & d
AV =
€j+1 ;
g+1 diy1 Uig
L uit1 Ajn

By n — 2 steps, with P = P;P,P3--- P, 5,
A2 —pTAP

is symmetric tridiagonal.

102,
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Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

d e
& o
T =
€n—1
en—1 dp_1 en
en dn
Characteristic polynomial
A — d]_ —€
—€2 A — d2
)\ =
p(A) e s
—€én—1 A— dn—l —€n
—e, A—d,
Applied Mathematical Methods Householder Transformation and Tridiagonal Matrices 107,

Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Sturmian sequence property of P(\) with e; # 0:

Interlacing property: Roots of pii1(\) interlace the
roots of pi(A). That is, if the roots of py11()\) are
A1 > A2 > -+ > Ay and those of pi(N) are

1 > o > - > Uk, then

AL > 1 > A > o > e e > A > g > Apgl-

‘This property leads to a convenient
Proof

p1(A) has a single root, dj.
p2(d1) = —622 < 0,

Since pp(+00) = 00 > 0, roots t; and tp of pa(A) are separated as
00 > t1 > di > tr > —00.

| The statement is true for k = 1. |

Householder Transformation and Tridiagonal Matrices 105,

Applied Mathematical Methods

Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Householder Transformation and Tridiagonal Matrices 106,

Characteristic polynomial of the leading k x k sub-matrix: px(})

PO()\) = 1;
pl()\) = - dl,
() = (A-d)(A—d)— e,

Peyi(A) = (A= dip1)pe(A) — €ip1pr-1(N).

P(X) = {po(A), p1(A), -+, Pn(A)}
> a Sturmian sequence if ¢ # 0 Vj

Question: What if ¢; = 0 for some ;7!
Answer: That is good news. Split the matrix.

Applied Mathematical Methods

Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Householder Transformation and Tridiagonal Matrices 108,

Next, we assume that the statement is true for k = /.
Roots of pj(A): a1 >ay >+ > q;

Roots of pjy1(A): 81> 2> > Bi > Bin1

Roots of pita(A): 71> 72 > - > > yig1 > Vig2

Assumption: 31 > a1 > G >apy >+ o> 0 > > fita
B B BB
(@ Rootsof B(A) and B, (A)
Aoy } o } oy
By B
_ve —ve

(b) Signof R P,,

Figure: Interlacing of roots of characteristic polynomials

Toshow: 71> 01> > 0B >+ - >7vi11 > Bir1 > Yigo
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Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Since 81 > a1, pi(P1) is of the same sign as p;(c0), i.e. positive.

Therefore, pi12(01) = —e,-2+2p,-(ﬂl) is negative.
But, pi+2(00) is clearly positive.

Hence, 11 € (51, 00).
Similarly, vi12 € (—00, Bi41).
Question: Where are the rest of the i roots of pj42(A\)?

pir2(B)) = (B — dit2)pit1(B) — €frapi(Bj) = —efapi(B))
pi+2(Bj+1) —e7opi(Bi+1)

That is, p; and pji2 are of opposite signs at each 3.

Over [Bit+1,01], pi+2()) changes sign over each sub-interval
[Bj+1, 3], along with p;(A), to maintain opposite signs at each [.

Conclusion: pj>(\) has exactly one root in (831, 5;).

Applied Mathematical Methods

Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Algorithm
» Identify the interval [a, b] of interest.

> For a degenerate case (some e; = 0), split the given matrix.
» For each of the non-degenerate matrices,
» by repeated use of bisection and study of the sequence P()),
bracket individual eigenvalues within small sub-intervals, and
> by further use of the bisection method (or a substitute) within
each such sub-interval, determine the individual eigenvalues to
the desired accuracy.

Note: The algorithm is based on

Householder Transformation and Tridiagonal Matrices 109,

Householder Transformation and Tridiagonal Matrices 111,

Applied Mathematical Methods

Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Householder Transformation and Tridiagonal Matrices 110,

Examine sequence P(w) = {po(w), p1(w), p2(w),- - , pn(w)}.
If px(w) and pyy1(w) have opposite signs then pii1(\) has one
root more than pg()) in the interval (w, 00).

Number of roots of p,(\) above w = number of sign

changes in the sequence P(w).

Consequence: Number of roots of p,(\) in (a, b) = difference
between numbers of sign changes in P(a) and P(b).
Bisection method: Examine the sequence at %b.

Separate roots, bracket each of them and then squeeze
the interval!

Any way to start with an interval to include all eigenvalues?

[Ail < Abng = max {[ej[ + |dj| + [¢j+1]}
1<j<n

Applied Mathematical Methods

Points to note

Householder Transformation and Tridiagonal Matrices 112,

Eigenvalues of Symmetric Tridiagonal Matrices

» A Householder matrix is symmetric and orthogonal. It effects
a reflection transformation.

» A sequence of Householder transformations can be used to
convert a symmetric matrix into a symmetric tridiagonal form.

» Eigenvalues of the leading square sub-matrices of a symmetric
tridiagonal matrix exhibit a useful interlacing structure.

» This property can be used to separate and bracket eigenvalues.

» Method of bisection is useful in the separation as well as
subsequent determination of the eigenvalues.

Necessary Exercises: 2,4,5
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QR Decomposition Method
QR Decomposition
QR lterations
Conceptual Basis of QR Method*
QR Algorithm with Shift*

Applied Mathematical Methods

QR Decomposition

QR Decomposition

Practical method: one-sided Householder transformations,
starting with

Up — Vv

up =ai, Vo= ||u0He1 € R" and wWo = 0=

[lug — vol|

and P =H,=1, — 2w0wg—.

P, P P _ a *ok
n—2Pn_3---P2P1PoA =P, 2P, 3---P2P; { H()lH
Ao

ni * %k
:Pn—2pn—3"'P2 oY) kk — ... :R
A,
With
Q=(Pr2Pp3--- P2P1P0)T =PoP1Py---P, 3P, >,

we have QTA =R = A = QR.

QR Decomposition Method

QR Decomposition Method

|

113,
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QR Decomposition

QR Decomposition Method
QR Decomposition

Decomposition (or factorization) A = QR into two factors,
orthogonal Q and upper-triangular R:
(a) It always exists.
(b) Performing this decomposition is pretty straightforward.
(c) It has a number of properties useful in the solution of the
eigenvalue problem.
rni oo np
[al an] = [ql qn]
rnn

A simple method based on Gram-Schmidt orthogonalization:
Considering columnwise equality a; = >_; rjq;,
for j=1,2,3,---

j-1
T . :
o= afa; Vi<j, aj=a;— Y mai r=|ajl;
i=1
q = {570
J any vector satisfying q/q; =4; for 1 <i<j, if r; =0.

Applied Mathematical Methods

QR Decomposition

QR Decomposition Method
QR Decomposition

Alternative method useful for tridiagonal and Hessenberg
matrices: One-sided plane rotations

» rotations Py, Py3 etc to annihilate a»1, asp etc in that
sequence

Givens rotation matrices!

Application in solution of a linear system: Q and R factors of
a matrix A come handy in the solution of Ax = b

QRx=b=Rx=Q"b

needs only a sequence of back-substitutions.

114,
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QR |terat|0nS QR lterations

Applied Mathematical Methods

Conceptual Basis of QR Method*

QR Decomposition Method

Multiplying Q and R factors in reverse,
A'=RQ=Q"AQ,

an orthogonal similarity transformation.

1. If A is symmetric, then so is A’.
2. If A is in upper Hessenberg form, then so is A’.

3. If A is symmetric tridiagonal, then so is A’.

Complexity of QR iteration: O(n) for a symmetric tridiagonal
matrix, (’)(n2) operation for an upper Hessenberg matrix and
O(n3) for the general case.

Algorithm: Set A; = A and for k =1,2,3,---,
> decompose A, = QxRy,
> reassemble A1 = RiQy.

As k — oo, Ay approaches the quasi-upper-triangular form.

QR Decomposition Method

Conceptual Basis of QR Method*

QR decomposition algorithm operates on the basis of the relative
magnitudes of eigenvalues and segregates subspaces.

With k — oo,
AXRange{e;} = Range{q:} — Range{vi}
and (a1)k — 9/ Aq1 = M9/ q1 = M\er.
Further,
AkRange{e;,e,} = Range{q1,qz} — Range{vi,vo}.
(A1 — A2)aq
and (a2)xk — Q[ Aqy = Ao

0
And, so on ...

117,
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QR Algorithm with Shift*

QR Decomposition Method

QR |terat|0nS QR lIterations
Quasi-upper-triangular form:
I )\1 * *k i
A2 ok kK
Ak
Ar Kk

a —w
| 23]
with |)\1‘ > |)\2‘ > e
» Diagonal blocks By correspond to eigenspaces of equal/close
(magnitude) eigenvalues.
» 2 x 2 diagonal blocks often correspond to pairs of complex
eigenvalues (for non-symmetric matrices).
» For symmetric matrices, the quasi-upper-triangular form
reduces to quasi-diagonal form.

QR Decomposition Method

QR Algorithm wit Skyft*
For \; < Aj, entry aj; decays through iterations as ’A\—J">

With shift,
Ap = A — il
A = QkRy, Ak = RiQy;
Aprr = Appr + il

Resulting transformation is

Ay = ReQp+ il = QI ALQy + 1l
Q/ (Ak — 1uc)Qu + k! = QF Ak Q.

For the iteration,

convergence ratio = i’:ﬁi
J

Question: How to find a suitable value for pi?

118,
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Points

v

QR Decomposition Method
to note
QR Algorithm with Shift*

QR decomposition can be effected on any square matrix.

» Practical methods of QR decomposition use Householder

>

transformations or Givens rotations.

A QR iteration effects a similarity transformation on a matrix,
preserving symmetry, Hessenberg structure and also a
symmetric tridiagonal form.

A sequence of QR iterations converge to an almost
upper-triangular form.

Operations on symmetric tridiagonal and Hessenberg forms
are computationally efficient.

QR iterations tend to order subspaces according to the
relative magnitudes of eigenvalues.

Eigenvalue shifting is useful as an expediting strategy.

Necessary Exercises: 1,3

Applied Mathematical Methods

Eigenvalue Problem of General Matrices

Introductory Remarks niroductory Remarks

>

>

>

A general (non-symmetric) matrix may not be diagonalizable.
We attempt to triangularize it.

With real arithmetic, 2 x 2 diagonal blocks are inevitable —
signifying complex pair of eigenvalues.

Higher computational complexity, slow convergence and lack
of numerical stability.

A non-symmetric matrix is usually unbalanced and is prone to
higher round-off errors.

Balancing as a pre-processing step: multiplication of a row and
division of the corresponding column with the same number,
ensuring similarity.

Note: A balanced matrix may get unbalanced again through
similarity transformations that are not orthogonal!

121, Applied Mathematical Methods

Outline

Eigenvalue Problem of General Matrices

Introductory Remarks
Reduction to Hessenberg Form*

QR Algorithm on Hessenberg Matrices*

Inverse lteration
Recommendation

123, Applied Mathematical Methods

Reduction to Hessenberg Form*

Methods to find appropriate similarity transformations

1. a full sweep of Givens rotations,

2. a sequence of n — 2 steps of Householder transformations, and

3. a cycle of coordinated Gaussian elimination.

Method based on Gaussian elimination or elementary

transformations:

Eigenvalue Problem of General Matrices

Eigenvalue Problem of General Matrices

Reduction to Hessenberg Form*

The pre-multiplying matrix corresponding to the
elementary row transformation and the post-multiplying
matrix corresponding to the matching column
transformation must be inverses of each other.

Two kinds of steps
» Pivoting

» Elimination

122,

124,



Applied Mathematical Methods

Reduction to Hessenberg Form*

Eigenvalue Problem of General Matrices 125, Applied Mathematical Methods

Eigenvalue Problem of General Matrices
Reduction to Hessenberg Form*

QR Algorithm on Hessenberg Matrices®

QR Algorithm on Hessenberg Matrices*

Pivoting step: A = P AP, = P'AP,.

» Permutation P: interchange of r-th and s-th columns.

QR iterations: O(n?) operations for upper Hessenberg form.
> Pr_s1 =

P,s: interchange of r-th and s-th rows.

Whenever a sub-diagonal zero appears, the matrix is split
» Pivot locations: ap1, asp, --

into two smaller upper Hessenberg blocks, and they are
*y An—1,n—2-

processed separately, thereby reducing the cost drastically.
Elimination step: A = G;1AG, with elimination matrix

Particular cases:
I, 0 0 I, 0 0 > ap,—1 — 0: Accept an, = A, as an eigenvalue, continue with
G=|01 0 and G/'=]0 1 0 . the leading (n — 1) x (n — 1) sub-matrix.
0 k Ihra 0 -k I > ap_1,,—2 — 0: Separately find the eigenvalues A\,_; and A,
. . . from | 7Ll @n=Ln | ontinue with the leading
» G, ': Row (r4+1+41i)« Row (r+1+1/)— kix Row (r+1) an,n—1 3n,n
for i=1,23,--- ,n—r—1 (n—2) x (n—2) sub-matrix.
» G,: Column (r+ 1) < Column (r + 1)+

Zf;{il[kix Column (r+1+1)] Shift strategy: Double QR steps.

Applied Mathematical Methods

Eigenvalue Problem of General Matrices 127, Applied Mathematical Methods Eigenvalue Problem of General Matrices
Inverse lteration Inverse lteration
Inverse lteration Inverse lteration
Assumption: Matrix A has a complete set of eigenvectors. With yo = Zj:l ajvjandy = 27:1 Bivj, [A=(X:)ol]y = yo gives
(A)o: a good estimate of an eigenvalue \; of A. n n
S OBIA—(llyy = D ay;
Purpose: To find A; precisely and also to find v;. j=1 j=1
_ . L aj
Step: Select a random vector yq (with ||yo|| = 1) and solve = Gy = Akl = oy = = A= (Ao
[A = (Ai)ol]ly = yo.

Bi is typically large and eigenvector v; dominates y.

Av; = \jv; gives [A — ()j)ol]vi = [Aj — (Ai)o]vi. Hence,
Result: y is a good estimate of v; and
[Ai = (Ai)oly =~ [A = (Ai)ol]y = Yo.
()\,')1 = (>\i)0 + T

Inner product with yg gives
is an improvement in the estimate of the eigenvalue.

1
[)\,‘ — ()\,‘)O]yg—y ~1 = )\,‘ ~ ()\,')0 + ﬁ
How to establish the result and work out an ? 0
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Inverse Iteration

Inverse Iteration

Algorithm:

Start with estimate (\;)o, guess yo (normalized).
For k=0,1,2,---

Solve [A — (A)kl]ly = y«-
1

v

» Normalize y, 1 = LH

ly
» Improve (A\)xr1 = (M) + y%y
> If ||yxr1 — k|| < €, terminate.

Important issues
» Update eigenvalue once in a while, not at every iteration.

» Use some acceptable small number as artificial pivot.

v

The method may not converge for defective matrix or for one
having complex eigenvalues.

v

Repeated eigenvalues may inhibit the process.

Applied Mathematical Methods

Points to note

Recommendation

v

Eigenvalue problem of a non-symmetric matrix is difficult!

v

Balancing and reduction to Hessenberg form are desirable
pre-processing steps.

v

QR decomposition algorithm is typically used for reduction to
an upper-triangular form.

» Use inverse iteration to polish eigenvalue and find
eigenvectors.

v

In algebraic eigenvalue problems, different methods or
combinations are suitable for different cases; regarding matrix
size, symmetry and the requirements.

Necessary Exercises: 1,2

Eigenvalue Problem of General Matrices

Eigenvalue Problem of General Matrices

Applied Mathematical Methods

Recommendation

Table: Eigenvalue problem:

Eigenvalue Problem of General Matrices

Recommendation

summary of methods

Type Size Reduction Algorithm Post-processing
General Small Definition: Polynomial Solution of
(up to 4) Characteristic root finding linear systems
polynomial (eigenvalues) (eigenvectors)
Symmetric Intermediate Jacobi sweeps Selective
(say, 4-12) Jacobi rotations
Tridiagonalization Sturm sequence Inverse iteration
(Givens rotation property: (eigenvalue
or Householder Bracketing and improvement
method) bisection and eigenvectors)
(rough eigenvalues)
Large Tridiagonalization QR decomposition
(usually iterations
Householder method)
Balancing, and then
Non- Intermediate Reduction to QR decomposition Inverse iteration
symmetric Large Hessenberg form iterations (eigenvectors)
(Above methods or (eigenvalues)
Gaussian elimination)
General Very large Power method,
(selective shift and deflation
requirement)

Applied Mathematical Methods

Outline

Singular Value Decomposition
SVD Theorem and Construction

Properties of SVD

Singular Value Decomposition

Pseudoinverse and Solution of Linear Systems
Optimality of Pseudoinverse Solution

SVD Al

gorithm

130,
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SVD Theorem and Construction

Eigenvalue problem: A = UAV~! where U £V

Do not ask for similarity. Focus on the form of the decomposition.
Guaranteed decomposition with orthogonal U, V, and
non-negative diagonal entries in A.

Singular Value Decomposition

SVD Theorem and Construction

A =UYXV' such that UTAV =%

SVD Theorem For any real matrix A € R™*", there
exist orthogonal matrices U € R™*™ and V € R"*" such
that

UTAV =5 ¢ R™*n

is a diagonal matrix, with diagonal entries 01,05, -+ > 0,
obtained by appending the square diagonal matrix

diag (01,02, -+ ,0p) with (m — p) zero rows or (n — p)
zero columns, where p = min(m, n).

Singular values: 01,00, ,0p.
Similar result for complex matrices

Applied Mathematical Methods

SVD Theorem and Construction

Singular Value Decomposition

SVD Theorem and Construction

From AV = UX, determine columns of U.
1. Column Avy = ouy, with o, # 0: determine column uy.

Columns developed are bound to be mutually
orthonormal!

-
Verify u,-Tuj = (ULI_AV,-) (U%_Avj) = §jj.

2. Column Avy = oguy, with o, = 0: uy is left indeterminate
(free).

3. In the case of m < n, identically zero columns Av, = 0 for
k > m: no corresponding columns of U to determine.

4. In the case of m > n, there will be (m — n) columns of U left
indeterminate.

Extend columns of U to an orthonormal basis.

All three factors in the decomposition are constructed, as desired.

133, Applied Mathematical Methods
SVD Theorem and Construction

Question: How to construct U, V and X7
For A € R™*",

Singular Value Decomposition 134,
SVD Theorem and Construction

ATA = (VE'UT)(UZVT) =VvET3xVT = VAV,

where A = ¥ 7Y is an n x n diagonal matrix.

o1 |
o9 |
|
|

Op
- - _+_ -

0 | X

Determine V and A. Work out ¥~ and we have

A=UXV' = AV =UY

This provides a proof as well!

135, Applied Mathematical Methods

Properties of SVD

For a given matrix, the SVD is unique up to

Singular Value Decomposition 136,

Properties of SVD

(a) the same permutations of columns of U, columns of V and
diagonal elements of ¥;

(b) the same orthonormal linear combinations among columns of
U and columns of V, corresponding to equal singular values;
and

(c) arbitrary orthonormal linear combinations among columns of
U or columns of V, corresponding to zero or non-existent
singular values.

Ordering of the singular values:
o1>002>---20,>0, and 0,41 =040 =--- =0, =0.

Rank(A) = Rank(¥X) =r

Rank of a matrix is the same as the number of its
non-zero singular values.
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Properties of SVD

Properties of SVD

01y1

Ax = UZVTX:UZy:[ul e U Upp1 o Up)
OrYr

= 0O1y1up + 02)oup + -+ Oy U,
has non-zero components along only the first r columns of U.

U gives an orthonormal basis for the co-domain such that
Range(A) = < uj,up,--- ,u, > .
With VTx =y, v[x = yx, and
X =yivi+yovo + -+ ¥V, + Yr+1Vr41 + - YnVp.
V gives an orthonormal basis for the domain such that

Null(A) = < Vpqi1,Vpq0, 0 ,Vp > .

Applied Mathematical Methods

Properties of SVD

Properties of SVD

Revision of definition of norm and condition number:
The norm of a matrix is the same as its largest singular
value, while its condition number is given by the ratio of
the largest singular value to the least.

Arranging singular values in decreasing order, with Rank(A) =r,

U=[U, U] and V=[V, V],

_ T _ T Zr 0 V;r
A=UxXV' =[U, U]|:0 0 vT |

or,

.
A=U>xV = Zakukv[.
k=1

Efficient storage and reconstruction!

Singular Value Decomposition 137,

Singular Value Decomposition 139,

Applied Mathematical Methods

Properties of SVD

In basis V, v = civi + vy + - -+ + ¢,v, =MEand the norm is

Singular Value Decomposition

Properties of SVD

given by
A2 |Av|? — max vIATAv
O T T
c"VTATAVC c'r’yc S oick
= max ——————— = max ———— = max /=<,
c c’VTvc ¢ clc < >,k
2.2
|A] = | /maxe S5k = oo
For a non-singular square matrix,
1 1 1
Al=(uzv)l=vIlUT =V diag ( — ) u’.
g1 02 On
Then, [|[A7Y]| = % and the condition number is
_ o
R(A) = [|A] AT = —==

Applied Mathematical Methods

Pseudoinverse and Solution of Linear Systénis

Pseudoinverse and Solution of Linear Systems

Singular Value Decomposition

Generalized inverse: G is called a generalized:inverse or g-inverse
of A if, for b € Range(A), Gb is a solution of Ax = b.

The Moore-Penrose inverse or the pseudoinverse:

A* = (UZVT)# = (VT#L#Uu# = vI#u’

> 0 ;1o
i — r # r
Wlthz_{o 0],2 _{ 0 0].

P1
P2

|

|

|
Pp |
PR - PR - __l’__ -
|

L for ox #0or for |ox| > ¢

where pj =< 9’
0, forox=00r for|ok| <e.
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Pseudoinverse and Solution of Linear Systénis

Singular Value Decomposition

Pseudoinverse and Solution of Linear Systems

Inverse-like facets and beyond
> (A7)# = A.
> If A is invertible, then A# = A1,
» A#b gives the correct unique solution.

» If Ax = b is an under-determined consistent system, then
A#b selects the solution x* with the minimum norm.

> If the system is inconsistent, then A#b minimizes the least
square error ||[Ax — b||.

> If the minimizer of ||[Ax — b|| is not unique, then it picks up
that minimizer which has the minimum norm ||x|| among such
minimizers.

Contrast with Tikhonov regularization:

Pseudoinverse solution for precision and diagnosis.
Tikhonov's solution for continuity of solution over
variable A and computational efficiency.

Applied Mathematical Methods

Optimality of Pseudoinverse Solution

Optimality of Pseudoinverse Solution

Singular Value Decomposition

With V = Vit Vrt2 v,], then

r

X = Z(u[b/ak)v;{ +Vy =x*+Vy.
k=1

How to minimize ||x||? subject to £(x) minimum?

Minimize Ey(y) = ||x* + Vy|[2.

Since x* and Vy are mutually orthogonal,
Eiy) = IIx* + Vy|* = [x*|> + [Vy|

is minimum when Vy =0, i.e. y = 0.

141, Applied Mathematical Methods Singular Value Decomposition

Optimality of Pseudoinverse Solution

Optimality of Pseudoinverse Solution

Pseudoinverse solution of Ax = b:

x* = VZ#UTb = Zpkvku[b = Z(u[b/ak)vk
k=1 k=1

Minimize
1 1 1
E(x) = S(Ax — b)"(Ax —b) = ExTATAx —x"ATb + EbTb

Condition of vanishing gradient:

g—fzo = ATAx=A"b
= VEZ'Z)V'x=vz'u'p
= (Z')Vx=3x"U"b
= afv,z-x = Jku[b
= v,;rx = u[b/gk for k=1,2,3,---,r.
143, Applied Mathematical Methods Singular Value Decomposition

Optimality of Pseudoinverse Solution

ality of Pseudoinverse Solution

Anatomy of the optimization through SV
Using basis V for domain and U for co-domain, the variables are
transformed as

Vix=y and U'b=c.

Then,
Ax=b = UXV'x=b = *V'x=U"b = Ty=c.

A completely decoupled system!
Usable components: yx = cx/ok for k =1,2,3,--- ,r.
For k > r,

» completely redundant information (cx = 0)

» purely unresolvable conflict (cx # 0)

SVD extracts this pure redundancy/inconsistency.
Setting px = 0 for k > r rejects it wholesale!
At the same time, ||y|| is minimized, and hence ||x|| too.

142,
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Points to note

Applied Mathematical Methods

Singular Value Decomposition

SVD Algorithm

» SVD provides a complete orthogonal decomposition of the
domain and co-domain of a linear transformation, separating
out functionally distinct subspaces.

» If offers a complete diagnosis of the pathologies of systems of
linear equations.

» Pseudoinverse solution of linear systems satisfy meaningful
optimality requirements in several contexts.

» With the existence of SVD guaranteed, many important
results can be established in a straightforward manner.

Necessary Exercises: 2,4,5,6,7

Vector Spaces: Fundamental Concepts*

Group group

A set G and a binary operation, say ‘+', fulfilling

Closure: at+beGVabeG

Associativity: a+ (b+c)=(a+ b)+c, Va,b,ce G

Existence of identity: 30 € G such that Vae G,a+0=a=0+a

Existence of inverse: Va € G, 3(—a) € G such that
a+(-a)=0=(-a)+a

Examples: (Z,4), (Z,+), (Q@ —{0},-), 2 x 5 real matrices,
Rotations etc.

» Commutative group

» Subgroup

Applied Mathematical Methods

Outline

Applied Mathematical Methods

Field Field

Vector Spaces: Fundamental Concepts*

Vector Spaces: Fundamental Concepts*
Group
Field
Vector Space
Linear Transformation
Isomorphism
Inner Product Space
Function Space

Vector Spaces: Fundamental Concepts*

A set F and two binary operations, say ‘+' and..~,.satisfying

Group property for addition: (F,+) is a commutative group.
(Denote the identity element of this group as ‘0".)

Group property for multiplication: (F — {0}, ) is a commutative
group. (Denote the identity element of this group as
‘1)

Distributivity: a-(b+c)=a-b+a-c, Va,b,ceF.

Concept of field: abstraction of a number system

Examples: (Q,+,-), (R,+,-), (C,+,") etc.

> Subfield

146,
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Vector Space

Vector Space

A vector space is defined by

» a field F of ‘scalars’,

» a commutative group V of ‘vectors’, and

> a binary operation between F and V, that may be called
‘scalar multiplication’, such that Vo, 3 € F, Va,b € V; the
following conditions hold.
Closure: aa € V.
Identity: la =a.
Associativity: (af)a = a(fa).
Scalar distributivity: «(a +b) = aa + ab.
Vector distributivity: (a + ()a = aa + fa.

Examples: R", C", m X n real matrices etc.

Field < Number system
Vector space < Space

Applied Mathematical Methods Vector Spaces: Fundamental Concepts*

Vector Space

Vector Space
Finite dimensional vector space

Suppose the above process ends after n choices of linearly
independent vectors.

X = a1é1 + @b + - + andy

Then,
» n: dimension of the vector space
> ordered set &1,&2,- -+ , &, a basis

> ai,Qp,- -+ ,apn € F: coordinates of x in that basis

R", R™ etc: vector spaces over the field of real numbers

» Subspace

149, Applied Mathematical Methods

Vector Space

Vector Spaces: Fundamental Concepts* 150,

Vector Space

Suppose V is a vector space.
Take a vector &1 # 0 in it.

Then, vectors linearly dependent on &;:
alfl eV Va; € F.

Question: Are the elements of V exhausted?

If not, then take & € V: linearly independent from &;.
Then, a1&1 + axés € V Vag,ap € F.

Question: Are the elements of V exhausted now?

Question: Will this process ever end?

Suppose it does.

finite dimensional vector space

151, Applied Mathematical Methods

Linear Transformation

Vector Spaces: Fundamental Concepts* 152,

Linear Transformation

A mapping T : V — W satisfying

T(ca + b)) =aT(a)+ T(b) Yo,8 € F and Va,beV
where V and W are vector spaces over the field F.
Question: How to describe the linear transformation T7?

» For V, basis £1,&, -+ ,&p
» For W, basis n1,m2, -+ ,m

& € V gets mapped to T(&1) € W.
T(&1) = aum +azm + - + am1m
Similarly, enumerate T(&;) = Y-, ajjni.

Matrix A = [a; ap ap] codes this description!



Applied Mathematical Methods Vector Spaces: Fundamental Concepts*

Linear Transformation
Linear Transformation

A general element x of V can be expressed as

X = X181 + x282 + -+ - + Xpép

Coordinates in a column: x = [x; x xn] T

Mapping:
T(x) =xT(&) +xT (&) + - +x.T(&n),
with coordinates Ax, as we know!

Summary:

» basis vectors of V get mapped to vectors in W whose
coordinates are listed in columns of A, and

» a vector of V, having its coordinates in x, gets mapped to a
vector in W whose coordinates are obtained from Ax.

Applied Mathematical Methods Vector Spaces: Fundamental Concepts*

Isomorphism
Consider T : V — W that establishes a onew@sgrg corréspondence.
» Linear transformation T defines a one-one onto mapping,
which is invertible.
dimV =dimW
Inverse linear transformation T : W — V
T defines (is) an isomorphism.

Vector spaces V and W are isomorphic to each other.

vV v.v. v .Yy

Isomorphism is an equivalence relation. V and W are
equivalent!

If we need to perform some operations on vectors in one vector
space, we may as well
1. transform the vectors to another vector space through an
isomorphism,

2. conduct the required operations there, and

3. map the results back to the original space through the inverse.

153, Applied Mathematical Methods Vector Spaces: Fundamental Concepts* 154,

Linear Transformation

Linear Transformation
Understanding:

» Vector x is an actual object in the set V and the column
x € R" is merely a list of its coordinates.

» T :V — W is the linear transformation and the matrix A
simply stores coefficients needed to describe it.

» By changing bases of V and W, the same vector x and the
same linear transformation are now expressed by different x
and A, respectively.

Matrix representation emerges as the natural description
of a linear transformation between two vector spaces.

Exercise: Set of all T : V — W form a vector space of their own!!
Analyze and describe that vector space.

155, Applied Mathematical Methods Vector Spaces: Fundamental Concepts* 156,

Isomorphism

Isomorphism

Consider vector spaces V and W over the same field»F:and of the
same dimension n.

Question: Can we define an isomorphism between them?

Answer: Of course. As many as we want!

The underlying field and the dimension together
completely specify a vector space, up to an isomorphism.

» All n-dimensional vector spaces over the field F are
isomorphic to one another.

» In particular, they are all isomorphic to F".

» The representation (columns) can be considered as the
objects (vectors) themselves.
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Inner Product Space

Applied Mathematical Methods

Function Space

Vector Spaces: Fundamental Concepts*

Inner product (a,b) in a real or complex vectérspaee: a scalar
function p:V x V — F satisfying

Closure: Va,beV, (a,b)eF

Associativity: («a,b) = a(a,b)

Distributivity: (a +b,c) = (a,c) + (b,c)

Conjugate commutativity: (b,a) = (a,b)

Positive definiteness: (a,a) > 0; and (a,a) =0iffa=0

Note: Property of conjugate commutativity forces (a,a) to be real.

Examples: a’b, a’Whb in R, a*b in C etc.

Inner product space: a vector space possessing an inner product
» Euclidean space: over R

» Unitary space: over C

Vector Spaces: Fundamental Concepts*

Suppose we decide to represent a continuous,function
f :[a, b] — R by the listing

vi=[f(x1) flx) fOs) - )"
witha=x31 <xp <x3<---<xy=b.
Note: The ‘true’ representation will require N to be infinite!

Here, vr is a real column vector.
Do such vectors form a vector space?

Correspondingly, does the set F of continuous functions
over [a, b] form a vector space?

‘ infinite dimensional vector space

Applied Mathematical Methods

Inner Product Space

Applied Mathematical Methods

Function Space

Vector Spaces: Fundamental Concepts*

Inner products bring in ideas of angle and ISHgtHIf tHe geometry
of vector spaces.

Orthogonality: (a,b) =

Norm: || || : V — R, such that ||a]| = y/(a,a)
Associativity: ||cal| = |a| |]a]|

Positive definiteness: |ja|| > 0 for a # 0 and ||0|| =0
Triangle inequality: |la + b| < |ja]| + ||b]|
Cauchy-Schwarz inequality: (a,b) < |ja|| ||b]]

A distance function or metric: dy : V x V — R such that

dy(a,b) = [la —b]|

Vector Spaces: Fundamental Concepts*

Vector space of continuous functions

Function Space

First, (F,+) is a commutative group.

Next, with o, 8 € R, Vx € [a, b],
if f(x) € R, then af(x) € R
f(x) = f(x)
( B)f (x) = a[Bf(x)]
a[fi(x) + £(x)] = afi(x) + af(x)
(a+ B)f(x) = af(x) + Bf(x)

vV v v.vY

v

Thus, F forms a vector space over R.

v

Every function in this space is an (infinite dimensional) vector.

v

Listing of values is just an obvious basis.

158,
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Function Space

Linear dependence of (non-zero) functions, f;rand. f
Function Space
> fr(x) = kfi(x) for all x in the domain ’
> kifi(x) + kafa(x) =0, Vx with kg and ky not both zero.

Linear independence: kifi(x) + kofa(x) =0Vx = k1 =k, =0

In general,
» Functions f1, f, f3,--- , f, € F are linearly dependent if
3 ki, ko, k3, - -+, kn, not all zero, such that

kifi(x) + kafa(x) + kaf3(x) + - - + knfa(x) = 0 ¥Vx € [a, b].

> kifi(x) + kafa(x) + kafs(x) + -+ - + kofa(x) =0 Vx € [a, b] =
ki, ko, ks, -+ , k, = 0 means that functions fi, f,, f3,--- , f, are
linearly independent.

Example: functions 1, x,x2,x3,--- are a set of linearly

independent functions.

Incidentally, this set is a commonly used basis.

Applied Mathematical Methods Vector Spaces: Fundamental Concepts*

Points to note

Function Space

» Matrix algebra provides a natural description for vector spaces
and linear transformations.

» Through isomorphisms, R" can represent all n-dimensional
real vector spaces.

» Through the definition of an inner product, a vector space
incorporates key geometric features of physical space.

» Continuous functions over an interval constitute an infinite
dimensional vector space, complete with the usual notions.

Necessary Exercises: 6,7

161, Applied Mathematical Methods Vector Spaces: Fundamental Concepts* 162,

Function Space

Inner product: For functions f(x) and g(x)iftF, the usual inner
product between corresponding vectors: Function Space

(v, vg) = v/ vg = f(x1)g(x1) + f(x)g(x2) + F(x3)g(xa) + -+
Weighted inner product: (vf,vg) = v/ Wy, = >, w;f(x;)g(x)

For the functions,

b
(f.g) = / w(x)F (x)g(x)dx

» Orthogonality: (f,g) = fab w(x)f(x)g(x)dx =0
> Norm: ]| = /[ w()[f (x)]dx

> Orthonornzal basis:
(fi, fi) = [, w)f()f(x)dx = 0 V), k

163, Applied Mathematical Methods Topics in Multivariate Calculus 164,

Outline

Topics in Multivariate Calculus
Derivatives in Multi-Dimensional Spaces
Taylor's Series
Chain Rule and Change of Variables
Numerical Differentiation
An Introduction to Tensors*



Applied Mathematical Methods Topics in Multivariate Calculus

Derivatives in Multi-Dimensional Spac&g

tives in Multi-Dimensional Spaces

Gradient

of  of of’

of
Vf(x) = a—x(x) = a—Xl a—X2 e 8Xn

Up to the first order, 6f ~ [Vf(x)] T éx
Directional derivative

of _ im f(x +ad) — f(x)
od - a—0 «
Relationships:
or of orf T orf
e~ ox' od d'Vf(x) and 28 IV ()]

Among all unit vectors, taken as directions,
» the rate of change of a function in a direction is the same as
the component of its gradient along that direction, and
> the rate of change along the direction of the gradient is the
greatest and is equal to the magnitude of the gradient.

Applied Mathematical Methods Topics in Multivariate Calculus

Taylor's Series

Taylor's Series
Taylor's formula in the remainder form:

f(x + 0x) = f(x) + f'(x)dx
1 1
2! (n—1)
where x. = x + tdx with 0 <t <1

Mean value theorem: existence of x.
Taylor's series:

+=f"(x)0x* 4 - +

Flx + 0x) = F(x) + F/(x)0x + %f"(x)éxz .
For a multivariate function,
1
f(x +0x) = f(x)+[ox"V]f(x)+ E[éxTVFf(x) +--
1 Tx71n—1 i T~71n
+(n— 1)![6x V" f(x) + n![éx V]"f(x + tdx)
0*f

f(x+0x) ~ Ff(x)+][VF(x)]"ox + %5XT {W(X)] ox

n— n— 1 n n
FID(x)x"1 + mf( )(xc)dx

167,
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Derivatives in Multi-Dimensional Spac&g

tives in Multi-Dimensional Spaces

Hessian

02F P o
3X12 6X28X1 8X,-,8X1

2f Pf ﬂ A > f
. 0 n Ox10x0 Ox22 OxnOxp

H(x) = 2 =
Ox : : L
02F 2f .
Ox10xn ~ Oxo0xn Oxn?

Meaning: Vf(x +dx) — Vf(x) =~ [%(x)} ox

For a vector function h(x), Jacobian

oh och  0Oh oh
0= g0 =[50 5 o]

Underlying notion: dh =~ [J(x)]dx

Applied Mathematical Methods Topics in Multivariate Calculus

Chain Rule and Change of Variables

Chain Rule and Change of Variables

For f(x), the total differential:

of of of
df = [Vf(x)]de = a_)qul + 3_)<2dX2 + -+ 87an

Ordinary derivative or total derivative:

df

daf dx
dt

A0 e

For f(t,x(t)), total derivative: 9 = 9L 4 [V£(x)]T 2%
For f(v,x(v)) = f(vi,va, -+, vm, x1(v),x2(V), -, x5(V)),

1

-
= Vf(v,x(v)) =V, f(v,x) + [g:(v)] Vi f(v,x)

168,
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Chain Rule and Change of Variables

Chain Rule and Change of Variables

Let x € R™" and h(x) € R™.

Partition x € R™™" into z € R" and w € R™.
System of equations h(x) = 0 means h(z,w) = 0.
Question: Can we work out the function w = w(z)?
Solution of m equations in m unknowns?

Question: If we have one valid pair (z,w), then is it possible to

develop w = w(z) in the local neighbourhood?

Answer: Yes, if Jacobian g_\:l/ is non-singular.

‘ Implicit function theorem ‘

oh  oh ow ow oh]~" [oh
e =0 = —=— | —| |+
0z Ow 0z 0z ow Oz
Upto first order, w; = w + [%—‘2’} (z1 — 2).
Applied Mathematical Methods Topics in Multivariate Calculus

Chain Rule and Change of Variables

Chain Rule and Change of Variables
Differentiation under the integral sign

How To differentiate ¢(x) = ¢(x, u(x), v(x)) = fuv(ix)) f(x,t)dt?
In the expression
0p  Opdu  O¢dv
/ P —— - R —
') = 8x+ 8udx+8vdx’
we have 92 = [V 9F(x t)dt.

u

Now, considering function F(x,t) such that f(x,t) = %,
v OF
¢(X): E(X7 t)dt: F(Xv V)_F(X7 U) E¢(X7 u, V)‘
u

Using g—‘f = f(x,v) and % = —f(x, u),

Ve of dv du
/ P —_ —_ _
d'(x) = /U(X) I (x, t)dt + f(x,v) ™ f(x, u) v

Leibnitz rule

169,
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Chain Rule and Change of Variables

Chain Rule and Change of Variables
For a multiple integral

/z///)"(x,y,z)dxdydz7
A

change of variables x = x(u, v, w), y = y(u,v,w), z = z(u, v, w)
gives

/:/A/f(x(u, v,w),y(u,v,w),z(u,v,w)) |J(u, v,w)| du dv dw,

where Jacobian determinant |J(u, v, w)| = ’%

For the differential

Py(x)dx1 + Po(x)dxs + - - - + Pp(x)dxp,

we ask: does there exist a function f(x),

» of which this is the differential;

» or equivalently, the gradient of which is P(x)?
Perfect or exact differential: can be integrated to find f.

Applied Mathematical Methods Topics in Multivariate Calculus

Numerical Differentiation

Forward difference formula Numerical Differentiation

fi(x) = LX) = ) 5;2 — "9 ogsx)

Central difference formulae
f(x 4+ 0x) — f(x — 6x)

f'(x) = T + O(6x?)
F1(x) = f(x 4 0x) — 2;)(<§) + f(x — 0x) L 0(x)
For gradient Vf(x) and Hessian,
of 1
a—XI(X) = %[f(x + (Se,') — f(x — (Se,')]7
O*f f(x + de;) — 2f(x) + f(x — de;
Py o Hrbe) 20 rtie) g

f(x + de; + 5ej') — f(X + de; — (5ej)

170,
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Applied Mathematical Methods

An Introduction to Tensors*

Topics in Multivariate Calculus

An Introduction to Tensors*

Indicial notation and summation convention

Kronecker delta and Levi-Civita symbol

Rotation of reference axes

Tensors of order zero, or scalars

Contravariant and covariant tensors of order one, or vectors
Cartesian tensors

Cartesian tensors of order two

Higher order tensors

Elementary tensor operations

Symmetric tensors

Tensor fields

vV VvV vV VvV vV V. VY YV Vv V%vVY%

Applied Mathematical Methods

Outline

Vector Analysis: Curves and Surfaces

Vector Analysis: Curves and Surfaces
Recapitulation of Basic Notions
Curves in Space
Surfaces*

173, Applied Mathematical Methods Topics in Multivariate Calculus

Points to note

An Introduction to Tensors*

Gradient, Hessian, Jacobian and the Taylor's series
Partial and total gradients
Implicit functions

Leibnitz rule

vV v.v. v .Y

Numerical derivatives

Necessary Exercises: 2,3,4,8

175, Applied Mathematical Methods Vector Analysis: Curves and Surfaces

Recapitulation of Basic Notions

Recapitulation of Basic Notions

Dot and cross products: their implications
Scalar and vector triple products
Differentiation rules

Interface with matrix algebra:

(a-x)b ; (ba

—~

aJT_x7 for 2-d vectors
axx = =
ax, for 3-d vectors
where
. N 0 —a, a
a, = Y and a= ay 0 —ay
ax

—ay ax 0

174,

176,



Applied Mathematical Methods

Curves in Space

Vector Analysis: Curves and Surfaces

Curves in Space

Explicit equation: y = y(x) and z = z(x)
Implicit equation: F(x,y,z)=0= G(x,y,z)

Parametric equation:

r(t) = x(£)i + y(2)i + z(t)k = [x(t) y(t) 2(t)]7

» Tangent vector: r'(t)
> Speed: ||F||
» Unit tangent: u(t) =

T4l

» Length of the curve: [ = [ |dr|| =

[P\ dt

Arc length function
t
£ = / V@) V() dr
a
with ds = ||dr|| = \/dx2 + dy2 + dz2 and & = |||

Applied Mathematical Methods

Curves in Space

Vector Analysis: Curves and Surfaces
Curves in Space

Curvature: The rate at which the direction changes with arc
length.

K(s) = ' () = [Ir"(s)l

Unit principal normal:
1

=
p=_u(s)
With general parametrization,
d|v'| du _ d|¥|
" o / 7112
¢/(6) = < tu(e) + I (0| 5 = Sotu(e) + w(e)FPp(e)

» Osculating plane
» Centre of curvature

» Radius of curvature

Figure: Tangent and normal to a curve

177, Applied Mathematical Methods

Curves in Space

Vector Analysis: Curves and Surfaces

Curves in Space

Curve r(t) is regular if ¥r'(t) # 0 Vt.

» Reparametrization with respect to parameter t*
strictly increasing function of t

, some

Observations

» Arc length s(t) is obviously a monotonically increasing
function.

» For a regular curve, dt = £ 0.
» Then, s(t) has an inverse function.

> Inverse t(s) reparametrizes the curve as r(t(s)).

For a unit speed curve r(s), ||r'(s)]| =1 and the unit tangent is

179, Applied Mathematical Methods

Curves in Space

Vector Analysis: Curves and Surfaces
Curves in Space
Binormal: b =u x p
Serret-Frenet frame: Right-handed triad {u,p,b}

» Osculating, rectifying and normal planes

Torsion: Twisting out of the osculating plane
> rate of change of b with respect to arc length s
b=uxp+uxp =x(s)pxp+uxp =uxp
What is p’?

Taking p’ = ou + 7b,
b’ =u x (ou + 7b) = —7p.

Torsion of the curve

178,
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Curves in Space

Curves in Space

We have u’ and b’. What is p’?
From p =b x u,

/

pP=b xu+bxu =—-7pxu+bxrp=—ru+rb.

Serret-Frenet formulae

uo= kP,
pPP = —ku + 7b,
b = —7p

Intrinsic representation of a curve is complete with x(s) and 7(s).
The arc-length parametrization of a curve is completely

determined by its curvature k(s) and torsion 7(s)
functions, except for a rigid body motion.

Applied Mathematical Methods Vector Analysis: Curves and Surfaces

Points to note

Surfaces*

» Parametric equation is the general and most convenient
representation of curves and surfaces.

» Arc length is the natural parameter and the Serret-Frenet
frame offers the natural frame of reference.

» Curvature and torsion are the only inherent properties of a
curve.

» The local shape of a surface patch can be understood through
an analysis of its curvature tensor.

Necessary Exercises: 1,2,3,6

181, Applied Mathematical Methods Vector Analysis: Curves and Surfaces

Surfaces*

Surfaces*

Parametric surface equation:

r(u,v) = x(u, v)ity(u, v)i+z(u, vk = [x(u,v) y(u,v) z(u,v)]"

Tangent vectors r, and r, define a tangent plane 7.

N =r, x r, is normal to the surface and the unit normal is

N ry Xry,

n= = .
NI flrw < r]

Question: How does n vary over the surface?

Information on local geometry: curvature tensor

» Normal and principal curvatures

» Local shape: convex, concave, saddle, cylindrical, planar

183, Applied Mathematical Methods Scalar and Vector Fields

Outline

Scalar and Vector Fields
Differential Operations on Field Functions
Integral Operations on Field Functions
Integral Theorems
Closure

182,
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Applied Mathematical Methods Scalar and Vector Fields 185, Applied Mathematical Methods Scalar and Vector Fields 186,

Differential Operations on Field Functifis, s et e Differential Operations on Field Functifis, s eni e

Scalar point function or scalar field ¢(x,y,z)" ' R3 — R

dient
Vector point function or vector field V(x,y, z): R® — R3 Gradien
The del or nabla (V) operator 0 0 0
(V) op grad ¢ = Vo = 2054 995, 99,
.0 .0 0 ox Oy Oz
V=i—+j—+k .
Ox 0y 0z is orthogonal to the level surfaces.

> V is a vector, Flow fields: —V¢ gives the velocity vector.

> it signifies a differentiation, and

> it operates from the left side. Divergence
Laplacian operator: For V(x,y,z) = Vi(x,y,2)i + V) (x,y, 2)i + Va(x,y, 2)k,
0?0 oV dV, oV,
Vi 45+ 55 =V.V 77 vV=V.V=2X4 X z
2 92 T oz dvv=V-V pe + dy + 7

Laplace's equation: . .
Divergence of pV: flow rate of mass per unit volume out of the

@ @ 82792):0 control volume.
Ox2  Oy? 9z

) ) ] ) Similar relation between field and flux in electromagnetics.
Solution of V¢ = 0: harmonic function

Applied Mathematical Methods Scalar and Vector Fields 187, Applied Mathematical Methods Scalar and Vector Fields 188,
Differential Operations on Field FunctiBg, e oot Differential Operations on Field FunctiBg, e oot
Curl Composite operations
Operator V is linear.
bobok V(6+¥) = Vot vy,
curlV = VxV= Ix W 9z V(V+W) — V\I_|_VW7 and
Ve Vy Ve Vx(V+W) = VxV+4+VxW.
oV, 9V, \. oV, OV.\. aVv, o0V
= oy a2 ) "oz ax )it lax oy )k
Y z z X X Y Considering the products ¢, ¢V, V-W, and V x W,
If V = w x r represents the velocity field, then angular velocity V(py) = YV + ¢V
1 V-(eV)=Vo-V+ ¢V -V
w:zcurIV. Vx(¢pV)=VodxV+ oV xV
VV-W)=(W-VIV+(V-VIW+W X (VxV)+V x(VxW)
Curl represents rotationality. VA(VXW)=W . (VxV)-V.-(VxW)
Vx(VxW)=(W-V)V-W((V-V)—(V-V)W+V(V- W)

Connections between electric and magnetic fields! 9 9

Note: the expression V -V = an% + Vyw + V.3 is an operator!
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Differential Operations on Field Functifis, s et e

Second order differential operators

div grad¢ = V-(Vg)
curl grad ¢ = V x (Vo)
div curl V. = V- (V xV)
curl curl V.= V x(VxV)
grad divV = V(V-V)

Important identities:

div grad ¢ = V-(V¢)= V3¢

curl gradp = Vx(Vg)=0
div curlV. = V- (VxV)=0
curl curl V.= Vx(VxV)

=V(V-V)-V?V = grad divV — V3V

Applied Mathematical Methods Scalar and Vector Fields

Integral Operatlons On Fleld FU nction&egral Operations on Field Functions

Surface integral over an orientable surface S:

J:/S/V-dS:/S/V-ndS

For vr(u,w), dS = |lr, X ry|| dudw and
J://V~nd5://v-(ruxrw)dudw.
S R

Volume integrals of point functions over a region T:

e[ [ foor wa o[ ] fun

Scalar and Vector Fields

Integral Operatlons On Fleld FU nction&egral Operations on Field Functions

189, Applied Mathematical Methods

Line integral along curve C:

I:/Vodr:/(deer Vydy + V,dz)
C C

For a parametrized curve r(t), t € [a, b],

b
I:/V-dr:/V-ﬂdt.
c 2 dt

For simple (non-intersecting) paths contained in a simply
connected region, equivalent statements:

> Vidx + V,dy 4+ V,dz is an exact differential.

V = V¢ for some ¢(r).

JcV - dr is independent of path.

Circulation § V - dr = 0 around any closed path.
curl V =0.

Field V is conservative.

v

vV v vy

191, Applied Mathematical Methods

Integral Theorems

Scalar and Vector Fields
Integral Theorems
Green'’s theorem in the plane

R: closed bounded region in the xy-plane
C: boundary, a piecewise smooth closed curve
Fi(x,y) and Fa(x,y): first order continuous functions

B oF, 0F
]{C(FldX'F Fady) = /R/ ( ox  ay ) dx dy

(a) Simple domain

(b) General domain

Figure: Regions for proof of Green's theorem in the plane

192,
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Integral Theorems

Integral Theorems

Proof:
OF b ry:(x) F
L ms = [ L, w
b
_ /Uﬂ&m&ﬂ—ﬁkmwmw
a a b
— _/ Fl{x7y2(x)}dx—/ F1{x, y1(x)}dx
b a
= _%Fl(xay)dx
c

o(y)
[ ]t [ [ ey~ f s
c

Difference: §-(Fidx + Fady) = [ [ (% - %) dx dy

X

In alternative form, §-F-dr = [ [ curl F -k dxdy.

Applied Mathematical Methods Scalar and Vector Fields

Integral Theorems

Integral Theorems

Lower and upper segments of S: z = zi(x,y) and z = z(x, y).

J ) G [ o] e

:A/WQMM&M—EM%MMMWW

R: projection of T on the xy-plane

Projection of area element of the upper segment: n,dS = dx dy
Projection of area element of the lower segment: n,dS = —dx dy

Thus, ffoandxdydz: Js | FznzdS.
Sum of three such components leads to the result.

Extension to arbitrary regions by a suitable subdivision of domain!

Applied Mathematical Methods Scalar and Vector Fields 194,

Integral Theorems

Integral Theorems

Gauss’s divergence theorem

T: a closed bounded region

S: boundary, a piecewise smooth closed orientable
surface

F(x,y,z): a first order continuous vector function

t/ﬁ/wﬁW:L/Fmﬁ

Interpretation of the definition extended to finite domains.

///( 8F %ZZ> dxdydz://(FXnX+Fyny+anz)dS
S

To show: [ [ [ %=dxdydz= [ [ F,n,dS
First consider a region, the boundary of which is intersected at
most twice by any line parallel to a coordinate axis.

Applied Mathematical Methods Scalar and Vector Fields 196,

Integral Theorems

Integral Theorems

Green's identities (theorem)

Region T and boundary S: as required in premises of
Gauss'’s theorem

o(x,y,z) and ¥(x,y,z): second order continuous scalar
functions

/5/¢V1/J-nd5 = //T/(¢V27/1+V¢-Vw)dv
/5/(¢>W—W¢).nds _ //T/(sz_w%)dv

Direct consequences of Gauss's theorem

To establish, apply Gauss's divergence theorem on ¢V, and then
on YV ¢ as well.
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Integral Theorems Integral Theorems

Integral Theorems Integral Theorems

Stokes’s theorem
S: a piecewise smooth surface
C: boundary, a piecewise smooth simple closed curve Unit normal n = [n, n, nz]T is proportional to % g_; _ l]T_
F(x,y,z): first order continuous vector function

Represent S as z = z(x, y) = f(x, y).

0z

fF'dr://cur/F-nds =y
C S

n: unit normal given by the right hand clasp rule on C / / OF. OF. s / / OF. N OF. 0z s
—n,— ——n, =— —_— — | n,
S 0z ¥ Oy s dy 0z Oy
Over projection R of S on xy-plane, ¢(x,y) = Fx(x,y, z(x,y)).

j{deXZ//(%I:Xj—%ka)ndS://(%ny—?nZ) ds. 5
¢ s Y s Y LHS :—//—Qsdxdy:j{ ab(x,y)dx:f Fidx
r.J Oy c c

First, consider a surface S intersected at most once by any line
parallel to a coordinate axis.

For F(vavz) = FX(XaY7Z)ir

Similar results for F,(x,y,z)j and F,(x,y, z)k.

Applied Mathematical Methods Scalar and Vector Fields 199, Applied Mathematical Methods Polynomial Equations 200,

Points to note Outline

Closure

» The ‘del’ operator V
» Gradient, divergence and curl Polynomial Equations
» Composite and second order operators Basic Principles
> Line, surface and volume intergals Analytical Solution .

G . G , d Stokes's th General Polynomial Equations
» Green's, Gauss's and Stokes's theorems Two Simultaneous Equations
» Applications in physics (and engineering) Elimination Methods*

Advanced Techniques*

Necessary Exercises: 1,2,3,6,7



Applied Mathematical Methods

Basic Principles

Polynomial Equations

Basic Principles
Fundamental theorem of algebra
p(x) = aox” + a1x" "+ ax"? 4 -+ + ap_1x + ap
has exactly n roots x1, x2, -+, Xn; with
p(x) = ao(x — x1)(x — x2)(x — x3) - - (X — Xpn).

In general, roots are complex.
Multiplicity: A root of p(x) with multiplicity k satisfies

px) = p(x) = p"(x) = - = p D (x) = 0.
» Descartes’ rule of signs

» Bracketing and separation

» Synthetic division and deflation

Applied Mathematical Methods

Analytical Solution

Polynomial Equations

Analytical Solution

\y3+py+q=0\

Assuming y = u+ v, we have y3 = v3 + v3 + 3uv(u + v).

uv = —p/3
u3—|—v3 = —q
4 3
and hence (u® —v3)?2 = q2+L.
27
Solution:
2 3
u3,v3:—g:|: %4—5—7 = A,B (say).

u= A17A1w,A1w2, and v = By, Biw, Byw?

y1=A1+ Bi, yo = Aiw+ Blw2 and y3 = A1w2 + Biw.

At least one of the roots is realll

201,
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Applied Mathematical Methods

Analytical Solution

Polynomial Equations

Analytical Solution

Quadratic equation

_ /b2 —
ax?+bx+c=0 = X:W

Method of completing the square:

2ob (B P e b\ P -sac
a 2a) 432 a 2a) 422

Cubic equations (Cardano):
x4 ax® 4 bx+c=0

Completing the cube?
Substituting y = x + k,

y3+ (a—3k)y* + (b — 2ak + 3k?)y + (c — bk + ak®> — k3) = 0.

Choose the shift k = a/3.

Applied Mathematical Methods

Analytical Solution

Polynomial Equations

Analytical Solution

Quartic equations (Ferrari)

2 2
a4 bP+ex+d =0 = (X2 + §X> = (% — b) x?—cx—d

For a perfect square,

2 2 2
(g = () (F - (5-9)
Under what condition, the new RHS will be a perfect square?
2 2
ay )2 a y
- — —4(——0b ——d|]=0
( 2~ ¢ (4 +y> ( 4 )

Resolvent of a quartic:

y® — by? + (ac — 4d)y + (4bd — a*d — c?) =0

202,
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Analytical Solution

Polynomial Equations

Analytical Solution

Procedure
» Frame the cubic resolvent.
» Solve this cubic equation.
» Pick up one solution as y.

» Insert this y to form

2,9 X)2_ 2
(x +2x+2 = (ex + )~

v

Split it into two quadratic equations as

x2+gx+§:i(ex—|—f).

v

Solve each of the two quadratic equations to obtain a total of
four solutions of the original quartic equation.

Applied Mathematical Methods

General Polynomial Equations

Polynomial Equations

General Polynomial Equations

Bairstow’s method
to separate out factors of small degree.

Attempt to separate real linear factors?

Real quadratic factors

Synthetic division with a guess factor x> + gix + go:

remainder rix -+ r»

r=[n r2]T is a vector function of q = [¢1 qg]T.
Iterate over (g1, g2) to make (r1, ) zero.

Newton-Raphson (Jacobian based) iteration: see exercise.

205, Applied Mathematical Methods Polynomial Equations

General Polynomial Equations

General Polynomial Equations
Analytical solution of the general quintic equation
Galois: group theory:

A general quintic, or higher degree, equation is not
solvable by radicals.

General polynomial equations: iterative algorithms
» Methods for nonlinear equations
» Methods specific to polynomial equations
Solution through the companion matrix

Roots of a polynomial equation are the same as the
eigenvalues of its companion matrix.

00 -+ 0 —ap

10 --- 0 —dp—1
Companion matrix: oo '

00 0 —ay

00 1 —a;

207, Applied Mathematical Methods Polynomial Equations

Two Simultaneous Equations

Two Simultaneous Equations

p1X2+q1xy+r1y2+u1X+v1y+W1 =0
p2X2—|—q2xy—|—r2y2—|—u2x—|—v2y+W2 =0

Rearranging,

ax> +bhix+ca = 0
ax’+ x4+ = 0
Cramer's rule:
x? —X 1
bico — by aico —axar aiby — axby
bico — bacy a1c — axqy
= X =— = —

aic — axcy arby, — axby

Consistency condition:
(albg — azbl)(b1C2 — bgcl) — (31C2 — 32C1)2 =0
‘A 4th degree equation in y‘

206,
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Elimination Methods*

Elimination Methods*
The method operates similarly even if the degrees of the original
equations in y are higher.

What about the degree of the eliminant equation?
Two equations in x and y of degrees ny and ny:
x-eliminant is an equation of degree niny iny

Maximum number of solutions:
Bezout number = nin»

Note: Deficient systems may have less number of solutions.

Classical methods of elimination
» Sylvester's dialytic method

» Bezout's method

Applied Mathematical Methods Polynomial Equations

Points to note

Advanced Techniques*

» Roots of cubic and quartic polynomials by the methods of
Cardano and Ferrari
» For higher degree polynomials,
» Bairstow’s method: a clever implementation of
Newton-Raphson method for polynomials
» Eigenvalue problem of a companion matrix
» Reduction of a system of polynomial equations in two
unknowns by elimination

Necessary Exercises: 1,3,4,6

Applied Mathematical Methods Polynomial Equations

Advanced Techniques*

Three or more independent equations in as many, Hiknowns?

» Cascaded elimination? Objections!
» Exploitation of special structures through clever heuristics

(mechanisms kinematics literature)

» Grobner basis representation
(algebraic geometry)

» Continuation or homotopy method by Morgan
For solving the system f(x) = 0, identify another
structurally similar system g(x) = 0 with known
solutions and construct the parametrized system

h(x) = tf(x) + (1 — t)g(x) =0 for t € [0,1].

Track each solution fromt =0 tot =1.

Applied Mathematical Methods Solution of Nonlinear Equations and Systems

Outline

Solution of Nonlinear Equations and Systems
Methods for Nonlinear Equations
Systems of Nonlinear Equations
Closure

210,

212,
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Methods for Nonlinear Equations

Applied Mathematical Methods

Methods for Nonlinear Equations

Solution of Nonlinear Equations and Systems

Methods for Nonlinear Equations

Algebraic and transcendental equations in the form
f(x)=0

Practical problem: to find one real root (zero) of f(x)
Example of f(x): x3—2x+5, x3Inx —sinx+ 2, etc.

If £(x) is continuous, then
Bracketing: f(xg)f(x1) < 0 = there must be a root of f(x)
between xg and x;.

Bisection: Check the sign of f(**5*1). Replace either xo or x
with 224

Solution of Nonlinear Equations and Systems

Methods for Nonlinear Equations

Newton-Raphson method
First order Taylor series )
f(x +6x) = f(x) + f'(x)dx
From f(xx + dx) =0,

ox = —f(xk)/f (xk) A
[teration:

Xk+1 = X — F(xk) /(%)
Convergence criterion:
P < PR o x
Draw tangent to f(x). %

Take its x-intercept.

Figure: Newton-Raphson method

Merit: quadratic speed of convergence: |xx;1 — x*| = c|xx — x*|?
Demerit: If the starting point is not appropriate,

haphazard wandering, oscillations or outright divergence!

213,
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Methods for Nonlinear Equations

Applied Mathematical Methods

Methods for Nonlinear Equations

Solution of Nonlinear Equations and Systems

Methods for Nonlinear Equations

Fixed point iteration v

Rearrange f(x) =0 in ﬁ
mZ

the form x = g(x).

Example:

For f(x) = tanx — x3 — 2, . |
possible rearrangements: :

gi(x) =tan"1(x3 +2) d ¢

g (x) = (tanx — 2)1/3 .

g3(x) _ tanX);—2 e

Iteration: xx11 = g(xk) o P axr X

Figure: Fixed point iteration

If x* is the unique solution in interval J and
lg'(x)] < h<1indJ, then any xo € J converges to x*.

Solution of Nonlinear Equations and Systems

Methods for Nonlinear Equations

Secant method and method of false position

()
In the Newton-Raphson formula, .
f’(X) ~ FOx)—F(xk—1)

Xk —Xk—1
_ _ Xk —Xk—1
= Xl = X~ ) ! %)

Draw the chord or

secant to f(x) through
(xk—1, F(xk—1)) and (xk, F(xk)). )
Take its x-intercept.

X %% Xt

Figure: Method of false position

Special case: Maintain a bracket over the root at every iteration.

The method of false position or regula falsi

Convergence is guaranteed!

214,
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Methods for Nonlinear Equations

Methods for Nonlinear Equations

Quadratic interpolation method or Muller method
Evaluate f(x) at three points y
and model y = a + bx + cx?.

Set y = 0 and solve for x.

Inverse quadratic interpolation
Evaluate f(x) at three points
and model x = a+ by + cy?. %
Set y = 0 to get x = a. ten)

Inverse
Quadratic
Interpolation

% 3

Figure: Interpolation schemes

Van Wijngaarden-Dekker Brent method
» maintains the bracket,
» uses inverse quadratic interpolation, and
> accepts outcome if within bounds, else takes a bisection step.

Opportunistic manoeuvring between a fast method and a safe one!

Applied Mathematical Methods Solution of Nonlinear Equations and Systems

Closure

Closure

Modified Newton’s method
Xir1 = Xk — ou[I (xic)] (%)
Broyden’s secant method

Jacobian is not evaluated at every iteration, but gets
developed through updates.

Optimization-based formulation
Global minimum of the function

IFx)? =R+ 7+ + £

Levenberg-Marquardt method

217, Applied Mathematical Methods Solution of Nonlinear Equations and Systems

Systems of Nonlinear Equations

Systems of Nonlinear Equations

f].(X1;X2a'” 7Xn) - 07

fZ(XI;XZa"' 7Xn) = Oa

fn(X17X27"' 7Xn) = 0
f(x) =0

» Number of variables and number of equations?
» No bracketing!
» Fixed point iteration schemes x = g(x)?

Newton’s method for systems of equations

f(x + ox) = f(x) + [%(x)] Ox + -+~ f(x) + J(x)ox
= Xpp1 = Xk — [I0x)] T (xe)

with the usual merits and demerits!

219, Applied Mathematical Methods Solution of Nonlinear Equations and Systems

Points to note

Closure

> lteration schemes for solving f(x) = 0

» Newton (or Newton-Raphson) iteration for a system of
equations

Xpp1 = Xk — [ (xi)] " H(xk)

» Optimization formulation of a multi-dimensional root finding
problem

Necessary Exercises: 1,2,3

218,
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Outline

Optimization: Introduction

Optimization: Introduction
The Methodology of Optimization
Single-Variable Optimization
Conceptual Background of Multivariate Optimization

Applied Mathematical Methods

Single-Variable Optimization

Optimization: Introduction

Single-Variable Optimization

For a function f(x), a point x* is defined as a relative (local)
minimum if 3 € such that f(x) > f(x*) V x € [x* —¢,x* + €].

(%)

O a x X X X % % b

Figure: Schematic of optima of a univariate function

Optimality criteria

First order necessary condition: If x* is a local minimum or
maximum point and if f'(x*) exists, then f'(x*) = 0.

Second order necessary condition: If x* is a local minimum point
and ”(x*) exists, then f”(x*) > 0.

Second order sufficient condition: If f'(x*) =0 and f”(x*) >0
then x* is a local minimum point.

Optimization: Introduction

The Methodology of Optimization

Applied Mathematical Methods

The Methodology of Optimization

v

Parameters and variables

v

The statement of the optimization problem

Minimize  f(x)
subject to  g(x) <0,
=0.

h(x)

Optimization methods
Sensitivity analysis
Optimization problems: unconstrained and constrained

Optimization problems: linear and nonlinear

vV v v v Y

Single-variable and multi-variable problems

Applied Mathematical Methods Optimization: Introduction

Single-Variable Optimization

Single-Variable Optimization

Higher order analysis: From Taylor's series,
Af = f(x*+dx) —f(x¥)
1
_ 1( % el x 2
= f(x)5x+2!f(x)5x +3!

For an extremum to occur at point x*, the lowest order
derivative with non-zero value should be of even order.

If f'(x*) =0, then
> x* is a stationary point, a candidate for an extremum.
» Evaluate higher order derivatives till one of them is found to
be non-zero.

» If its order is odd, then x* is an inflection point.
> If its order is even, then x* is a local minimum or maximum,
as the derivative value is positive or negative, respectively.

222,

224,

1 1
ff”/(X*)(SX:;‘FEfIV(X*)5X4+“~



Applied Mathematical Methods Optimization: Introduction 225,
Slngle-varla ble Optlmlzatlon Single-Variable Optimization
Iterative methods of line search
Methods based on gradient root finding
» Newton's method

f'(xk)
Xkl = Xk — (%)

» Secant method
it — Xk — Xk—1
T ) — F (k1)

» Method of cubic estimation
point of vanishing gradient of the cubic fit with
f(Xk_l), f(Xk), f’(Xk_l) and f’(Xk)

f'(xk)

» Method of quadratic estimation

point of vanishing gradient of the quadratic fit
through three points

Disadvantage: treating all stationary points alike!

Applied Mathematical Methods Optimization: Introduction 227,

Conceptual Background of Multivariaté.Qptitdization

Conceptual Background of Multivariate Optimizatiol

Unconstrained minimization problem

x* is called a local minimum of f(x) if 3 § such that

f(x) > f(x*) for all x satisfying ||x — x*|| < .

Optimality criteria
From Taylor's series,

f(x) — £(x*) = [g(x")] " ox + %5xT[H(x*)]5x R

For x* to be a local minimum,
necessary condition: g(x*) =0 and H(x*) is positive semi-definite,

sufficient condition: g(x*) = 0 and H(x*) is positive definite.

Indefinite Hessian matrix characterizes a saddle point.

Applied Mathematical Methods Optimization: Introduction 226,
SI ngle-Va ria ble O ptl m ization Single-Variable Optimization
Bracketing:
x1 < x2 < x3 with f(x1) > f(x2) < f(x3)
Exhaustive search method or its variants
Direct optimization algorithms

» Fibonacci search uses a pre-defined number N, of function
evaluations, and the Fibonacci sequence

Fo=1 k=1 F=2 -, Fj=F2+Fi, -

to tighten a bracket with economized number of function
evaluations.
» Golden section search uses a constant ratio

V5 —1
2

~ 0.618,

T =

the golden section ratio, of interval reduction, that is
determined as the limiting case of N — oo and the actual
number of steps is decided by the accuracy desired.

Applied Mathematical Methods Optimization: Introduction 228,

Conceptual Background of Multivariaté.Qptitdization

Conceptual Background of Multivariate Optimizatiol
Convexity
Set S C R" is a convex set if

Vx1,x2 €S and a€(0,1), ax;+ (1 —a)x €S.

Function f(x) over a convex set S: a convex function if
¥V x1,x2 €S and a€(0,1),

flax; + (1 — a)xz) < af(x1) + (1 — a)f(x2).

Chord approximation is an overestimate at intermediate points!

X| 1(x)
1)
()
o X o X: X X
Figure: A convex domain Figure: A convex function
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Conceptual Background of Multivariaté.Qptitdization

Conceptual Background of Multivariate Optimizatiol

Applied Mathematical Methods Optimization: Introduction 229,

Conceptual Background of Multivariaté.Qptitdization

Conceptual Background of Multivariate Optimizatiol

Applied Mathematical Methods

Conceptual Background of Multivariaté.Qptitdization

First order characterization of convexity
From f(ax; + (1 — a)x2) < af(x1) + (1 — a)f(x2),

fx1) — fx2) = f(x2 + alx1 — x2)) — f(x2)

Asa—0, f(x1)> f(x2)+ [VF(x2)]T (x1 — x2).
Tangent approximation is an underestimate at intermediate points!
Second order characterization: Hessian is positive semi-definite.

Convex programming problem: convex function over convex set
A local minimum is also a global minimum, and all
minima are connected in a convex set.

Note: Convexity is a stronger condition than unimodality!

Optimization: Introduction 231,

Conceptual Background of Multivariate Optimizatiol

Optimization Algorithms

From the current point, move to another point, hopefully better.
Which way to go? How far to go? Which decision is first?

Strategies and versions of algorithms:
Trust Region: Develop a local quadratic model

f(xx + 0x) = F(xx) + [g(xk)] T 0x + %5XTFk5X7

and minimize it in a small trust region around x.
(Define trust region with dummy boundaries.)
Line search: Identify a descent direction dy and minimize the
function along it through the univariate function
P(a) = f(xk + ady).
» Exact or accurate line search

» Inexact or inaccurate line search
» Armijo, Goldstein and Wolfe conditions

Quadratic function

1
g(x) = EXTAX +b"x+c

Gradient Vg(x) = Ax + b and Hessian = A is constant.

» If A is positive definite, then the unique solution of Ax = —b
is the only minimum point.

> If A is positive semi-definite and —b € Range(A), then the
entire subspace of solutions of Ax = —b are global minima.

> If A is positive semi-definite but —b ¢ Range(A), then the
function is unbounded!

Note: A quadratic problem (with positive definite Hessian) acts as
a benchmark for optimization algorithms.

Applied Mathematical Methods Optimization: Introduction

Conceptual Background of Multivariaté.Qptitdization

232,

Conceptual Background of Multivariate Optimizatiol

Convergence of algorithms: notions of guarantee and speed

Global convergence: the ability of an algorithm to approach and
converge to an optimal solution for an arbitrary
problem, starting from an arbitrary point

> Practically, a sequence (or even subsequence) of
monotonically decreasing errors is enough.

Local convergence: the rate/speed of approach, measured by p,
where .
lim ||Xk+1 — X ||

< 00
koo [lx —x* P

8=

» Linear, quadratic and superlinear rates of
convergence for p =1, 2 and intermediate.

» Comparison among algorithms with linear rates
of convergence is by the convergence ratio (.
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Points to note Outline

Conceptual Background of Multivariate Optimizatiol

» Theory and methods of single-variable optimization
» Optimality criteria in multivariate optimization o L
L . Multivariate Optimization
» Convexity in optimization Direct Methods
> The quadratic function Steepest Descent (Cauchy) Method
» Trust region Newton's Method
» Line search Hybrid (Levenberg-Marquardt) Method
Least Probl
» Global and local convergence east Square Problems

Necessary Exercises: 1,2,5,7,8
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Di reCt MethOdS Direct Methods Di reCt MethOdS Direct Methods
Nelder and Mead’s simplex method
Direct search methods using only function values Simplex in n-dimensional space: polytope formed by n+ 1 vertices
» Cyclic coordinate search Nelder and Mead’s method iterates over simplices that are
» Rosenbrock’s method non-degenerate (i.e. enclosing non-zero hypervolume).
> Hooke-Jeeves pattern search First, n 4 1 suitable points are selected for the starting simplex.
> ' . . . . .
Box’s complex method Among vertices of the current simplex, identify the worst point x,,,
» Nelder and Mead's simplex search the best point x;, and the second worst point x.
> Powell’s conjugate directions method Need to replace x,, with a good point.
Useful for functions, for which derivative either does not exist at all
points in the domain or is computationally costly to evaluate. Centre of gravity of the face not containing x,,:
n+1
- . . . 1
Note: When derivatives are easily available, gradient-based Xe = — Z X;
algorithms appear as mainstream methods. n i=1,i#w

Reflect x,, with respect to x. as x, = 2x. — x,,. Consider options.



Applied Mathematical Methods
DireCt Methods Direct Methods

Default Xpenw = Xr.
Revision possibilities:

Multivariate Optimization

| |
T T T

 fk) fix) fxw) )

Expansion Default Positive Negative

Contraction Contraction

Xnew.
= Xnew Xw —> Xr = Xnew Xw L,/\Xr Xw \{ =%

Figure: Nelder and Mead'’s simplex method

1. For f(x,) < f(xp), expansion:
Xpew = Xc + a(Xc — Xy ), @ > 1.

2. For f(x,) > f(xw), negative contraction:
Xpew = Xc — B(Xc — Xy ), 0 < B3 < 1.

3. For f(xs) < f(x,) < f(xw), positive contraction:
Xpew = Xc + B(Xc — Xy ), with 0 < 3 < 1.

Replace x,, with X,e,. Continue with new simplex.

Applied Mathematical Methods

Steepest Descent (Ca UChy) M ethOd Steepest Descent (Cauchy) Method

Multivariate Optimization

Steepest descent algorithm

1. Select a starting point Xxg, set k = 0 and several parameters:
tolerance e on gradient, absolute tolerance €4 on reduction
in function value, relative tolerance eg on reduction in
function value and maximum number of iterations M.

2. If ||lgkll < eg, STOP. Else dy = —gx/||gk]|-

3. Line search: Obtain ay by minimizing ¢(a) = f(xx + ady),
a > 0. Update x4+1 = Xk + opdy.

4.0 [F (k1) — F(xk)] < €a+ €r|f(x4)|,STOP. Else k — k + 1.

5. If k > M, STOP. Else go to step 2.

Very good global convergence.

But, why so many “STOPS”?

Applied Mathematical Methods Multivariate Optimization

Steepest Descent (Ca UChy) M ethOd Steepest Descent (Cauchy) Method

From a point x,, a move through « units in direction dg:

f(xi + ady) = f(xi) + alg(x)] " di + O(a?)
Descent direction dy: For a > 0, [g(xx)]"dx <O
Direction of steepest descent: dy = —gx  [or dx = —gk/|I8kll]
Minimize

d(a) = F(xk + adg).
Exact line search:
¢'(cak) = [g(xk + udy)] Tdi = 0

Search direction tangential to the contour surface at (xx + axdy).

Note: Next direction dy1 = —g(xxr1) orthogonal to dy

Applied Mathematical Methods Multivariate Optimization

Steepest Descent (Ca UChy) M ethOd Steepest Descent (Cauchy) Method

Analysis on a quadratic function

For minimizing g(x) = 2x” Ax + bTx, the error function:

E(x) = %(x —x)TA(x — x¥)

2
Convergence ratio: Eg&:;) < (222;;1)

Local convergence is poor.

Importance of steepest descent method
» conceptual understanding
> initial iterations in a completely new problem

» spacer steps in other sophisticated methods

Re-scaling of the problem through change of variables?
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Newton's Method
Newton's Method

Second order approximation of a function:

Multivariate Optimization

Fx) = Flxe) + [8061T0x — 3 + 2 (x — x50 THOxe)(x — )
Vanishing of gradient
g(x) ~ g(xk) + H(xi)(x — x)
gives the iteration formula
ka1 = Xk — [H(x)] g (x)-
Excellent local convergence property!

[Xkt1 — x|
[Ixic — x*||2

< p

Caution: Does not have global convergence.

If H(xy) is positive definite then d) = —[H(xx)] g (x«)
is a descent direction.

Applied Mathematical Methods

Hybrid (Levenberg-Marquardt) Method

Hybrid (Levenberg-Marquardt) Method

Multivariate Optimization

Methods of deflected gradients

Xi41 = Xk — a[My]gi

» identity matrix in place of My: steepest descent step
> M, = F;l: step of modified Newton's method
» My = [H(x4)]"! and ay = 1: pure Newton's step

In My = [H(xx) + \c/] L, tune parameter \j over iterations.

» Initial value of \: large enough to favour steepest descent
trend

» Improvement in an iteration: A\ reduced by a factor
» Increase in function value: step rejected and A increased
Opportunism systematized!

Note: Cost of evaluating the Hessian remains a bottleneck.
Useful for problems where Hessian estimates come cheap!

241, Applied Mathematical Methods

Newton's Method

Multivariate Optimization 242,

Newton's Method

Modified Newton'’s method
> Replace the Hessian by F, = H(xx) + 7/.

» Replace full Newton's step by a line search.

Algorithm

1. Select xq, tolerance ¢ and § > 0. Set kK = 0.

2. Evaluate gx = g(xx) and H(x).
Choose v, find Fy = H(xx) + 7/, solve Fyd, = —gy for dy.

3. Line search: obtain ay to minimize ¢(a) = f(xx + ady).
Update Xx4+1 = Xk + oxd.

4. Check convergence: If |f(xxt1) — f(xk)| <€, STOP.
Else, k — k + 1 and go to step 2.

243, Applied Mathematical Methods

Least Square Problems

Multivariate Optimization 244,

Least Square Problems

Linear least square problem:

y(0) = x1¢1(0) + x202(0) + - - - + X2 0n(0)

For measured values y(6;) = y;,
& = Zxkd)k(@i) —yi=[®0)] x - y;.
k=1

Error vector: e = Ax —y

Last square fit:

. . . _ 1 2 _ T
Minimize E = 5% ;€7 =

e’'e

N|—=

| Pseudoinverse solution and its variants
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Least Square Problems

Multivariate Optimization

Least Square Problems

Nonlinear least square problem

For model function in the form
y(e) = f(97x) = f(97X17X27 te 7Xn)7

square error function
E(x) = zeTe = =3 & = - S[F(01,x) — yf?
2 2 i 1 2 - 1y 1

Gradient: g(x) = VE(x) = 3_.[f(0i,x) — yi]VF(0i,x) = JTe
Hessian: H(x) = g—;E(x) =371+, e,-g—;f(ﬁ,-,x) ~J7)

Combining a modified form X diag(J7J) éx = —g(x) of steepest
descent formula with Newton's formula,

‘ Levenberg-Marquardt step: [J7J + ) diag(J7J)]ox = —g(x) ‘

Applied Mathematical Methods

Points to note

Multivariate Optimization

Least Square Problems

Simplex method of Nelder and Mead
Steepest descent method with its global convergence

Newton’s method for fast local convergence

vV v.v Y

Levenberg-Marquardt method for equation solving and least
squares

Necessary Exercises: 1,2,3,4,5,6
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Least Square Problems

Multivariate Optimization

Least Square Problems
Levenberg-Marquardt algorithm
1. Select xg, evaluate E(xg). Select tolerance ¢, initial A and its
update factor. Set kK = 0.
2. Evaluate gx and Hy = J7J + \ diag(J7J).
Solve Hydx = —gy. Evaluate E(x, + 0x).
3. If |[E(xx + 6x) — E(x¢)| < €, STOP.
4. If E(xx 4+ 0x) < E(xk), then decrease A,

update Xx4+1 = Xk + 0x, k «— k+ 1.
Else increase .

5. Go to step 2.

Professional procedure for nonlinear least square problems and also
for solving systems of nonlinear equations in the form h(x) = 0.
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Outline

Methods of Nonlinear Optimization*

Methods of Nonlinear Optimization*
Conjugate Direction Methods
Quasi-Newton Methods
Closure
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Conjugate Direction Methods

Methods of Nonlinear Optimization*

Conjugate Direction Methods

Conjugacy of directions:

Two vectors di and dy are mutually conjugate with
respect to a symmetric matrix A, if leAdz =0.

Linear independence of conjugate directions:

Conjugate directions with respect to a positive definite
matrix are linearly independent.

Expanding subspace property: In R”, with conjugate vectors

{do,d1,--- ,d,_1} with respect to symmetric positive definite A,
for any xo € R", the sequence {xg,X1,X2, -+ ,X,} generated as
g/ di

Xit1 = Xk + adg with «a) = —
- ’ dTAd’

where gx = Axy + b, has the property that

xx minimizes q(x) = 2xT Ax +bTx on the line
Xk_1 + adyg_1, as well as on the linear variety xqg + By,
where By is the span of dg, dy, -+, dx_1.

Applied Mathematical Methods

Conjugate Direction Methods

Methods of Nonlinear Optimization*

Conjugate Direction Methods

Using k in place of kK + 1 in the formula for dy1,
dx = —8k + Brk-1dk—1

g[gk
d[Adk

= ngdk = —nggk and oy =

Polak-Ribiere formula:

801 (8k — 8k)

B
ng 8k

No need to know Al
Further,

ng+1dk =0 = ng+1gk = Br_1(g] + axd[ A)dy_; = 0.
Fletcher-Reeves formula:

ngng
Br = ==
gy 8k

249,
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Conjugate Direction Methods

Methods of Nonlinear Optimization* 250,
Conjugate Direction Methods

Question: How to find a set of n conjugate directions?
Gram-Schmidt procedure is a poor option!
Conjugate gradient method

Starting from do = —gp,
dit1 = —8k+1 + Bidi
Imposing the condition of conjugacy of dxi1 with dy,

B = gZ—+1Adk _ g;<T+1(gk+1 — gk)
dZ—Adk Ozde—Adk

Resulting dy1 conjugate to all the earlier directions, for
a quadratic problem.

Applied Mathematical Methods

Conjugate Direction Methods

Methods of Nonlinear Optimization* 252,
Conjugate Direction Methods

Extension to general (non-quadratic) functions

» Varying Hessian A: determine the step size by line search.
» After n steps, minimum not attained.
But, ngdk = —nggk implies guaranteed descent.
Globally convergent, with superlinear rate of convergence.
» What to do after n steps? Restart or continue?

Algorithm

1. Select xg and tolerances €g, €p. Evaluate go = Vf(xo).
Set k=0 and dy = —g.
Line search: find ay; update X441 = Xk + cvidy.
Evaluate gx11 = VI (xk11). If [|8k+1]l < eg, STOP.

T _
Find 0 — 811780 (pojoi Ribiere)
. g, 8k
_ By y18k+1

or 6{‘ T oglex (
Obtain dyy1 = —gxy1 + Bidx.

dldiiy

|k kAL —
6. If 1 Ta Tdeay | < €D reset go gxr1and go to step 2.

Else, k «— k 4+ 1 and go to step 3.

AR A

Fletcher-Reeves).
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Conjugate Direction Methods

Powell’s conjugate direction method
For g(x) = %XTAX +bTx, suppose

x1 = x4 + a1d such that d"g; = 0 and
Xo = Xg + aod such that dTg2 =0.
Then, d"A(xo —x1) =d’ (g2 — g1) = 0.

Parallel subspace property: In R", consider two parallel
linear varieties S1 = v1 + By and S» = vo + By, with

By = {dl,dQ,-" 7dk}, k < n.

If x1 and x»

minimize g(x) = %xTAx—FbTx on 81 and Sy, respectively,

then xo — x1 is conjugate to dy, da, -- -, dy.

Assumptions imply g1,8> L By and hence

(g2—81) L Bx = d/A(xo—x1) =d] (g2—g1) =0 for i=1,2,---
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Conjugate Direction Methods
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Conjugate Direction Methods

> Xo-X1 and b-zi: x1-z; is conjugate to b-z3.
» b-z1-x; and c-d-z,: c-d, d-z and x»-z> are mutually
conjugate.

Figure: Schematic of Powell’s conjugate direction method

Performance of Powell’s method approaches that of the
conjugate gradient method!
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Conjugate Direction Methods

Methods of Nonlinear Optimization* 254,
Conjugate Direction Methods

Algoithm
1. Select xg, € and a set of n linearly independent (preferably
normalized) directions dy, da, - - -, dj; possibly d; = e;.
2. Line search along d,, and update x; = x¢ + ad,; set k = 1.
3. Line searches along dy, dy, ---
z=x,+ ) 1 oyd;.
4. New conjugate direction d = z — x,. If ||d|| < ¢, STOP.

, d, in sequence to obtain

5. Reassign directions d;j «— dj; for j =1,2,--- ,(n—1) and
d, = d/|d].
(Old d; gets discarded at this step.)

6. Line search and update X441 =z + ad,; set k — k+ 1 and
go to step 3.

255, Applied Mathematical Methods

Quasi-Newton Methods

Variable metric methods

Methods of Nonlinear Optimization* 256,

Quasi-Newton Methods

attempt to construct the inverse Hessian By.
and dqx =8k+1 — 8k = dk ~ Hpy

With n such steps, B = PQ~!: update and construct B, ~ H™1.
Rank one correction: By = By + axzkz]?
Rank two correction:

Pk = Xk4+1 — Xk

Bii1 = Bx + akziz/] + bewiw)

Davidon-Fletcher-Powell (DFP) method‘
Select xg, tolerance e and Bo =1,. For k=10,1,2,---,

> di = —Bygx.
> Line search for ay; update px = aydy, Xkyr1 = Xk + Pk
Ak = 8k+1 — Ek-
> If ||pkll <€ or |lqk|| <e, STOP.
. T Bqq/B
» Rank two correction: BPFP =B Pibi 2Ky Bk
k+1 kot P/ ak q/ Bray



Applied Mathematical Methods Methods of Nonlinear Optimization*

Quasi-Newton Methods

Properties of DFP iterations:

Quasi-Newton Methods

1. If By is symmetric and positive definite, then so is By1.

2. For quadratic function with positive definite Hessian H,

p,-THpj =0 for
and By, iHp;=p; for

0<i<j<k,
0<i<k

Implications:
Positive definiteness of inverse Hessian estimate is never lost.
Successive search directions are conjugate directions.

With By = I, the algorithm is a conjugate gradient method.

el

For a quadratic problem, the inverse Hessian gets completely
constructed after n steps.

Variants: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method and the Broyden family of methods

Applied Mathematical Methods Methods of Nonlinear Optimization*

Points to note

Closure

» Conjugate directions and the expanding subspace property
» Conjugate gradient method

» Powell-Smith direction set method

» The quasi-Newton concept in professional optimization

Necessary Exercises: 1,2,3

257,

259,
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Closure

Table 23.1: Summary of performance of optimization methods

Outline

Constrained Optimization
Constraints
Optimality Criteria
Sensitivity
Duality*
Structure of Methods: An Overview*

Cauchy Newton Levenberg-Marquardt DFP/BFGS FR/PR Powell
(Steepest (Hybrid) (Quasi-Newton) (Conjugate | (Direction
Descent) (Deflected Gradient) (Variable Metric) Gradient) Set)
For Quadratic
Problems:
Convergence steps N 1 N n n n?*
Indefinite Unknown
Evaluations Nf 2f Nf (n+1)f (n+1)f n?f
Ng 29 Ng (n+1)g (n+1)g
1H NH
Equivalent function
evaluations N@2n+1) | 2n2+2n+1 N(2n?+1) 2n% +3n+ 1 2n% +3n+1 n?
Line searches N 0 Nor0 n n n?
Storage Vector Matrix Matrix Matrix Vector Matrix
Performance in
general problems Slow Risky Costly Flexible Good Okay
Practically good for Unknown Good NL Eqn. systems Bad Large Small
start-up functions NL least squares functions problems problems
Applied Mathematical Methods Constrained Optimization 260,
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Constra i nts Constraints

Constrained Optimization

Constrained optimization problem:

Minimize f(x)
subject to gi(x) <0 fori=1,2,---,/, or g(x)<0;
and hj(x)=0 forj=1,2,---,m, or h(x)=0.
Conceptually, “minimize f(x), x € Q".
Equality constraints reduce the domain to a surface or a manifold,
possessing a tangent plane at every point.
Gradient of the vector function h(x):

oh’

8)(1
o'
BXQ

Vh(x) = [Vhi(x) Vha(x) --- Vhr(x)]

ohT
Oxn

related to the usual Jacobian as Jp(x) = ‘3—: = [Vh(x)]".

Applied Mathematical Methods

Constra i nts Constraints

Constrained Optimization

Active inequality constraints gj(xg) = 0:

included among hj(xo)

for the tangent plane.

Cone of feasible directions:
[Vh(x0)]"d =0 and [Vgi(x0)]"d <0 foriel

where [ is the set of indices of active inequality constraints.
Handling inequality constraints:

» Active set strategy maintains a list of active constraints,
keeps checking at every step for a change of scenario and
updates the list by inclusions and exclusions.

» Slack variable strategy replaces all the inequality constraints

by equality constraints as gj(x) + x,+; = 0 with the inclusion
of non-negative slack variables (x,4;).

Applied Mathematical Methods

Constra i nts Constraints

Constrained Optimization

Constraint qualification

Vhi(x), Vha(x) etc are linearly independent, i.e. Vh(x) is
full-rank.

If a feasible point xg, with h(xg) = 0, satisfies the constraint
qualification condition, we call it a regular point.

At a regular feasible point xq, tangent plane
M ={y:[Vh(xo)]"y = 0}
gives the collection of feasible directions.

Equality constraints reduce the dimension of the problem.

| Variable elimination? |

Applied Mathematical Methods Constrained Optimization

Optlmallty Crlterla Optimality Criteria

Suppose x* is a regular point with
> active inequality constraints: g(?)(x) <0
> inactive constraints: g()(x) < 0

Columns of Vh(x*) and Vg(®)(x*): basis for orthogonal
complement of the tangent plane

Basis of the tangent plane: D =[d; dy -+ dg]
Then, [D  Vh(x*) Vg (x*)]: basis of R"
Now, —Vf(x*) is a vector in R".
z
~Vf(x)=[D Vh(x") Vg@(x) | A
(2
with unique z, A and p(®) for a given V£(x*).

What can you say if x* is a solution to the NLP problem?

262,

264,
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Optlmallty Crlterla Optimality Criteria
Components of Vf(x*) in the tangent plane ‘must be"zero:

z=0 = —VF(x*) = [Vh(x*)]A + [Ve@ (x*)]

For inactive constraints, insisting on u(i) =0,

. (a)
LVF() = [Vh()A + [VED () Vg(c) [ ol ] ,

or

| VF(x*) + [Vh(x)]A + [Vg(x*)]n = 0|
(2) (a)
g'?(x) } [ p ]
where g(x) = : and p = A
g(x) { g(:)(x) K u(/)
Notice: g@(x*) =0and ) =0 = p;g(x*)=0 Vi, or

Now, components in g(x) are free to appear in any order.
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Optlmallty Crlterla Optimality Criteria

Constrained Optimization

Lagrangian function:

L(x, A, 1) = £(x) + ATh(x) + n"g(x)
Necessary conditions for a stationary point of the Lagrangian:
Vil=0, V,L=0

Second order conditions
Consider curve z(t) in the tangent plane with z(0) = x*.

d2
2 F(®)

d :
V) T2(1)] s

= 2(0)"H(x*)z(0) + [Vf(x*)]TZ(0) > 0

t=0

Similarly, from h;(z(t)) =0,
2(0)THp, (x*)2(0) + [Vh;i(x*)] T£(0) = 0.

Applied Mathematical Methods

Optlmallty Crlterla Optimality Criteria

Constrained Optimization

Finally, what about the feasible directions ir‘the corie?
Answer: Negative gradient —Vf(x*) can have no component
towards decreasing g.(a)(x), i.e. ul(.a) >0, Vi.

1

Combining it with ") = 0,

First order necessary conditions or Karusch-Kuhn-Tucker
(KKT) conditions: If x* is a regular point of the constraints and
a solution to the NLP problem, then there exist Lagrange
multiplier vectors, A and u, such that

Optimality: V£ (x*) + [Vh(x*)]A + [Vg(x*)]u =0,
Feasibility: h(x*) =0, g(x*
Complementarity: p'g(x*

IINVANAY

0;
0.

Convex programming problem: Convex objective function f(x)
and convex domain (convex gj(x) and linear h;(x)):

| KKT conditions are sufficient as well! |

Applied Mathematical Methods

Optlmallty Crlterla Optimality Criteria

Constrained Optimization

Including contributions from all active constraints,

%f(z(t)) =0 HU)2(0) + (9L A ) EO) 2 0,

where Hy(x) = & = H(x) + Y2; \Hp, (x) + 32, 1iHg (x).
First order necessary condition makes the second term vanish!

Second order necessary condition:

The Hessian matrix of the Lagrangian function is positive
semi-definite on the tangent plane M.

Sufficient condition: V4L =0 and H;(x) positive definite on M.

Restriction of the mapping H.(x*) : R" — R" on subspace M?

266,
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Optimality Criteria

Constrained Optimization

Optimality Criteria
Take y € M, operate H;(x*) on it, project the image back to M.
Restricted mapping Ly : M — M
Question: Matrix representation for Ly of size (n —m) x (n—m)?
Select local orthonormal basis D € R™("=™) for M.
For arbitrary z € R"™"™ mapy =Dz € R" as H;y = H;Dz.
lts component along d;: d/H; Dz
Hence, projection back on M:
Lyz = D"H,Dz,
The (n — m) x (n — m) matrix Ly = DTH;D: the restriction!

Second order necessary/sufficient condition: Ly p.s.d./p.d.

Applied Mathematical Methods

Sensitivity

Constrained Optimization

Sensitivity

Sensitivity to constraints
In particular, in a revised problem, with h(x) =c and g(x) <d,
using p = c,

Vof(x*,p) =0, Voh(x*,p) = -1 and V,g(x*,p) =0.

| Vef (' (p).p) = 2 |

Similarly, using p = d, we get ‘?df(x*(p),p) = —pu. ‘

Lagrange multipliers A and p signify costs of pulling the minimum
point in order to satisfy the constraints!

» Equality constraint: both sides infeasible, sign of A; identifies
one side or the other of the hypersurface.

» Inequality constraint: one side is feasible, no cost of pulling
from that side, so u; > 0.

269, Applied Mathematical Methods

Sensitivity

Constrained Optimization
Sensitivity
Suppose original objective and constraint functions as
f(x,p), g(x,p) and h(x,p)
By choosing parameters (p), we arrive at x*. Call it x*(p).
Question: How does f(x*(p),p) depend on p?
Total gradients
Vof (x*(p),p)
Voh(x*(p), p)

and similarly for g(x*(p),p).

Vox* (p)VF (", p) + V,f (x”. p).
Vox* (p)Vh(x",p) + V,h(x".p) = 0,

In view of VL =0, from KKT conditions,

Vof (x(p).P) = V,of (", ) + [Voh(x*, p)IA + [V,(x". p)]1

271, Applied Mathematical Methods

Duality*

Dual problem:
Reformulation of a problem in terms of the Lagrange multipliers.
Suppose x* as a local minimum for the problem

Constrained Optimization

Duality*

Minimize f(x) subject to h(x) =0,
with Lagrange multiplier (vector) A*.
VI(x*)+ [Vh(x*)]A* =0

If H.(x*) is positive definite (assumption of local duality), then x*
is also a local minimum of

f(x) = f(x) + A*Th(x).
If we vary X around A*, the minimizer of
L(x,A) = f(x) + ATh(x)

varies continuously with .

270,
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Duality*
Duality*

In the neighbourhood of A*, define the duaFfiinction

d(A) = mxin L(x,A) = mxin[f(x) +ATh(x)].

For a pair {x, A}, the dual solution is feasible if and only
if the primal solution is optimal.

Define x(A) as the local minimizer of L(x,A).

d(A) = L(x(A),A) = F(x(A)) + ATh(x(X))

First derivative:
VO(A) = Vax(A)ViL(x(A), A) + h(x(A)) = h(x(A))

For a pair {x, A}, the dual solution is optimal if and only
if the primal solution is feasible.

Applied Mathematical Methods Constrained Optimization

Duality*

Duality*
Consolidation (including all constraints) f

» Assuming local convexity, the dual function:
O(X, 1) = min L(x, A, 1) = min[£(x) + ATh(x) + " g(x)]-
X X

» Constraints on the dual: V,L(x, A, u) = 0, optimality of the
primal.

» Corresponding to inequality constraints of the primal problem,
non-negative variables p in the dual problem.

» First order necessary conditons for the dual optimality:
equivalent to the feasibility of the primal problem.

» The dual function is concave globally!

» Under suitable conditions, ®(A*) = L(x*, A\*) = f(x*).

» The Lagrangian L(x, A, i) has a saddle point in the combined

space of primal and dual variables: positive curvature along x
directions and negative curvature along A and p directions.

273, Applied Mathematical Methods Constrained Optimization

Duality*

Duality*

Hessian of the dual function:
Hy(A) = Vax(A)Vch(x(A))
Differentiating VxL(x(X),A) = 0, we have
Vax(A)HL(x(X), A) + [Vch(x(A))] T = 0.
Solving for V x(A) and substituting,
Hy(X) = —[Vxh(x(A)] T [HL(x(X), \)] 1 Vxh(x(N)),
negative definite!

At X*, x(A*) =x*, VO(A*) =h(x*) =0, Hg(A") is negative
definite and the dual function is maximized.

| O(X) = L(x", A7) = F(x*) |

275, Applied Mathematical Methods Constrained Optimization

Structure of Methods: An Overview*

For a problem of n variables, with m active Tonstraintsds: An Overview*
nature and dimension of working spaces

Penalty methods (R"): Minimize the penalized function
q(e, x) = f(x) + cP(x).

Example: P(x) = 3|h(x)|? + 3[max(0, g(x))]2.
Primal methods (R"~™): Work only in feasible domain, restricting
steps to the tangent plane.
Example: Gradient projection method.
Dual methods (R™): Transform the problem to the space of
Lagrange multipliers and maximize the dual.
Example: Augmented Lagrangian method.
Lagrange methods (R™""): Solve equations appearing in the KKT

conditions directly.
Example: Sequential quadratic programming.

274,
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Points to note

Structure of Methods: An Overview*

» Constraint qualification
» KKT conditions
» Second order conditions

» Basic ideas for solution strategy

Necessary Exercises: 1,2,3,4,5,6

Applied Mathematical Methods Linear and Quadratic Programming Problems*

Linear Programming Lneer Programming

Standard form of an LP problem:

f(x) =cTx,
Ax=b, x> 0;

Minimize

subject to with b > 0.

Preprocessing to cast a problem to the standard form
» Maximization: Minimize the negative function.
» Variables of unrestricted sign: Use two variables.
» Inequality constraints: Use slack/surplus variables.
» Negative RHS: Multiply with —1.

Geometry of an LP problem

Infinite domain: does a minimum exist?

v

» Finite convex polytope: existence guaranteed
» Operating with vertices sufficient as a strategy
>

Extension with slack/surplus variables: original solution space
a subspace in the extented space, x > 0 marking the domain

v

Essence of the non-negativity condition of variables

277, Applied Mathematical Methods Linear and Quadratic Programming Problems*

Outline

Linear and Quadratic Programming Problems*
Linear Programming
Quadratic Programming
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Linear Programming

Linear Programming

The simplex method
Suppose x € RN, b € RM and A € RM*N full-rank, with M < N.

lyxg + A/XNB =b

Basic and non-basic variables: xg € RM and xyg € RN-M

Basic feasible solution: xg =b’ > 0 and xpg =0
At every iteration,
» selection of a non-basic variable to enter the basis

> edge of travel selected based on maximum rate of descent
» no qualifier: current vertex is optimal

» selection of a basic variable to leave the basis
> based on the first constraint becoming active along the edge
» no constraint ahead: function is unbounded

> elementary row operations: new basic feasible solution

Two-phase method: Inclusion of a pre-processing phase with
artificial variables to develop a basic feasible solution

280,
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Linear Programming

Linear Programming

General perspective
LP problem:

Minimize f(x,y) =c¢/x+cjy;
subject to  Apix+ Apy =bi, Apx+ Axpy <by, y>0.
Lagrangian:
L(x,y, A\, p,v) =c/x+cly
+ AT (Anx + Aoy —by) + T (Aoix + Ay — b)) — vy
Optimality conditions:
ca+AAN+ALL=0 and v=ca+ALA+ALL>0
Substituting back, optimal function value: f* = —X"b; — u"bs
Sensitivity to the constraints: g—ﬁj = —\and g—{): =—u
Dual problem:
maximize S\, u) = —b/ X — bl pu;

subject to  AJJA+Alpu=—-c;, ALAX+ALu>—c;, pu>0.

Notice the symmetry between the primal and dual problems.
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Quadratlc PrOgrammlng Quadratic Programming

Active set method

Minimize f(x) = %XTQX +cTx:
subject to  Ai;x = by,
A2X < b2.

Start the iterative process from a feasible point.
» Construct active set of constraints as Ax = b.
» From the current point x,, with x = x, + d,

1
f(X) = E(Xk + dk)TQ(Xk + dk) + CT(Xk + dk)
= %dkTQdk + (€ + Qxx) Tdy + F(xk).

» Since gx = Vf(xx) = ¢ + Qxg, subsidiary quadratic program:
minimize %dZ—Qdk + g[dk subject to Ad, = 0.

» Examining solution dx and Lagrange multipliers, decide to
terminate, proceed or revise the active set.
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Quadratlc PrOgrammlng Quadratic Programming

A quadratic objective function and linear constraints define

a QP problem.

Equations from the KKT conditions: linear!

Lagrange methods are the natural choice!
With equality constraints only,
L 1 T T .
Minimize  f(x) = X Qx +c'x, subject to Ax = b.
First order necessary conditions:
Q AT x| | —c
A 0 Al | b
Solution of this linear system yields the complete result!

Caution: This coefficient matrix is indefinite.
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Quadratlc PrOgrammlng Quadratic Programming

Linear complementary problem (LCP)

Slack variable strategy with inequality constraints
Minimize %XTQX + c-’—x7 subject to Ax <b, x>0.

KKT conditions: With x,y, p, v > 0,

QX—i—C—i—ATp,—I/ = 0,
Ax+y = b,
xTu:uTy 0.

Denoting

[z e[y [g] e[ 34

w—Mz=q, w'z=0.

Find mutually complementary non-negative w and z.
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Quadratic Programming

Linear and Quadratic Programming Problems*

Quadratic Programming

If @ > 0, then w =q, z =0 is a solution!

Lemke’s method: artificial variable zy withe =[1 1 1 ... 1]":

lw —Mz —ezg=q

With zg = max(—g;),

w=q+ezy >0 and z=0: basic feasible solution

» Evolution of the basis similar to the simplex method.

» Out of a pair of w and z variables, only one can be there in
any basis.

» At every step, one variable is driven out of the basis and its
partner called in.

» The step driving out zy flags termination.

Handling of equality constraints? Very clumsy!!

Applied Mathematical Methods

Outline

Interpolation and Approximation

Interpolation and Approximation
Polynomial Interpolation
Piecewise Polynomial Interpolation
Interpolation of Multivariate Functions
A Note on Approximation of Functions
Modelling of Curves and Surfaces*
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Points to note

Quadratic Programming

» Fundamental issues and general perspective of the linear
programming problem

» The simplex method

» Quadratic programming

» The active set method
» Lemke's method via the linear complementary problem

Necessary Exercises: 1,2,3,4,5

287, Applied Mathematical Methods

Polynomial Interpolation

Interpolation and Approximation

Polynomial Interpolation

Problem: To develop an analytical representation.of a-function
from information at discrete data points.
Purpose

» Evaluation at arbitrary points

» Differentiation and/or integration

» Drawing conclusion regarding the trends or nature
Interpolation: one of the ways of function representation

» sampled data are exactly satisfied

Polynomial: a convenient class of basis functions
For y; = f(x;) for i =0,1,2,--- ,nwith xo < x1 < xp < -+ < Xp,

p(x) = ap + a1x + ax? + -+ apx".

Find the coefficients such that p(x;) = f(x;) for i =0,1,2,---  n.

Values of p(x) for x € [xg, xp] interpolate n+ 1 values
of f(x), an outside estimate is extrapolation.
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Polynomial Interpolation

Polynomial Interpolation

To determine p(x), solve the linear system

1 x X§ g a0 f(x0)
1 x X12 T Xln ai f(Xl)
1 x x5 - X3 a5 — f(x) | ?
1 Xn Xf% e X,’;’ dp f(Xn)

Vandermonde matrix: invertible, but typically ill-conditioned!
Invertibility means existence and uniqueness of polynomial p(x).
Two polynomials p1(x) and py(x) matching the function f(x) at
, Xp imply

n-th degree polynomial Ap(x) = pi(x) — pa(x) with
n+ 1 roots!

X0, X1, X2, *

Ap=0 = pi(x) = pa(x): p(x) is unique.

Applied Mathematical Methods Interpolation and Approximation

Polynomial Interpolation

Polynomial Interpolation

Two interpolation formulae
> one costly to determine, but easy to process

» the other trivial to determine, costly to process
Newton interpolation for an intermediate trade-off:
p(x) = o+ c1(x = x0) + €a(x = x0) (x —x1) +- -+ + ca [ [1= (x — x1)
Hermite interpolation

uses derivatives as well as function values.

Data: f(x;), f'(x;), ---, f"~D(x;) at x = x;, for i = 0,1,--- ,m:

» At (m+ 1) points, a total of n+1 = >"", n; conditions
Limitations of single-polynomial interpolation
With large number of data points, polynomial degree is high.

» Computational cost and numerical imprecision

» Lack of representative nature due to oscillations
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Polynomial Interpolation

Polynomial Interpolation

Lagrange interpolation
Basis functions:

Le(x) H;:O,jyék(x )
Hj:oj;ék(xk )

(x = x0)(x = x1) -+ (x = Xk—1) (X = Xpe1) -+ (X — Xn)
(ot —70) (% — 1)+~ Ok — X9 1) (%% — Xip) (<& — x0)
Interpolating polynomial:

p(x) = aplo(x) + a1li(x) + aala(x) + - - + aply(x)
At the data points, Li(x;) = di.

Coefficient matrix identity and o = f(x;).

Lagrange interpolation formula:
p(x) = D Fa)Lk(x) = Lo(x)f (x0)+L1(x)F (xa) 4+ - -+ Ln(x)f (x0)
k=0

Existence of p(x) is a trivial consequence!
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Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation

Piecewise linear interpolation

f(X,') — f(X,'_l)
Xj — Xi—1

f(x) = f(xi—1) + (x — xji—1) for x € [xj—1,xi]

Handy for many uses with dense data. But, not differentiable.

Piecewise cubic interpolation
With function values and derivatives at (n + 1) points,

n cubic Hermite segments
Data for the j-th segment:
f(xji-1) = fi1, fq) =1, f'(x-1) =f_1 and f'(x) =1
Interpolating polynomial:
pj(x) = ag + a1x + aox® + a3x>

Coefficients ag, a1, a2, a3: linear combinations of f;_1, f;, ij1, )5/

Composite function C' continuous at knot points.
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Interpolation of Multivariate Functions

Interpolation and Approximation

PleCGWIse POlynomIa | I ntel’p0|at|0n Piecewise Polynomial Interpolation

General formulation through normalization.Qfiintervals
X =xj-1+ t(x = x-1), t€[0,1]
With () = F(x(1)), &'(t) = (x —x-1)F(x(1));
g0 =fi-1, &1 =1, g = (% —x-1)f 1 and g1 = (x; — x-1)f;.
Cubic polynomial for the j-th segment:
qj(t) = ag + a1t + aot? + astd

Modular expression:

1 1
t t

qj(t) = [Oéo a1 Qo Oé3] 2 = [gO 81 g(,) g{] w £2 = GJWT
£3 t3

Packaging data, interpolation type and variable terms separately!

Question: How to supply derivatives? And, why?

Interpolation and Approximation

Interpolation of Multivariate Functions

Piecewise bilinear interpolation

Data: f(x,y) over a dense rectangular grid
X = X0, X1, X2, ;Xm and y = Yo, ¥1,¥2, " , ¥n

Rectangular domain: {(x,y) : x0 < X < Xm, Yo < ¥ < yn}

For xi 1 <x<x;and y;_1 <y <y
a a 1
f(x,y) = a0+ ai,0x+ao1y +aiixy =[1 x] { 0.0 <01 ] [ }
a10 41,1 y

With data at four corner points, coefficient matrix determined from
1 X1 a0,0 40,1 11 | finj1 fiay
1 X alo a1l Yi-1 Y fij—1 fii |

Approximation only C° continuous.

Applied Mathematical Methods

Applied Mathematical Methods

Interpolation of Multivariate Functions

Interpolation and Approximation

PleCGWIse POlynomIa | I ntel’p0|at|0n Piecewise Polynomial Interpolation

Spline interpolation

‘Spline: a drafting tool to draw a smooth curve through key points.

Data: f; = f(x;), for xo < x1 < x2 < -+ < Xp.
If kj = f/(Xj), then

pj(x) can be determined in terms of f;_1, f;, kj_1, k;
and pj1(x) in terms of f;, fi11, ki, kjt1.

Then, p/(x;) = P/ 1(xj): a linear equation in k;_1, k; and kjt1

From n — 1 interior knot points,

n — 1 linear equations in derivative values kg, ki, -+, ky.

Prescribing ko and k,, a diagonally dominant tridiagonal system!

A spline is a smooth interpolation, with C? continuity.

Interpolation and Approximation

Interpolation of Multivariate Functions
Alternative local formula through reparametrization

With u = 221 and v = Z24=L denoting
Xi—Xj—1 Yi—Yj—-1

fi_1j-1 =800, fij—1 =810, fi—1j=2801 and fij=g11;

bilinear interpolation:

glu,v)=1[1 u] [ Z(l)’g Z?’i } [ i } for u,v € [0, 1].

Values at four corner points fix the coefficient matrix as
PR N R e [
a1o 011 -1 1 810 811 0 1

Concisely, |g(u,v) = UTWTG;;WV | in which

|1 |1 |1 -1 | finjer ficay
U[u}’v{v}’w{o 1}’(3"1[ fij—1  fij

296,
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Interpolation of Multivariate Functions

Interpolation of Multivariate Functions
Piecewise bicubic interpolation
. ¢ Of Of PFf . .
Data: f, ox' Dy and Bxdy over grid points
With normalizing parameters u and v,

E=(i—x1)5 ¥ =(5-y-15, and

g _
oudv

2
(i = xi-)(% — ¥i-1) may
In {(x,y) : xi-1 < x < xi,yj-1 <y <y} or{(u,v):uvel01l]}
g(u,v) =UTW'G; WV,
with U =[1 v u? u3]T, V= v v v3]T, and

g(0,0) g(0,1) £.,(0,0) g/(0,1)
G .— | 8L0) g(1.1) g(1.0) g(1)
" 84(0,0) £4(0,1) £uw(0,0) gu(
gL,(l,O) gu(lv]-) guv(]-;o) guv(

~— —

Interpolation and Approximation

Applied Mathematical Methods
Points to note

Modelling of Curves and Surfaces*

» Lagrange, Newton and Hermite interpolations
» Piecewise polynomial functions and splines
» Bilinear and bicubic interpolation of bivariate functions

Direct extension to vector functions: curves and surfaces!

Necessary Exercises: 1,2,4,6

Interpolation and Approximation

Applied Mathematical Methods

A Note on Approximation of Functions
A Note on Approximation of Functions
A common strategy of function approximation is to
» express a function as a linear combination of a set of basis
functions (which?), and
> determine coefficients based on some criteria (what?).

Criteria:
Interpolatory approximation: Exact agreement with sampled data

Least square approximation: Minimization of a sum (or integral) of
square errors over sampled data

Minimax approximation: Limiting the largest deviation

Basis functions:
polynomials, sinusoids, orthogonal eigenfunctions or

field-specific heuristic choice

Basic Methods of Numerical Integration

Applied Mathematical Methods

Outline

Basic Methods of Numerical Integration
Newton-Cotes Integration Formulae
Richardson Extrapolation and Romberg Integration

Further Issues

298,

300,
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Newton-Cotes Integration Formulae

Applied Mathematical Methods

Newton-Cotes Integration Formulae

Basic Methods of Numerical Integration

Newton-Cotes Integration Formulae

J= /ab f(x)dx

Divide [a, b] into n sub-intervals with
a=x<x1 <X << Xp1<Xp=>b,

where Xj — Xj—1 = h= H.

J= th

Taking x? € [xj_1, ;] as xj—1 and x;, we get summations J; and Js.

) = hlfOq) + F(x2) + -+ + ()]

Asn— oo (i.e. h—0), if J; and J, approach the same
limit, then function f(x) is integrable over interval [a, b].

‘A rectangular rule or a one-point rule‘
Question: Which point to take as x;?

Basic Methods of Numerical Integration

Newton-Cotes Integration Formulae

Trapezoidal rule
Approximating function f(x) with a linear interpolation,

/.Xi f(x)dx ~ g[f(x;_l) + f(x)]

n—1

/bf(x)dx%hl (xo +fo, + = f(x,,)

Taylor series expansions about the mld—pomt

— h (= h2 (= " iv
) =A%)~ bFG) + ) - s )+384f ()~

48
2 3 ,
Foq) = F(%)+ gf’(z,-) + h—f”(>‘<,-) + Z—f’"(x,-) + 3?41"”(2,-) +
= 21 on) + £ = hG) + () + 3741“% %)+

Recall [7 f(x)dx = hf(x;) + ﬂf”(x )+ 1920 Fv(x;) + -

Applied Mathematical Methods

Newton-Cotes Integration Formulae

Applied Mathematical Methods

Newton-Cotes Integration Formulae

Basic Methods of Numerical Integration

Newton-Cotes Integration Formulae

Mid-point rule
Selecting x; as X; = X’%’”’

/ " f(x)dx ~ hF(%

i—1

b n
/ Fx)dx ~ h S F(%).
a i=1

Error analysis: From Taylor's series of f(x) about X;,

/XX1 F(x)dx = /XXI [f()?,-) ) (x — %) + f"(x,-)(X*T'
h5

Tooo! i) F

hf(x;) + i (%) +
= X —
04

third order accurate!
Over the entire domain [a, b],

/ dXNhZf Zf”
a

for & € [a, b] (from mean value theorem): second order accurate.

Basic Methods of Numerical Integration

Newton-Cotes Integration Formulae

Error estimate of trapezoidal rule

/Xi F()d = M )+f(X')]—hjf”( )—ff’V(X)+
o ot V! 480

Over an extended domain,

b
/ f(x) x—h[ {f(x0) + f(xn }+Zf x;) (b—a)f”(f)—i—

‘The same order of accuracy as the mid-point rule! ‘

Different sources of merit

» Mid-point rule: Use of mid-point leads to symmetric
error-cancellation.

» Trapezoidal rule: Use of end-points allows double utilization
of boundary points in adjacent intervals.

How to use both the merits?

= hZf b-a)f"(¢),

304,
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Newton-Cotes Integration Formulae

Basic Methods of Numerical Integration

Newton-Cotes Integration Formulae

Simpson’s rules

Divide [a, b] into an even number (n = 2m) of intervals.
Fit a quadratic polynomial over a panel of two intervals.
For this panel of length 2h, two estimates:

M(f) = 2hf(x;) and T(f)= h[f(xj-1) + f(xi+1)]

J = M(f)+ h—3f"(x-) + h—sfiv(x-) +
B 377 60
2h* 1 h° iv
Simpson’s one-third rule (with error estimate):
Xi+1 h h° .
/ f(x)dx = §[f(x,-_1) +4f(x;) + f(xi+1)] — %f”’(x,-)
Xj—1

‘ Fifth (not fourth) order accurate! ‘

A four-point rule: Simpson’s three-eighth rule
Still higher order rules NOT advisable!

Applied Mathematical Methods Basic Methods of Numerical Integration
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RIChardSOH EXtI’QpOlatIOH and Rombeﬁgarlimrmgproattigml?ombergIntegration

Trapezoidal rule for J = fab f(x)dx: p=2,g=4,r=56cetc
T(f) = J+ ch® + dh* + eh® 4 -

With o = % half the sum available for successive levels.

Romberg integration
» Trapezoidal rule with h = H: find Jq1.
» With h = H/2, find Jis.

Ji2 — (%)2J11 A —Jn
1-(3)° 3

> If |Jop — J12] is within tolerance, STOP. Accept J = J.

> With h = H/4, find 3.

J =

_ 43— J ) Jo3 — (%)4 J2o _ 1643 —

J23 4
’ - (3) 15

> If |J33 — J23| is within tolerance, STOP with J ~ Js3.

Applied Mathematical Methods Basic Methods of Numerical Integration

306,

RIChardSOH EXtI’QpOlatIOH and Rombeﬁgarlimrmgproattigml?ombergIntegration

To determine quantity F
using a step size h, estimate F(h)
error terms: hP, h9, h" etc (p < g < r)
F = lims_o F(5)?
plot F(h), F(ah), F(a?h) (with a < 1) and extrapolate?
F(h) = F+ch?+O(h?)
F(ah) = F+ c(ah)P +O(h7)
F(a?h) F + c(a®h)P + O(h9)
Eliminate ¢ and determine (better estimates of) F:
F(ah) — aPF(h)

>
>
>
>

Fi(h) = T or =F+ch?+O(h")
F(a2h) — aPF(ah
Flan = @ i_zp @) _ £t (ah)r + O
Still better estimate: [5] Fo(h) = A@A-02A) _ £ o(pr)

‘ Richardson extrapolation ‘

Applied Mathematical Methods

Further Issues

Basic Methods of Numerical Integration

Further Issues

Featured functions: adaptive quadrature
» With prescribed tolerance ¢, assign quota ¢; = % of
error to every interval [x;_1, x;].

» For each interval, find two estimates of the integral and
estimate the error.

» If error estimate is not within quota, then subdivide.

Function as tabulated data
» Only trapezoidal rule applicable?

» Fit a spline over data points and integrate the segments?

Improper integral: Newton-Cotes closed formulae not applicable!
» Open Newton-Cotes formulae

» Gaussian quadrature

308,
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Points to note

Basic Methods of Numerical Integration

Further Issues

Definition of an integral and integrability
Closed Newton-Cotes formulae and their error estimates
Richardson extrapolation as a general technique

Romberg integration

vV v . v.v .Y

Adaptive quadrature

Necessary Exercises: 1,2,3,4

Applied Mathematical Methods Advanced Topics in Numerical Integration*

Gaussian Quadrature

Gaussian Quadrature

A typical quadrature formula: a weighted sum Y7, w;f;
» f;: function value at /-th sampled point
> w;: corresponding weight

Newton-Cotes formulae:
» Abscissas (x;'s) of sampling prescribed

» Coefficients or weight values determined to eliminate
dominant error terms

Gaussian quadrature rules:
> no prescription of quadrature points
only the ‘number’ of quadrature points prescribed
locations as well as weights contribute to the accuracy criteria
with n integration points, 2n degrees of freedom
can be made exact for polynomials of degree up to 2n —1

best locations: interior points

vV v.v v vY

open quadrature rules: can handle integrable singularities

309, Applied Mathematical Methods

Outline

Advanced Topics in Numerical Integration*
Gaussian Quadrature
Multiple Integrals

311, Applied Mathematical Methods

Gaussian Quadrature

Gauss-Legendre quadrature

Gaussian Quadrature

[ 11 F(x)dx = waf(x1) + waf (x2)

Four variables: Insist that it is exact for 1,

and wixp + waxs

Advanced Topics in Numerical Integration*

Advanced Topics in Numerical Integration*

x, x2 and x3.
1
wi+wy = / dx = 2,
-1
1
wixi + woxp = / xdx = 0,
-1
1 2
wix? + woxs = / x2dx = =
1 3
1
= / x3dx = 0.
—1
1 1
W1:W2:11X1:_%VX2:%

X1 = — X2, W1 = Wp =
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Gaussian Quadrature
Two-point Gauss-Legendre quadrature formula
1
S Fldx = F(— L)+ F( )
Exact for any cubic polynomial: parallels Simpson’s rule!
Three-point quadrature rule along similar lines:

1
/1f(x)dx:gf<— §>+gf(0)+gf< g)

A large number of formulae: Consult mathematical handbooks.
For domain of integration [a, b],

Advanced Topics in Numerical Integration*

Gaussian Quadrature

at+b b-—a b—a
X = 5 + > t and dx—Tdt

With scaling and relocation,

b _ 1
/ F(x)dx = 2 . "’/_1 Flx(t)]dt

Applied Mathematical Methods

Gaussian Quadrature

Advanced Topics in Numerical Integration*

Gaussian Quadrature

Choose quadrature points x1, x2, - -+, X, so that ¢(x) is orthogonal
to all polynomials of degree less than n.

Legendre polynomial

Gauss-Legendre quadrature

1. Choose P,(x), Legendre polynomial of degree n, as ¢(x).

2. Take its roots x1, xo, -+ -, X, as the quadrature points.

3. Fit Lagrange polynomial of f(x), using these n points.

p(x) = Li(x)f(x1) + La(x)f(x2) + - - - + Lp(x)f (xn)

-1

Weight values: wj = fil Li(x)dx, for j=1,2,---,n

313, Applied Mathematical Methods Advanced Topics in Numerical Integration® 314,

Gaussian Quadrature

Gaussian Quadrature
General Framework for n-point formula
f(x): a polynomial of degree 2n — 1
p(x): Lagrange polynomial through the n quadrature points

f(x) — p(x): a (2n — 1)-degree polynomial having n of its roots at
the quadrature points

Then, with ¢(x) = (x — x1)(x — x2) -+ (x — xn),

f(x) = p(x) = d(x)q(x).

Quotient polynomial: g(x) = 7= aix’
Direct integration:

. 1 1 n—1 )
/ F(x)dx = [ px)dx + 1 1 [sb(X);@fX'] dx

-1

How to make the second term vanish?

315, Applied Mathematical Methods Advanced Topics in Numerical Integration® 316,

Gaussian Quadrature

Gaussian Quadrature

Weight functions in Gaussian quadrature
What is so great about exact integration of polynomials?

Demand something else: generalization

Exact integration of polynomials times function W(x)

Given weight function W(x) and number (n) of quadrature points,

work out the locations (x;'s) of the n points and the
corresponding weights (w;’s), so that integral

b n
W(x)f(x)dx = wif(x)

a =1

is exact for an arbitrary polynomial f(x) of degree up to
(2n-1).
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Gaussian Quadrature

Advanced Topics in Numerical Integration*

Gaussian Quadrature

A family of orthogonal polynomials with increasing degree:

quadrature points: roots of n-th member of the family.

For different kinds of functions and different domains,
» Gauss-Chebyshev quadrature
» Gauss-Laguerre quadrature
» Gauss-Hermite quadrature

> ...

Several singular functions and infinite domains can be handled.

A very special case:

For W(x) = 1, Gauss-Legendre quadrature!

Applied Mathematical Methods

Multiple Integrals

Advanced Topics in Numerical Integration*

Multiple Integrals

Monte Carlo integration

/= /Q F(x)dV

Requirements:
> a simple volume V enclosing the domain Q
> a point classification scheme

Generating random points in V/,

] f(x) ifxeqQ,
F(x)—{ 0

otherwise .

v
/zN;F(x,-)

Estimate of / (usually) improves with increasing N.

317, Applied Mathematical Methods

Multiple Integrals

Advanced Topics in Numerical Integration*

Multiple Integrals

b gg(X)
5:/ / f(x,y) dy dx
a Ja(x)

22(x) b
= F(x) :/ f(x,y) dy and 5:/ F(x)dx
&1(x) a

with complete flexibility of individual quadrature methods.

Double integral on rectangular domain

Two-dimensional version of Simpson’s one-third rule:

1 .1
/ / f(x, y)dxdy
—1J-1

= wof(0,0) + wy [F(—1,0) + £(1,0) + £(0,—1) + £(0,1)]
+ wo[f(=1,-1) + f(=1,1) + (1, 1) + (L, 1)]

Exact for bicubic functions: wy = 16/9, wy = 4/9 and wy, = 1/9.

319, Applied Mathematical Methods

Points to note

Advanced Topics in Numerical Integration*

Multiple Integrals

» Basic strategy of Gauss-Legendre quadrature
» Formulation of a double integral from fundamental principle

» Monte Carlo integration

Necessary Exercises: 2,5,6

318,
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Outline

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations
Single-Step Methods
Practical Implementation of Single-Step Methods
Systems of ODE's
Multi-Step Methods*

Applied Mathematical Methods

Single-Step Methods

Numerical Solution of Ordinary Differential Equations
Single-Step Methods
’
Euler’'s method

> At (xn,yn), evaluate slope % = (Xn, Yn)-
» For a small step h,

Yn+1 =Yn+ hf(Xann)

Repitition of such steps constructs y(x).
First order truncated Taylor's series:
Expected error: O(h?)

Accumulation over steps
Total error: O(h)

Euler's method is a first order method.

Question: Total error = Sum of errors over the steps?
Answer: No, in general.

321, Applied Mathematical Methods

Single-Step Methods

Numerical Solution of Ordinary Differential Equations
Single-Step Methods

Initial value problem (IVP) of a first order ODE:

d
T =flxy). y) =y

To determine: y(x) for x € [a, b] with xo = a.

Numerical solution: Start from the point (xo, yo).

> y1 =y(x1) =y(xo+ h) =?
» Found (x1,y1). Repeat up to x = b.

Information at how many points are used at every step?
» Single-step method: Only the current value

» Multi-step method: History of several recent steps

323, Applied Mathematical Methods

Single-Step Methods

Initial slope for the entire step: is it a good idea?

Numerical Solution of Ordinary Differential Equations
Single-Step Methods

X
R R

i
i
|
o X

Figure: Euler's method Figure: Improved Euler's method

Improved Euler’'s method or Heun’s method

Ynr1=yn+ hf(XnaYn)
Ynt1 =Yn + g[f(xnayn) + f(Xn+17)_’n+1)]

The order of Heun's method is two.

322,
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Single-Step Methods Pracicalimplements

Runge-Kutta methods
Second order method:

kl = hf(XnaYH)a k2 = hf(Xn + O‘ha)/n +/6k1)
k = wiky + waka,
and Xntl =Xn+h, Ynr1=yn+k

Force agreement up to the second order.
Yn+1
=VYn+ Wlhf(XmYn) + W2h[f(Xn7}/n) + ahfx(Xna}/n) + ﬂklfy(xn;)/n) + -
=Yn+ (Wl + W2)hf(Xna}/n) + h2W2[05fx(Xn7)/n) + ﬁf(xna}/n)fy(xm)/n)] +
From Taylor's series, using y' = f(x,y) and y" = f, + ff,,

h2
y(Xn+1) = yn+hf(xn7yn)+ ?[fx(XnaJVn)+f(XmYn)fy(men)] +--

wtmw=1 am=pfwm =% = |a=8=

Applied Mathematical Methods Numerical Solution of Ordinary Differential Equations 327,

Practical Implementation of Single-St&fi M ethods: singe siep metnoss

Question: How to decide whether the error is within tolerance?
Additional estimates:

» handle to monitor the error

» further efficient algorithms
Runge-Kutta method with adaptive step size
In an interval [x,, x, + A,

y,(,i)l = Ypr1+ ch® + higher order terms

Over two steps of size g

h 5
}’,(321 = Yn+1+2C (5) + higher order terms

Difference of two estimates:

1 2 15
A= yr(H-)l - YIS+)1 ~ EChS

@ _ @
. 2 16y,2, —
Best available value: y,, ; = yr(7+)1 — & = et Yo

15 15

Applied Mathematical Methods Numerical Solution of Ordinary Differential Equations 326,

Single-Step Methods Pracucalimplements

With continuous choice of ws,

a family of second order Runge Kutta (RK2) formulae

Popular form of RK2: with choice wy =1,

kl = hf(Xn’_yn)7 k2 = hf(Xn + g,yn + %)
Xnt1 =Xn+h, Ynt1=yn+ ko

Fourth order Runge-Kutta method (RK4):

kl = hf(Xm)/n)

ky = hf(Xn + ga)/n =+ %)
ks = hf(xo+ 5, yn+ %)
ky = hf(Xn +h,yn+ k3)

k= g(ki+ 2kp + 2ks + kg)

Xpg1 =Xn+h, Yny1=Yyntk

Applied Mathematical Methods Numerical Solution of Ordinary Differential Equations 328,

Practical Implementation of Single-St&pi M ethods: sige siep metnoss

Evaluation of a step:

A > e: Step size is too large for accuracy.
Subdivide the interval.

A << e: Step size is inefficient!
Start with a large step size.
Keep subdividing intervals whenever A > e.

Fast marching over smooth segments and small steps in
zones featured with rapid changes in y(x).

Runge-Kutta-Fehlberg method

With six function values,
An RK4 formula embedded in an RK5 formula

» two independent estimates and an error estimate!

RKF45 in professional implementations
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Systems of ODE's
Methods for a single first order ODE

Numerical Solution of Ordinary Differential Equations

Systems of ODE’s

directly applicable to a first order vector ODE
A typical IVP with an ODE system:

dy

a - f(Xay)v Y(XO) =Yo

An n-th order ODE: convert into a system of first order ODE's
y'(x) yh )T,
work out % to form the state space equation.
y(nfl)(XO)]T

A system of higher order ODE's with the highest order derivatives
of orders ny, ny, n3, -+, ng

Defining state vector z(x) = [y(x)

Initial condition: z(xo) = [y(x0) ¥'(x0)

» Cast into the state space form with the state vector of
dimension n=ny + ny + n3 + -+ + ng

Applied Mathematical Methods

Multi-Step Methods*

Numerical Solution of Ordinary Differential Equations

Multi-Step Methods*
Single-step methods: every step a brand new [VP!

Why not try to capture the trend?

A typical multi-step formula:

= yn+ hlcof (Xn+1, Ynt1) + c1f(Xn, ¥n)
+ CZf(anly}/nfl) + C3f(Xn,2,yn72) + .- ]

Yn+1

Determine coefficients by demanding the exactness for leading
polynomial terms.

Explicit methods: ¢y = 0, evaluation easy, but involves
extrapolation.

Implicit methods: ¢y # 0, difficult to evaluate, but better stability.

Predictor-corrector methods
Example: Adams-Bashforth-Moulton method

329, Applied Mathematical Methods

Systems of ODE's prcical mplem

State space formulation is directly applicable when

Numerical Solution of Ordinary Differential Equations 330,

the highest order derivatives can be solved explicitly.
The resulting form of the ODE's: normal system of ODE's

Example:

d?x dy\ [ dx\? dx\ [d2%y
Ve 3<dt> (dt) + X(dt) dt? + 0

3 2.\ 3/2
exde_y(dY> Lox 1 ot

de3 dt?
dx dy d% T
State vector: z(t) = [X &y ¥ =

With three trivial derivatives z{(t) = 25, z5(t) = zs and z,(t) = z5
and the other two obtained from the given ODE's,

we get the state space equations as % = f(t,2).

331, Applied Mathematical Methods

Points to note

Numerical Solution of Ordinary Differential Equations 332,

Multi-Step Methods*

» Euler's and Runge-Kutta methods
» Step size adaptation

> State space formulation of dynamic systems

Necessary Exercises: 1,2,5,6
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Outline

ODE Solutions: Advanced Issues
Stability Analysis
Implicit Methods
Stiff Differential Equations
Boundary Value Problems

ODE Solutions: Advanced Issues
Stability Analysis

Applied Mathematical Methods

Stability Analysis

‘ Euler's step magnifies the error by a factor (I'-+hJ). ‘
Using J loosely as the representative Jacobian,

Api1~ (1 + h)"A.

For stability, Ap11 — 0 as n — oo.

Eigenvalues of (1 + hd) must fall within the unit circle
|z| = 1. By shift theorem, eigenvalues of h) must fall
inside the unit circle with the centre at zy = —1.

—2Re (1))

A2
Note: Same result for single ODE w’ = Aw, with complex \.
For second order Runge-Kutta method,

%
Ay = {1 + A+ —} A,

14+ h\ <1 = h<

2

Region of stability in the plane of z = hA: ‘1 +z+ 272 <1

ODE Solutions: Advanced Issues
Stability Analysis
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Stability Analysis
Adaptive RK4 is an extremely successful method.

But, its scope has a limitation.

Focus of explicit methods (such as RK) is accuracy and efficiency.

The issue of stabilty is handled indirectly.

Stabilty of explicit methods
For the ODE system y’ = f(x,y), Euler's method gives

Ynt1 = Yn + f(xn,yn)h + O(hz)-

Taylor's series of the actual solution:
Y(Xn+1) = ¥ (xn) + F(xn, y(xn)) h + O(hz)

Discrepancy or error:

Apiq Yr+1 — Y(Xn+1)
= Yo — Y(a)] + [f(xn, ¥n) = FOxn, y(xa)) ] + O(h?)
of
= A, + {a—y(xn,yn)A,,} h+O(h?) ~ (I1+hh)A,
335, Applied Mathematical Methods ODE Solutions: Advanced Issues

Stability Analysis

Stability Analysis
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Figure: Stability regions of explicit methods

Question: What do these stability regions mean with reference to
the system eigenvalues?
Question: How does the step size adaptation of RK4 operate on a
system with eigenvalues on the left half of complex plane?

‘Step size adaptation tackles instability by its symptom!
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Implicit Methods

Backward Euler’s method

Implicit Methods

Yo+1 = Yn + F(Xnt1,Yns1)h
Solve it? Is it worth solving?
Yot1 — ¥(Xnt1)
= [yn = y(xa)] + Alf(xnt1, Yor1) = F(xar1, ¥ (xa11))]
= Ap+hI(xnt1, Y1) A0t
Notice the flip in the form of this equation.

An+1 ~

Appr~(1—h)tA,
Stability: eigenvalues of (I — hJ) outside the unit circle |z| =1
2Re (\)
A2
Absolute stability for a stable ODE, i.e. one with Re (A) < 0

[hA—=1>1 = h>

Applied Mathematical Methods ODE Solutions: Advanced Issues

Stiff Differential Equations
Stiff Differential Equations
Example: IVP of a mass-spring-damper system:
X+ cx+kx=0, x(0)=0, x(0)=1
(a) c=3, k=2 x=et—e 2
(b) ¢ =49, k=600: x =e 24 — 25t

o 05 1 15 2 25 3 35 4 o 01 o0z 03 o0a o5 06 07 08 09

(a) Caseof c =3, k=2 (b) Case of ¢ =49, k = 600

Figure: Solutions of a mass-spring-damper system: ordinary situations
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Implicit Methods

Implicit Methods

STABLE
STABLE
o5 UNSTABLE

I

STABLE

Re(hy)

Figure: Stability region of backward Euler's method

How to solve g(yn+1) = Yn + hf(xn+1,Yn+1) — Ynr1 = 0 for y,i17?
Typical Newton's iteration:

k+1 k - k k
yf1+-i ) = yEH—)l + (1 —hJ) ! Yn — YE,J21 + hf (Xn+17YE,J21)}
Semi-implicit Euler’s method for local solution:

Yn+1 =Yn+ h(l - hJ)_lf(Xn+len)
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Stiff Differential Equations
(c) c =302, k=600: x=

Stiff Differential Equations
2t _ o—300¢t

298

(c) With RK4 (d) With implicit Euler

Figure: Solutions of a mass-spring-damper system: stiff situation

To solve stiff ODE systems,
use implicit method, preferably with explicit Jacobian.
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Boundary Value Problems

ODE Solutions: Advanced Issues

Boundary Value Problems
A paradigm shift from the initial value problems

» A ball is thrown with a particular velocity. What trajectory
does the ball follow?

» How to throw a ball such that it hits a particular window at a
neighbouring house after 15 seconds?

Two-point BVP in ODE’s:

boundary conditions at two values of the independent
variable

Methods of solution
» Shooting method
» Finite difference (relaxation) method

» Finite element method

Applied Mathematical Methods

Boundary Value Problems

ODE Solutions: Advanced Issues

Boundary Value Problems

Objective: To solve E(p) =0

From current vector p, n, perturbations as p + e;4: Jacobian g—g

Each Newton's step: solution of n, + 1 initial value
problems!

» Computational cost

» Convergence not guaranteed (initial guess important)

Merits of shooting method
» Very few parameters to start

» In many cases, it is found quite efficient.

341,
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ODE Solutions: Advanced Issues

Boundary Value Problems

Boundary Value Problems

Shooting method
follows the strategy to adjust trials to hit a target.

Consider the 2-point BVP

y =f(x,y), gi(y(a)) =0, ga(y(b)) =0,

where g1 € R™, g>b € R™ and ny + ny = n.

> Parametrize initial state: y(a) = h(p) with p € R™.

» Guess ny values of p to define IVP

y =f(x,y), y(a)=h(p).

» Solve this IVP for [a, b] and evaluate y(b).
> Define error vector E(p) = ga(y(b)).

ODE Solutions: Advanced Issues

Boundary Value Problems

Boundary Value Problems

Finite difference (relaxation) method

adopts a global perspective.

1. Discretize domain [a, b]: grid of points
a=xp<x31<xp<--<xy_1<xy=b.
Function values y(x;): n(N + 1) unknowns

2. Replace the ODE over intervals by finite difference equations.
Considering mid-points, a typical (vector) FDE:

XitXi-1 YitYi-1
2 ’ 2

y,-—y,-_l—hf< ) =0, fori=1,2,3,---,N

nN (scalar) equations

3. Assemble additional n equations from boundary conditions.

4. Starting from a guess solution over the grid, solve this system.
(Sparse Jacobian is an advantage.)

Iterative schemes for solution of systems of linear equations.
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344,



Applied Mathematical Methods

Points to note

ODE Solutions: Advanced Issues

Boundary Value Problems

» Numerical stability of ODE solution methods
» Computational cost versus better stability of implicit methods

» Multiscale responses leading to stiffness: failure of explicit
methods

» Implicit methods for stiff systems
» Shooting method for two-point boundary value problems

> Relaxation method for boundary value problems

Necessary Exercises: 1,2,3,4,5

Applied Mathematical Methods Existence and Uniqueness Theory

Well-Posedness of Initial Value Problelfig o= Y Prevtem

Pierre Simon de Laplace (1749-1827):
"We may regard the present state of the
universe as the effect of its past and the
cause of its future. An intellect which at a
certain moment would know all forces that
set nature in motion, and all positions of all
items of which nature is composed, if this
intellect were also vast enough to submit
these data to analysis, it would embrace in a
single formula the movements of the greatest
bodies of the universe and those of the
tiniest atom; for such an intellect nothing
would be uncertain and the future just like
the past would be present before its eves.”

345, Applied Mathematical Methods

Outline

Existence and Uniqueness Theory

Existence and Uniqueness Theory
Well-Posedness of Initial Value Problems
Uniqueness Theorems
Extension to ODE Systems
Closure
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Well-Posedness of Initial Value Problelfjgei s of ini Value Problems

Initial value problem

Y =f(x.y), y(x) =
From (x,y), the trajectory develops according to y' = f(x, y).

The new point: (x 4+ dx,y + f(x, y)dx)
The slope now: f(x + dx,y + f(x,y)dx)

Question: Was the old direction of approach valid?
With éx — 0, directions appropriate, if

lim f(x,y) = f(%,y(%)),

i.e. if f(x,y) is continuous.
If f(x,y) = oo, then y’ = oo and trajectory is vertical.

For the same value of x, several values of y!

y(x) not a function, unless f(x,y) # oo, i.e. f(x,y) is bounded.
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Well-Posedness of Initial Value Problelfig s e Preve

Peano’s theorem: If f(x,y) is continuous and-bounded in a
rectangle R = {(x,y) : |x — xo| < h, |y — yo| < k}, with

If(x,y)] < M < oo, then the IVP y’ = f(x,y), y(xo) = yo has a
solution y(x) defined in a neighbourhood of xg.

y

(Xo¥0)

(XoYo)

o Xo—h %o Xoth X o Xoh %ot X

(a) Mh<=k (b) Mh>=k

Figure: Regions containing the trajectories

Guaranteed neighbourhood:

[¥0 — J,x0 + 0], where § = min(h, ﬁ) >0

Applied Mathematical Methods Existence and Uniqueness Theory

Well-Posedness of Initial Value Problglfjgeisys of ini Value Problems

Physical system to mathematical model
» Mathematical solution
» Interpretation about the physical system

Meanings of non-uniqueness of a solution
» Mathematical model admits of extraneous solution(s)?

» Physical system itself can exhibit alternative behaviours?

Indeterminacy of the solution
» Mathematical model of the system is not complete.
The initial value problem is not well-posed.

After existence, next important question:

Uniqueness of a solution

349,
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Well-Posedness of Initial Value Problglfjg e of ini! Value Problems

Example:

Existence and Uniqueness Theory 350,

Function f(x,y) = =2 undefined at (0,1).

X

Premises of existence theorem not satisfied.

But, premises here are sufficient, not necessary!

Result inconclusive.

The IVP has solutions: y(x) =1+ cx for all values of c.

The solution is not unique.
Example: y”?=[y|, y(0)=0
Existence theorem guarantees a solution.

But, there are two solutions:
y(x) =0 and y(x) = sgn(x) x?/4.

Applied Mathematical Methods

Well-Posedness of Initial Value Problelfjgei s of ini Value Problems

Existence and Uniqueness Theory 352,

Continuous dependence on initial condition

Suppose that for IVP y' = f(x,y), y(x0) = yo,

> unique solution: y;(x).
Applying a small perturbation to the initial condition, the new IVP:
y'=f(x,y), y(x)=yo+e

> unique solution: y»(x)

Question: By how much y»(x) differs from y;(x) for x > xo?

Large difference: solution sensitive to initial condition

» Practically unreliable solution

Well-posed IVP:

An initial value problem is said to be well-posed if there
exists a solution to it, the solution is unique and it
depends continuously on the initial conditions.
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Uniqueness Theorems

Uniqueness Theorems
Lipschitz condition:

[f(x,y) = f(x,2)| < Lly — 2|
L: finite positive constant (Lipschitz constant)

Theorem: If f(x,y) is a continuous function satisfying a
Lipschitz condition on a strip
S={(x,y):a<x<b,—o0 <y < oo}, then for any
point (xo, ¥o) € S, the initial value problem of

y' =f(x,y), y(x0) = yo is well-posed.

Assume y1(x) and y»2(x): solutions of the ODE y’ = f(x,y) with
initial conditions y(xo) = (y1)o and y(xo) = (¥2)o
Consider E(x) = [y1(x) — y2(x)]?.
E'(x) =2(y1 — y2)"1 — y2) = 2011 — y2)[F(x,y1) — F(x, y2)]
Applying Lipschitz condition,
|E'(x)| < 2L(y1 — y2)* = 2LE(x).

Need to consider the case of E’(x) > 0 only.

Applied Mathematical Methods Existence and Uniqueness Theory

U n Iq UeneSS Th eOI’emS Uniqueness Theorems

A weaker theorem (hypotheses are stronger):

Picard’s theorem: If f(x,y) and % are continuous and
bounded on a rectangle

R={(x,y):a<x< b,c <y<d}, then for every
(x0,¥0) € R, the IVP y' = f(x,y), y(xo) = yo has a
unique solution in some neighbourhood |x — xg| < h.

From the mean value theorem,
of
fx,y1) — f(x,y2) = @(5)()’1 — y2)-

With Lipschitz constant L = sup ’g—; ,
Lipschitz condition is satisfied ‘lavishly’!

Note: All these theorems give only sufficient conditions!
Hypotheses of Picard’s theorem =- Lipschitz condition =
Well-posedness =- Existence and uniqueness

353, Applied Mathematical Methods Existence and Uniqueness Theory

Uniqueness Theorems

Uniqueness Theorems

Hence,
y1(x) = 20| < e (y1)0 = (v2)ol.

Since x € [a, b], el(x—0) is finite.

[(v1)o — (2)ol =€ = |yi(x) — ya(x)| < eLx—x0)

‘continuous dependence of the solution on initial condition ‘

In particular, (y1)o = (2)o = Yo = y1(x) = y2(x) ¥V x € [a, b].

The initial value problem is well-posed.
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Extension to ODE Systems

Extension to ODE Systems

For ODE System

d
T —f(x,y), ¥(x) =0

v

Lipschitz condition:

If(x,y) = f(x,2)[ < Llly — 2]

v

Scalar function E(x) generalized as

E(x) = lly1(x) = y2()II> = (y1 — y2) " (y1 — ¥2)
» Partial derivative g—; replaced by the Jacobian A = g—;
» Boundedness to be inferred from the boundedness of its norm

With these generalizations, the formulations work as usual.
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Extension to ODE Systems
IVP of linear first order ODE system

Existence and Uniqueness Theory

Extension to ODE Systems

y =Ax)y +g(x), y(x0)= Yo

Rate function: f(x,y) = A(x)y + g(x)
Continuity and boundedness of the coefficient functions
in A(x) and g(x) are sufficient for well-posedness.

An n-th order linear ordinary differential equation
Yy +PLx)y "D+ Py Py (X)y +Palx)y = R(x)

State vector: z=1[y y' y" .- y(nfl)]T
With Z{ = 2y, Zé =2z3, -, 2;7_1 =z, and Z,/1 from the ODE’
> state space equation in the form z’ = A(x)z + g(x)

Continuity and boundedness of P1(x), Pa(x), -+ , Pa(x)
and R(x) guarantees well-posedness.

Applied Mathematical Methods

Points to note

Existence and Uniqueness Theory

Closure

» For a solution of initial value problems, questions of existence,
uniqueness and continuous dependence on initial condition are
of crucial importance.

» These issues pertain to aspects of practical relevance
regarding a physical system and its dynamic simulation

» Lipschitz condition is the tightest (avaliable) criterion for
deciding these questions regarding well-posedness

Necessary Exercises: 1,2

Applied Mathematical Methods

Closure

Applied Mathematical Methods

Outline

Existence and Uniqueness Theory

Closure
A practical by-product of existence and uniqueness results:

» important results concerning the solutions

A sizeable segment of current research: ill-posed problems
» Dynamics of some nonlinear systems
» Chaos: sensitive dependence on initial conditions

For boundary value problems,

No general criteria for existence and uniqueness

Note: Taking clue from the shooting method, a BVP in ODE’s
can be visualized as a complicated root-finding problem!

Multiple solutions or non-existence of solution is no surprise.

First Order Ordinary Differential Equations

First Order Ordinary Differential Equations
Formation of Differential Equations and Their Solutions
Separation of Variables
ODE'’s with Rational Slope Functions
Some Special ODE's
Exact Differential Equations and Reduction to the Exact Form
First Order Linear (Leibnitz) ODE and Associated Forms
Orthogonal Trajectories
Modelling and Simulation
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Formation of Differential Equations A T B S s

A differential equation represents a class of funetions:

Example: y(x) = cx¥

With % = chckL and 9% — ck(k — 1)x*~2,

d?y dy\> dy
=< (%) %

A compact ‘intrinsic’ description.

Important terms
» Order and degree of differential equations

» Homogeneous and non-homogeneous ODE's

Solution of a differential equation

» general, particular and singular solutions

Applied Mathematical Methods First Order Ordinary Differential Equations

ODE's with Rational Slope Functions

ODE's with Rational Slope Functions
’r_ fl(xa .y)
Y= F
2 (Xv y)

If 1 and £ are homogeneous functions of n-th degree, then
substitution y = ux separates variables x and u.

dy  ¢1(y/x) du  ¢1(u) dx $2(u)
L= o g x— = = —=———""——du
dx  ¢a(y/x) dx  ¢a(u) x  ¢1(u) — uga(v)
For y' = z;figim, coordinate shift
dy dY
=X+h =Y +k =2 =
X +h, y +Kk =y ax %

produces
dyY 31X+b1Y+(31h+b1k+C1)

dx - aX+bY + (32h+ bok + C2)'
Choose h and k such that

ath+ bik+c =0=ah+ bk + .

If the svstem is inconsistent. then substitute u = a>x + bov.
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Separation of Variables

First Order Ordinary Differential Equations

Separation of Variables

ODE form with separable variables:

dy _ ¢(x)

= o) O v = olx)x

Yy =f(xy) =
Solution as quadrature:
[ty = [ o+ c.

Separation of variables through substitution
Example:

y' = glax + By +1)
Substitute v = ax + By + « to arrive at

dv dv
& T oel) = X:/a+ﬂg(V)+c
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Some Special ODE's

First Order Ordinary Differential Equations

Some Special ODE's
Clairaut’s equation

y=xy'+£(y)
Substitute p = y’ and differentiate:

d d
p:p+x—§ +F(p)

dp / _

% = 0 means y’ = p = m (constant)

» family of straight lines y = mx + f(m) as general solution

Singular solution:

x=—f'(p) and y=f(p)—pf'(p)

Singular solution is the envelope of the family of straight
lines that constitute the general solution.
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Some Special ODE's
Second order ODE’s with the function ndt dppearing

explicitly
f(X, y/,y//) -0
Substitute y’ = p and solve f(x, p, p’) = 0 for p(x).
Second order ODE’s with independent variable not appearing
explicitly
fly.y',y")=0

Use y’ = p and

"n_ dp dp dy @

dp
f — ) =
= dyax Py (y,p,pdy)

Solve for p(y).
Resulting equation solved through a quadrature as

dy / dy
—_ = = X =X+ —.
dx Py) 0 p(y)
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First Order Linear (Leibnitz) ODE and:Associated ‘Forms

General first order linear ODE:
dy
dx

First Order Linear (Leibnitz) ODE and Associated Fc

+P(x)y = Q(x)

‘ Leibnitz equation ‘

For integrating factor F(x),

F) g + FOOPOIY = ZIFG) = G = FOP(:).

Separating variables,

/% :/P(X)dx = InF:/P(X)dx.

Integrating factor: F(x) = e/ P()dx

yef P(x)dx _ / Q(x)ef P(x)dxdx +C

Applied Mathematical Methods

Exact Differential Equations and Redu¢tion to,the Exact For

First Order Ordinary Differential Equations 366,

Mdx 4+ Ndy: an exact differential if Exact Differential Equations and Reduction to the E>

8_(;5 andN—a—(b or %—8—N
Ox Oy’ 9y Ox

M(x,y)dx + N(x,y)dy = 0 is an exact ODE if $¢ = 91l

M:

With M(x,y) = 32 and N(x,y) = 52,
9¢ 99
—dx+ —dy=0 d¢ =0.
ax ™oy = 0
‘ Solution: ¢(x,y) =c¢ ‘
Working rule:

P1(x,y) = / M(x,y)dx+g1(y) and ¢2(x,y) = [ N(x,y)dy+g(x)
)

Determine gl( ) and g2(x) from ¢1(x,y) = da(x,y) = d(x,y).

oM
If 5y 3X, but ay(FM) = ax(FN)
‘ F: Integrating factor‘
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First Order Linear (Leibnitz) ODE and:Associated ‘Forms

Bernoulli’s equation
First Order Linear (Leibnitz) ODE and Associated Fc

=+ Py = QL)y*
Substitution: z =y, % = (1—k)y k¥ gives
d
Z =Pz = (1- KQ(),

in the Leibnitz form.
Riccati equation

y' = a(x) + b(x)y + c(x)y*
If one solution y;(x) is known, then propose y(x) = y1(x) + z(x).
y1(x) + 2'(x) = a(x) + b(x)[y1(x) + 2(x)] + c(x)lya(x) + z(x)]?
Since y1(x) = a(x) + b(x)y1(x) + c(x) 1 (x)]?,
Z'(x) = [b(x) + 2¢(x)y1(x)]2(x) + c(x)[z(x)]?,

in the form of Bernoulli's equation.
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Orthogonal Trajectories

First Order Ordinary Differential Equations

In xy-plane, one-parameter equation ¢(x, y,c) =0

Orthogonal Trajectories

a family of curves

Differential equation of the family of curves:

dy
a - fl(va)

Slope of curves orthogonal to ¢(x, y,c) = 0:

dy 1

dx  fi(x,y)

Solving this ODE, another family of curves #(x, y, k) = 0.
‘ Orthogonal trajectories ‘

If ¢(x,y,c) = 0 represents the potential lines (contours),
then ¥(x,y, k) = 0 will represent the streamlines!

Applied Mathematical Methods

Outline

Second Order Linear Homogeneous ODE'’s

Second Order Linear Homogeneous ODE'’s
Introduction
Homogeneous Equations with Constant Coefficients
Euler-Cauchy Equation
Theory of the Homogeneous Equations
Basis for Solutions
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Points to note

First Order Ordinary Differential Equations

Modelling and Simulation

Meaning and solution of ODE’s
Separating variables
Exact ODE's and integrating factors

Linear (Leibnitz) equations

vV v.v. v .Y

Orthogonal families of curves

Necessary Exercises: 1,3,5,7
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Introduction
Second order ODE:

Second Order Linear Homogeneous ODE'’s

Introduction

f(x,y,y',y") =0

Special case of a linear (non-homogeneous) ODE:
y"+ P(x)y" + Q(x)y = R(x)
Non-homogeneous linear ODE with constant coefficients:
y" +ay' + by = R(x)
For R(x) = 0, linear homogeneous differential equation
Y+ Py + Qx)y =0
and linear homogeneous ODE with constant coefficients

y'+ay' +by=0
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Homogeneous Equations with ConstahitoCoefficient Somsman corcins

y"+ay'+by=0
Assume
y=e™ = y =XeMand y" =\
Substitution: (A2 + a\ + b)e™ =0
Auxiliary equation:
Mtax+b=0

Solve for A1 and A»:

/\1)( )\QX

Solutions: e and e

Three cases
» Real and distinct (a® > 4b): A1 # \»

y(x) = cayi(x) + caya(x) = e+ et

Applied Mathematical Methods

Euler-Cauchy Equation

Second Order Linear Homogeneous ODE’s 375,

Euler-Cauchy Equation

x2y" 4+ axy' + by =0

Substituting y = x*, auxiliary (or indicial) equation:

k>+(a—1k+b=0

1. Roots real and distinct [(a — 1)2 > 4b]: ki # ko.

y(x) = axk + exke,

2. Roots real and equal [(a — 1)2 = 4b]: ky = kp = k = —25L.
y(x) = (a1 + a2 Inx)xk.

3. Roots complex conjugate [(a — 1)2 < 4b]: k1o = —2L L.
y(x) = X_%l[A cos(v Inx)+Bsin(vInx)] = 7 cos(v In x—av).
Alternative approach: substitution

el = t=| dx et and a _ 1 t
x = =lnx, —=et=x and — = =, etc.
T odt dx x’

Second Order Linear Homogeneous ODE’s 373,
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Homogeneous Equations with Constahit.Coefficient Smsman corcins

> Real and equal (3> =4b): Ay =X =\=—3

only solution in hand: y; = e™

Method to develop another solution?

Ax

» Verify that y» = xe™ is another solution.

y(x) = ayi(x) + caya(x) = (a1 + c2x)e™
» Complex conjugate (a® < 4b): A1n = —3+iw

—_a_

y(x) _ Cle(—g-i-iw)x + Cze( 3 —iw)x
= e 2 [cy(coswx + i sinwx) 4 cx(coswx — isinwx)]

e 2 [Acoswx + Bsinwx],

with A=+, B= i(Cl — C2).
» A third form: y(x) = Ce™% cos(wx — a)
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Theory of the Homogeneous Equations

Theory of the Homogeneous Equations

Y+ P(x)y' + Q(x)y =0
Well-posedness of its IVP:

The initial value problem of the ODE, with arbitrary
initial conditions y(xo) = Yo, ¥'(x0) = Y1, has a unique
solution, as long as P(x) and Q(x) are continuous in the
interval under question.

At least two linearly independent solutions:
> yi(x): IVP with initial conditions y(xp) =1, y'(x) =0
> yo(x): IVP with initial conditions y(xp) =0, ¥'(x0) =1
ayi(x) + cya(x) =0 = a=c =0

At most two linearly independent solutions?
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Theory of the Homogeneous Equations

. . h f the H E; i
Wronskian of two solutions y;(x) and ya (xice .o omeseneess Favrions

W(Ylv)@)_‘ V2 s~ vy

n oy
Solutions y; and y» are linearly dependent, if and only if 3 xq
such that W[yl(Xo),yz(Xo)] =0.
> Wiyi(x), y2(x0)] =0 = Wlyi(x), y2(x)] = 0 Vx.

> Wyi(xa),y2(x)] #0 = Wlyi(x),y2(x)] # 0 Vx, and y1(x)
and y»(x) are linearly independent solutions.

Complete solution:

If y1(x) and y»(x) are two linearly independent solutions,
then the general solution is

y(x) = ay1(x) + caya(x).

No third linearly independent solution. No singular solution.

Applied Mathematical Methods Second Order Linear Homogeneous ODE'’s

Theory of the Homogeneous Equations

Theory of the Homogeneous Equations
Pick a candidate solution Y'(x), choose a point xg, evaluate
functions y1, y», Y and their derivatives at that point, frame

{yl(xo) ¥2(x0) ] [ G } _ [ Y (x0) }

i) wxo) || G| | Y(x)

and ask for solution [ G }
G
Unique solution for C1, C5. Hence, particular solution
Y (x) = Guya(x) + Goya(x)
is the “unique” solution of the IVP
Y'+ Py +Qy =0, y(x0) = Y(x0), ¥'(x0) = Y'(x).

But, that is the candidate function Y(x)! Hence, Y (x) = y*(x).

377,

379,
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Theory of the Homogeneous Equationis

Theory of the H&mogeneous Equations
Ftioky/1-

If y1(x) and y2(x) are linearly dependent, theny»
W(y1.y2) = y1yz — yoyi = ya(ky1) — (kyr)y; =0

In particular, ‘ Wlyi(x0), y2(x0)] = O‘
Conversely, if there is a value xg, where

intolontl = 3 3505 =0

then for

)

{ y1(x0)  y2(xo) } { a ] —0
yi(x0) y2(x0) | | @
coefficient matrix is singular.

Choose non-zero [ “ ] and frame y(x) = c1y1 + coy», satisfying

o
IVP y" + Py’ + Qy =0, y(x0) =0, y'(x0) = 0.

Therefore, y(x) =0 = ‘yl and y» are linearly dependent.

Applied Mathematical Methods Second Order Linear Homogeneous ODE'’s

Basis for Solutions
For completely describing the solutions, we gged: solutions

two linearly independent solutions.

No guaranteed procedure to identify two basis members!

If one solution y;(x) is available, then to find another?
Reduction of order

Assume the second solution as
y2(x) = u(x)y1(x)

and determine u(x) such that y»(x) satisfies the ODE.

u"y1 4+ 2u'y; + uy!' + P(u'y1 + uyy) + Quyr =0

= u"y1 +2u'y{ + Pu'y1 + u(y{ + Py; + Qy1) = 0.

Since y;' + Py; + Qy1 = 0, we have ‘ylu” + (2y; + Py1)u' = 0‘

378,

380,
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Basis for Solutions

Second Order Linear Homogeneous ODE'’s

Denoting U/ = U’ U/ + (2% + P)U — (. Basis for Solutions

Rearrangement and integration of the reduced equation:

du d
Do L pg =0 = UyZel P& = C =1 (choose).
U »n
Then,
ul: U:ize—fpdx,
1
Integrating,
1
u(x) = /—2efflpdxdx7
n

1
ya(x) = yl(x)/—2€_fpdxdx.

i

Note: The factor u(x) is never constant!

Applied Mathematical Methods

Points to note

Second Order Linear Homogeneous ODE'’s

Basis for Solutions

Second order linear homogeneous ODE'’s
Wronskian and related results
Solution basis

Reduction of order

vV v. v.v Y

Null space of a differential operator

Necessary Exercises: 1,2,3,7,8

381, Applied Mathematical Methods Second Order Linear Homogeneous ODE'’s

Basis for Solutions

Function space perspective: oy e o
Operator ‘D’ means differentiation, operates on an infinite
dimensional function space as a linear transformation.
» It maps all constant functions to zero.
» |t has a one-dimensional null space.

Second derivative or D? is an operator that has a two-dimensional
null space, ¢1 + cx, with basis {1, x}.
Examples of composite operators

» (D + a) has a null space ce™?*.

> (xD + a) has a null space cx™2.

A second order linear operator D? 4 P(x)D + Q(x) possesses a
two-dimensional null space.
» Solution of [D? + P(x)D + Q(x)]y = 0: description of the
null space, or a basis for it..

» Analogous to solution of Ax = 0, i.e. development of a basis
for Null(A).

383, Applied Mathematical Methods Second Order Linear Non-Homogeneous ODE’s

Outline

Second Order Linear Non-Homogeneous ODE's
Linear ODE's and Their Solutions
Method of Undetermined Coefficients
Method of Variation of Parameters
Closure

382,

384,
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Linear ODE’s and Their Solutions

The Complete Analogy

Second Order Linear Non-Homogeneous ODE's
Linear ODE's and Their Solutions

Table: Linear systems and mappings: algebraic and differential

385, Applied Mathematical Methods
Linear ODE's and Their Solutions
Procedure to solve y” + P(x)y’ + Q(x)y ='R(x)
1. First, solve the corresponding homogeneous equation, obtain a
basis with two solutions and construct

Second Order Linear Non-Homogeneous ODE's
Linear ODE's and Their Solutions

In ordinary vector space

In infinite-dimensional function space

ya(x) = cry1(x) + caya(x).

Ax=b

Y'+ Py +Qy=R

2. Next, find one particular solution y,(x) of the NHE and

The system is consistent.

P(x), Q(x), R(x) are continuous.

compose the complete solution

A solution x*

A solution y,(x)

Alternative solution: X

Alternative solution: y(x)

Y(x) = ya(x) + yp(x) = ayi(x) + caya(x) + yp(x).

X — x* satisfies Ax =0,
is in null space of A.

¥(x) — yp(x) satisfies y” + Py’ + Qy =0,
is in null space of D? + P(x)D + Q(x).

3. If some initial or boundary conditions are known, they can be
imposed now to determine ¢; and c.

Complete solution:
x = X"+ > ci(xo)i

Complete solution:
Yp(x) + 32 ciyi(x)

Caution: If y; and y», are two solutions of the NHE, then
do not expect c1y; + ¢ y» to satisfy the equation.

Methodology:
Find null space of A

Find x* and compose.

i.e. basis members (xp);.

Methodology:
Find null space of D? + P(x)D + Q(x)
i.e. basis members y;(x).
Find yp(x) and compose.

Implication of linearity or superposition:

With zero initial conditions, if y1 and y» are responses
due to inputs Ry(x) and Ry(x), respectively, then the
response due to input c1R1 + xRz is c1y1 + cys.

Applied Mathematical Methods

Second Order Linear Non-Homogeneous ODE's

MethOd Of U ndetermlned CoefﬁcientSMethod of Undetermined Coefficients

y" +ay' + by = R(x)

» What kind of function to propose as y,(x) if R(x) = x"?
» And what if R(x) = e™?
> If R(x) = x" + e, i.e. in the form ki Ry(x) + kaRx(x)?

The principle of superposition (linearity)

Table: Candidate solutions for linear non-homogeneous ODE's

387, Applied Mathematical Methods Second Order Linear Non-Homogeneous ODE's

MethOd Of Undetermlned CoefﬁcientSMethod of Undetermined Coefficients
Example:
(a) y" — 6y’ + 5y = >
(b) y// _ 5)/, + 6y = e3x
(C) y// _ 6y’ + 9y — e3x
In each case, the first official proposal: y, = ke3>
(@) y(x) = creX + e — e3%/4
(b) y(x) = c1e® 4 cpe®+ xe
() y(x) = c1e® + x>+ Ix%e>

RHS function R(x)

Candidate solution y,(x)

Pn(x)

gn(x)

Modification rule

e/\x

ke/\x

> If the candidate function (ke®, ki coswx + kasinwx or

COSwWX Or sinwx

ki coswx + ko sinwx

ky e coswx + kae™ sin wx) is a solution of the corresponding

e)\x AX

coswx or e sinwx

ke cos wx + koe sin wx

HE; with A\, diw or A= jw (respectively) satisfying the

pn(x)e

an (X)e’\x

auxiliary equation; then modify it by multiplying with x.

pn(x)coswx or pup(x)sinwx

qn(x) cos wx + ry(x)sin wx

» In the case of A being a double root, i.e. both e™ and xe™

pn(x)eM coswx or p,(x)

e sin wx

qn(x)e™ coswx + ry(x)e sin wx

being solutions of the HE, choose y, = kx2e™*.

386,
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Method of Variation of Parameters

Method of Variation of Parameters

Solution of the HE:

yn(x) = cry1(x) + caya(x),

in which ¢; and ¢, are constant ‘parameters’.

For solution of the NHE,

how about ‘variable parameters’?
Propose
Yp(x) = u1(x)y1(x) + wa(x)y2(x)
and force yp(x) to satisfy the ODE.

A single second order ODE in u1(x) and uy(x).
We need one more condition to fix them.

Applied Mathematical Methods Second Order Linear Non-Homogeneous ODE's

Method of Variation of Parameters

Method of Variation of Parameters

yioy2 u | _ |0
i valluw R

Since Wronskian is non-zero, this system has unique solution

p_ PR

R
n = and =217

u, W

Direct quadrature:

_ y2(x)R(x)
Wiyi(x), y2(x)]

n(x)R(x)

n(x) = dx and up(x) =

In contrast to the method of undetermined multipliers,
variation of parameters is general. It is applicable for all
continuous functions as P(x), Q(x) and R(x).

W (x),y2 (01

389, Applied Mathematical Methods Second Order Linear Non-Homogeneous ODE's 390,

Method of Variation of Parameters

From y, = u1y1 + woys,

Method of Variation of Parameters

yh = thyr + u1y] + upys + tays.

Condition ‘ uiyr + uhyr = 0 | gives

Yp = 1y + tays.
Differentiating,
Yp = uryi + thys + iy + tays.
Substitution into the ODE:
ULy 4 ubys+ury) +usyy+P(x) (ury)+uays)+Q(x) (uryi+uays) = R(x)
Rearranging,

uyy1+usys+ui (v +P(x)y1+Q(x)y1) +u2(ys +P(x)ys+Q(x)y2) = R(x).

As y;1 and y; satisfy the associated HE,

ulyl + thys = R(x) |

391, Applied Mathematical Methods

Points to note

Second Order Linear Non-Homogeneous ODE’s 392,

Closure

» Function space perspective of linear ODE’s
» Method of undetermined coefficients

» Method of variation of parameters

Necessary Exercises: 1,3,5,6
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Outline

Higher Order Linear ODE's
Theory of Linear ODE's
Homogeneous Equations with Constant Coefficients
Non-Homogeneous Equations
Euler-Cauchy Equation of Higher Order

Higher Order Linear ODE'’s
Theory of Linear ODE’s

Applied Mathematical Methods

Theory of Linear ODE's

» If solutions y1(x), y2(x), - -+, yn(x) of HE are linearly
dependent, then for a non-zero k € R”,

Zk;y,-(x):o = Zk,-yi(j)(x):o for j=1,2,3,--- ,(n—1)
i=1

i=1
= [Y(X)]k =0=[Y(x)] is singular,

= W(x),y2(x), -, ya(x)] = 0.

> If Wronskian is zero at x = xp, then Y(xp) is singular and a
non-zero k € Null[Y (xo)] gives Y., kiyi(x) = 0, implying
y1(x), y2(x), -+, yn(x) to be linearly dependent.

» Zero Wronskian at some x = xp implies zero Wronskian
everywhere. Non-zero Wronskian at some x = xj ensures
non-zero Wronskian everywhere and the corrseponding
solutions as linearly independent.

» With n linearly independent solutions y1(x), y2(x), -, yn(x)
of the HE, we have its general solution y,(x) = > ; ¢iyi(x),
acting as the complementary function for the NHE.

Higher Order Linear ODE'’s 394,
Theory of Linear ODE’s

393, Applied Mathematical Methods

Theory of Linear ODE's

Y+ Py(x)y D Py(x)y 2 Py (xX)y 4+ Pa(x)y = R(x)

General solution: y(x) = ya(x) + yp(x), where
> yp(x): a particular solution
> yu(x): general solution of corresponding HE

Y 4Py (x)y "D 4 Po(x)y ("D Py_i(x)y +Pa(x)y = 0
For the HE, suppose we have n solutions y1(x), y2(x), -+, ya(x).
Assemble the state vectors in matrix
n Y2 cee Yn
! ! !
yl y2 PN yn
Yx)=| B v oW
yl(nfl) y2(n71) ,(Infl)
Wronskian:
W(y15y27"' 7yﬂ) :det[Y(X)]
395, Applied Mathematical Methods Higher Order Linear ODE'’s 396,

Homogeneous Equations with ConstantCogfficient Somman corcins

Yy fay D p (72 e gy fay =0

With trial solution y = X, the auxiliary equation:

N+ a N a2 4. a8, 1 A+a,=0

Construction of the basis:
1. For every simple real root A =, €7* is a solution.

2. For every simple pair of complex roots A = p + iw,
e"* coswx and e** sinwx are linearly independent solutions.
3. For every real root A\ = 7 of multiplicity r; e, xe?*, x%e7X,
, x"1e" are all linearly independent solutions.
4. For every complex pair of roots A = p + iw of multiplicity r;
eM* coswx, eM* sinwx, xet* coswx, xe"*sinwx, - - -,
x""LelX coswx, x""LeMX sinwx are the required solutions.
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Non-Homogeneous Equations

Non-Homogeneous Equations

Method of undetermined coefficients
Yyt ary (D 42y (7D a1y 4 any = R(X)

Extension of the second order case
Method of variation of parameters
n
yolx) = 3 ui(x)yi(x)

i=1

Imposed condition Derivative
2im1 Ui(x)yi(x) =0 yp(x) = 21y ui(x)yi(x)
Z,” 1Y ,( )y, (X) =0 Yo (x) = 22y ui(x)y{' (x)

Z,"l ul(x )yf 2’(x)=o v ) = 20wy (%)
Finally, y"(x) = S0, l(x)y" D (x) + 20y ui(x)y!” (x)

= > Uy V() Z [ 4 Py o 4 Py

=
=
=
=

Applied Mathematical Methods

Points to note

Euler-Cauchy Equation of Higher Order

» Wronskian for a higher order ODE
» General theory of linear ODE’s
» Variation for parameters for n-th order ODE

Necessary Exercises: 1,3,4

Higher Order Linear ODE'’s

397,

= R(x)

399,

Applied Mathematical Methods

Non-Homogeneous Equations

Higher Order Linear ODE'’s 398,

Non-Homogeneous Equations
Since each y;(x) is a solution of the HE,

n

S ux)y" () = R(x).

i=1

Assembling all conditions on u’(x) together,

[Y ()]’ (x) = enR(x).

. R(x) .
u'(x) = ———[adj Y(x)]e,R(x) = [last column of adj Y(x)].
de t[Y( )] W(x)
Using cofactors of elements from last row only,

Wi(x)

/ o i

U,-(X) - W(X) (X)a

with W;(x) = Wronskian evaluated with e, in place of i-th column.

ui(x) = [ 7W(szf)(x) dx

Applied Mathematical Methods Laplace Transforms 400,

Outline

Laplace Transforms
Introduction
Basic Properties and Results
Application to Differential Equations
Handling Discontinuities
Convolution
Advanced Issues
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Introduction

Laplace Transforms

Introduction

Classical perspective
» Entire differential equation is known in advance.
» Go for a complete solution first.

> Afterwards, use the initial (or other) conditions.

A practical situation
» You have a plant
» intrinsic dynamic model as well as the starting conditions.

» You may drive the plant with different kinds of inputs on
different occasions.

Implication
» Left-hand side of the ODE and the initial conditions are
known a priori.

» Right-hand side, R(x), changes from task to task.

Applied Mathematical Methods

Introduction

Laplace Transforms

Introduction

With kernel function K(s,t) = e™%, and limitsca =0, b = oo,
Laplace transform

] b
F(s):L{f(t)}:/O e *tf(t)dt = lim /0 e Stf(t)dt

b—oo

When this integral exists, f(t) has its Laplace transform.

Sufficient condition:
> f(t) is piecewise continuous, and

> it is of exponential order, i.e. |f(t)] < Me< for some (finite)
M and c.

Inverse Laplace transform:

f(t) = L™HF(s))

401, Applied Mathematical Methods

Introduction

Laplace Transforms

Introduction

Another question: What if R(x) is not contiijiigas?
» When power is switched on or off, what happens?

» If there is a sudden voltage fluctuation, what happens to the
equipment connected to the power line?

Or, does “anything” happen in the immediate future?
“Something” certainly happens. The IVP has a solution!

Laplace transforms provide a tool to find the solution, in
spite of the discontinuity of R(x).

Integral transform:

b
TIF(O](s) = / K(s, t)F(t)dt

s: frequency variable
K(s, t): kernel of the transform

Note: T[f(t)] is a function of s, not t.

403, Applied Mathematical Methods

Basic Properties and Results

Laplace Transforms

Basic Properties and Results
Linearity:
L{af (t) + bg(t)} = aL{F(£)} + bL{g(t)}
First shifting property or the frequency shifting rule:
L{e®f(t)} = F(s — a)

Laplace transforms of some elementary functions:
[ee] e—st oo 1
/ e tdt = [ =,
0 —S 0 S
00 e~ st 00 1 00 1
/ e Sttdt = {t + —/ e tdt = =,
0 —S 0 S Jo S

~

—~
~

~—
I

|
L(t") = s:ﬁ (for positive integer n),
MNa+1)
L(t7) = — (for a € RT)
1
and L(e?") =

s—a

402,

404,
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Basic Properties and Results

Laplace Transforms

Basic Properties and Results

S . w
L(coswt) = m, L(smwt) = m,
S . a
L(COSh at) = m, L(smh at) = m;
S—u . w
L(e!t coswt T o L(e!tsinwt) = ————.
N e A

Laplace transform of derivative:
L{f'(t)} = / e 'f'(t)dt
0
= [e‘Sff(t)}g‘Urs/o e *tf(t)dt = sL{f(t)} — f(0)

Using this process recursively,
L{F(e)} = s"L{f( )} —st"VF0) =D F(0) =~ f

For integral g(t fo (t)dt, g(0) =0, and
L{g'(t)} = SL{g( )} —g(0) =sL{g(t)} = L{g(t)} = tL{f(t)}.

("=1)(0).

Applied Mathematical Methods

Handling Discontinuities

Laplace Transforms

Handling Discontinuities

Unit step function

- {

Its Laplace transform:

o0 a (o] —as
L{u(t—a)}:/ e—Sfu(t—a)dt:/ O-dt+/ et =
0 0 a

For input f(t) with a time delay,

t<a
t>a

f(ta)u(ta)_{ f(t_a(; i

has its Laplace transform as
oo
/ e *'f(t — a)dt
a

L{f(t —a)u(t—a)} =
= / T eI (r)dr = e S L{F(1)).
0

‘ Second shifting property or the time shifting rule‘

t<a
t>a

405, Applied Mathematical Methods

Application to Differential Equations

Application to Differential Equations

Laplace Transforms

Example:
Initial value problem of a linear constant coefficient ODE

y'+ay' +by=r(t), y(0)=Ko, y'(0)=
Laplace transforms of both sides of the ODE:
s?Y(s) = sy(0) = y'(0) + alsY(s) = y(0)] + bY(s) =
= (s> +as+b)Y(s) = (s +a)Ko + K1 + R(s)

R(s)

A differential equation in y(t) has been converted to an
algebraic equation in Y (s).

Transfer function: ratio of Laplace transform of output function
y(t) to that of input function r(t), with zero initial conditions

Y(s) 1
Q(s) = R(s) s2+as+b
Y(s) = [(s+ a)Ko + K1]Q(s) + Q(s)R(s)
Solution of the given IVP: y(t) = L=1{Y(s)}

(in this case)

407, Applied Mathematical Methods Laplace Transforms
Handling Discontinuities
Deflne Handling Discontinuities
1/k if a<t<atk
ful(t—a) = R
K ) { 0 otherwise
1 1
= —u(t—a)— —u(t—a—k
Lt~ 2) — )
u«a)} y~ Lu-a) | e ma)}
1 ’7 I L H 1
) a a+k t 4] a t

1 —a—]|
-Lut-a—k)

() Unit step function (b) Composition (c) Function f (d) Dirac’s 5 - function

Figure: Step and impulse functions

and note that its integral

) a+k 1
I :/ fk(t—a)dt:/ —dt =1.
0 a k

does not depend on k.
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Handling Discontinuities Convolution
Handling Discontinuities [ 1
In the limit, g A generalized product of two functions Handling Di
6(t—a) — /iimofk(t_a) ()—f(t *g /f t—T)dT
o if t—=a2 o0 Laplace transform of the convolution:
or, é(t—a) = : and §(t —a)dt = 1.
0 otherwise 0

/ / g(t—7)dr dt = /00O (1) /Too e 'g(t—T)dtdr

t=1 t=1

‘ Unit impulse function or Dirac’s delta function ‘

' l T / T
Lot )} = lim L{L{ult ~a)} — L{u(t — 2~ K))] bz
o emas _ e—(a+k)s B
= lm ——— —=e as
k—0 ks 0 t o t

Through step and impulse functions, Laplace transform (&) Original order (b) Changed order

method can handle IVP's with discontinuous inputs. Figure: Region of integration for L{(t)}

Applied Mathematical Methods Laplace Transforms 411, Applied Mathematical Methods Laplace Transforms 412,
Convolution Points to note
Th rough substitution t/ =t—r, e Advanced lssues
o0 o0 , ,
H(s) = / f(T)/ e~ g(t') dt’ dr » A paradigm shift in solution of IVP’s
0 0 . . . . .

00 o » Handling discontinuous input functions

_ —ST —Si

= /o f(r)e {/0 e " g(t) dt} dr » Extension to ODE systems

» The idea of integral transforms

| H(s) = F(s)G(s) |
Convolution theorem:
Laplace transform of the convolution integral of two
functions is given by the product of the Laplace Necessary Exercises: 1,2,4
transforms of the two functions.

Utilities:
» To invert Q(s)R(s), one can convolute y(t) = q(t) * r(t).

» In solving some integral equation.



Applied Mathematical Methods ODE Systems 413, Applied Mathematical Methods ODE Systems 414,

Outline Fundamental Ideas ot
y =f(t.y)
Solution: a vector function y = h(t)
ODE Systems Autonomous system: y’' = f(y)
Fundamental Ideas » Points in y-space where f(y) = 0:
Linear Homogeneous Systems with Constant Coefficients equilibrium points or critical points
Linear Non-Homogeneous Systems
Nonlinear Systems System of linear ODE’s:

y' = A(t)y +g(t)

» autonomous systems if A and g are constant
» homogeneous systems if g(t) =0

» homogeneous constant coefficient systems if A is constant
and g(t) =0

Applied Mathematical Methods ODE Systems 415, Applied Mathematical Methods ODE Systems 416,

Fundamental Ideas D Homogenen Linear Homogeneous Systems with Cofistant-Cosffigients. coc

For a homogeneous system, y' = Ay

y =A(t)y Non-degenerate case: matrix A non-singular
» Origin (y = 0) is the unique equilibrium point.
Attempt y = xe’ = y = \xe’l.

Wi kian: W -
» Wronskian (Y1,¥2,¥3, Yn) =1y1 y2 ¥3 Yol Substitution: AxeM — Axel =

If Wronskian is non-zero, then If A is diagonalizable, \

» n linearly independent solutions y; = x;e* corresponding to n

» Fundamental matrix: Y(t) =[y1 y2 ¥y3 ‘- ¥nl eigenpairs

. basis.
gving a basis If A is not diagonalizable?

General solution: All x;elit together will not complete the basis.
u . .
Try y = xtett? Substitution leads to
y(t) = ZC:’Yi(t) = [Y(t)]c
i=1

xelt 4+ uxtelt = Axtett = xe' =0 = x =0.

Absurd!
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Linear Homogeneous Systems with Cofistant-Coeffigients. coerc

Try a linearly independent solution in the form
y = xtelt + uett.

Linear independence here has two implications: in
function space AND in ordinary vector space!

Substitution:
xeMt + uxte!t + puett = Axte!t + Aue!t = (A — pul)u = x

Solve for u, the generalized eigenvector of A.
For Jordan blocks of larger sizes,

1
y1 = xe"t| yo = xte!t furet, y3 = Ext2e‘“+u1te‘“+uze’“ etc.

Jordan canonical form (JCF) of A provides a set of basis
functions to describe the complete solution of the ODE
system.

Applied Mathematical Methods

Linear Non-Homogeneous Systems

ODE Systems

Linear Non-Homogeneous Systems

Method of diagonalization
If A is a diagonalizable constant matrix, with X~1AX = D,

changing variables to z = X1y, such thaty = Xz,
Xz = AXz+g(t) = 2 = X" 'AXz+X"*g(t) = Dz+h(t) (say).

Single decoupled Leibnitz equations
Z,/( = dizx + hk(t), k=1,2,3,---,n
leading to individual solutions

zi(t) = credkt + edkt/e*dkthk(t)dt.

After assembling z(t), we reconstruct y = Xz.

417,

419,
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Linear Non-Homogeneous Systems

ODE Systems

Linear Non-Homogeneous Systems

y = Ay +g(t)
Complementary function:

yn(t) = ZCiyi(t) = [V(t)le

Complete solution:

y(t) = ya(t) +yp(t)

We need to develop one particular solution y,.

Method of undetermined coefficients
Based on g(t), select candidate function G(t) and propose

Yo = Z uka(t)7
k

vector coefficients (uk) to be determined by substitution.

Applied Mathematical Methods

Linear Non-Homogeneous Systems

ODE Systems

Linear Non-Homogeneous Systems

Method of variation of parameters
If we can supply a basis Y(t) of the complementary function yj(t),
then we propose

yp(t) = (t)]u(t)

Substitution leads to
YVu+Yu =A)u+g.
Since Y =AY,
W' =g, o, v =[)"'g.
Complete solution:

y(t) = yn +p = Ve + V] / V] lgdt

This method is completely general.

418,

420,
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Points to note

ODE Systems

Nonlinear Systems

» Theory of ODE's in terms of vector functions
» Methods to find

» complementary functions in the case of constant coefficients
» particular solutions for all cases

Necessary Exercises: 1

Applied Mathematical Methods

Second Order Linear Systems

Stability of Dynamic Systems

Second Order Linear Systems

A system of two first order linear differential equations:

)/{ = auyi tawny
Y2 = anyr+any
or, y =Ay
Phase: a pair of values of y; and y»
Phase plane: plane of y; and y»
Trajectory: a curve showing the evolution of the system for a
particular initial value problem

Phase portrait: all trajectories together showing the complete
picture of the behaviour of the dynamic system

Allowing only isolated equilibrium points,
» matrix A is non-singular: origin is the only equilibrium point.
Eigenvalues of A:

A2 — (a11 + ax)A + (a11a00 — arpan) =0

421, Applied Mathematical Methods

Outline

Stability of Dynamic Systems
Second Order Linear Systems
Nonlinear Dynamic Systems
Lyapunov Stability Analysis

423, Applied Mathematical Methods

Second Order Linear Systems

Characteristic equation:

M —pA+qg=0,

Stability of Dynamic Systems 422,

Stability of Dynamic Systems 424,

Second Order Linear Systems

with p = (a11 + ax») = A + X2 and g = aj1axn — apaz = A1 A2

Discriminant D = p? — 4q and

p 2% p
Mo=P (f) —q=P<
1275 2) 972

Solution (for diagonalizable A):

y = axieMt + oxoet?t

Solution for deficient A:

y = axie’ + o(txy 4+ u)e

=y =

VD
5

alxieM + o(xg + Au)et + Atooxg et
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Second Order Linear Systems

)
b

Stability of Dynamic Systems

Second Order Linear Systems

Y2 Y2

Y2
H\ ‘
3 gw/z W

(a) Saddle point (b) Centre (c) Spira
Y2
% . o \Q‘%\ '
(d) Improper node (e) Proper node (f) Degenerate node

Figure: Neighbourhood of critical points

Applied Mathematical Methods

Nonlinear Dynamic Systems

Stability of Dynamic Systems

Nonlinear Dynamic Systems

Phase plane analysis
» Determine all the critical points.

» Linearize the ODE system around each of them as

y = J(yo)(y — yo).-

» With z =y — yg, analyze each neighbourhood from 2’ = Jz.

» Assemble outcomes of local phase plane analyses.

‘Features’ of a dynamic system are typically captured by
its critical points and their neighbourhoods.

Limit cycles

> isolated closed trajectories (only in nonlinear systems)

Systems with arbitrary dimension of state space?

425, Applied Mathematical Methods
Second Order Linear Systems

Table: Critical points of linear systems

Stability of Dynamic Systems

Second Order Linear Systems

426,

Type Sub-type | Eigenvalues Position in p-q chart | Stability
Saddle pt real, opposite signs g<o0 unstable
Centre pure imaginary g>0,p=0 stable
Spiral complex, both g>0,p#0 stable
non-zero components | D = p?> —4q < 0 if p<0,
Node real, same sign g>0,p#0,D>0 unstable
improper unequal in magnitude | D >0 if p>0
proper equal, diagonalizable | D=0
degenerate | equal, deficient D=0
. a _ ?
spiral : spiral el
{
node e & e node
o p
saddle point
unstable]
Figure: Zones of critical points in p-q chart
427, Applied Mathematical Methods Stability of Dynamic Systems 428,

Lyapunov Stability Analysis

Important terms

Positive definite function: A function V(y), with V(0) =0, is

Lyapunov Stability Analysis

Stability: If yg is a critical point of the dynamic system
y' = f(y) and for every ¢ > 0, 36 > 0 such that

then yq is a stable critical point. If, further,
y(t) — yo as t — o0, then yq is said to be
asymptotically stable.

called positive definite if

V(y)>0Vy#0.

Lyapunov function: A positive definite function V(y), having

continuous 5~

ov
Oy; '

change

V' =[VV(y)]"f(y).

ly(to) — yoll <& = [ly(t) —yol <€ Yt > to,

with a negative semi-definite rate of
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Lyapunov Stability Analysis

Stability of Dynamic Systems

Lyapunov Stability Analysis

Lyapunov's stability criteria:

Theorem: For a systemy’ = f(y) with the origin as a
critical point, if there exists a Lyapunov function V(y),
then the system is stable at the origin, i.e. the origin is a
stable critical point.

Further, if V'(y) is negative definite, then it is
asymptotically stable.

A generalization of the notion of total energy: negativity of its rate
correspond to trajectories tending to decrease this ‘energy’.

Note: Lyapunov's method becomes particularly important when a
linearized model allows no analysis or when its results are suspect.

Caution: It is a one-way criterion only!

Applied Mathematical Methods

Outline

Series Solutions and Special Functions

Series Solutions and Special Functions
Power Series Method
Frobenius’ Method
Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE's

429, Applied Mathematical Methods

Points to note

Stability of Dynamic Systems 430,

Lyapunov Stability Analysis

Analysis of second order systems
Classification of critical points

Nonlinear systems and local linearization

vV v v Yy

Phase plane analysis

Examples in physics, engineering, economics,
biological and social systems

v

Lyapunov's method of stability analysis

Necessary Exercises: 1,2,3,4,5

431, Applied Mathematical Methods
Power Series Method

Methods to solve an ODE in terms of elementary functions:
» restricted in scope

Series Solutions and Special Functions 432,

Power Series Method

Theory allows study of the properties of solutions!

When elementary methods fail,
» gain knowledge about solutions through properties, and
» for actual evaluation develop infinite series.

Power series:

o0
y(x) = Z anx" = ag + a1x + axx® + a3x® + asx* + agx® + - -
n=0

or in powers of (x — xp).

A simple exercise:

Try developing power series solutions in the above form
and study their properties for differential equations
4x? y'=y.

y'"+y=0 and
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Power Series Method

Series Solutions and Special Functions

Power Series Method

Y'+ Py + Q(x)y =0
If P(x) and Q(x) are analytic at a point x = xq,

i.e. if they possess convergent series expansions in powers
of (x — xp) with some radius of convergence R,

then the solution is analytic at xg, and a power series solution
y(x) = a0 + a1(x — x0) + ax(x — x0)* + as(x — x0)> + - --

is convergent at least for [x — xp| < R.

For xg = 0 (without loss of generality), suppose

P(X) = anxn=P0+p1X—|-p2x2—|—p3X3_|_... ,
n=0
Q(X) = anxn:q0+qu+q2X2—|—q3X3+... ,

n=0

> o anx".

and assume y(x) =

Applied Mathematical Methods

Frobenius’ Method

Series Solutions and Special Functions

Frobenius’ Method

For the ODE y” + P(x)y’ + Q(x)y =0, a point x = x is
ordinary point if P(x) and Q(x) are analytic at x = xq: power
series solution is analytic
singular point if any of the two is non-analytic (singular) at x = xg
> regular singularity: (x — xp)P(x) and
(x — x0)?Q(x) are analytic at the point
» irregular singularity

The case of regular singularity

For xg = 0, with P(x) = b(d and Q(x) = .

x2

X2y 4 xb(x)y + c(x)y = 0

in which b(x) and c(x) are analytic at the origin.

433, Applied Mathematical Methods
Power Series Method
Differentiation of y(x) =

Series Solutions and Special Functions

Power Series Method

Yoo anx" as
o0 o

y'(x) = Z(n+ Dapr1x” and y’(x) = Z(n+2)(n+1)an+2x"
n=0 n=0

leads to

8

n

anx lz (n+1) amx] >

n=0 n=0 k=0

anx [f; ] L e

n=0 k=0

23

n=0

k=0 k=0
Recursion formula:
1

CEDICES) Z [(k + 1)Pn—kakt1 + Gn—kak]

k=0

apn42 = —

435, Applied Mathematical Methods

Frobenius’ Method

Series Solutions and Special Functions

Frobenius’ Method

Working steps:
1. Assume the solution in the form y(x) = x" Y72 anx”.
2. Differentiate to get the series expansions for y’(x) and y”(x).

3. Substitute these series for y(x), y’(x) and y”(x) into the
given ODE and collect coefficients of x", x"t1, x"*2 etc.

4. Equate the coefficient of x" to zero to obtain an equation in
the index r, called the indicial equation as

r(r—1)+ bor + o =0;

allowing ag to become arbitrary.

5. For each solution r, equate other coefficients to obtain ay, a»,
as etc in terms of ag.

Note: The need is to develop two solutions.

n n
(n+2)(n+Dani2+ Y poi(k+Darp1 + Y qn-sak| x"

434,

Pn—k(k + 1)ag1x"

=C

436,
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Special Functions Defined as Integrals

Special Functions Defined as Integrals

Gamma function: T(n) = [;* e™*x""Ldx, convergent for n > 0.
Recurrence relation (1) =1, T(n+ 1) = nl(n)
allows extension of the definition for the entire real
line except for zero and negative integers.

['(n+ 1) = n! for non-negative integers.
(A generalization of the factorial function.)

Beta function: B(m,n) = fol xM (1 — x)"Ldx =

2f0”/2 sin®™ 19 cos?"~1 9 dh; m,n > 0.

B(m,n) = B(n,m); B(m,n)= %

Error function: erf (x) = % fOX Pt
(Area under the normal or Gaussian distribution)
Sine integral function: Si(x) = fOX Sift‘fdt.

Applied Mathematical Methods Series Solutions and Special Functions

Special Functions Arising as Solutions 6f:ODE"s

Legendre’s equation

(1—x%)y" —2xy' + k(k+1)y =0

P(x) = — IEXXQ and Q(x) = k{’:%) are analytic at x = 0 with

radius of convergence R = 1.

x = 0 is an ordinary point and a power series solution
y(x) = >0 anx" is convergent at least for |x| < 1.

Apply power series method:

k(k+1
a = *%307
k+2)(k—-1
e TR
k—n)(k 1
and apyp = —( mk+n+ )a,, for n > 2.

(n+2)(n+1)

Solution: y(x) = agy1(x) + a1y2(x)

437, Applied Mathematical Methods Series Solutions and Special Functions 438,

Special Functions Arising as Solutions 6f:ODE"s

Special Functions Arising as Solutions of ODE'’s

In the study of some important problems in physics,

some variable-coefficient ODE’s appear recurrently,

defying analytical solution!

Series solutions =- properties and connections
= further problems =- further solutions =

Table: Special functions of mathematical physics

Name of the ODE Form of the ODE Resulting functions
Legendre’s equation 1- xz)y“ —2xy’ + k(k+1)y =0 Legendre functions
Legendre polynomials
Airy’s equation y'" + kzxy =0 Airy functions
Chebyshev's equation (1—x%)y"" —xy' + Ky =0 Chebyshev polynomials
Hermite's equation y' —2xy' +2ky =0 Hermite functions

Hermite polynomials

Bessel’s equation <2y xy + (x2 — k%)y =0 Bessel functions

Neumann functions
Hankel functions
Gauss's hypergeometric x(1—=x)y” +[c—(a+b+1)x]y’ —aby =0 Hypergeometric function

equation
Laguerre’s equation xy +(1—x)y’ +ky=0 Laguerre polynomials
439, Applied Mathematical Methods Series Solutions and Special Functions 440,

Special Functions Arising as Solutions 6f:ODE"s

Special Functions Arising as Solutions of ODE'’s Special Functions Arising as Solutions of ODE'’s

Legendre functions

nkx) = 1- k(k;!r Do k= 2)(k44!r (k+3) 4
() = x— K= 1;(!k +2) 5, (k=1(k - 3!)3(!k +2)(k+4) 5

Special significance: non-negative integral values of k
For each Kk =0,1,2,3,---,

one of the series terminates at the term containing x*.

Polynomial solution: valid for the entire real line!
Recurrence relation in reverse:
k(k —1)

202k —1)%*

a2 =
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Special Functions Arising as Solutions 6f:ODE"s

Special Functions Arising as Solutions of ODE'’s

Legendre polynomial
(2k—=1)(2k—3)--31

Choosing ay = “—"77——,
P(x) = (2k — 1)(2kk!— 3)---3-1
w |xk — k(k—1) xk=2 4 Kl = D)k = 2)(k = 3)x"‘4 —
22k — 1) 2-4(2k —1)(2k - 3)

This choice of a, ensures Py (1) = 1 and implies Px(—1) = (—1)k.
Initial Legendre polynomials:

Po(x) = 1,
Pi(x) = x,

Pax) = 2(3 ~ 1),

Py(x) = %(5)(3 _3y),

Pa(x) = %(35x4 —30x? 4 3) etc.

Applied Mathematical Methods

Special Functions Arising as Solutions 6f:ODE"s

Special Functions Arising as Solutions of ODE'’s

Bessel’s equation
Py +xy' + (x> = Ky =0

x = 0 is a regular singular point.
Frobenius’ method: carrying out the early steps,

(r*—k?)aox"+[(r+1)*~ kz]alxr+1+2[a,,_2+{r2 —k24n(n+2r)}a)x " =0
n=2

Indicial equation: r> — k> =0= r=+k
With r=k, (r+1)?2—-k*>#0 = a; =0and

an—2

apn=———-— forn>2.
" n(n+ 2r) -
Odd coefficients are zero and
a0 ao
PH=———— Ay = , etc.

2(2k +2)’ 2-4(2k + 2)(2k + 4)

Series Solutions and Special Functions 441,

Series Solutions and Special Functions 443,

Applied Mathematical Methods

Special Functions Arising as Solutions 6f:ODE"s

Special Functions Arising as Solutions of ODE’s
T T
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1
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P3(¥)

0.4
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06 P ()
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Figure: Legendre polynomials
All roots of a Legendre polynomial are real and they lie in [—1,1].

Orthogonality?

Applied Mathematical Methods

Special Functions Arising as Solutions 6f:ODE"s

Special Functions Arising as Solutions of ODE'’s

Series Solutions and Special Functions 444,

Bessel functions:

Selecting ag = and using n = 2m,

(=nm
2k 2mmIF(k+ m+1)

1
2KT(k+1)

dm =

Bessel function of the first kind of order k:

sck+2m = (—1)™ (% )k+2m

o0
= —1 m _—_—
mZ:O( ) 2kt2mmIT (k + m+ 1) ZO mil(k +m+1)

When k is not an integer, J_,(x) completes the basis.

For integer k, J_k(x) = (—1)¥Jk(x), linearly dependent!
Reduction of order can be used to find another solution.
‘ Bessel function of the second kind or Neumann function |
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Points to note

Series Solutions and Special Functions

445, Applied Mathematical Methods

Outline

Sturm-Liouville Theory

Special Functions Arising as Solutions of ODE'’s

Solution in power series
Ordinary points and singularities
Definition of special functions

Legendre polynomials

vV v . v.v .Y

Bessel functions

Necessary Exercises: 2,3,4,5

Applied Mathematical Methods

Preliminary Ideas

Sturm-Liouville Theory

Preliminary Ideas

A simple boundary value problem:
y'+2y=0, y(0)=0, y(r)=0
General solution of the ODE:
y(x) = asin(xV2) + bcos(xV2)

Condition y(0) =0 = b =0. Hence, y(x) = asin(xV/2).
Then, y(m) =0 = a=0. Only solution is y(x) = 0.

Now, consider the BVP
y'+4y=0, y(0)=0, y(m)=0.

The same steps give y(x) = asin(2x), with arbitrary value of a.

Infinite number of non-trivial solutions!

Sturm-Liouville Theory
Preliminary Ideas
Sturm-Liouville Problems
Eigenfunction Expansions

447, Applied Mathematical Methods

Preliminary Ideas

Sturm-Liouville Theory

Preliminary Ideas

Boundary value problems as eigenvalue problems
Explore the possible solutions of the BVP

y'+ky =0, y(0)=0, y(r)=0.

» With k <0, no hope for a non-trivial solution. Consider

k=v?>0.
» Solutions: y = asin(vx), only for specific values of v (or k):
v=041,42,43,---;ie k=0,1,4,9,--.
Question:

» For what values of k (eigenvalues), does the given BVP
possess non-trivial solutions, and
» what are the corresponding solutions (eigenfunctions), up to
arbitrary scalar multiples?
Analogous to the algebraic eigenvalue problem Av = )\v!
Analogy of a Hermitian matrix: self-adjoint differential operator.

446,

448,
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Preliminary Ideas

Consider the ODE y” + P(x)y’ + Q(x)y = 0.
Question:

Is it possible to find functions F(x) and G(x) such that

Sturm-Liouville Theory

Preliminary Ideas

FOy" + FO)P()y" + F(x)Q(x)y
gets reduced to the derivative of F(x)y' + G(x)y?
Comparing with
d
FG)Y + Gy = F(x)y" + [F(x) + G(x)ly" + 6'(x)y,

F'(x) + G(x) = F(x)P(x)

Elimination of G(x):

and  G'(x) = F(x)Q(x).

F'(x) = P(OF (x) + [Q(x) = P'(X)IF(x) = 0

This is the adjoint of the original ODE.

Applied Mathematical Methods

Preliminary Ideas

Sturm-Liouville Theory

Preliminary Ideas

Second order self-adjoint ODE
Question: What is the adjoint of Fy” + FPy’ + FQy = 0?
Rephrased question: What is the ODE that ¢(x) has to satisfy if

OFy" + FPy' + pFQy = % [¢Fy' +€(x)y]?
Comparing terms,

I (6F) +€() = 6FP and €(x) = 0FQ.
Eliminating £(x), we have 25 (¢F) + ¢FQ = L (¢FP).

F¢" +2F' ¢/ + F"'¢ + FQp = FP¢' + (FP)' ¢
= F¢" + (2F' — FP)¢/ + [F" = (FP) + FQ] ¢ =0

This is the same as the original ODE, when ‘ F'(x) = F(x)P(x) ‘

449, Applied Mathematical Methods

Preliminary Ideas
The adjoint ODE
» The adjoint of the ODE y” + P(x)y’ + Q(x)y =0 is

Sturm-Liouville Theory 450,

Preliminary Ideas

F"+ PiF' + QiF =0,

where PL = —Pand Q; = Q — P'.
» Then, the adjoint of F” + P1F' + Q1F =0 is

¢" + Pa¢' + Qo = 0,

where P, = —P; = P and
Q=Q-Pi=Q-P - (-P)=Q.
The adjoint of the adjoint of a second order linear
homogeneous equation is the original equation itself.

» When is an ODE its own adjoint?
» v+ P(x)y’ + Q(x)y = 0 is self-adjoint only in the trivial case
of P(x) =0.
» What about F(x)y” + F(x)P(x)y’ + F(x)Q(x)y = 07

451, Applied Mathematical Methods

Preliminary Ideas

Sturm-Liouville Theory 452,

Preliminary Ideas

Casting a given ODE into the self-adjoint form:

Equation y" + P(x)y’ + Q(x)y = 0 is converted to the
self-adjoint form through the multiplication of
F(x) = e P(x)dx

General form of self-adjoint equations:

9 IFGOY']+ Rix)y = 0

Working rules:

» To determine whether a given ODE is in the self-adjoint form,
check whether the coefficient of y’ is the derivative of the
coefficient of y”.

» To convert an ODE into the self-adjoint form, first obtain the
equation in normal form by dividing with the coefficient of y”.
If the coefficient of y’ now is P(x), then next multiply the
resulting equation with el Pax,
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Stu rm—LIOUVI”e PrOblemS Sturm-Liouville Problems

Sturm-Liouville equation

[r(x)y'T + [a(x) + Ap(x)]ly = 0,

where p, g, r and r’ are continuous on [a, b], with p(x) > 0 on
[a, b] and r(x) > 0 on (a, b).

With different boundary conditions,

Regular S-L problem:
a1y(a) + a2y’(a) =0 and byy(b) + boy'(b) =0,
vectors [a; ap]" and [by bo]T being non-zero.
Periodic S-L problem: With r(a) = r(b),
y(a) = y(b) and y'(a) = y'(b).
Singular S-L problem: If r(a) = 0, no boundary condition is
needed at x = a. If r(b) = 0, no boundary condition
is needed at x = b.
(We just look for bounded solutions over [a, b].)

Applied Mathematical Methods Sturm-Liouville Theory 455,

Stu rm—LIOUVI”e PrOblemS Sturm-Liouville Problems
Integrating both sides,

b
(m — An) / () Ym(x)n(X)dx
= (B)m(B)YA(B) — ya(B)Y(B)] — r(@)ym(@)Ye(a) — val(a)yh(a)]

» In a regular S-L problem, from the boundary condition at
x = a, the homogeneous system
[ym(a) Ym(a) } { a1

yn(@) yi(a) | | a

Therefore, ym(a)yn(a) — yn(a)ym(a) = 0.
Similarly, ym(b)ys(b) — ya(b)ym(b) = 0.

» In a singular S-L problem, zero value of r(x) at a boundary
makes the corresponding term vanish even without a BC.

» In a periodic S-L problem, the two terms cancel out together.

0 .. .
=10 has non-trivial solutions.

Since A\, # Ap, in all cases,

b
/ P()Ym(x)a(x)dx = 0.

Applied Mathematical Methods Sturm-Liouville Theory

Stu rm—LIOUVI”e PrOblemS Sturm-Liouville Problems

Orthogonality of eigenfunctions

Theorem: If y,(x) and y,(x) are eigenfunctions
(solutions) of a Sturm-Liouville problem corresponding to
distinct eigenvalues A, and \,, respectively, then

b
Yoms ) = / P(x)ym(X)ya(x)dx = 0,

i.e. they are orthogonal with respect to the weight
function p(x).

From the hypothesis,
(vi) + @+ XmP)ym =0 = (q+ Amp)Ym¥n = —(rVm) ¥n
(v} +(@+2P)yn =0 = (q+ XoP)Ym¥Yn = —(ry}) ¥m
Subtracting,
Am = An)pYmyn = (ry0) ym + () — (rvi)yn — (ryi) vn
= [r(ymy} — yayi)] -

Applied Mathematical Methods Sturm-Liouville Theory

Stu rm—LIOUVI”e PrOblemS Sturm-Liouville Problems

Example: Legendre polynomials over [—1,1]
Legendre's equation

10—y + k(K + Dy =0

is self-adjoint and defines a singular Sturm Liouville problem over
[-1,1] with p(x) =1, g(x) =0, r(x) =1 —x? and A\ = k(k +1).

1
(m—n)(m+n+1) /_1 Pin(x)Pn(x)dx = [(1=x?)(PmP,—P,P. ) 1 =0

From orthogonal decompositions 1 = Py(x), x = P1(x),

1 1 2 1
X = §(3X2 — 1)+ 3 =3 Px) + 5 Polx),

1 2
X3 = g(5x3 —3x)+ gx = ng(x) + gPl(x),
= Bp) 4+ 2P0 + LRy ete;

35 7 5 '

Pk(x) is orthogonal to all polynomials of degree less than k.

454,
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Sturm-Liouville Problems Sturm.Liowville Problems Eigenfunction Expansions
Real eigenvalues

Eigenfunction Expansions

Eigenfuncti f -Liouvill lems:
Eigenvalues of a Sturm-Liouville problem are real. igenfunctions of Sturm-Liouville problems

convenient and powerful instruments to represent and

Let eigenvalue A = 1 + iv and eigenfunction y(x) = u(x) + iv(x). manipulate fairly general classes of functions
Substitution leads to

[r(d + i) + [q+ (u+ iv)p](u—+ iv) = 0. {Y0,¥1,¥2,¥3, - }: a family of continuous functions over [a, b],

. , . mutually orthogonal with respect to p(x).
Separation of real and imaginary parts: y & P P(x)

(] +(q+pp)u—vpy =0 = wvpv? = [r/]'v + (g + up)uv Representation of a function f(x) on [a, b]:

(W] 4+ (g4 up)v +vpu=0 = vpu?=—[n]u—(q+ pp)uv

Adding together = Z amym(x) = aoyo(x) + a1y1(x) + a2y2(x) + asys(x) + - -

vp(u?+v?) = [r)v+ [ |V — [ — [ u = — [r(w' — w)]’

‘ Generalized Fourier series|
Analogous to the representation of a vector as a linear combination

b
u/ p(x)[u2(x) I V2(X)]dx —o. of a set of mutually orthogonal vectors.
a

Question: How to determine the coefficients (a,)?

Integration and application of boundary conditions leads to

‘V:Oand)\:u‘
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Eigenfunction Expansions Eigenfunction Expansions
Eigenfunction Expansions Eigenfunction Expansions
Inner product: In terms of a finite number of members of the family {¢x(x)},
b N
(F,yn) /a PLAF(x)yn(x)dx On(x) = D ambm(x) = codo(x)+a1é1(x)+a2g(x)+ - +andn(x).
p © [ =
B / Z[amp(x)ym(x)yn(x)]dx = Z am(Yms yn) = anllyall? Error
a m=0 m=0 2
b
where E=If - oult= | ptx) [f(x) - amqsm(x)] d
a —
[yall = v/ (¥n, yn) = \/ p(x yA(x m=0
Error is minimized when
Fourier coefficients: a, = H OF
Normalized eigenfunctions: Do :/ 2p(x) l Z UmPm(x ] [—¢n(x)]dx =0
n a
X
Qbm(X) — ym( )

Iy - [ ” cnpl) 2 (x)dx = / ” p()F()n(x)de
Generalized Fourier series (in orthonormal basis): a a

x) = Z CmPm(x) = codo(x)+ c101(x)+ cada(x) + c3p3(x)+- - best approximation in the mean or least square approximation
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Eigenfunction Expansions

Sturm-Liouville Theory

Eigenfunction Expansions

Using the Fourier coefficients, error

N N N N
E=(F1)-2 clf.on)+ Y G(ombn) = 223 24> &
n=0 n=0

n=0 n=0

N
E=|fP-Y >0
n=0

Bessel’s inequality:

N b
S <2 = / p(x)F2(x)dx
n=0

a

Partial sum )
sk(X) = Z amﬁbm(x)
m=0

Question: Does the sequence of {sx} converge?
Answer: The bound in Bessel's inequality ensures convergence.

Applied Mathematical Methods

Points to note

Sturm-Liouville Theory

Eigenfunction Expansions

Eigenvalue problems in ODE'’s

Self-adjoint differential operators

>
>

» Sturm-Liouville problems
» Orthogonal eigenfunctions
>

Eigenfunction expansions

Necessary Exercises: 1,2,4,5

461, Applied Mathematical Methods

Eigenfunction Expansions

Sturm-Liouville Theory

Eigenfunction Expansions

Question: Does it converge to 7

b
Jm [ plsi(x) — £ = 07

Answer: Depends on the basis used.
Convergence in the mean or mean-square convergence:

An orthonormal set of functions {¢x(x)} on an interval
a < x < b is said to be complete in a class of functions,
or to form a basis for it, if the corresponding generalized
Fourier series for a function converges in the mean to the
function, for every function belonging to that class.

ot Hye S0 2 g2
Parseval’s identity: Y >°,c; = ||f]|
Eigenfunction expansion: generalized Fourier series in terms of
eigenfunctions of a Sturm-Liouville problem
» convergent for continuous functions with piecewise continuous
derivatives, i.e. they form a basis for this class.
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Outline

Fourier Series and Integrals

Fourier Series and Integrals
Basic Theory of Fourier Series
Extensions in Application
Fourier Integrals
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Basic Theory of Fourier Series

Basic Theory of Fourier Series
With g(x) =0 and p(x) = r(x) = 1, periodic S-L problem:
Yy =0, y(=0) =y(L), y'(=0)=y'(L)

Eigenfunctions 1, cos 7%, sin 7%, cos 27[’(, sin 2’ZX,

constitute an orthogonal basis for representing functions.
For a periodic function f(x) of period 2L, we propose

—ao+Z(ancos + by sanLX>

and determine the Fourier coefficients from Euler formulae

/ f(x

1 /L
am:Z[Lf( )cosde and bm_Z/Lf(x)sin mrx

Question: Does the series converge?

Applied Mathematical Methods Fourier Series and Integrals

Basic Theory of Fourier Series

Basic Theory of Fourier Series
Multiplying the Fourier series with f(x),

F2(x) = aof (x +Z{an cosT+bf()sin”LLX]

Parseval’s identity:

= a3+ = Za + b2) = %/ 2(x)dx

The Fourier series representation is complete.

» A periodic function f(x) is composed of its mean value and

several sinusoidal components, or harmonics.

» Fourier coefficients are corresponding amplitudes.

» Parseval’s identity is simply a statement on energy balance!
Bessel’s inequality

1 1
B3 D (8 +52) < ()12

n=1

Applied Mathematical Methods Fourier Series and Integrals

Basic Theory of Fourier Series

Basic Theory of Fourier Series

Dirichlet’'s conditions:

If f(x) and its derivative are piecewise continuous on
[=L, L] and are periodic with a period 2L, then the series

converges to the mean w of one-sided limits, at

all points.
Fourier series

Note: The interval of integration can be [xg, xo 4+ 2L] for any xo.

» It is valid to integrate the Fourier series term by term.

» The Fourier series uniformly converges to f(x) over an
interval on which f(x) is continuous. At a jump discontinuity,
convergence to w is not uniform. Mismatch peak

shifts with inclusion of more terms (Gibb's phenomenon).

» Term-by-term differentiation of the Fourier series at a point
requires f(x) to be smooth at that point.

Applied Mathematical Methods Fourier Series and Integrals

EXtenSIOHS |n Appl |Cat|on Extensions in Application

Original spirit of Fouries series
> representation of periodic functions over (—oco, 00).
Question: What about a function f(x) defined only on [—L, L]?
Answer: Extend the function as
F(x)=f(x) for —L<x<L, and F(x+2L)= F(x).

Fourier series of F(x) acts as the Fourier series representation of
f(x) in its own domain.
In Euler formulae, notice that b,, = 0 for an even function.

The Fourier series of an even function is a Fourier
cosine series

o0

nmx

x)=ap+ E a,,cosT7
n=1

where ag = —f f(x)dx and a, = Lfo ) cos X dx.

Similarly, for an odd function, Fourier sine series.

468,
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EXtenSIOHS |n Appl |Cat|on Extensions in Application EXtenSIOnS |n Appl ICatIOn Extensions in Application

Over [0, L], sometimes we need a series of sine terms only, or Half-range expansions

i ! . , . ,
cosine terms only! » For Fourier cosine series of a function f(x) over [0, L], even
09 periodic extension:

_ f(x) for 0<x<lL, B
\j\/K /\/KJ\ fc(X) = { f(—X) for —L<x< 0’ and fc(X+2L) = fC(X)

-2L

f(x)

» For Fourier sine series of a function f(x) over [0, L], odd

(@ Function over (0,1 (b) Even periodic extension periodic extension:
| f(x) for 0<x<UL, _
o ) = { “f(—x) for —L<x<o, 4 flxF2)="£(x)
\ \ \ To develop the Fourier series of a function, which is available as a
j ! j ! j | set of tabulated values or a black-box library routine,
BN KZL T f) L /ZL L X ) i )
‘ L integrals in the Euler formulae are evaluated numerically.

Important: Fourier series representation is richer and more
powerful compared to interpolatory or least square approximation
in many contexts.

(c) Odd periodic extension

Figure: Periodic extensions for cosine and sine series
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Fourier Integrals Fourier Integrals

Fourier Integrals Fourier Integrals

In the limit (if it exists), as L — oo, Ap — 0,

1 [ee] ee] oo
f(x) = _/ [cospx/ f(v)cospvdv+sinpx/ f(v)sinpvdv} dp

™ Jo —00 —00

Question: How to apply the idea of Fourier series to a
non-periodic function over an infinite domain?
Answer: Magnify a single period to an infinite length.

Fourier series of function f;(x) of period 2L:
Fourier integral of f(x):

fi(x) =ao+ z:(a,7 COS PpX + by sin ppx),

n=1 = / [A(p) cos px + B(p) sin px]dp,
0

where p, = 7T is the frequency of the n-th harmonic. where amplitude functions

Inserting the expressions for the Fourier coefficients, Alp) = 1 /oo F()cos pydv and B(p) — 1 /oo (V) sin pv dv
1L T J_so T J o

fi(x) = 2L fL(X)dX are defined for a continuous frequency variable p.

1> L L
_Z [cospn / fi(v )cosp,,vdv+smp,,x/ fi(v)sinp,vdv| Ap,
s _

where Ap = ppy1 — pn = T-

In phase angle form,

/ / v) cos p(x — v)dv dp.
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Fourier Integrals

Fourier Series and Integrals

Fourier Integrals

779 in the phase angle form,

95l

With substitution p = —gq,

[ [nenome- [ [

Complex form of Fourier integral

95 L)L

in which the complex Fourier integral coefficient is

% [m f(v)ef’.pvdv.

Using cos 6 =

[elp(X v) + eflp x— v)]dv dp.
)e 1) dy dg.
P dv dp = / C(p)e™dp,

Cp) =

Applied Mathematical Methods

Outline

Fourier Transforms

Fourier Transforms
Definition and Fundamental Properties
Important Results on Fourier Transforms
Discrete Fourier Transform

473, Applied Mathematical Methods

Points to note

Fourier Series and Integrals

Fourier Integrals

» Fourier series arising out of a Sturm-Liouville problem
> A versatile tool for function representation

» Fourier integral as the limiting case of Fourier series

Necessary Exercises: 1,3,6,8

475, Applied Mathematical Methods Fourier Transforms

Definition and Fundamental Properti€§s zeiamn oo

Complex form of the Fourier integral:

1 * 11 i
=— — f
) V2 [oo {\/27r /700
Composition of an infinite number of functions in the
form < 5 overa continuous distribution of frequency w.

v)eiwvdv] e dw

Fourier transform: Amplitude of a frequency component:

W)—\/%/Zf(t)e

Function of the frequency variable.

F(f) = F( it

Inverse Fourier transform
1

FHF) =f(t) = E/_oo F(w)e™ dw

recovers the original function.

474,
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'@gﬁnition and Fundamental Properties

Definition and Fundamental Properti

Example: Fourier transform of f(t) =17
Let us find out the inverse Fourier transform of f(w) = kdé(w).

k
t) = ko(w)e™tdw = —
f(e) = =/ T
\ F(1) = Vard(w) |
Linearity of Fourier transforms:

Flah(t) + h(t)} = af(w) + fh(w)

Scaling:
Ff(at)} = %? (%) and {7 (Y)) = falfat)
Shifting rules:

F{f(t—t)} = e""""toj’-'{fgt)}
FHEw—wo)} = et F(w))

Applied Mathematical Methods Fourier Transforms

I m porta nt ReSU |tS On FOU I’Iel’ Tl’a nSfOIfmrSmt Results on Fourier Transforms

Under appropriate premises,

A A

F{f"(t)} = (iw)*F(w) = —w?F(w).

In general, F{f("(t)} = (iw)"f(w).
Fourier transform of an integral:

If f(t) is piecewise continuous on every interval,
S5 If(t)|dt converges and (0) = 0, then

f{/_; f(T)dT} = F(w).

Derivative of a Fourier transform (with respect to the frequency

variable):
FEF) = " F(w),

if £(t) is piecewise continuous and [ [t"f(t)|dt converges.

Applied Mathematical Methods Fourier Transforms

I m porta nt ReSU |tS On FOU I’Iel’ Tl’a nSfOIfmrSmt Results on Fourier Transforms

Fourier transform of the derivative of a function:

If £(t)is continuous in every interval and f’(t) is piecewise
continuous, [ |f(t)|dt converges and f(t) approaches zero as
t — £o0, then

F{F(6)} = F/ et

= E[f(t)e_”’"t]_oo \/_/ —iw)f(t)e ™ dt
= iwf(w).

Alternatively, differentiating the inverse Fourier transform,

000~ 3 [ [ o]

\/T_Tr/—oo o ’Wt} dw = 71{/W?(W)}.

Applied Mathematical Methods Fourier Transforms

I m porta nt ReSU |tS On FOU I’Iel’ Tl’a nSfOIfmrSmt Results on Fourier Transforms

Convolution of two functions:

h(t) = f(t) x g(t) = /00 f(r)g(t —7)dr

—0o0

>

(w) = 7{h(f)}oo N
= \/% [m /700 f(r)g(t —7)e""dr dt
= \/% /_Z f(r)e ™ {/_Z g(t— T)e_’.W(t_T)dt} dr

/_0; f(r)e ™r {\/ﬂ/ et dt} dr

Convolution theorem for Fourier transforms:

h(w) = V2rF(w)z(w)
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I m porta nt ReSU |tS On FOU I’Iel’ Tra nSfOITm&m Results on Fourier Transforms

Conjugate of the Fourier transform:

. 1 [ .
i (w) = — F(t)e'"dt
w=—=[ Fe
Inner product of #(w) and g(w):
/m P (w)B(w)dw — /m\/%/m F(£)e™dt &(w)dw
/ £*(t) [1/ g(w)e"""tdw} dt
—c0 2 —00

_ / T (t)elt)dt.

—0oQ

Parseval’s identity: For g(t) = f(t) in the above,

JA R TR

equating the total energy content of the frequency spectrum of a
wave or a signal to the total energy flow over time.

Applied Mathematical Methods Fourier Transforms

Discrete Fourier Transform

Discrete Fourier Transform

Time step for sampling?
With N sampling over [a, b),

weA <,

data being collected at t = a,a+ A,a+2A,--- ;a+ (N - 1)A,
with NA = b — a.

Nyquist critical frequency ‘

Note the duality.

» Decision of sampling rate A determines the band of frequency
content that can be accommodated.

» Decision of the interval [a, b) dictates how finely the
frequency spectrum can be developed.
Shannon’s sampling theorem

A band-limited signal can be reconstructed from a finite
number of samples.

Applied Mathematical Methods Fourier Transforms

Discrete Fourier Transform

Discrete Fourier Transform
Consider a signal f(t) from actual measurement or sampling.
We want to analyze its amplitude spectrum (versus frequency).

For the FT, how to evaluate the integral over (—oo, c0)?
Windowing: Sample the signal f(t) over a finite interval.
A window function:

(t) = 1 fora<t<bp
EWW=1 0 otherwise

Actual processing takes place on the windowed function f(t)g(t).
Next question: Do we need to evaluate the amplitude for all
w € (—00,0)?

Most useful signals are particularly rich only in their own
characteristic frequency bands.

Decide on an expected frequency band, say [—w,, wc].

Applied Mathematical Methods Fourier Transforms

Discrete Fourier Transform

Discrete Fourier Transform

With discrete data at t, = kA for k=0,1,2,3,--- ,N — 1,

A A
Fw) = == [mf] (v),
V2

where m; = e~ WA and [mﬂ is an N x N matrix.
A similar discrete version of inverse Fourier transform.
Reconstruction: a trigonometric interpolation of sampled data.

» Structure of Fourier and inverse Fourier transforms reduces the

problem with a system of linear equations [O(/N3) operations]

to that of a matrix-vector multiplication [O(N?) operations].

» Structure of matrix [mﬂ with patterns of redundancies,

opens up a trick to reduce it further to O(N log N) operations.

Cooley-Tuckey algorithm:
‘ fast Fourier transform (FFT) ‘
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Discrete Fourier Transform Points to note

Discrete Fourier Transform Discrete Fourier Transform

DFT representation reliable only if the incoming signal is really
band-limited in the interval [—w,, w,].
Frequencies beyond [—w,, w,]| distort the spectrum near w = +w,

by folding back. » Fourier transform as amplitude function in Fourier integral
» Basic operational tools in Fourier and inverse Fourier
Detection: a posteriori transforms

Bandpass filtering: If we expect a signal having components only
in certain frequency bands and want to get rid of unwanted noise
frequencies,

» Conceptual notions of discrete Fourier transform (DFT)

for every band [wy, wy| of our interest, we define window
function ¢(W) with intervals [—W2, —W]_] and [W]_7 W2]. Necessary Exercises: 1,3’6

Windowed Fourier transform ¢(w)f(w) filters out frequency
components outside this band.
For recovery,

convolve raw signal f(t) with IFT ¢(t) of (w).

Applied Mathematical Methods Minimax Approximation* 487, Applied Mathematical Methods Minimax Approximation* 488,

Outline Approximation with Chebyshev polyndiiiafs i aua o=

Chebyshev polynomials:
Polynomial solutions of the singular Sturm-Liouville problem

n2

i =?

!/
(1—x2)y" —xy'+n’y =0 or [ lfxzy/] +
Minimax Approximation*
Approximation with Chebyshev polynomials
Minimax Polynomial Approximation

over —1 < x <1, with T,(1) =1 for all n.

Closed-form expressions:

tx),

Th(x) = cos(ncos™
or,
TO(X) = 17 Tl(X) = X, T2(X) = 2X2 — ]_7 T3(X) = 4X3 — 3X, cee

with the three-term recurrence relation

Tit1(x) = 2xT(x) = Ti—1(x).
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Approximation with Chebyshev polyndffiafs, i Seste e

Immediate observations
» Coefficients in a Chebyshev polynomial are integers. In
particular, the leading coefficient of T,(x) is 2771,
» For even n, T,(x) is an even function, while for odd n it is an
odd function.
> To(1)=1, To(—-1)=(-1)"and |T,(x)] < 1for -1 < x < 1.

» Zeros of a Chebyshev polynomial T,(x) are real and lie inside
(2k=1)m
2n

Minimax Approximation*

the interval [—1, 1] at locations x = cos for
k=1,2,3,--- ,n.
These locations are also called Chebyshev accuracy points.
Further, zeros of T,(x) are interlaced by those of Tpy1(x).

» Extrema of T,(x) are of magnitude equal to unity, alternate in
sign and occur at x = cos’%r for k=0,1,2,3,--- ,n.

» Orthogonality and norms:

1 0 if m#”?
/ de: % if m:n#ov and
1 V1-—x T if m=n=0.

Applied Mathematical Methods

Approximation with Chebyshev polyndffials:, i Sester e

Minimax property

Minimax Approximation*

Theorem: Among all polynomials p,(x) of degree n > 0
with the leading coefficient equal to unity, 21~ T,(x)
deviates least from zero in [—1,1]. That is,

> 1-n — lfn.
_max Ipa(x)l = _max |27 Tn(x)] =2

If there exists a monic polynomial p,(x) of degree n such that

1-n
_max ()l <277,

then at (n + 1) locations of alternating extrema of 21=" T, (x), the
polynomial
qn(x) = 21_nTn(X) — pn(X)
will have the same sign as 217" T ,(x).
With alternating signs at (n + 1) locations in sequence, g,(x) will

have n intervening zeros, even though it is a polynomial of degree
at most (n —1): CONTRADICTION!

489,
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Approximation with Chebyshev polyndffiafs:, i St e

Applied Mathematical Methods

Approximation with Chebyshev polyndifials: i Sester e

Minimax Approximation* 490,
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Figure: Extrema and zeros of T3(x) Figure: Contrast: Pg(x) and Tg(x)

Being cosines and polynomials at the same time, Chebyshev
polynomials possess a wide variety of interesting properties!

Most striking property:

equal-ripple oscillations, leading to minimax property

Minimax Approximation* 492,

Chebyshev series
f(X) = ap T()(X) + a1 T1(X) + ar Tz(X) + a3 T3(X) + -

with coefficients

1 1
ag = 1/ f(Xi) To(x) dx and a, = E/ LX) Tn(x) dx forn=1,23,--
TJ_1 V1—x2 TJ1 V1I—x?

A truncated series Y, ak Tk(x):

Chebyshev economization

Leading error term apy1 Thy1(x) deviates least from zero over
[—1,1] and is qualitatively similar to the error function.

Question: How to develop a Chebyshev series approximation?
Find out so many Chebyshev polynomials and evaluate coefficients?
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Approximation with Chebyshev polynGHfiais; i Sestey poyromat Minimax Polynomial Approximation wiime roynemia Asprarimation

Situations in which minimax approximation is desirable:
» Develop the approximation once and keep it for use in future.
Requirement: Uniform quality control over the entire domain

For approximating f(t) over [a, b], scale the variable as

t= %b + %X, with x € [-1,1].

Remark: The economized series Y, ax Tx(x) gives minimax
deviation of the leading error term a,41 Thy1(xX). Minimax approximation:
Assuming an11 Thy1(x) to be the error, at the zeros of Tpi1(x), deviation limited by the constant amplitude of ripple

the error will be ‘officially’ zero, i.e. . .
rror wi Iclally” zero, Chebyshev’s minimax theorem

1 Theorem: Of all polynomials of degree up to n, p(x) is
Z aTi(x) = £(t0x)), the minimax polynomial approximation of f(x), i.e. it
k=0 minimizes
where xp, x1, X2, -+ -, X, are the roots of T,y1(x). max |f(x) — p(x)|,
Recall: Values of an n-th degree polynomial at n+ 1 if and only if there are n + 2 points x; such that

points uniquely fix the entire polynomial.
a<x1<x<x3<-<Xpp2 < b,

Interpolation of these n+ 1 values leads to the same polynomial!

where the difference f(x) — p(x) takes its extreme values

Chebyshev-Lagrange approximation
of the same magnitude and alternating signs.

Applied Mathematical Methods Minimax Approximation* 495, Applied Mathematical Methods Minimax Approximation* 496,

M | n | maX POlynO m |a | Ap pI’OXI m atlon Minimax Polynomial Approximation POI ntS tO nOte Minimax Polynomial Approximation

Utilize any gap to reduce the deviation at the other extrema with
values at the bound.

y
d

» Unique features of Chebyshev polynomials
» The equal-ripple and minimax properties

» Chebyshev series and Chebyshev-Lagrange approximation

X » Fundamental ideas of general minimax approximation

Necessary Exercises: 2,3,4

Figure: Schematic of an approximation that is not minimax
Construction of the minimax polynomial: Remez algorithm

Note: In the light of this theorem and algorithm, examine how
Tht1(x) is qualitatively similar to the complete error function!
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Partial Differential Equations
Introduction
Hyperbolic Equations
Parabolic Equations
Elliptic Equations
Two-Dimensional Wave Equation

Applied Mathematical Methods

Introduction

Partial Differential Equations

Introduction

Initial and boundary conditions
Time and space variables are qualitatively different.

» Conditions in time: typically initial conditions.
For second order PDE's, u and u; over the entire space
domain: Cauchy conditions
» Time is a single variable and is decoupled from the space
variables.

» Conditions in space: typically boundary conditions.
For u(t, x,y), boundary conditions over the entire curve in the
x-y plane that encloses the domain. For second order PDE's,
» Dirichlet condition: value of the function
» Neumann condition: derivative normal to the boundary
» Mixed (Robin) condition

Dirichlet, Neumann and Cauchy problems

497, Applied Mathematical Methods
Introduction
Quasi-linear second order PDE’s
2 2 2
a% + 2b£<—8uy + cg—yg = F(x,y,u,ux, uy)

hyperbolic if b2 — ac > 0, modelling phenomena which evolve in

time perpetually and do not approach a steady state

parabolic if b?> — ac = 0, modelling phenomena which evolve in

time in a transient manner, approaching steady state

elliptic if b? — ac <0, modelling steady-state configurations,
without evolution in time

Partial Differential Equations

Introduction

If F(x,y,u,ux,u,) =0,

second order linear homogeneous differential equation

Principle of superposition: A linear combination of different
solutions is also a solution.
Solutions are often in the form of infinite series.
» Solution techniques in PDE’s typically attack the boundary
value problem directly.

499, Applied Mathematical Methods
Introduction

Method of separation of variables
For u(x, y), propose a solution in the form

u(x,y) = X(x)Y(y)

Partial Differential Equations

Introduction

and substitute
u=X"Y, u, = XY, ue = X"Y, Uyy = XY, Uy, = e
to cast the equation into the form
o0, X, XX =(y, Y, Y, Y.

If the manoeuvre succeeds then, x and y being independent
variables, it implies

o0 X, X XY =(y, Y, Y, Y = k.

Nature of the separation constant k is decided based on the
context, resulting ODE’s are solved in consistency with the
boundary conditions and assembled to construct u(x,y).

498,

500,



Applied Mathematical Methods

Hyperbolic Equations

Partial Differential Equations

Hyperbolic Equations

Transverse vibrations of a string

Q ; T
u Jo+50
P
? OX
%
Q
P
(0] — O L X

Figure: Transverse vibration of a stretched string

Small deflection and slope: cosf ~ 1, sinf ~ 0 ~ tan@

Horizontal (longitudinal) forces on PQ balance.
From Newton's second law, vertical (transverse) deflection u(x, t):
d%u

Tsin(0 + d0) — Tsinf = p(wa

Applied Mathematical Methods

Hyperbolic Equations

Partial Differential Equations

Hyperbolic Equations

Solution by separation of variables

Ut = e, u(0,t) = u(L, t) =0, u(x,0) = f(x), ue(x,0) = g(x)
Assuming

u(x,t) = X(x)T (),
and substituting vy = XT” and uy = X" T, variables are
separated as

T_X e

2T X '
The PDE splits into two ODE's

X"+ p?’X=0 and T"+c?p?’T =0.

Eigenvalues of BVP X" + p?X =0, X(0) = X(L) =0are p= ¢
and eigenfunctions

Xn(x) :sinpx:sinnlLX for n=1,2,3,---.

Second ODE: T” + 2T =0, with A, = <~

501, Applied Mathematical Methods

Hyperbolic Equations

Partial Differential Equations

Hyperbolic Equations

Under the assumptions, denoting ¢ = I,
0%u ou ou
ox=m = | —| — =—| |.
o ~ € [ax o Ox P]

In the limit, as x — 0, PDE of transverse vibration:

d%u ,0%u
—— =" —
ot? Ox?

‘ one-dimensional wave equation ‘

Boundary conditions (in this case): u(0,t) = u(L,t) =0
Initial configuration and initial velocity:
u(x,0) = f(x) and wu(x,0) = g(x)

Cauchy problem: Determine u(x,t) for 0 < x <L, t > 0.

503, Applied Mathematical Methods

Hyperbolic Equations

Partial Differential Equations

Hyperbolic Equations
Corresponding solution:
Ta(t) = Apcos At + By sin Apt

Then, forn=1,2,3,---,

nmx

un(x,t) = Xp(x) Ta(t) = (Apcos Apt + Bpsin Apt)sin e

satisfies the PDE and the boundary conditions.
Since the PDE and the BC's are homogeneous, by superposition,

nmx

u(x, t) = Z[A,7 €os Apt + B sin Aqt]sin 1

n=1

Question: How to determine coefficients A, and B,?

Answer: By imposing the initial conditions.
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Hyperbolic Equations

Partial Differential Equations

Hyperbolic Equations

Initial conditions: Fourier sine series of f(x)rand.g{x)

o0
u(x,0)= f(x) = ZA,,sin mrTx
n=1
it nmwx
u(x,0) = g(x) = Z AnBpsin e
n=1
Hence, coefficients:
2t 2 [t
Ap = Z/o f(x)sin HLLde and B, = o Jo g(x)sin nLLxdx

Related problems:

» Different boundary conditions: other kinds of series
» Long wire: infinite domain, continuous frequencies and
solution from Fourier integrals
Alternative: Reduce the problem using Fourier transforms.
» General wave equation in 3-d: uy = c?>V2u
» Membrane equation: us = c?(Uxx + Uyy)

Applied Mathematical Methods

Hyperbolic Equations

Partial Differential Equations

Hyperbolic Equations
For a hyperbolic equation in the form

62[] 82[] 82[1
52 T gy T gy =~ Py ).

roots of am? + 2bm + ¢ are

—b+Vb%—ac

myo = 3

real and distinct.
Coordinate transformation

E=y+mx, n=y+ mx

leads to Ug, = ®(&,m, U, Ug, Uy).
For the BVP

U = gy, u(0,t) = u(L,t) =0, u(x,0) = f(x), u(x,0) = g(x),
canonical coordinate transformation:

1 1
E=x—ct, n=x+ct, with X:E(f—i—n),t:Z(n—g).

505,
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Hyperbolic Equations

Partial Differential Equations

Hyperbolic Equations

D’Alembert’s solution of the wave equation

Method of characteristics

Canonical form

By coordinate transformation from (x,y) to (&,7), with
U(g,m) = ulx(&,m), y(& )],

hyperbolic equation: Ug, = ®

parabolic equation: Uge = ¢

elliptic equation: Uge + Uy = @

in which ®(&,7n, U, Ug, Uy) is free from second derivatives.

For a hyperbolic equation, entire domain becomes a network of &-n
coordinate curves, known as characteristic curves,

along which decoupled solutions can be tracked!

Applied Mathematical Methods

Hyperbolic Equations

Partial Differential Equations

Hyperbolic Equations

Substitution of derivatives

Ux = Ul + Upnx = Ug + Uy = e = Uge + 2Ugy + Uy

up = Ugle + Upne = —cUg + Uy = ug = PUge — 2% Uy + Uy,

into the PDE uy = cuy gives

C2(U££ - 2U§n + Urm) = C2(UE£ + 2U£77 + Urm)'

‘ Canonical form: Ug, =0 ‘

Integration:

e = [ Uegdn +0(6) = 0(9)

éwam:/w9&+am:mo+am

D’Alembert’s solution: u(x,t) = fi(x — ct) + fa(x + ct)
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Hypel’bOhC Equatlons Hyperbolic Equations
Physical insight from D’Alembert’s solution:
fi(x — ct): a progressive wave in forward direction with speed ¢

Reflection at boundary:

in a manner depending upon the boundary condition
Reflected wave f(x + ct): another progressive wave, this one in
backward direction with speed ¢

Superposition of two waves: complete solution (response)

Note: Components of the earlier solution: with A, = C”T”

. nmXx 1r. nm . nm
cos/\,,tsmT = 3 [sm T(Xfct)Jrsm T(x+ct)}

. . nmXx 1 nm nm
sin /\,,tsmT = 3 [cos T(X_ ct) — cos T(x+ct)}

Applied Mathematical Methods

Parabolic Equations
Parabolic Equations

BVP in the space coordinate X" + p?X = 0,/ :X(0)'=.X(L).= 0
has solutions

Partial Differential Equations

Xn(x) = sin nLLX

With A\, = &%, the ODE in T(t) has the corresponding solutions
To(t) = Ape it
By superposition,

X 2
st

o0
u(x, t) = ZA,,sin nTe ,
n=1

coefficients being determined from initial condition as

nmx

u(x,0) = f(x) = ZA,,sin -
n=1

a Fourier sine series.
As t — 00, u(x,t) — 0 (steady state)

Applied Mathematical Methods

Parabolic Equations

Partial Differential Equations

Parabolic Equations

Heat conduction equation or diffusion equation:
du
ot

One-dimensional heat (diffusion) equation:

= c?V2y

U = C2UXX

Heat conduction in a finite bar: For a thin bar of length L with
end-points at zero temperature,

Up = e, u(0,t) =u(L,t) =0, u(x,0)=r(x).
Assumption u(x, t) = X(x)T(t) leads to

T/ X// 9

XT/: 2xlIT -
¢ T 2T X P

giving rise to two ODE's as

X"+ p*X =0 and T'+c2p?T =0.

Applied Mathematical Methods

Parabolic Equations

Partial Differential Equations

Parabolic Equations
Non-homogeneous boundary conditions:
ur = i, u(0,t) =uy, u(L,t) =u, u(x,0)=F(x).
For u1 # ua, with u(x, t) = X(x)T(t), BC's do not separate!
Assume
u(x,t) = U(x, t) + uss(x),

where component ugs(x), steady-state temperature (distribution),
does not enter the differential equation.
u —

L

"

Ug(X) =0, uss(0) =1, wss(L) =t = uss(x)=u1+

X

Substituting into the BVP,
Ur = Uy, U(0,t) = U(L,t) =0, U(x,0) = f(x) — uss(x).
Final solution:
o0
u(x,t) = nZ:; By sin nlLXe_)‘%t + uss(x),

B, being coefficients of Fourier sine series of f(x) — uss(x).
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Parabolic Equations

Partial Differential Equations

Parabolic Equations

Heat conduction in an infinite wire

Uy = uy, u(x,0) = f(x)

In place of 7", now we have continuous frequency p.

Solution as superposition of all frequencies:
o0 o0 5 o

u(x,t) = / up(x, t)dp = / [A(p) cos px+B(p)sin px]e < P tdp

0 0
Initial condition

o
u(x,0) = £(x) = [ " A(p)cospx + B(p) sin prldp
0

gives the Fourier integral of f(x) and amplitude functions

—c0 T J—co

A(p) = —/OO f(v)cospvdv and B(p)= 1/00 f(v)sinpvdv.

Applied Mathematical Methods

Elliptic Equations

Partial Differential Equations

. . . Ellipti i
Heat flow in a plate: two-dimensional heat &qliati&h"

ou <8zu %u

— =C - -
ot Ox2  Oy?
Steady-state temperature distribution:
0%u  0%u
=5+ 75 =0
Ox2  Oy?

‘ Laplace's equation ‘
Steady-state heat flow in a rectangular plate:

Uxx + Uyy = 0, U(O7}/) = U(a7)/) = U(X>O) =0, U(X, b) = f(X);

a Dirichlet problem over the domain 0 < x < 3,0 <y < b.
Proposal u(x,y) = X(x)Y(y) leads to
X// Y//
X'Y+XY"=0 = & =—— =—p°.
+ X v P
Separated ODE's:

X"+ p?’X=0 and Y'—p’Y =0

513, Applied Mathematical Methods

Parabolic Equations

Partial Differential Equations

Parabolic Equations

Solution using Fourier transforms

Ur = C2 Uy, u(x,0) = f(x)

Using derivative formula of Fourier transforms,

~

Flu) = C(wPFw) = 5= —wi,

since variables x and t are independent.
Initial value problem in ii(w, t):

on R

5% —c*w?i,
Solution: &(w, t) = ?(w)e*CQW%
Inverse Fourier transform gives solution of the original problem as

1 RSN 2.2, -
u(x,t) = F Hi(w,t :—/ f(w)e <" te™dw
() (w0} = = [ Fw)
1 [ > w2t
= u(x,t) = = f(v) cos(wx — wv)e dw dv.
T J-—c0 0
515, Applied Mathematical Methods Partial Differential Equations

Elliptic Equations

From BVP X"+ p2X =0, X(0) = X(a) =.0,5-Kn{k) =sin 2%
Corresponding solution of Y” — p?Y = 0:

Ya(y) = Ap cosh % + B, sinh n;ay

Condition Y(0) =0 = A,=0, and

un(x,y) = Bpsin ITX sinh 27
a a
The complete solution:
= nm
u(x,y) = Z B, sin —— sinh oy
a
n=1

The last boundary condition u(x, b) = f(x) fixes the coefficients
from the Fourier sine series of f(x).

Note: In the example, BC's on three sides were homogeneous.
How did it help? What if there are more non-homogeneous BC's?
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Elliptic Equations

Partial Differential Equations

Elliptic Equations
Steady-state heat flow with internal heat generation

V2u = ¢(x,y)

‘ Poisson’s equation ‘

Separation of variables impossible!

Consider function u(x,y) as
U(va) = Uh(X,y) + UP(va)

Sequence of steps

> one particular solution up(x, y) that may or may not satisfy
some or all of the boundary conditions

» solution of the corresponding homogeneous equation, namely
Ugx + tyy, = 0 for up(x,y)
» such that u = uj + up, satisfies all the boundary conditions

Applied Mathematical Methods
Two-Dimensional Wave Equation
Assuming F(X, y) = X(X) Y(y), Two-Dimensional Wave Equation
X" B Y + )\2y - )
X Y N
= X"+ 42X =0 and Y'+12Y =0,

such that A = /2 + v2.

With BC's X(0) = X(a) = 0 and Y(0) = Y(b) =0,

Partial Differential Equations

and  Y,(y) =sin mrTy

Xm(x) = sin mmx

Corresponding values of A are

= (T ()

with solutions of 7" + ¢2)\2T =0 as

Tmn(t) = Amn €0S cAmnt + Bmnsin cAmnt.

517,
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Two-Dimensional Wave Equation

Transverse vibration of a rectangular mémbianiex' \Vave Equation
Pu L (dPu n d%u
o2 Ox2  Oy?

A Cauchy problem of the membrane:

Ut = C2(uxx + Uyy);
u(0,y,t) =u(a,y,t) = u(x,0,t) = u(x, b, t) = 0.

Separate the time variable from the space variables:

Foc+Fy T

= =)\
F 2T

u(x,y,t) = F(x,y)T(t) =
Helmholtz equation:

Fax + Fyy + NF =0

Applied Mathematical Methods

Two-Dimensional Wave Equation
Composing Xim(x), Ya(y) and Thn(t) and supsrpeshagyave equation

[o elNe o)

u(x,y,t) = Z Z[Am” oS CAmnt~+Bmn sin cAmnt] sin

m=1 n=1

mmx .
sin

coefficients being determined from the double Fourier series

o0 o0
f(x,y) = Z Z Apmnsin mx sin _m;y
m=1 n=1 a
i mrx . nm
and g(x,y) = Z ZC)"""B’"" sin p sin Ty
m=1 n=1

BVP’s modelled in polar coordinates
For domains of circular symmetry, important in many practical
systems, the BVP is conveniently modelled in polar coordinates,

the separation of variables quite often producing

» Bessel's equation, in cylindrical coordinates, and
» Legendre’s equation, in spherical coordinates

U(X7y70) = f(X7y)7 ut(XaY70) = g(X’

Partial Differential Equations

y);

Partial Differential Equations

nmy

b

)
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Applied Mathematical Methods

Points to note

Partial Differential Equations

Two-Dimensional Wave Equation

PDE's in physically relevant contexts
Initial and boundary conditions

Separation of variables

vV vy VY y

Examples of boundary value problems with hyperbolic,
parabolic and elliptic equations

» Modelling, solution and interpretation

v

Cascaded application of separation of variables for problems
with more than two independent variables

Necessary Exercises: 1,2,4,7,9,10

Applied Mathematical Methods Analytic Functions

Analyticity of Complex Functions

Analyticity of Complex Functions

Function f of a complex variable z

gives a rule to associate a unique complex number
w = u-+iv toevery z=x+ Iy in a set.

Limit: If f(z) is defined in a neighbourhood of zy (except possibly
at zp itself) and 3/ € C such that V ¢ >0, 3§ > 0 such that

O<|z—zo| <d=If(z)— 1| <e,

then
I'= lim f(z).

Z—2Z)

Crucial difference from real functions: z can approach zj in all
possible manners in the complex plane.
Definition of the limit is more restrictive.
Continuity: lim,_, f(z) = f(z)
Continuity in a domain D: continuity at every point in D

521,
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Outline

Analytic Functions
Analyticity of Complex Functions
Conformal Mapping
Potential Theory

Applied Mathematical Methods Analytic Functions

Analyticity of Complex Functions

Analyticity of Complex Functions

Derivative of a complex function:

Flz) = tim T @) _ o flz+02) = f(z0)

z—zg  Z— 29 6z—0 oz

When this limit exists, function f(z) is said to be differentiable.

Extremely restrictive definition!

Analytic function
A function f(z) is called analytic in a domain D if it is
defined and differentiable at all points in D.
Points to be settled later:
» Derivative of an analytic function is also analytic.
» An analytic function possesses derivatives of all orders.

A great qualitative difference between functions of a real variable
and those of a complex variable!
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Analyticity of Complex Functions &5 sLoomes e
Cauchy-Riemann conditions
If f(z) = u(x,y) + iv(x,y) is analytic then

ou+idv

! i _—
(Z) 6x 6y—>0 ox + I§y

along all paths of approach for §z = §x + idy — 0 or dx,dy — 0.

dz=idy
Z dz=3x

o X

Figure: Paths approaching zg Figure: Paths in C-R equations

Two expressions for the derivative:

fy O, OOy ou
)= Bx Iaxiay Iay

Applied Mathematical Methods Analytic Functions

Analyticity of Complex Functions Analyiictty of Complex Functions

: P ov _ Bu _ _Ov
Using C-R conditions W = dx and 37 = —%7,

. ou 0
of = (5X+'5)’) (X1,Y1)+/5y [8 (x2,y2) — 8i(X17}/1)

ov [0 0 )
+i(0x + ’5}’)8 (x1, y1) + idx _a*:(xzv}/z) - %(leh)_
of E)u ov
:>_ - X17y1)+l (X17y1)+
dx Ov Oy [Ou Ou |
6_ { x2,y2) 8X(X1,)/1)] + e _5(&,)/2) - a(Xl,h)_
Since ’g 6y

f/(z)——-i-i@——i@-i-@
COx  Ox  dy Oy’

Cauchy-Riemann conditions are necessary and sufficient
for function w = f(z) = u(x,y) + iv(x,y) to be analytic.

Applied Mathematical Methods Analytic Functions

Analyticity of Complex Functions Analviietty of Complex Functions

Cauchy-Riemann equations or conditions
Ou __ Ov Ou _ _ dv

dx — Oy and dy —  ox
are necessary for analyticity.

Question: Do the C-R conditions imply analyticity?

Consider u(x,y) and v(x,y) having continuous first order partial
derivatives that satisfy the Cauchy-Riemann conditions.

By mean value theorem,

du
du = u(x +0x,y + dy) — u(x, }/)—5Xa (x1, }/1)4‘5}’a (x1,¥1)
with x; = x + &0x,y1 = y + &0y for some £ € [0,1]; and

dv ov
0v = v(x +0xy +0y) = v(x,y) = dx5-(x2, y2) +<5ya (x2,2)

with x2 = x + ndx, y2 = y + ndy for some n € [0, 1].
Then,

526,

0 .0 . 0 .0
of = 6x8—i(>q,y1) + Iéya—;(m,yz)}r/ [6x8—;(><2,y2) - '5}/8_;()(1’”)

Applied Mathematical Methods Analytic Functions

Analyticity of Complex Functions Analyiietty of Complex Functions

Harmonic function
9 a d
Differentiating C-R equations 5% = ax and 59 = —57,

Pu_ Pv Pu v &%u Pv Pu v

0x2  9xdy’ Oy Oydx’ dydx - 9y?’ oxdy  Ox2
N 82u+82u_0_82v+82v
ox2  0y? T ox2  Oy?’
Real and imaginary components of an analytic functions
are harmonic functions.

Conjugate harmonic function of u(x,y): v(x,y)

Families of curves u(x,y) = c and v(x, y) = k are mutually
orthogonal, except possibly at points where f/(z) = 0.

Question: If u(x,y) is given, then how to develop the complete
analytic function w = f(z) = u(x,y) + iv(x, y)?
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COnfOI’mal Mapplng Conformal Mapping

Function: mapping of elements in domain to their images in range
Depiction of a complex variable requires a plane with two axes.
Mapping of a complex function w = f(z) is shown in two planes.
Example: mapping of a rectangle under transformation w = e*

E 05 o 05 1 15 2 T 05 1 15 2 25 3 35

(a) The z-plane (b) The w-plane

Figure: Mapping corresponding to function w = e

Applied Mathematical Methods Analytic Functions

COnfOI’mal Mapplng Conformal Mapping

An analytic function defines a conformal mapping except
at its critical points where its derivative vanishes.

Except at critical points, an analytic function is invertible.

We can establish an inverse of any conformal mapping.

Examples
» Linear function w = az + b (for a # 0)
» Linear fractional transformation
_az+b
cz+d’
» Other elementary functions like z", e etc
Special significance of conformal mappings:

ad —bc#0

A harmonic function ¢(u, v) in the w-plane is also a
harmonic function, in the form ¢(x,y) in the z-plane, as
long as the two planes are related through a conformal

mapping.

Applied Mathematical Methods Analytic Functions 530,

COnfOI’mal Mapplng Conformal Mapping

Conformal mapping: a mapping that preserves the angle between
any two directions in magnitude and sense.
Verify: w = e” defines a conformal mapping.
Through relative orientations of curves at the points of
intersection, ‘local’ shape of a figure is preserved.

Take curve z(t), z(0) = zp and image w(t) = f[z(t)], wo = f(20).
For analytic f(z), w(0) = f'(z)z(0), implying
w(0)| = |f'(z0)| |12(0)| and argw(0) = arg f'(zo) + arg z(0).
For several curves through z,
image curves pass through wg and all of them turn by the

same angle arg f'(z).

Cautions
» f'(z) varies from point to point. Different scaling and turning
effects take place at different points. ‘Global’ shape changes.
» For f/(z) =0, argument is undefined and conformality is lost.

Applied Mathematical Methods Analytic Functions 532,

Potential Theory

Potential Theory
Riemann mapping theorem: Let D be a simply connected
domain in the z-plane bounded by a closed curve C. Then there
exists a conformal mapping that gives a one-to-one correspondence
between D and the unit disc |w| < 1 as well as between C and the
unit circle |w| = 1, bounding the unit disc.
Application to boundary value problems

» First, establish a conformal mapping between the given
domain and a domain of simple geometry.

» Next, solve the BVP in this simple domain.
» Finally, using the inverse of the conformal mapping, construct

the solution for the given domain.

Example: Dirichlet problem with Poisson’s integral formula

; 1 [ R2 — r2)f(Re'®
f(re 9) _ _/ 5 _( ) (_ ) :
21 Jo R?—2Rrcos(0 — ¢)+r

do
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Potential Theory

Analytic Functions

Potential Theory

Two-dimensional potential flow
» Velocity potential ¢(x,y) gives velocity components Vi = %
_ 9
and V, = Dy -
» A streamline is a curve in the flow field, the tangent to which
at any point is along the local velocity vector.

» Stream function v(x, y) remains constant along a streamline.
> 1(x,y) is the conjugate harmonic function of ¢(x,y).

» Complex potential function ®(z) = ¢(x, y) + i1)(x, y) defines
the flow.

If a flow field encounters a solid boundary of a complicated shape,

transform the boundary conformally to a simple boundary

to facilitate the study of the flow pattern.

Applied Mathematical Methods

Outline

Integrals in the Complex Plane

Integrals in the Complex Plane
Line Integral
Cauchy's Integral Theorem
Cauchy's Integral Formula

533, Applied Mathematical Methods Analytic Functions 534,
Points to note
Potential Theory
» Analytic functions and Cauchy-Riemann conditions
» Conformality of analytic functions
» Applications in solving BVP's and flow description
Necessary Exercises: 1,2,3,4,7,9
535, Applied Mathematical Methods Integrals in the Complex Plane 536,
H Line | |
Line Integral e

For w = f(z) = u(x, y) + iv(x, y), over a smooth curve C,

/Cf(z)dz: /C(u+iv)(dx+idy) = /C(udx—vdy)Jri/C(vderudy).

Extension to piecewise smooth curves is obvious.

With parametrization, for z = z(t),a < t < b, with z(t) # 0,

/C f(z)dz = / ’ flz(t))2(t)dt.

Over a simple closed curve, contour integral: fc f(z)dz

Example: fc z"dz for integer n, around circle z = pe'?
2m
7{ 2z — I-anrl/ ol (n+1)0 49 — 0 for n # —1,
c 0 2ni for n= —1.

The M-L inequality: If C is a curve of finite length L and
|f(z)] < M on C, then

/Cf(z)dz S/C|f(z)||dz| - M/c|dz|:ML'
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Cauchy’s Integral Theorem

Cauchy's Integral Theorem

» C is a simple closed curve in a simply connected domain D.
» Function f(z) = u+ iv is analytic in D.

Contour integral ¢ f(z)dz =7
If f'(z) is continuous, then by Green's theorem in the plane,

]{f dz—//<—@——> dxdy+://(@——) dxdy,

where R is the region enclosed by C.
From C-R conditions, $c f(z)dz = 0.
Proof by Goursat: without the hypothesis of continuity of f'(z)

Cauchy-Goursat theorem
If f(z) is analytic in a simply connected domain D, then
$c f(z)dz = 0 for every simple closed curve C in D.

Importance of Goursat's contribution:
» continuity of f'(z) appears as consequence!

Applied Mathematical Methods

Cauchy’s Integral Theorem

Cauchy's Integral Theorem

Indefinite integral
Question: Is F(z) analytic? Is F'(z) = f(z)?

F(z+4dz)

o FE) 4y = . { / :m £)de — / df] ~ (2)

z+0z
S BN GGELO:

f is continuous = Ve, 30 such that | —z| < = |f(§) —f(2)| <€

Choosing 6z < ¢,
€ z+46z
< —/ dé =e.

F(z+6z) — F(2)
0z —f@ 0z

If f(z) is analytic in a simply connected domain D, then
there exists an analytic function F(z) in D such that

F'(z) = f(z) and /z2 f(z)dz = F(z2) — F(z1).

Z1

Integrals in the Complex Plane 537,

Integrals in the Complex Plane 539,

Applied Mathematical Methods Integrals in the Complex Plane

Cauchy’s Integral Theorem

Cauchy’s Integral Theorem

Principle of path independence
Two points z; and z on the close curve C
> two open paths C; and G, from z; to z
Cauchy’s theorem on C, comprising of C; in the forward direction

and G in the reverse direction:
z)dz = / f(z)dz = / f(z)dz
G G

/le( 2)dz— /Qf( )dz—0:>/

For an analytic function f(z) in a simply connected
domain D, [* f(z)dz is independent of the path and
depends only on the end-points, as long as the path is
completely contained in D.

Consequence: Definition of the function
F) = [ fe)de
E)

What does the formulation suggest?

Applied Mathematical Methods Integrals in the Complex Plane

Cauchy’s Integral Theorem

Cauchy's Integral Theorem

Principle of deformation of paths

f(z) analytic everywhere other
than isolated points s1, s, s3

Not so for path C*.

Figure: Path deformation

The line integral remains unaltered through a continuous
deformation of the path of integration with fixed
end-points, as long as the sweep of the deformation
includes no point where the integrand is non-analytic.

538,
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Cauchy’s Integral Theorem

Integrals in the Complex Plane

Cauchy's Integral Theorem

Cauchy’s theorem in multiply connected domain
‘ C

@

Figure: Contour for multiply connected domain

fr(ere— f @)~ f reroe— f fzraz =0

If f(z) is analytic in a region bounded by the contour C
as the outer boundary and non-overlapping contours Cy,
G, G, -+, C, as inner boundaries, then

fc f(z)dz = 2_: fc | f(z)dz.

Applied Mathematical Methods

Cauchy’s Integral Formula

Integrals in the Complex Plane

Cauchy’s Integral Formula
Direct applications

» Evaluation of contour integral:

» If g(z) is analytic on the contour and in the enclosed region,
the Cauchy's theorem implies §- g(z)dz = 0.

> If the contour encloses a singularity at zg, then Cauchy's
formula supplies a non-zero contribution to the integral, if
f(z) = g(2)(z — z0) is analytic.

» Evaluation of function at a point: If finding the integral on
the left-hand-side is relatively simple, then we use it to
evaluate f(zp).

Significant in the solution of boundary value
problems!

Example: Poisson's integral formula

17 (R P)u(Ro)
21 /0 R? — 2Rrcos(f — ¢) + r? dé

u(r,0) =

for the Dirichlet problem over a circular disc.

541,
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Cauchy’s Integral Formula

f(z): analytic function in a simply connected domain D

For zyg € D and simple closed curve C in D,

j{ Mdz = 27if (zp).
C

Z — 2p

Consider C as a circle with centre at zp and radius p,

with no loss of generality (why?).

j{cszziodz - f(zo)]{c . iZZO +7{c f(zg - Z(Ezo)dz

From continuity of f(z), 3¢ such that for any e,

f(z) — f(z)

Z— 2y

€
<_
p

)

|z — 20| < 0 = |f(z) — f(20)] < € and ‘

with p < §.  From M-L inequality, the second integral vanishes.

Applied Mathematical Methods

Cauchy’s Integral Formula

Integrals in the Complex Plane 544,

Cauchy’s Integral Formula
Poisson’s integral formula
Taking zo = re’® and z = Re® (with r < R) in Cauchy’s formula,
27 1
: f(Re'®) :
2wif(re'”) = /0 Reié — e re"e(IREI Ydo.

How to get rid of imaginary quantities from the expression?
. 2 .
Develop a complement. With R— in place of r,

2 f(RehZ)) ; 2 Reiqb) .
_ ¢> s —i0
07/0 Faio _Rgn R72 —(iRe'?)d¢ = / 7%, - Refi¢('re Ydo.
Subtracting,

27 i —if
; Rei% re=
: i6 I¢>
2rwif(re'?) = //0 f(Re [Re“ﬁ —7 + Y — do

2 R2fr )f(Reiqb)
B /0 (Rei® — rei?)(Re~i® — re—i?)
B Y 7155
21 Jo R?—2Rrcos( — ¢) + r2

do

do.
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Cauchy's Integral Formula Cauchy'’s Integral Formula
Cauchy's Integral Formula Cauchy's Integral Formula
Cauchy's integral formula evaluates contour integral of g(z),
if the contour encloses a point zy where g(z) is f(z0 + 6z) — f(20) _ 1 }{ f(z [ 1 1 ] dz
non-analytic but g(z)(z — zo) is analytic. 0z 2midz Jc z—zp—0z z—2z
f | | o 1 f(2)dz
If g(z)(z — zp) is also non-analytic, but g(z)(z — zp)* is analytic? 2mi b (2= 20 — 62)(z — )
f(z 1 1 1
1 f = f - d.
f(z) = 2—% ﬁdz, 2mi ]{C zfzo T o (2) [(zzoéz)(zzo) (220)2} i
iJcz—z
71T ¢ f( ") 7{ f(z 1, % f(z)dz
z = z
f'(z) = —j{ 50z, 270 Jc (z — 20)? t om c (z—20—62)(z — 2)?
27i Jc (z — 20)
ol f(z) If |f(z)] < M on C, Lis path length and dy = min |z — z,
) = 2 10
(20) 27i Je (z— z)3 “ 5 f(z)dz ML|éz|
- ... z 2 2 —0 as 0z —0.
= , c(z—2zyg—6z)(z — zp) dg(do — |0z])
(n) n! f(z) . . .
f"(z0) = P A WC’Z . An analytic function possesses derivatives of all orders at
) ) ) o every point in its domain.
The formal expressions can be established through differentiation
under the integral sign. Analyticity implies much more than mere differentiability!
Applied Mathematical Methods Integrals in the Complex Plane 547, Applied Mathematical Methods Singularities of Complex Functions 548,

Points to note Outline

Cauchy’s Integral Formula

Residues
Evaluation of Real Integrals

» Concept of line integral in complex plane

» Cauchy’s integral theorem Singularities of Complex Functions

» Consequences of analyticity Series Representations of Complex Functions
» Cauchy’s integral formula Zeros and Singularities

>

Derivatives of arbitrary order for analytic functions

Necessary Exercises: 1,2,5,7
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Series Representations of Complex FulEtTaTig: e cmre mreers

Taylor's series of function f(z), analytic in a neighbourhood of zy:
o

f(z) = Z an(z—20)" = ap+ai(z—z0)+ax(z—20)*+a3(z—z0) 3+ - -,
n=0

with coefficients

dp —

1, 1 f(w)dw
) = 5

n! i Jo (w— z9)"t1’

where C is a circle with centre at z.

Form of the series and coefficients: similar to real functions
The series representation is convergent within a disc
|z — z0| < R, where radius of convergence R is the
distance of the nearest singularity from zg.

Note: No valid power series representation around zp, i.e. in
powers of (z — zp), if f(z) is not analytic at zg

Question: In that case, what about a series representation that
includes negative powers of (z — zp) as well?

Applied Mathematical Methods

Series Representations of Complex FulEtTaTig: " cmr'e freers

Proof of Laurent’s series
Cauchy’s integral formula for any point z in the annulus,

)= f Tt L fid

27 w—2z 2mi w—2z

Organization of the series:

1 1

w—z (w —20)[1 — (z — 20)/(w — 20)]
1 1

w—z (z = 20)[l = (w - 20)/(z — 20)]

Figure: The annulus

Using the expression for the sum of a geometric series,

2 1 1-4q" I 2 1, 9"
I+g+q°+-+q" " = = —— =14+q+q"+ +q" +—
1—gq 1—gqg 1-—
We use g = vzv:?) for integral over C; and g = "z":zzg over C,.

Singularities of Complex Functions 549,

Singularities of Complex Functions 551,

Applied Mathematical Methods Singularities of Complex Functions 550,

Series Representations of Complex FulEtTaTig: " cm'e mreers

Laurent’s series: If f(z) is analytic on circles C; (outer) and G,
(inner) with centre at zp, and in the annulus in between, then

o0

f2)= 32 anlz—20)" =3 balz = 2)"+ 3 7o

n=—o0 m=0 m=1

with coefficients
. 1 j{ f(w)dw
" 2ni Jo (w — zo)mtY

1 f(w)dw _ 1 DN — 271 -
or, by = _fc( em = .fcf( )(w — 20)™ L dw;

2mi w — zg)m+1’ 2mi

the contour C lying in the annulus and enclosing C,.

Validity of this series representation: in annular region obtained by
growing C; and shrinking G till f(z) ceases to be analytic.
Observation: If f(z) is analytic inside C; as well, then ¢, = 0 and
Laurent’s series reduces to Taylor's series.

Applied Mathematical Methods Singularities of Complex Functions 552,

Series Representations of Complex FulfEtTaTig: e cmr'e freers

Proof of Laurent’s series (contd)

Using g = ﬁ

1 1 zZ — Z z—z9)" 1 z—2z\" 1
T (L Y

w—z w—2z (w—2)? (w — z)" w—2z) w—z

1 f(w)dw
—_7{ L:30+31(Z—Zo)+'"+3n71(2—20)n71+Tn,
2ri Jo w—2z

with coefficients as required and

n
Tn:ij{ (z Z°> fw) 4,
2ri Jog \w—20) w—z

w—2p
z—zy'

Similarly, with ¢ =
1 f(w)dw
——.?{ Aw)dw _ ai(z—2z) 4 tan(z—20)"+ Ty,
2ri Jo, w—2z
with appropriate coefficients and the remainder term

T .= <—W - Z°>n RGO
C

27 z— 2 z—w
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Series Representations of Complex FulEtTaTig: e cmre mreers

Convergence of Laurent’s series

n—1
f(z) = Z aw(z — 20)* + Tp+ T,
k=—n
1 - nf
where T, = — <Z 20 ) (w) dw
2ri Jee \w—20) w—z
1 - "f
ad T, — - <u> W) g
2ri Je,\z—20) z—w
> f(w) is bounded
VZV%ZZ‘; < 1 over (7 and "ZV_;ZZS < 1 over G

Use M-L inequality to show that

remainder terms T, and T_, approach zero as n — oc.

Remark: For actually developing Taylor’s or Laurent’s series of a
function, algebraic manipulation of known facts are employed quite
often, rather than evaluating so many contour integrals!

Applied Mathematical Methods

Zeros and Singularities

Singularities of Complex Functions

Zeros and Singularities

Entire function: A function which is analytic everywhere
Examples: z" (for positive integer n), e, sin z etc.

The Taylor's series of an entire function has an infinite
radius of convergence.

Singularities: points where a function ceases to be analytic

Removable singularity: If f(z) is not defined at zg, but has a limit.
Example: f(z) = €L at z=0.

Pole: If f(z) has a Laurent’s series around zg, with a finite
number of terms with negative powers. If a, = 0 for
n < —m, but a_, # 0, then zy is a pole of order m,
lim,_ ., (z — 29)™f(z) being a non-zero finite number.
A simple pole: a pole of order one.

Essential singularity: A singularity which is neither a removable
singularity nor a pole. If the function has a Laurent's
series, then it has infinite terms with negative
powers. Example: f(z) = /% at z = 0.

Applied Mathematical Methods

Singularities of Complex Functions

Zeros and Singularities

Zeros and Singularities

Zeros of an analytic function: points where the function vanishes
If, at a point zg,

a function f(z) vanishes along with first m — 1 of its
derivatives, but f(™(zy) # 0;

then zy is a zero of f(z) of order m, giving the Taylor's series as
f(z) = (z — 20)"g(2).

An isolated zero has a neighbourhood containing no other zero.

For an analytic function, not identically zero, every point
has a neighbourhood free of zeros of the function, except
possibly for that point itself. In particular, zeros of such
an analytic function are always isolated.

Implication: If f(z) has a zero in every neighbourhood around
zg then it cannot be analytic at zp, unless it is the zero function
[i.e. f(z) =0 everywhere].

Applied Mathematical Methods

Zeros and Singularities

Singularities of Complex Functions

Zeros and Singularities

Zeros and poles: complementary to each other

» Poles are necessarily isolated singularities.

» A zero of f(z) of order m is a pole of % of the same order
and vice versa.

» If f(z) has a zero of order m at zy where g(z) has a pole of
the same order, then f(z)g(z) is either analytic at zy or has a
removable singularity there.

» Argument theorem:

If f(z) is analytic inside and on a simple closed
curve C except for a finite number of poles inside
and f(z) # 0 on C, then

1 ()
27 C (Z)

dz=N—P,

where N and P are total numbers of zeros and poles
inside C respectively, counting multiplicities (orders).

554,
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Residues :
Term by term integration of Laurent’s seriesR:eg?z.S f(2)dz="2mia_1
Residue: P%Sf(z) =a_1 = 5§ f(2)dz
If f(z) has a pole (of order m) at zp, then

Singularities of Complex Functions

(z—20)"f(2) = Z an(z — z9)™t"
is analytic at zp, and
dm_l m _ - (m+ n)! n+1
W[(Z — 20)"f(2)] = 2_:1 man(Z - 20)
L oRef()mag = tim (2 2)(2).
z9 (m—1)! 2z dzm~1

Residue theorem: If f(z) is analytic inside and on simple closed
curve C, with singularities at z1, z», z3, -+, z inside C; then

k
]{ f(z)dz = 27i " Resf(z).
¢ -1
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Evaluation of Real Integrals

Singularities of Complex Functions

Evaluation of Real Integrals

Example: For real rational function f(x),

| = /0o f(x)dx,

—00

denominator of f(x) being of degree two higher than numerator.

Consider contour C enclosing semi-circular region |z| < R,y >0,
large enough to enclose all singularities above the x-axis.

j[C F(z)dz = [ i F(x)dx + /5 F(z)dz

For finite M, |f(z)| < % on C

/s f(z)dz

o0
I = /OO f(x)dx = ZﬁiZF,gj_Sf(z) as R — oo.
1

M

M R
< ﬁﬂ- T R Figure: The contour

557, Applied Mathematical Methods

Evaluation of Real Integrals

Singularities of Complex Functions

Evaluation of Real Integrals

General strategy
> ldentify the required integral as a contour integral of a
complex function, or a part thereof.
» If the domain of integration is infinite, then extend the
contour infinitely, without enclosing new singularities.

Example:
2m

I = ¢(cos 8,sin0)do
0

With z = €' and dz = izd#,

/:%Cgb[% <z+§>,%<z§>]%=7{cf(2)dz,

where C is the unit circle centred at the origin.
Denoting poles falling inside the unit circle C as p;,

| = 2wiz§)e,sf(z).
) J
J
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Evaluation of Real Integrals

Singularities of Complex Functions

Evaluation of Real Integrals

Example: Fourier integral coefficients

o0

A(s) = / f(x)cossxdx and B(s)= / f(x) sin sx dx
Consider -
I = A(s) + iB(s) = / F(x)e™ dx.

Similar to the previous case,

- R - .
% f(z)e**dz = / f(x)e™dx + / f(z)e**dz.
c _

R S
As || = || |e™¥| = |e”| < 1 for y > 0, we have
; M M
/Sf(z)e’szdz < ﬁﬂ'R = %,

which yields, as R — oo,

I =2miy fgz_S[f(z)e"sz].
" J
J
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Points to note Outline

Evaluation of Real Integrals

» Taylor's series and Laurent's series
» Zeros and poles of analytic functions o
_ Variational Calculus*
> Residue theorem .
Introduction
» Evaluation of real integrals through contour integration of Euler's Equation
suitable complex functions Direct Methods

Necessary Exercises: 1,2,3,5,8,9,10

Applied Mathematical Methods Variational Calculus* 563, Applied Mathematical Methods Variational Calculus* 564,

Introduction Introduction

Introduction Introduction

. . . Functionals and their extremization
Consider a particle moving on a smooth surface z = 9(q1, g2).

Suppose that a candidate curve is represented as a sequence of

With position r = [q1(t) g2(t) ¥(q1(t), g2(t))] " on the surface points q; = q(t;) at time instants
and 6r = [0q1 6go (V1) T6q] T in the tangent plane, length of the
path from q; = q(t;) to qr = q(tr) is ti=to<t <t <t3<- - <ty <ty=tf.
| = / l|or|| = /tf [[F]|dt = /tf {q2 + @+ (VwTC'I)Z} 1z dt. Geodesic problem: a multivariate optimization problem with the
; t; ! 2 2(N — 1) variables in {q;,1 <j < N —1}.

For shortest path or geodesic, minimize the path length /. With N — oo, we obtain the actual function.

Question: What are the variables of the problem? First order necessary condition: Functional is stationary with
respect to arbitrary small variations in {q;}.

Answer: The entire curve or function q(t). [Equivalent to vanishing of the gradient]

Variational problem:

R . . ) . This gives equations for the stationary points.
Optimization of a function of functions, i.e. a functional. & 9 yp

Here, these equations are differential equations!
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Introduction
Examples of variational problems

Geodesic path: Minimize | = f I¥'(t)]|dt

Minimal surface of revolution: Minimize
S = [2myds =2rn faby\/l + y2dx

The brachistochrone problem: To find the curve along which the
descent is fastest.
Minimize T = [ % = [\ /22" dx

Fermat's principle: Light takes the fastest path.

e /X2y 22
. . Minimize T = f Wdu
Isoperimetric problem: Largest area in the plane enclosed by a

closed curve of given perimeter. By extension,
extremize a functional under one or more equality
constraints.

Hamilton's principle of least action: Evolution of a dynamic
system through the minimization of the action

tr tr
s:/ Ldt:/ (K — P)dt
t1 t1

Variational Calculus*

Introduction

Applied Mathematical Methods

Euler's Equation

Variational Calculus*
Euler's Equation

For &/ to vanish for arbitrary dy(x),

d ot _of _ .
dx Oy’ oy

Functions involving higher order derivatives

X2
l[y(X)]:/ f(Xayay,ayﬂv"'v ())dX
X1
with prescribed boundary values for y,y’,y”, -, y("1)
2 [9f of of of
ol = e 7 ) 5y" + - sy | d
/Xl [5yy+3y’y+8y”y+ Ty

Working rule: Starting from the last term, integrate one term at
a time by parts, using consistency of variations and BC's.
Euler's equation:
of d of d> of ,d" of
oy “axay Tacoy T gag,m 70
an ODE of order 2n, in general.

565, Applied Mathematical Methods

Euler's Equation

Variational Calculus* 566,

Euler's Equation
Find out a function y(x), that will make the functional

e = | " o y(x), v ()]

X1

stationary, with boundary conditions y(x1) = y1 and y(x2) = y».
Consider variation dy(x) with dy(x1) = dy(x2) = 0 and consistent
variation dy’(x).
of of
ol = —d0y+—dy' | d
[ (G o) e

Integration of the second term by parts:

2 Of 2 of d @ rxed of

—6y'd ——(dy)dx = [ 5 } - ——dy dx

x Oy x Oy’ dx oy’ w dxay’
With dy(x1) = dy(x2) = 0, the first term vanishes identically, and
2 [of d of
[l 2
x L0y dxOy

1

567, Applied Mathematical Methods

Euler's Equation

Variational Calculus* 568,

Euler's Equation

Functionals of a vector function

Ir(t)] = /t2 f(t,r,P)dt

t1

8f of
and B

[ /of of
/tl Kﬁ) Sr +(8r> (5r] dt
2 rofF\T of 2 ooy rof
[7(20) ores| (20) &] [ (3_) e
ty

urof  dof]’
ST srdt.
/tl [ar dt(’?i’} rat

Euler's equation: a system of second order ODE’s
dof of d of Of

EE_E: or Ea—ff—@—ﬁ_:Oforeach/.

In terms of partial gradients 3

6l =
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Euler's Equation

Euler's Equation

Functionals of functions of several variables

Hu(x,y)] = /D / f(x,y,u, ux, u,)dx dy

! P 9 o oOf of
Euler's equation: 8X 6u + Wd_uy - =0
Moving boundaries
Revision of the basic case: allowing non-zero dy(x1), dy(x2)

g;, dy has to vanish for arbitrary dy(x).

At an end-point,

aa—yf, vanishes at the boundary.

Euler boundary condition or natural boundary condition ‘

Equality constraints and isoperimetric problems

Minimize | = ff f(x,y,y")dx subject to J = [* g(x,y,y")dx = J.
In another level of generalization, constraint ¢(x,y,y’) = 0.
Operate with F*(x,y,y", A) = f(x,y,y") + M(x)g(x,y,y").

Applied Mathematical Methods Variational Calculus*

Direct Methods

Direct Methods

Rayleigh-Ritz method
In terms of a set of basis functions, express the solution as

N
x) = Z ajwi(x)

Represent functional /{y(x)] as a multivariate function ¢(a).
Optimize ¢(a) to determine «;'s.

Note: As N — oo, the numerical solution approaches exactitude.
For a particular tolerance, one can truncate appropriately.

Observation: With these direct methods, no need to reduce the
variational (optimization) problem to Euler’'s equation!

Question: Is it possible to reformulate a BVP as a variational
problem and then use a direct method?

569, Applied Mathematical Methods Variational Calculus* 570,

Direct Methods

Finite difference method
With given boundary values y(a) and y(b),

Direct Methods

b
()] = / e,y (), ¥/ (x)]

> Represent y(x) by its values over x; = a + ih with
i=0,1,2,---, N, where b— a = Nh.
» Approximate the functional by

N

7)/N—1) = Zf()_(l7}_/l7.)_/l/)h7

i=1

I[y(X)] ~ (15(}/17)/27}/37 e
where X; = _X'*;"*l, yi =

» Minimize &(y1, ¥2,y3," -+ ,YN—1) With respect to y;;
for example, by soIving 8—? =0 for all /.

YI+YI _Yi—Yi—1
-1 and yf = 5=

Exercise: Show that = 0 is equivalent to Euler's equation.

571, Applied Mathematical Methods Variational Calculus* 572,

Direct Methods

The inverse problem: From

N
) = o) = [ (Z

TR }

Integrating the second term by parts and using w; a) =
N
o b
o _ R [Z a,-w,-‘| w;(x)dx,
i=1

8a,- B a
where R[y| = g—; — %g—;, = 0 is the Euler's equation of the
variational problem.

Def.: R[z(x)]: residual of the differential equation R[y] =0

operated over the function z(x)

Direct Methods

Residual of the Euler’s equation of a variational problem
operated upon the solution obtained by Rayleigh-Ritz
method is orthogonal to basis functions w;(x).
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Direct Methods

Galerkin method

Question: What if we cannot find a ‘corresponding’ variational
problem for the differential equation?

Answer: Work with the residual directly and demand

b
/a R[2()]wi(x)dx = 0.

Freedom to choose two different families of functions as basis
functions )(x) and trial functions w;(x):

Direct Methods

b
/372 Zajwj(x) wi(x)dx =0

A singular case of the Galerkin method:
delta functions, at discrete points, as trial functions
Satisfaction of the differential equation exactly at the chosen

points, known as collocation points:
| Collocation method |

Applied Mathematical Methods Variational Calculus*

Points to note

Direct Methods

Optimization with respect to a function
Concept of a functional

Euler's equation

Rayleigh-Ritz and Galerkin methods

vV v v v.yY

Optimization and equation-solving in the infinite-dimensional
function space: practical methods and connections

Necessary Exercises: 1,2,4,5
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Direct Methods

Direct Methods
Finite element methods

» discretization of the domain into elements of simple geometry
» basis functions of low order polynomials with local scope

» design of basis functions so as to achieve enough order of
continuity or smoothness across element boundaries

> piecewise continuous/smooth basis functions for entire
domain, with a built-in sparse structure

» some weighted residual method to frame the algebraic
equations

» solution gives coefficients which are actually the nodal values

Suitability of finite element analysis in software environments
» effectiveness and efficiency

» neatness and modularity

575, Applied Mathematical Methods Epilogue 576,

Outline

Epilogue
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Epilogue

Source for further information:
http://home.iitk.ac.in/~ dasgupta/MathBook

Destination for feedback:
dasgupta@iitk.ac.in

Some general courses in immediate continuation

» Advanced Mathematical Methods

v

Scientific Computing

Advanced Numerical Analysis
Optimization

Advanced Differential Equations
Partial Differential Equations
Finite Element Methods

vV v v. v Y

Applied Mathematical Methods Selected References

Outline

Selected References

Applied Mathematical Methods Epilogue

Epilogue

Some specialized courses in immediate continuation
» Linear Algebra and Matrix Theory

Approximation Theory

Variational Calculus and Optimal Control

Advanced Mathematical Physics

Geometric Modelling

Computational Geometry

Computer Graphics

Signal Processing

vV VvV vV Vv vV VY

Image Processing

Applied Mathematical Methods Selected References

Selected References |

@ F.S. Acton.
Numerical Methods that usually Work.
The Mathematical Association of America (1990).

[@ C. M. Bender and S. A. Orszag.
Advanced Mathematical Methods for Scientists and Engineers.

Springer-Verlag (1999).

@ G. Birkhoff and G.-C. Rota.
Ordinary Differential Equations.
John Wiley and Sons (1989).

[ G.H. Golub and C. F. Van Loan.
Matrix Computations.
The John Hopkins University Press (1983).
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Selected References I Selected References Il

@ M. T. Heath.

Scientific Computing.
Tata McGraw-Hill Co. Ltd (2000).

E. Kreyszig.
Advanced Engineering Mathematics.
John Wiley and Sons (2002).

E. V. Krishnamurthy and S. K. Sen.
Numerical Algorithms.

Affiliated East-West Press Pvt Ltd (1986).

D. G. Luenberger.
Linear and Nonlinear Programming.
Addison-Wesley (1984).

P. V. O'Neil.
Advanced Engineering Mathematics.
Thomson Books (2004).

[ W. H. Press, S. A. Teukolsky, W. T. Vellerling and B. P.
Flannery.
Numerical Recipes.
Cambridge University Press (1998).

@ G.F. Simmons.
Differential Equations with Applications and Historical Notes.
Tata McGraw-Hill Co. Ltd (1991).

@ J. Stoer and R. Bulirsch.
Introduction to Numerical Analysis.
Springer-Verlag (1993).

@ C. R. Wylie and L. C. Barrett.
Advanced Engineering Mathematics.
Tata McGraw-Hill Co. Ltd (2003).
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