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Theme of the Course

To develop a firm mathematical background necessary for graduate
studies and research

I a fast-paced recapitulation of UG mathematics

I extension with supplementary advanced ideas for a mature
and forward orientation

I exposure and highlighting of interconnections

To pre-empt needs of the future challenges

I trade-off between sufficient and reasonable

I target mid-spectrum majority of students

Notable beneficiaries (at two ends)

I would-be researchers in analytical/computational areas

I students who are till now somewhat afraid of mathematics

Applied Mathematical Methods Preliminary Background 11,

Theme of the Course
Course Contents
Sources for More Detailed Study
Logistic Strategy
Expected Background

Course Contents

I Applied linear algebra

I Multivariate calculus and vector calculus

I Numerical methods

I Differential equations + +

I Complex analysis
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Sources for More Detailed Study

If you have the time, need and interest, then you may consult

I individual books on individual topics;

I another “umbrella” volume, like Kreyszig, McQuarrie, O’Neil
or Wylie and Barrett;

I a good book of numerical analysis or scientific computing, like
Acton, Heath, Hildebrand, Krishnamurthy and Sen, Press et
al, Stoer and Bulirsch;

I friends, in joint-study groups.
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Logistic Strategy

I Study in the given sequence, to the extent possible.

I Do not read mathematics.

I Use lots of pen and paper.
Read “mathematics books” and do mathematics.

I Exercises are must.
I Use as many methods as you can think of, certainly including

the one which is recommended.
I Consult the Appendix after you work out the solution. Follow

the comments, interpretations and suggested extensions.
I Think. Get excited. Discuss. Bore everybody in your known

circles.
I Not enough time to attempt all? Want a selection ?

I Program implementation is needed in algorithmic exercises.
I Master a programming environment.
I Use mathematical/numerical library/software.

Take a MATLAB tutorial session?
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Logistic Strategy

Tutorial Plan

Chapter Selection Tutorial Chapter Selection Tutorial
2 2,3 3 26 1,2,4,6 4
3 2,4,5,6 4,5 27 1,2,3,4 3,4
4 1,2,4,5,7 4,5 28 2,5,6 6
5 1,4,5 4 29 1,2,5,6 6
6 1,2,4,7 4 30 1,2,3,4,5 4
7 1,2,3,4 2 31 1,2 1(d)
8 1,2,3,4,6 4 32 1,3,5,7 7
9 1,2,4 4 33 1,2,3,7,8 8
10 2,3,4 4 34 1,3,5,6 5
11 2,4,5 5 35 1,3,4 3
12 1,3 3 36 1,2,4 4
13 1,2 1 37 1 1(c)
14 2,4,5,6,7 4 38 1,2,3,4,5 5
15 6,7 7 39 2,3,4,5 4
16 2,3,4,8 8 40 1,2,4,5 4
17 1,2,3,6 6 41 1,3,6,8 8
18 1,2,3,6,7 3 42 1,3,6 6
19 1,3,4,6 6 43 2,3,4 3
20 1,2,3 2 44 1,2,4,7,9,10 7,10
21 1,2,5,7,8 7 45 1,2,3,4,7,9 4,9
22 1,2,3,4,5,6 3,4 46 1,2,5,7 7
23 1,2,3 3 47 1,2,3,5,8,9,10 9,10
24 1,2,3,4,5,6 1 48 1,2,4,5 5
25 1,2,3,4,5 5
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Expected Background

I moderate background of undergraduate mathematics

I firm understanding of school mathematics and undergraduate
calculus

Take the preliminary test.

Grade yourself sincerely.

Prerequisite Problem Sets*
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Points to note

I Put in effort, keep pace.

I Stress concept as well as problem-solving.

I Follow methods diligently.

I Ensure background skills.

Necessary Exercises: Prerequisite problem sets ??
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Matrices

Question: What is a “matrix”?
Answers:

I a rectangular array of numbers/elements ?

I a mapping f : M × N → F , where M = {1, 2, 3, · · · ,m},
N = {1, 2, 3, · · · , n} and F is the set of real numbers or
complex numbers ?

Question: What does a matrix do?
Explore: With an m × n matrix A,

y1 = a11x1 + a12x2 + · · ·+ a1nxn

y2 = a21x1 + a22x2 + · · ·+ a2nxn

...
...

...
...

...
ym = am1x1 + am2x2 + · · ·+ amnxn





or Ax = y
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Matrices
Consider these definitions:

I y = f (x)
I y = f (x) = f (x1, x2, · · · , xn)
I yk = fk(x) = fk(x1, x2, · · · , xn), k = 1, 2, · · · ,m
I y = f(x)
I y = Ax

Further Answer:

A matrix is the definition of a linear vector function of a
vector variable.

Anything deeper?

Caution: Matrices do not define vector functions whose components are

of the form

yk = ak0 + ak1x1 + ak2x2 + · · ·+ aknxn.
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Geometry and Algebra

Let vector x = [x1 x2 x3]T denote a point (x1, x2, x3) in
3-dimensional space in frame of reference OX1X2X3.
Example: With m = 2 and n = 3,

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3

}
.

Plot y1 and y2 in the OY1Y2 plane.
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Figure: Linear transformation: schematic illustration

What is matrix A doing?
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Geometry and Algebra

Operating on point x in R3, matrix A transforms it to y in R2.

Point y is the image of point x under the mapping defined by
matrix A.

Note domain R3, co-domain R2 with reference to the figure and
verify that A : R3 → R2 fulfils the requirements of a mapping, by
definition.

A matrix gives a definition of a linear transformation
from one vector space to another.
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Linear Transformations

Operate A on a large number of points xi ∈ R3.
Obtain corresponding images yi ∈ R2.

The linear transformation represented by A implies the totality of
these correspondences.

We decide to use a different frame of reference OX ′1X
′
2X
′
3 for R3.

[And, possibly OY ′1Y
′
2 for R2 at the same time.]

Coordinates change, i.e. xi changes to x′i (and possibly yi to y′i ).
Now, we need a different matrix, say A′, to get back the
correspondence as y′ = A′x′.

A matrix: just one description.

Question: How to get the new matrix A′?
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Matrix Terminology

I · · · · · ·
I Matrix product

I Transpose

I Conjugate transpose

I Symmetric and skew-symmetric matrices

I Hermitian and skew-Hermitian matrices

I Determinant of a square matrix

I Inverse of a square matrix

I Adjoint of a square matrix

I · · · · · ·
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Points to note

I A matrix defines a linear transformation from one vector space
to another.

I Matrix representation of a linear transformation depends on
the selected bases (or frames of reference) of the source and
target spaces.

Important: Revise matrix algebra basics as necessary tools.

Necessary Exercises: 2,3



Applied Mathematical Methods Operational Fundamentals of Linear Algebra 25,

Range and Null Space: Rank and Nullity
Basis
Change of Basis
Elementary Transformations

Outline

Operational Fundamentals of Linear Algebra
Range and Null Space: Rank and Nullity
Basis
Change of Basis
Elementary Transformations

Applied Mathematical Methods Operational Fundamentals of Linear Algebra 26,

Range and Null Space: Rank and Nullity
Basis
Change of Basis
Elementary Transformations

Range and Null Space: Rank and Nullity

Consider A ∈ Rm×n as a mapping

A : Rn → Rm, Ax = y, x ∈ Rn, y ∈ Rm.

Observations

1. Every x ∈ Rn has an image y ∈ Rm, but every y ∈ Rm need
not have a pre-image in Rn.

Range (or range space) as subset/subspace of
co-domain: containing images of all x ∈ R n.

2. Image of x ∈ Rn in Rm is unique, but pre-image of y ∈ Rm

need not be.
It may be non-existent, unique or infinitely many.

Null space as subset/subspace of domain:
containing pre-images of only 0 ∈ Rm.
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Range and Null Space: Rank and Nullity
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Figure: Range and null space: schematic representation

Question: What is the dimension of a vector space?
Linear dependence and independence: Vectors x1, x2, · · · , xr

in a vector space are called linearly independent if

k1x1 + k2x2 + · · ·+ krxr = 0 ⇒ k1 = k2 = · · · = kr = 0.

Range(A) = {y : y = Ax, x ∈ Rn}
Null(A) = {x : x ∈ Rn, Ax = 0}

Rank(A) = dim Range(A)

Nullity(A) = dim Null(A)
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Basis

Take a set of vectors v1, v2, · · · , vr in a vector space.
Question: Given a vector v in the vector space, can we describe it
as

v = k1v1 + k2v2 + · · ·+ krvr = Vk,

where V = [v1 v2 · · · vr ] and k = [k1 k2 · · · kr ]T ?
Answer: Not necessarily.

Span, denoted as < v1, v2, · · · , vr >: the subspace
described/generated by a set of vectors.

Basis:

A basis of a vector space is composed of an ordered
minimal set of vectors spanning the entire space.

The basis for an n-dimensional space will have exactly n
members, all linearly independent.
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Basis
Orthogonal basis: {v1, v2, · · · , vn} with

vT
j vk = 0 ∀ j 6= k .

Orthonormal basis:

vT
j vk = δjk =

{
0 if j 6= k
1 if j = k

Members of an orthonormal basis form an orthogonal matrix.
Properties of an orthogonal matrix:

V−1 = VT or VVT = I, and

det V = +1 or − 1,

Natural basis:

e1 =




1
0
0
...
0



, e2 =




0
1
0
...
0



, · · · , en =




0
0
0
...
1



.
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Change of Basis

Suppose x represents a vector (point) in R n in some basis.
Question: If we change over to a new basis {c1, c2, · · · , cn}, how
does the representation of a vector change?

x = x̄1c1 + x̄2c2 + · · ·+ x̄ncn

= [c1 c2 · · · cn]




x̄1

x̄2
...
x̄n


 .

With C = [c1 c2 · · · cn],

new to old coordinates: Cx̄ = x and
old to new coordinates: x̄ = C−1x.

Note: Matrix C is invertible. How?
Special case with C orthogonal:

orthogonal coordinate transformation.
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Change of Basis

Question: And, how does basis change affect the representation of
a linear transformation?

Consider the mapping A : Rn → Rm, Ax = y.

Change the basis of the domain through P ∈ R n×n and that of the
co-domain through Q ∈ Rm×m.

New and old vector representations are related as

Px̄ = x and Qȳ = y.

Then, Ax = y ⇒ Āx̄ = ȳ, with

Ā = Q−1AP

Special case: m = n and P = Q gives a similarity transformation

Ā = P−1AP
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Elementary Transformations

Observation: Certain reorganizations of equations in a system
have no effect on the solution(s).

Elementary Row Transformations:

1. interchange of two rows,

2. scaling of a row, and

3. addition of a scalar multiple of a row to another.

Elementary Column Transformations: Similar operations with
columns, equivalent to a corresponding shuffling of the variables
(unknowns).
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Elementary Transformations

Equivalence of matrices: An elementary transformation defines
an equivalence relation between two matrices.

Reduction to normal form:

AN =

[
Ir 0
0 0

]

Rank invariance: Elementary transformations do not alter the
rank of a matrix.

Elementary transformation as matrix multiplication:

an elementary row transformation on a matrix is
equivalent to a pre-multiplication with an elementary
matrix, obtained through the same row transformation on
the identity matrix (of appropriate size).

Similarly, an elementary column transformation is equivalent to
post-multiplication with the corresponding elementary matrix.
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Points to note

I Concepts of range and null space of a linear transformation.

I Effects of change of basis on representations of vectors and
linear transformations.

I Elementary transformations as tools to modify (simplify)
systems of (simultaneous) linear equations.

Necessary Exercises: 2,4,5,6
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Nature of Solutions

Ax = b
Coefficient matrix: A, augmented matrix: [A | b].
Existence of solutions or consistency:

Ax = b has a solution

⇔ b ∈ Range(A)

⇔ Rank(A) = Rank([A | b])

Uniqueness of solutions:

Rank(A) = Rank([A | b]) = n

⇔ Solution of Ax = b is unique.

⇔ Ax = 0 has only the trivial (zero) solution.

Infinite solutions: For Rank(A) = Rank([A|b]) = k < n, solution

x = x̄ + xN , with Ax̄ = b and xN ∈ Null(A)
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Basic Idea of Solution Methodology

To diagnose the non-existence of a solution,

To determine the unique solution, or

To describe infinite solutions;

decouple the equations using elementary transformations.

For solving Ax = b, apply suitable elementary row transformations
on both sides, leading to

RqRq−1 · · ·R2R1Ax = RqRq−1 · · ·R2R1b,

or, [RA]x = Rb;

such that matrix [RA] is greatly simplified.
In the best case, with complete reduction, RA = In, and
components of x can be read off from Rb.

For inverting matrix A, treat AA−1 = In similarly.
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Homogeneous Systems

To solve Ax = 0 or to describe Null(A),
apply a series of elementary row transformations on A to reduce it

to the
∼
A,

the row-reduced echelon form or RREF.

Features of RREF:

1. The first non-zero entry in any row is a ‘1’, the leading ‘1’.

2. In the same column as the leading ‘1’, other entries are zero.

3. Non-zero entries in a lower row appear later.

Variables corresponding to columns having leading ‘1’s
are expressed in terms of the remaining variables.

Solution of Ax = 0: x =
[

z1 z2 · · · zn−k

]



u1

u2

· · ·
un−k




Basis of Null(A): {z1, z2, · · · , zn−k}
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Pivoting

Attempt:
To get ‘1’ at diagonal (or leading) position, with ‘0’ elsewhere.
Key step: division by the diagonal (or leading) entry.

Consider

Ā =




Ik . . . . .
. δ . . . .
. . . . BIG .
. big . . . .
. . . . . .
. . . . . .



.

Cannot divide by zero. Should not divide by δ.

I partial pivoting: row interchange to get ‘big’ in place of δ

I complete pivoting: row and column interchanges to get
‘BIG’ in place of δ

Complete pivoting does not give a huge advantage over partial pivoting,

but requires maintaining of variable permutation for later unscrambling.
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Partitioning and Block Operations

Equation Ax = y can be written as

[
A11 A12 A13

A21 A22 A23

]


x1

x2

x3


 =

[
y1

y2

]
,

with x1, x2 etc being themselves vectors (or matrices).

I For a valid partitioning, block sizes should be consistent.

I Elementary transformations can be applied over blocks.

I Block operations can be computationally economical at times.

I Conceptually, different blocks of contributions/equations can
be assembled for mathematical modelling of complicated
coupled systems.
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Points to note

I Solution(s) of Ax = b may be non-existent, unique or
infinitely many.

I Complete solution can be described by composing a particular
solution with the null space of A.

I Null space basis can be obtained conveniently from the
row-reduced echelon form of A.

I For a strategy of solution, pivoting is an important step.

Necessary Exercises: 1,2,4,5,7
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Gauss-Jordan Elimination

Task: Solve Ax = b1, Ax = b2 and Ax = b3; find A−1 and
evaluate A−1B, where A ∈ Rn×n and B ∈ Rn×p.

Assemble C = [A b1 b2 b3 In B] ∈ Rn×(2n+3+p)

and follow the algorithm .

Collect solutions from the result

C −→
∼
C = [In A−1b1 A−1b2 A−1b3 A−1 A−1B].

Remarks:

I Premature termination: matrix A singular — decision?

I If you use complete pivoting, unscramble permutation.

I Identity matrix in both C and
∼
C? Store A−1 ‘in place’.

I For evaluating A−1b, do not develop A−1.

I Gauss-Jordan elimination an overkill? Want something
cheaper ?
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Gauss-Jordan Elimination

Gauss-Jordan Algorithm

I ∆ = 1
I For k = 1, 2, 3, · · · , (n − 1)

1. Pivot : identify l such that |clk | = max |cjk | for k ≤ j ≤ n.
If clk = 0, then ∆ = 0 and exit.
Else, interchange row k and row l .

2. ∆←− ckk∆,
Divide row k by ckk .

3. Subtract cjk times row k from row j , ∀j 6= k .

I ∆←− cnn∆
If cnn = 0, then exit.
Else, divide row n by cnn.

In case of non-singular A, default termination .

This outline is for partial pivoting.
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Gaussian Elimination with Back-Substitution
Gaussian elimination:

Ax = b

−→
∼
Ax =

∼
b

or,




a′11 a′12 · · · a′1n
a′22 · · · a′2n

. . .
...

a′nn







x1

x2
...
xn


 =




b′1
b′2
...

b′n




Back-substitutions:

xn = b′n/a
′
nn,

xi =
1

a′ii


b′i −

n∑

j=i+1

a′ijxj


 for i = n − 1, n − 2, · · · , 2, 1

Remarks
I Computational cost half compared to G-J elimination.
I Like G-J elimination, prior knowledge of RHS needed.
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Gaussian Elimination with Back-Substitution
Anatomy of the Gaussian elimination:
The process of Gaussian elimination (with no pivoting) leads to

U = RqRq−1 · · ·R2R1A = RA.

The steps given by

for k = 1, 2, 3, · · · , (n − 1)

j-th row ←− j-th row − ajk

akk
× k-th row for

j = k + 1, k + 2, · · · , n

involve elementary matrices

Rk |k=1 =




1 0 0 · · · 0
−a21

a11
1 0 · · · 0

−a31
a11

0 1 · · · 0
...

...
...

. . .
...

−an1
a11

0 0 · · · 1




etc .

With L = R−1, A = LU.
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LU Decomposition

A square matrix with non-zero leading minors is LU-decomposable.

No reference to a right-hand-side (RHS) vector!

To solve Ax = b, denote y = Ux and split as

Ax = b ⇒ LUx = b

⇒ Ly = b and Ux = y.

Forward substitutions:

yi =
1

lii


bi −

i−1∑

j=1

lijyj


 for i = 1, 2, 3, · · · , n;

Back-substitutions:

xi =
1

uii


yi −

n∑

j=i+1

uijxj


 for i = n, n− 1, n − 2, · · · , 1.
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LU Decomposition

Question: How to LU-decompose a given matrix?

L =




l11 0 0 · · · 0
l21 l22 0 · · · 0
l31 l32 l33 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · lnn




and U =




u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n

...
...

...
. . .

...
0 0 0 · · · unn




Elements of the product give

i∑

k=1

likukj = aij for i ≤ j ,

and

j∑

k=1

likukj = aij for i > j .

n2 equations in n2 + n unknowns: choice of n unknowns



Applied Mathematical Methods Gauss Elimination Family of Methods 49,

Gauss-Jordan Elimination
Gaussian Elimination with Back-Substitution
LU Decomposition

LU Decomposition

Doolittle’s algorithm

I Choose lii = 1
I For j = 1, 2, 3, · · · , n

1. uij = aij −
∑i−1

k=1 likukj for 1 ≤ i ≤ j

2. lij = 1
ujj

(aij −
∑j−1

k=1 likukj ) for i > j

Evaluation proceeds in column order of the matrix (for storage)

A∗ =




u11 u12 u13 · · · u1n

l21 u22 u23 · · · u2n

l31 l32 u33 · · · u3n
...

...
...

. . .
...

ln1 ln2 ln3 · · · unn



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LU Decomposition

Question: What about matrices which are not LU-decomposable?
Question: What about pivoting?

Consider the non-singular matrix




0 1 2
3 1 2
2 1 3


 =




1 0 0
l21 =? 1 0

l31 l32 1






u11 = 0 u12 u13

0 u22 u23

0 0 u33


 .

LU-decompose a permutation of its rows



0 1 2
3 1 2
2 1 3


 =




0 1 0
1 0 0
0 0 1






3 1 2
0 1 2
2 1 3




=




0 1 0
1 0 0
0 0 1






1 0 0
0 1 0
2
3

1
3 1






3 1 2
0 1 2
0 0 1


 .

In this PLU decomposition, permutation P is recorded in a vector.
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Points to note

For invertible coefficient matrices, use

I Gauss-Jordan elimination for large number of RHS vectors
available all together and also for matrix inversion,

I Gaussian elimination with back-substitution for small number
of RHS vectors available together,

I LU decomposition method to develop and maintain factors to
be used as and when RHS vectors are available.

Pivoting is almost necessary (without further special structure).

Necessary Exercises: 1,4,5
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Quadratic Forms, Symmetry and Positive Definiteness

Quadratic form

q(x) = xTAx =
n∑

i=1

n∑

j=1

aijxixj

defined with respect to a symmetric matrix.

Quadratic form q(x), equivalently matrix A, is called positive
definite (p.d.) when

xTAx > 0 ∀ x 6= 0

and positive semi-definite (p.s.d.) when

xTAx ≥ 0 ∀ x 6= 0.

Sylvester’s criteria:

a11 ≥ 0,

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ ≥ 0, · · · , det A ≥ 0;

i.e. all leading minors non-negative, for p.s.d.
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Cholesky Decomposition

If A ∈ Rn×n is symmetric and positive definite, then there exists a
non-singular lower triangular matrix L ∈ R n×n such that

A = LLT .

Algorithm For i = 1, 2, 3, · · · , n
I Lii =

√
aii −

∑i−1
k=1 L2

ik

I Lji = 1
Lii

(
aji −

∑i−1
k=1 LjkLik

)
for i < j ≤ n

For solving Ax = b,

Forward substitutions: Ly = b

Back-substitutions: LTx = y

Remarks

I Test of positive definiteness.

I Stable algorithm: no pivoting necessary!

I Economy of space and time.
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Sparse Systems*

I What is a sparse matrix?

I Bandedness and bandwidth

I Efficient storage and processing
I Updates

I Sherman-Morrison formula

(A + uvT )−1 = A−1 − (A−1u)(vTA−1)

1 + vTA−1u

I Woodbury formula

I Conjugate gradient method
I efficiently implemented matrix-vector products
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Points to note

I Concepts and criteria of positive definiteness and positive
semi-definiteness

I Cholesky decomposition method in symmetric positive definite
systems

I Nature of sparsity and its exploitation

Necessary Exercises: 1,2,4,7
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Norms and Condition Numbers
Norm of a vector: a measure of size

I Euclidean norm or 2-norm

‖x‖ = ‖x‖2 =
[
x2
1 + x2

2 + · · ·+ x2
n

] 1
2 =

√
xT x

I The p-norm

‖x‖p = [|x1|p + |x2|p + · · · + |xn|p]
1
p

I The 1-norm: ‖x‖1 = |x1|+ |x2|+ · · · + |xn|
I The ∞-norm:

‖x‖∞ = lim
p→∞

[|x1|p + |x2|p + · · ·+ |xn|p ]
1
p = max

j
|xj |

I Weighted norm

‖x‖w =
√

xTWx

where weight matrix W is symmetric and positive definite.
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Norms and Condition Numbers

Norm of a matrix: magnitude or scale of the transformation

Matrix norm (induced by a vector norm) is given by the largest
magnification it can produce on a vector

‖A‖ = max
x

‖Ax‖
‖x‖ = max

‖x‖=1
‖Ax‖

Direct consequence: ‖Ax‖ ≤ ‖A‖ ‖x‖

Index of closeness to singularity: Condition number

κ(A) = ‖A‖ ‖A−1‖, 1 ≤ κ(A) ≤ ∞

** Isotropic, well-conditioned, ill-conditioned and singular matrices
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Ill-conditioning and Sensitivity

0.9999x1 − 1.0001x2 = 1
x1 − x2 = 1 + ε

Solution: x1 = 10001ε+1
2 , x2 = 9999ε−1

2

I sensitive to small changes in the RHS
I insensitive to error in a guess See illustration

For the system Ax = b, solution is x = A−1b and

δx = A−1δb −A−1δA x

If the matrix A is exactly known, then

‖δx‖
‖x‖ ≤ ‖A‖ ‖A

−1‖‖δb‖‖b‖ = κ(A)
‖δb‖
‖b‖

If the RHS is known exactly, then

‖δx‖
‖x‖ ≤ ‖A‖ ‖A

−1‖‖δA‖‖A‖ = κ(A)
‖δA‖
‖A‖
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Ill-conditioning and Sensitivity
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Figure: Ill-conditioning: a geometric perspective
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Rectangular Systems

Consider Ax = b with A ∈ Rm×n and Rank(A) = n < m.

ATAx = ATb ⇒ x = (ATA)−1ATb

Square of error norm

U(x) =
1

2
‖Ax − b‖2 =

1

2
(Ax − b)T (Ax − b)

=
1

2
xTATAx − xTATb +

1

2
bTb

Least square error solution:

∂U

∂x
= ATAx −ATb = 0

Pseudoinverse or Moore-Penrose inverse or left-inverse

A# = (ATA)−1AT
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Rectangular Systems

Consider Ax = b with A ∈ Rm×n and Rank(A) = m < n.
Look for λ ∈ Rm that satisfies ATλ = x and

AATλ = b

Solution
x = ATλ = AT (AAT )−1b

Consider the problem

minimize U(x) = 1
2x

Tx subject to Ax = b.

Extremum of the Lagrangian L(x,λ) = 1
2x

Tx − λT (Ax − b) is
given by

∂L
∂x

= 0,
∂L
∂λ

= 0 ⇒ x = ATλ, Ax = b.

Solution x = AT (AAT )−1b gives foot of the perpendicular on the
solution ‘plane’ and the pseudoinverse

A# = AT (AAT )−1

here is a right-inverse!
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Singularity-Robust Solutions

Ill-posed problems: Tikhonov regularization

I recipe for any linear system (m > n, m = n or m < n), with
any condition!

Ax = b may have conflict: form ATAx = ATb.

ATA may be ill-conditioned: rig the system as

(ATA + ν2In)x = ATb

Coefficient matrix: symmetric and positive definite!
The idea: Immunize the system, paying a small price.

Issues:

I The choice of ν?

I When m < n, computational advantage by

(AAT + ν2Im)λ = b, x = ATλ
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Iterative Methods

Jacobi’s iteration method:

x
(k+1)
i =

1

aii


bi −

n∑

j=1, j 6=i

aijx
(k)
j


 for i = 1, 2, 3, · · · , n.

Gauss-Seidel method:

x
(k+1)
i =

1

aii


bi −

i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j


 for i = 1, 2, 3, · · · , n.

The category of relaxation methods:

diagonal dominance and availability of good initial
approximations
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Points to note

I Solutions are unreliable when the coefficient matrix is
ill-conditioned.

I Finding pseudoinverse of a full-rank matrix is ‘easy’.

I Tikhonov regularization provides singularity-robust solutions.

I Iterative methods may have an edge in certain situations!

Necessary Exercises: 1,2,3,4
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Eigenvalue Problem

In mapping A : Rn → Rn, special vectors of matrix A ∈ Rn×n

I mapped to scalar multiples, i.e. undergo pure scaling

Av = λv

Eigenvector (v) and eigenvalue (λ): eigenpair (λ, v)

algebraic eigenvalue problem

(λI −A)v = 0

For non-trivial (non-zero) solution v,

det(λI −A) = 0

Characteristic equation: characteristic polynomial: n roots

I n eigenvalues — for each, find eignevector(s)

Multiplicity of an eigenvalue: algebraic and geometric

Multiplicity mismatch: diagonalizable and defective matrices
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Generalized Eigenvalue Problem

1-dof mass-spring system: mẍ + kx = 0

Natural frequency of vibration: ωn =
√

k
m

Free vibration of n-dof system:

Mẍ + Kx = 0,

Natural frequencies and corresponding modes?
Assuming a vibration mode x = Φ sin(ωt + α),

(−ω2MΦ + KΦ) sin(ωt + α) = 0 ⇒ KΦ = ω2MΦ

Reduce as
(
M−1K

)
Φ = ω2Φ? Why is it not a good idea?

K symmetric, M symmetric and positive definite!!

With M = LLT ,
∼
Φ = LT Φ and

∼
K = L−1KL−T ,

∼
K
∼
Φ = ω2

∼
Φ
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Some Basic Theoretical Results

Eigenvalues of transpose

Eigenvalues of AT are the same as those of A.

Caution: Eigenvectors of A and AT need not be same.

Diagonal and block diagonal matrices
Eigenvalues of a diagonal matrix are its diagonal entries.
Corresponding eigenvectors: natural basis members (e1, e2 etc).

Eigenvalues of a block diagonal matrix: those of diagonal blocks.
Eigenvectors: coordinate extensions of individual eigenvectors.
With (λ2, v2) as eigenpair of block A2,

A
∼
v2 =




A1 0 0
0 A2 0
0 0 A3






0
v2

0


 =




0
A2v2

0


 = λ2




0
v2

0



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Some Basic Theoretical Results

Triangular and block triangular matrices
Eigenvalues of a triangular matrix are its diagonal entries.

Eigenvalues of a block triangular matrix are the collection of
eigenvalues of its diagonal blocks.

Take

H =

[
A B
0 C

]
, A ∈ R r×r and C ∈ R s×s

If Av = λv, then

H

[
v
0

]
=

[
A B
0 C

] [
v
0

]
=

[
Av
0

]
=

[
λv
0

]
= λ

[
v
0

]

If µ is an eigenvalue of C, then it is also an eigenvalue of CT and

CTw = µw ⇒ HT

[
0
w

]
=

[
AT 0
BT CT

] [
0
w

]
= µ

[
0
w

]
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Some Basic Theoretical Results

Shift theorem
Eigenvectors of A + µI are the same as those of A.
Eigenvalues: shifted by µ.

Deflation
For a symmetric matrix A, with mutually orthogonal eigenvectors,
having (λj , vj ) as an eigenpair,

B = A − λj

vjv
T
j

vT
j vj

has the same eigenstructure as A, except that the eigenvalue
corresponding to vj is zero.
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Some Basic Theoretical Results

Eigenspace
If v1, v2, · · · , vk are eigenvectors of A corresponding to the same
eigenvalue λ, then

eigenspace: < v1, v2, · · · , vk >

Similarity transformation
B = S−1AS: same transformation expressed in new basis.

det(λI −A) = det S−1 det(λI −A) det S = det(λI −B)

Same characteristic polynomial!

Eigenvalues are the property of a linear transformation,
not of the basis.

An eigenvector v of A transforms to S−1v, as the corresponding
eigenvector of B.
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Power Method

Consider matrix A with

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn−1| > |λn|

and a full set of n eigenvectors v1, v2, · · · , vn.

For vector x = α1v1 + α2v2 + · · ·+ αnvn,

Apx = λp
1

[
α1v1 +

(
λ2

λ1

)p

α2v2 +

(
λ3

λ1

)p

α3v3 + · · ·+
(
λn

λ1

)p

αnvn

]

As p →∞, Apx → λp
1α1v1, and

λ1 = lim
p→∞

(Apx)r

(Ap−1x)r

, r = 1, 2, 3, · · · , n.

At convergence, n ratios will be the same.

Question: How to find the least magnitude eigenvalue?
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Points to note

I Meaning and context of the algebraic eigenvalue problem

I Fundamental deductions and vital relationships

I Power method as an inexpensive procedure to determine
extremal magnitude eigenvalues

Necessary Exercises: 1,2,3,4,6
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Diagonalizability

Consider A ∈ Rn×n, having n eigenvectors v1, v2, · · · , vn;
with corresponding eigenvalues λ1, λ2, · · · , λn.

AS = A[v1 v2 · · · vn] = [λ1v1 λ2v2 · · · λnvn]

= [v1 v2 · · · vn]




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 = SΛ

⇒ A = SΛS−1 and S−1AS = Λ

Diagonalization: The process of changing the basis of a linear
transformation so that its new matrix representation is diagonal,
i.e. so that it is decoupled among its coordinates.
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Diagonalizability

Diagonalizability:

A matrix having a complete set of n linearly independent
eigenvectors is diagonalizable.

Existence of a complete set of eigenvectors:

A diagonalizable matrix possesses a complete set of n
linearly independent eigenvectors.

I All distinct eigenvalues implies diagonalizability.

I But, diagonalizability does not imply distinct eigenvalues!

I However, a lack of diagonalizability certainly implies a
multiplicity mismatch.
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Canonical Forms

Jordan canonical form (JCF)

Diagonal (canonical) form

Triangular (canonical) form

Other convenient forms

Tridiagonal form
Hessenberg form
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Canonical Forms
Jordan canonical form (JCF): composed of Jordan blocks

J =




J1

J2

. . .

Jk


 , Jr =




λ 1
λ 1

λ
. . .
. . . 1

λ




The key equation AS = SJ in extended form gives

A[· · · Sr · · · ] = [· · · Sr · · · ]




. . .

Jr

. . .


 ,

where Jordan block Jr is associated with the subspace of

Sr = [v w2 w3 · · · ]

Applied Mathematical Methods Diagonalization and Similarity Transformations 81,

Diagonalizability
Canonical Forms
Symmetric Matrices
Similarity Transformations

Canonical Forms
Equating blocks as ASr = SrJr gives

[Av Aw2 Aw3 · · · ] = [v w2 w3 · · · ]




λ 1
λ 1

λ
. . .
. . .




Columnwise equality leads to

Av = λv, Aw2 = v + λw2, Aw3 = w2 + λw3, · · ·

Generalized eigenvectors w2, w3 etc:

(A − λI)v = 0,

(A − λI)w2 = v and (A − λI)2w2 = 0,

(A − λI)w3 = w2 and (A − λI)3w3 = 0, · · ·
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Canonical Forms

Diagonal form

I Special case of Jordan form, with each Jordan block of 1× 1
size

I Matrix is diagonalizable

I Similarity transformation matrix S is composed of n linearly
independent eigenvectors as columns

I None of the eigenvectors admits any generalized eigenvector

I Equal geometric and algebraic multiplicities for every
eigenvalue
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Canonical Forms

Triangular form
Triangularization: Change of basis of a linear tranformation so as
to get its matrix in the triangular form

I For real eigenvalues, always possible to accomplish with
orthogonal similarity transformation

I Always possible to accomplish with unitary similarity
transformation, with complex arithmetic

I Determination of eigenvalues

Note: The case of complex eigenvalues: 2× 2 real diagonal block

[
α −β
β α

]
∼
[
α+ iβ 0

0 α− iβ

]
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Canonical Forms

Forms that can be obtained with pre-determined number of
arithmetic operations (without iteration):

Tridiagonal form: non-zero entries only in the (leading) diagonal,
sub-diagonal and super-diagonal

I useful for symmetric matrices

Hessenberg form: A slight generalization of a triangular matrix

Hu =




∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗

. . .
. . .

...
...

. . .
. . .

...
∗ ∗




Note: Tridiagonal and Hessenberg forms do not fall in the
category of canonical forms.
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Symmetric Matrices

A real symmetric matrix has all real eigenvalues and

is diagonalizable through an orthogonal similarity

transformation.

Eigenvalues must be real.
A complete set of eigenvectors exists.
Eigenvectors corresponding to distinct eigenvalues are

necessarily orthogonal.
Corresponding to repeated eigenvalues, orthogonal eigenvectors

are available.

In all cases of a symmetric matrix, we can form an
orthogonal matrix V, such that VTAV = Λ is a real
diagonal matrix.

Further, A = VΛVT .

Similar results for complex Hermitian matrices.
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Symmetric Matrices

Proposition: Eigenvalues of a real symmetric matrix must be real.

Take A ∈ Rn×n such that A = AT , with eigenvalue λ = h + ik .

Since λI −A is singular, so is

B = (λI −A) (λ̄I −A) = (hI −A + ikI)(hI −A − ikI)

= (hI −A)2 + k2I

For some x 6= 0, Bx = 0, and

xTBx = 0⇒ xT (hI −A)T (hI −A)x + k2xT x = 0

Thus, ‖(hI −A)x‖2 + ‖kx‖2 = 0

k = 0 and λ = h
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Symmetric Matrices

Proposition: A symmetric matrix possesses a complete set of
eigenvectors.

Consider a repeated real eigenvalue λ of A and examine its Jordan
block(s).

Suppose Av = λv.
The first generalized eigenvector w satisfies (A − λI)w = v, giving

vT (A − λI)w = vT v ⇒ vTATw − λvTw = vT v

⇒ (Av)Tw − λvTw = ‖v‖2
⇒ ‖v‖2 = 0

which is absurd.

An eigenvector will not admit a generalized eigenvector.

All Jordan blocks will be of 1× 1 size.
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Symmetric Matrices

Proposition: Eigenvectors of a symmetric matrix corresponding to
distinct eigenvalues are necessarily orthogonal.

Take two eigenpairs (λ1, v1) and (λ2, v2), with λ1 6= λ2.

vT
1 Av2 = vT

1 (λ2v2) = λ2v
T
1 v2

vT
1 Av2 = vT

1 ATv2 = (Av1)Tv2 = (λ1v1)T v2 = λ1v
T
1 v2

From the two expressions, (λ1 − λ2)vT
1 v2 = 0

vT
1 v2 = 0

Proposition: Corresponding to a repeated eigenvalue of a
symmetric matrix, an appropriate number of orthogonal
eigenvectors can be selected.

If λ1 = λ2, then the entire subspace < v1, v2 > is an eigenspace.
Select any two mutually orthogonal eigenvectors for the basis.
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Symmetric Matrices

Facilities with the ‘omnipresent’ symmetric matrices:

I Expression

A = VΛVT

= [v1 v2 · · · vn]




λ1

λ2

. . .

λn







vT
1

vT
2
...

vT
n




= λ1v1v
T
1 + λ2v2v

T
2 + · · ·+ λnvnv

T
n =

n∑

i=1

λiviv
T
i

I Reconstruction from a sum of rank-one components
I Efficient storage with only large eigenvalues and corresponding

eigenvectors
I Deflation technique
I Stable and effective methods: easier to solve the eigenvalue

problem
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Similarity Transformations

Hessenberg

Symmetric Tridiagonal Triangular

Symmetric Tridiagonal

Diagonal

General

Figure: Eigenvalue problem: forms and steps

How to find suitable similarity transformations?

1. rotation

2. reflection

3. matrix decomposition or factorization

4. elementary transformation
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Points to note

I Generally possible reduction: Jordan canonical form

I Condition of diagonalizability and the diagonal form

I Possible with orthogonal similarity transformations: triangular
form

I Useful non-canonical forms: tridiagonal and Hessenberg

I Orthogonal diagonalization of symmetric matrices

Caution: Each step in this context to be effected through
similarity transformations

Necessary Exercises: 1,2,4
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Outline

Jacobi and Givens Rotation Methods
(for symmetric matrices)

Plane Rotations
Jacobi Rotation Method
Givens Rotation Method
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Plane Rotations

Y

X

X

Y /

/

x

y

x

y

/

/

N

P (x, y)

O

φ

φ
L

K

M

Figure: Rotation of axes and change of basis

x = OL + LM = OL + KN = x ′ cosφ+ y ′ sinφ

y = PN −MN = PN − LK = y ′ cosφ− x ′ sinφ
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Plane Rotations

Orthogonal change of basis:

r =

[
x
y

]
=

[
cosφ sinφ
− sinφ cosφ

] [
x ′

y ′

]
= <r′

Mapping of position vectors with

<−1 = <T =

[
cosφ − sinφ
sinφ cosφ

]

In three-dimensional (ambient) space,

<xy =




cosφ sinφ 0
− sinφ cosφ 0

0 0 1


 , <xz =




cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


 etc.
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Plane Rotations
Generalizing to n-dimensional Euclidean space (R n),

Ppq =




1 0 0
1 0 0

. . .
...

...
1 0 0

0 0 · · · 0 c 0 · · · 0 s · · · 0
0 1 0
...

. . .
...

0 1 0
0 0 · · · 0 −s 0 · · · 0 c · · · 0

...
...

. . .

0 0 1




Matrix A is transformed as

A′ = P−1
pq APpq = PT

pqAPpq ,

only the p-th and q-th rows and columns being affected.
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Jacobi Rotation Method

a′pr = a′rp = carp − sarq for p 6= r 6= q,

a′qr = a′rq = carq + sarp for p 6= r 6= q,

a′pp = c2app + s2aqq − 2scapq ,

a′qq = s2app + c2aqq + 2scapq , and

a′pq = a′qp = (c2 − s2)apq + sc(app − aqq)

In a Jacobi rotation,

a′pq = 0⇒ c2 − s2

2sc
=

aqq − app

2apq
= k (say).

Left side is cot 2φ: solve this equation for φ.

Jacobi rotation transformations P12, P13, · · · , P1n; P23, · · · , P2n;
· · · ; Pn−1,n complete a full sweep.

Note: The resulting matrix is far from diagonal!
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Jacobi Rotation Method
Sum of squares of off-diagonal terms before the transformation

S =
∑

r 6=s

|ars |2 = 2


∑

r 6=p

a2
rp +

∑

p 6=r 6=q

a2
rq




= 2


 ∑

p 6=r 6=q

(a2
rp + a2

rq) + a2
pq




and that afterwards

S ′ = 2


 ∑

p 6=r 6=q

(a′2rp + a′2rq) + a′2pq




= 2
∑

p 6=r 6=q

(a2
rp + a2

rq)

differ by

∆S = S ′ − S = −2a2
pq ≤ 0; and S → 0.
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Givens Rotation Method

While applying the rotation Ppq, demand a′rq = 0: tanφ = − arq

arp

r = p − 1: Givens rotation

I Once ap−1,q is annihilated, it is never updated again!

Sweep P23, P24, · · · , P2n; P34, · · · , P3n; · · · ; Pn−1,n to
annihilate a13, a14, · · · , a1n; a24, · · · , a2n; · · · ; an−2,n.

Symmetric tridiagonal matrix

How do eigenvectors transform through Jacobi/Givens rotation
steps?

∼
A = · · ·P(2)T P(1)T AP(1)P(2) · · ·

Product matrix P(1)P(2) · · · gives the basis.

To record it, initialize V by identity and keep multiplying new
rotation matrices on the right side.
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Givens Rotation Method

Contrast between Jacobi and Givens rotation methods

I What happens to intermediate zeros?

I What do we get after a complete sweep?

I How many sweeps are to be applied?

I What is the intended final form of the matrix?

I How is size of the matrix relevant in the choice of the method?

Fast forward ...

I Housholder method accomplishes ‘tridiagonalization’ more
efficiently than Givens rotation method.

I But, with a half-processed matrix, there come situations in
which Givens rotation method turns out to be more efficient!
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Jacobi Rotation Method
Givens Rotation Method

Points to note

Rotation transformation on symmetric matrices

I Plane rotations provide orthogonal change of basis that can
be used for diagonalization of matrices.

I For small matrices (say 4 ≤ n ≤ 8), Jacobi rotation sweeps
are competitive enough for diagonalization upto a reasonable
tolerance.

I For large matrices, one sweep of Givens rotations can be
applied to get a symmetric tridiagonal matrix, for efficient
further processing.

Necessary Exercises: 2,3,4
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Householder Transformation and Tridiagonal Matrices
Householder Reflection Transformation
Householder Method
Eigenvalues of Symmetric Tridiagonal Matrices
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Householder Reflection Transformation
u

w

v

u − v

O
Plane of 
Reflection  

Figure: Vectors in Householder reflection

Consider u, v ∈ Rk , ‖u‖ = ‖v‖ and w = u−v
‖u−v‖ .

Householder reflection matrix

Hk = Ik − 2wwT

is symmetric and orthogonal.

For any vector x orthogonal to w,

Hkx = (Ik −2wwT )x = x and Hkw = (Ik−2wwT )w = −w.

Hence, Hky = Hk(yw + y⊥) = −yw + y⊥, Hku = v and Hkv = u.
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Householder Method

Consider n × n symmetric matrix A.
Let u = [a21 a31 · · · an1]T ∈ Rn−1 and v = ‖u‖e1 ∈ Rn−1.

Construct P1 =

[
1 0
0 Hn−1

]
and operate as

A(1) = P1AP1 =

[
1 0
0 Hn−1

] [
a11 uT

u A1

] [
1 0
0 Hn−1

]

=

[
a11 vT

v Hn−1A1Hn−1

]
.

Reorganizing and re-naming,

A(1) =




d1 e2 0
e2 d2 uT

2

0 u2 A2


 .
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Householder Method
Next, with v2 = ‖u2‖e1, we form

P2 =

[
I2 0
0 Hn−2

]

and operate as A(2) = P2A
(1)P2.

After j steps,

A(j) =




d1 e2

e2 d2
. . .

. . .
. . . ej+1

ej+1 dj+1 uT
j+1

uj+1 Aj+1




By n − 2 steps, with P = P1P2P3 · · ·Pn−2,

A(n−2) = PTAP

is symmetric tridiagonal.
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Eigenvalues of Symmetric Tridiagonal Matrices

T =




d1 e2

e2 d2
. . .

. . .
. . . en−1

en−1 dn−1 en

en dn




Characteristic polynomial

p(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− d1 −e2

−e2 λ− d2
. . .

. . .
. . . −en−1

−en−1 λ− dn−1 −en

−en λ− dn

∣∣∣∣∣∣∣∣∣∣∣∣

.
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Eigenvalues of Symmetric Tridiagonal Matrices

Characteristic polynomial of the leading k × k sub-matrix: pk(λ)

p0(λ) = 1,

p1(λ) = λ− d1,

p2(λ) = (λ− d2)(λ− d1)− e2
2 ,

· · · · · · · · · ,
pk+1(λ) = (λ− dk+1)pk(λ)− e2

k+1pk−1(λ).

P(λ) = {p0(λ), p1(λ), · · · , pn(λ)}
I a Sturmian sequence if ej 6= 0 ∀j

Question: What if ej = 0 for some j?!
Answer: That is good news. Split the matrix.
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Eigenvalues of Symmetric Tridiagonal Matrices

Sturmian sequence property of P(λ) with ej 6= 0:

Interlacing property: Roots of pk+1(λ) interlace the
roots of pk(λ). That is, if the roots of pk+1(λ) are
λ1 > λ2 > · · · > λk+1 and those of pk(λ) are
µ1 > µ2 > · · · > µk ; then

λ1 > µ1 > λ2 > µ2 > · · · · · · > λk > µk > λk+1.

This property leads to a convenient procedure .
Proof

p1(λ) has a single root, d1.

p2(d1) = −e2
2 < 0,

Since p2(±∞) =∞ > 0, roots t1 and t2 of p2(λ) are separated as
∞ > t1 > d1 > t2 > −∞.

The statement is true for k = 1.

Applied Mathematical Methods Householder Transformation and Tridiagonal Matrices 108,

Householder Reflection Transformation
Householder Method
Eigenvalues of Symmetric Tridiagonal Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Next, we assume that the statement is true for k = i .
Roots of pi(λ): α1 > α2 > · · · > αi

Roots of pi+1(λ): β1 > β2 > · · · > βi > βi+1

Roots of pi+2(λ): γ1 > γ2 > · · · > γi > γi+1 > γi+2

Assumption: β1 > α1 > β2 > α2 > · · · · · · > βi > αi > βi+1

p (    )λ
i

p
i+1

λ

Ο Ο
α α α

β ββ

β β

α α

 i α i−1 1

α  jj+1 j−1

i+1

2

 i
β

2 1

j+1  j

ve ve

(a)  Roots of and    (    )

 Sign of i
p(b) p

i+2

γ γ
 i+2 1

8 
 

8 
 

Figure: Interlacing of roots of characteristic polynomials

To show: γ1 > β1 > γ2 > β2 > · · · · · · > γi+1 > βi+1 > γi+2
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Eigenvalues of Symmetric Tridiagonal Matrices

Since β1 > α1, pi(β1) is of the same sign as pi(∞), i.e. positive.

Therefore, pi+2(β1) = −e2
i+2pi(β1) is negative.

But, pi+2(∞) is clearly positive.

Hence, γ1 ∈ (β1,∞).
Similarly, γi+2 ∈ (−∞, βi+1).

Question: Where are the rest of the i roots of pi+2(λ)?

pi+2(βj) = (βj − di+2)pi+1(βj )− e2
i+2pi(βj ) = −e2

i+2pi (βj )

pi+2(βj+1) = −e2
i+2pi (βj+1)

That is, pi and pi+2 are of opposite signs at each β.
Refer figure.

Over [βi+1, β1], pi+2(λ) changes sign over each sub-interval
[βj+1, βj ], along with pi (λ), to maintain opposite signs at each β.

Conclusion: pi+2(λ) has exactly one root in (βj+1, βj ).
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Eigenvalues of Symmetric Tridiagonal Matrices

Examine sequence P(w) = {p0(w), p1(w), p2(w), · · · , pn(w)}.
If pk(w) and pk+1(w) have opposite signs then pk+1(λ) has one
root more than pk(λ) in the interval (w ,∞).

Number of roots of pn(λ) above w = number of sign
changes in the sequence P(w).

Consequence: Number of roots of pn(λ) in (a, b) = difference
between numbers of sign changes in P(a) and P(b).

Bisection method: Examine the sequence at a+b
2 .

Separate roots, bracket each of them and then squeeze
the interval!

Any way to start with an interval to include all eigenvalues?

|λi | ≤ λbnd = max
1≤j≤n

{|ej |+ |dj |+ |ej+1|}
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Eigenvalues of Symmetric Tridiagonal Matrices

Algorithm

I Identify the interval [a, b] of interest.

I For a degenerate case (some ej = 0), split the given matrix.
I For each of the non-degenerate matrices,

I by repeated use of bisection and study of the sequence P(λ),
bracket individual eigenvalues within small sub-intervals, and

I by further use of the bisection method (or a substitute) within
each such sub-interval, determine the individual eigenvalues to
the desired accuracy.

Note: The algorithm is based on Sturmian sequence property .

Applied Mathematical Methods Householder Transformation and Tridiagonal Matrices 112,

Householder Reflection Transformation
Householder Method
Eigenvalues of Symmetric Tridiagonal Matrices

Points to note

I A Householder matrix is symmetric and orthogonal. It effects
a reflection transformation.

I A sequence of Householder transformations can be used to
convert a symmetric matrix into a symmetric tridiagonal form.

I Eigenvalues of the leading square sub-matrices of a symmetric
tridiagonal matrix exhibit a useful interlacing structure.

I This property can be used to separate and bracket eigenvalues.

I Method of bisection is useful in the separation as well as
subsequent determination of the eigenvalues.

Necessary Exercises: 2,4,5
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QR Decomposition

Decomposition (or factorization) A = QR into two factors,
orthogonal Q and upper-triangular R:

(a) It always exists.
(b) Performing this decomposition is pretty straightforward.
(c) It has a number of properties useful in the solution of the

eigenvalue problem.

[a1 · · · an] = [q1 · · · qn]




r11 · · · r1n
. . .

...
rnn




A simple method based on Gram-Schmidt orthogonalization:
Considering columnwise equality aj =

∑j
i=1 rijqi ,

for j = 1, 2, 3, · · · , n;

rij = qT
i aj ∀i < j , a′j = aj −

j−1∑

i=1

rijqi , rjj = ‖a′j‖;

qj =

{
a′j/rjj , if rjj 6= 0;

any vector satisfying qT
i qj = δij for 1 ≤ i ≤ j , if rjj = 0.



Applied Mathematical Methods QR Decomposition Method 115,

QR Decomposition
QR Iterations
Conceptual Basis of QR Method*
QR Algorithm with Shift*

QR Decomposition

Practical method: one-sided Householder transformations,
starting with

u0 = a1, v0 = ‖u0‖e1 ∈ Rn and w0 =
u0 − v0

‖u0 − v0‖

and P0 = Hn = In − 2w0w
T
0 .

Pn−2Pn−3 · · ·P2P1P0A = Pn−2Pn−3 · · ·P2P1

[
‖a1‖ ∗∗
0 A0

]

= Pn−2Pn−3 · · ·P2




r11 ∗ ∗∗
r22 ∗∗

A1


 = · · · · · · = R

With

Q = (Pn−2Pn−3 · · ·P2P1P0)T = P0P1P2 · · ·Pn−3Pn−2,

we have QTA = R ⇒ A = QR.
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QR Decomposition

Alternative method useful for tridiagonal and Hessenberg
matrices: One-sided plane rotations

I rotations P12, P23 etc to annihilate a21, a32 etc in that
sequence

Givens rotation matrices!

Application in solution of a linear system: Q and R factors of
a matrix A come handy in the solution of Ax = b

QRx = b ⇒ Rx = QTb

needs only a sequence of back-substitutions.
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QR Iterations

Multiplying Q and R factors in reverse,

A′ = RQ = QTAQ,

an orthogonal similarity transformation.

1. If A is symmetric, then so is A′.

2. If A is in upper Hessenberg form, then so is A′.

3. If A is symmetric tridiagonal, then so is A′.

Complexity of QR iteration: O(n) for a symmetric tridiagonal
matrix, O(n2) operation for an upper Hessenberg matrix and
O(n3) for the general case.

Algorithm: Set A1 = A and for k = 1, 2, 3, · · · ,
I decompose Ak = QkRk ,

I reassemble Ak+1 = RkQk .

As k →∞, Ak approaches the quasi-upper-triangular form.
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QR Iterations

Quasi-upper-triangular form:



λ1 ∗ · · · ∗ ?? · · · ∗ ∗
λ2 · · · ∗ ?? · · · ∗ ∗

. . . ∗ ?? · · · ∗ ∗
λr ?? · · · ∗ ∗

Bk · · · ∗ ∗
. . .

...
...[

α −ω
ω β

]




,

with |λ1| > |λ2| > · · · .
I Diagonal blocks Bk correspond to eigenspaces of equal/close

(magnitude) eigenvalues.
I 2× 2 diagonal blocks often correspond to pairs of complex

eigenvalues (for non-symmetric matrices).
I For symmetric matrices, the quasi-upper-triangular form

reduces to quasi-diagonal form.
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Conceptual Basis of QR Method*

QR decomposition algorithm operates on the basis of the relative
magnitudes of eigenvalues and segregates subspaces.

With k →∞,

AkRange{e1} = Range{q1} → Range{v1}

and (a1)k → QT
k Aq1 = λ1QT

k q1 = λ1e1.

Further,

AkRange{e1, e2} = Range{q1,q2} → Range{v1, v2}.

and (a2)k → QT
k Aq2 =




(λ1 − λ2)α1

λ2

0


.

And, so on ...
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QR Algorithm with Shift*

For λi < λj , entry aij decays through iterations as
(
λi

λj

)k

.

With shift,

Āk = Ak − µk I;

Āk = QkRk , Āk+1 = RkQk ;

Ak+1 = Āk+1 + µk I.

Resulting transformation is

Ak+1 = RkQk + µk I = QT
k ĀkQk + µk I

= QT
k (Ak − µk I)Qk + µk I = QT

k AkQk .

For the iteration,

convergence ratio = λi−µk

λj−µk
.

Question: How to find a suitable value for µk?
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Points to note

I QR decomposition can be effected on any square matrix.

I Practical methods of QR decomposition use Householder
transformations or Givens rotations.

I A QR iteration effects a similarity transformation on a matrix,
preserving symmetry, Hessenberg structure and also a
symmetric tridiagonal form.

I A sequence of QR iterations converge to an almost
upper-triangular form.

I Operations on symmetric tridiagonal and Hessenberg forms
are computationally efficient.

I QR iterations tend to order subspaces according to the
relative magnitudes of eigenvalues.

I Eigenvalue shifting is useful as an expediting strategy.

Necessary Exercises: 1,3
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Introductory Remarks

I A general (non-symmetric) matrix may not be diagonalizable.
We attempt to triangularize it.

I With real arithmetic, 2× 2 diagonal blocks are inevitable —
signifying complex pair of eigenvalues.

I Higher computational complexity, slow convergence and lack
of numerical stability.

A non-symmetric matrix is usually unbalanced and is prone to
higher round-off errors.

Balancing as a pre-processing step: multiplication of a row and
division of the corresponding column with the same number,
ensuring similarity.

Note: A balanced matrix may get unbalanced again through
similarity transformations that are not orthogonal!
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Reduction to Hessenberg Form*

Methods to find appropriate similarity transformations

1. a full sweep of Givens rotations,

2. a sequence of n− 2 steps of Householder transformations, and

3. a cycle of coordinated Gaussian elimination.

Method based on Gaussian elimination or elementary
transformations:

The pre-multiplying matrix corresponding to the
elementary row transformation and the post-multiplying
matrix corresponding to the matching column
transformation must be inverses of each other.

Two kinds of steps

I Pivoting

I Elimination
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Reduction to Hessenberg Form*

Pivoting step: Ā = PrsAPrs = P−1
rs APrs .

I Permutation Prs : interchange of r -th and s-th columns.

I P−1
rs = Prs : interchange of r -th and s-th rows.

I Pivot locations: a21, a32, · · · , an−1,n−2.

Elimination step: Ā = G−1
r AGr with elimination matrix

Gr =




Ir 0 0
0 1 0
0 k In−r−1


 and G−1

r =




Ir 0 0
0 1 0
0 −k In−r−1


 .

I G−1
r : Row (r + 1 + i)← Row (r + 1 + i)− ki× Row (r + 1)

for i = 1, 2, 3, · · · , n − r − 1

I Gr : Column (r + 1)← Column (r + 1)+∑n−r−1
i=1 [ki× Column (r + 1 + i) ]
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QR Algorithm on Hessenberg Matrices*

QR iterations: O(n2) operations for upper Hessenberg form.

Whenever a sub-diagonal zero appears, the matrix is split
into two smaller upper Hessenberg blocks, and they are
processed separately, thereby reducing the cost drastically.

Particular cases:

I an,n−1 → 0: Accept ann = λn as an eigenvalue, continue with
the leading (n − 1)× (n − 1) sub-matrix.

I an−1,n−2 → 0: Separately find the eigenvalues λn−1 and λn

from

[
an−1,n−1 an−1,n

an,n−1 an,n

]
, continue with the leading

(n − 2)× (n − 2) sub-matrix.

Shift strategy: Double QR steps.
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Inverse Iteration

Assumption: Matrix A has a complete set of eigenvectors.

(λi )0: a good estimate of an eigenvalue λi of A.

Purpose: To find λi precisely and also to find vi .

Step: Select a random vector y0 (with ‖y0‖ = 1) and solve

[A − (λi )0I]y = y0.

Result: y is a good estimate of vi and

(λi )1 = (λi )0 +
1

yT
0 y

is an improvement in the estimate of the eigenvalue.

How to establish the result and work out an algorithm ?
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Inverse Iteration

With y0 =
∑n

j=1 αjvj and y =
∑n

j=1 βjvj , [A− (λi)0I]y = y0 gives

n∑

j=1

βj [A − (λi )0I]vj =
n∑

j=1

αjvj

⇒ βj [λj − (λi)0] = αj ⇒ βj =
αj

λj − (λi )0
.

βi is typically large and eigenvector vi dominates y.

Avi = λivi gives [A − (λi )0I]vi = [λi − (λi )0]vi . Hence,

[λi − (λi )0]y ≈ [A − (λi )0I]y = y0.

Inner product with y0 gives

[λi − (λi )0]yT
0 y ≈ 1 ⇒ λi ≈ (λi )0 +

1

yT
0 y

.
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Inverse Iteration

Algorithm:

Start with estimate (λi )0, guess y0 (normalized).
For k = 0, 1, 2, · · ·

I Solve [A − (λi)k I]y = yk .

I Normalize yk+1 = y
‖y‖ .

I Improve (λi )k+1 = (λi )k + 1
yT
k

y
.

I If ‖yk+1 − yk‖ < ε, terminate.

Important issues

I Update eigenvalue once in a while, not at every iteration.

I Use some acceptable small number as artificial pivot.

I The method may not converge for defective matrix or for one
having complex eigenvalues.

I Repeated eigenvalues may inhibit the process.
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Recommendation

Table: Eigenvalue problem: summary of methods

Type Size Reduction Algorithm Post-processing
General Small Definition: Polynomial Solution of

(up to 4) Characteristic root finding linear systems
polynomial (eigenvalues) (eigenvectors)

Symmetric Intermediate Jacobi sweeps Selective
(say, 4–12) Jacobi rotations

Tridiagonalization Sturm sequence Inverse iteration
(Givens rotation property: (eigenvalue
or Householder Bracketing and improvement
method) bisection and eigenvectors)

(rough eigenvalues)
Large Tridiagonalization QR decomposition

(usually iterations
Householder method)
Balancing, and then

Non- Intermediate Reduction to QR decomposition Inverse iteration
symmetric Large Hessenberg form iterations (eigenvectors)

(Above methods or (eigenvalues)
Gaussian elimination)

General Very large Power method,
(selective shift and deflation
requirement)
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Points to note

I Eigenvalue problem of a non-symmetric matrix is difficult!

I Balancing and reduction to Hessenberg form are desirable
pre-processing steps.

I QR decomposition algorithm is typically used for reduction to
an upper-triangular form.

I Use inverse iteration to polish eigenvalue and find
eigenvectors.

I In algebraic eigenvalue problems, different methods or
combinations are suitable for different cases; regarding matrix
size, symmetry and the requirements.

Necessary Exercises: 1,2

Applied Mathematical Methods Singular Value Decomposition 132,

SVD Theorem and Construction
Properties of SVD
Pseudoinverse and Solution of Linear Systems
Optimality of Pseudoinverse Solution
SVD Algorithm

Outline

Singular Value Decomposition
SVD Theorem and Construction
Properties of SVD
Pseudoinverse and Solution of Linear Systems
Optimality of Pseudoinverse Solution
SVD Algorithm



Applied Mathematical Methods Singular Value Decomposition 133,

SVD Theorem and Construction
Properties of SVD
Pseudoinverse and Solution of Linear Systems
Optimality of Pseudoinverse Solution
SVD Algorithm

SVD Theorem and Construction
Eigenvalue problem: A = UΛV−1 where U = V

Do not ask for similarity. Focus on the form of the decomposition.

Guaranteed decomposition with orthogonal U, V, and
non-negative diagonal entries in Λ.

A = UΣVT such that UTAV = Σ

SVD Theorem For any real matrix A ∈ Rm×n, there
exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such
that

UTAV = Σ ∈ Rm×n

is a diagonal matrix, with diagonal entries σ1, σ2, · · · ≥ 0,
obtained by appending the square diagonal matrix
diag (σ1, σ2, · · · , σp) with (m − p) zero rows or (n − p)
zero columns, where p = min(m, n).

Singular values: σ1, σ2, · · · , σp .
Similar result for complex matrices
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SVD Theorem and Construction
Question: How to construct U, V and Σ?

For A ∈ Rm×n,

ATA = (VΣTUT )(UΣVT ) = VΣT ΣVT = VΛVT ,

where Λ = ΣT Σ is an n × n diagonal matrix.

Σ =




σ1 |
σ2 |

. . . | 0
σp |

−− −− −− −− −+− −−
0 | ×




Determine V and Λ. Work out Σ and we have

A = UΣVT ⇒ AV = UΣ

This provides a proof as well!
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SVD Theorem and Construction

From AV = UΣ, determine columns of U.

1. Column Avk = σkuk , with σk 6= 0: determine column uk .

Columns developed are bound to be mutually
orthonormal!

Verify uT
i uj =

(
1
σi

Avi

)T (
1
σj

Avj

)
= δij .

2. Column Avk = σkuk , with σk = 0: uk is left indeterminate
(free).

3. In the case of m < n, identically zero columns Avk = 0 for
k > m: no corresponding columns of U to determine.

4. In the case of m > n, there will be (m − n) columns of U left
indeterminate.

Extend columns of U to an orthonormal basis.

All three factors in the decomposition are constructed, as desired.
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Properties of SVD

For a given matrix, the SVD is unique up to

(a) the same permutations of columns of U, columns of V and
diagonal elements of Σ;

(b) the same orthonormal linear combinations among columns of
U and columns of V, corresponding to equal singular values;
and

(c) arbitrary orthonormal linear combinations among columns of
U or columns of V, corresponding to zero or non-existent
singular values.

Ordering of the singular values:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and σr+1 = σr+2 = · · · = σp = 0.

Rank(A) = Rank(Σ) = r

Rank of a matrix is the same as the number of its
non-zero singular values.
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Properties of SVD

Ax = UΣVT x = UΣy = [u1 · · · ur ur+1 · · · um]




σ1y1
...

σryr

0




= σ1y1u1 + σ2y2u2 + · · ·+ σryrur

has non-zero components along only the first r columns of U.

U gives an orthonormal basis for the co-domain such that

Range(A) = < u1,u2, · · · ,ur > .

With VTx = y, vT
k x = yk , and

x = y1v1 + y2v2 + · · ·+ yrvr + yr+1vr+1 + · · · ynvn.

V gives an orthonormal basis for the domain such that

Null(A) = < vr+1, vr+2, · · · , vn > .
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Properties of SVD

In basis V, v = c1v1 + c2v2 + · · · + cnvn = Vc and the norm is
given by

‖A‖2 = max
v

‖Av‖2
‖v‖2 = max

v

vTATAv

vT v

= max
c

cTVTATAVc

cTVTVc
= max

c

cT ΣT Σc

cTc
= max

c

∑
k σ

2
kc2

k∑
k c2

k

.

‖A‖ =

√
maxc

P

k σ
2
k
c2
k

P

k c2
k

= σmax

For a non-singular square matrix,

A−1 = (UΣVT )−1 = VΣ−1UT = V diag

(
1

σ1
,

1

σ2
, · · · , 1

σn

)
UT .

Then, ‖A−1‖ = 1
σmin

and the condition number is

κ(A) = ‖A‖ ‖A−1‖ =
σmax

σmin
.
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Properties of SVD

Revision of definition of norm and condition number:

The norm of a matrix is the same as its largest singular
value, while its condition number is given by the ratio of
the largest singular value to the least.

Arranging singular values in decreasing order, with Rank(A) = r ,

U = [Ur Ū] and V = [Vr V̄],

A = UΣVT = [Ur Ū]

[
Σr 0
0 0

] [
VT

r

V̄T

]
,

or,

A = Ur ΣrV
T
r =

r∑

k=1

σkukv
T
k .

Efficient storage and reconstruction!
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Pseudoinverse and Solution of Linear Systems

Generalized inverse: G is called a generalized inverse or g-inverse
of A if, for b ∈ Range(A), Gb is a solution of Ax = b.

The Moore-Penrose inverse or the pseudoinverse:

A# = (UΣVT )# = (VT )#Σ#U# = VΣ#UT

With Σ =

[
Σr 0
0 0

]
, Σ# =

[
Σ−1

r 0
0 0

]
.

Or, Σ# =




ρ1 |
ρ2 |

. . . | 0
ρp |

−− −− −− −− −+− −−
0 | ×



,

where ρk =

{ 1
σk
, for σk 6= 0 or for |σk | > ε;

0, for σk = 0 or for |σk | ≤ ε.
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Pseudoinverse and Solution of Linear Systems

Inverse-like facets and beyond

I (A#)# = A.

I If A is invertible, then A# = A−1.
I A#b gives the correct unique solution.

I If Ax = b is an under-determined consistent system, then
A#b selects the solution x∗ with the minimum norm.

I If the system is inconsistent, then A#b minimizes the least
square error ‖Ax − b‖.

I If the minimizer of ‖Ax − b‖ is not unique, then it picks up
that minimizer which has the minimum norm ‖x‖ among such
minimizers.

Contrast with Tikhonov regularization:

Pseudoinverse solution for precision and diagnosis.
Tikhonov’s solution for continuity of solution over
variable A and computational efficiency.
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Optimality of Pseudoinverse Solution

Pseudoinverse solution of Ax = b:

x∗ = VΣ#UTb =
r∑

k=1

ρkvku
T
k b =

r∑

k=1

(uT
k b/σk)vk

Minimize

E (x) =
1

2
(Ax − b)T (Ax − b) =

1

2
xTATAx − xTATb +

1

2
bTb

Condition of vanishing gradient:

∂E

∂x
= 0 ⇒ ATAx = ATb

⇒ V(ΣT Σ)VT x = VΣTUTb

⇒ (ΣT Σ)VTx = ΣTUTb

⇒ σ2
kv

T
k x = σku

T
k b

⇒ vT
k x = uT

k b/σk for k = 1, 2, 3, · · · , r .

Applied Mathematical Methods Singular Value Decomposition 143,

SVD Theorem and Construction
Properties of SVD
Pseudoinverse and Solution of Linear Systems
Optimality of Pseudoinverse Solution
SVD Algorithm

Optimality of Pseudoinverse Solution

With V̄ = [vr+1 vr+2 · · · vn], then

x =
r∑

k=1

(uT
k b/σk)vk + V̄y = x∗ + V̄y.

How to minimize ‖x‖2 subject to E (x) minimum?

Minimize E1(y) = ‖x∗ + V̄y‖2.

Since x∗ and V̄y are mutually orthogonal,

E1(y) = ‖x∗ + V̄y‖2 = ‖x∗‖2 + ‖V̄y‖2

is minimum when V̄y = 0, i.e. y = 0.
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Optimality of Pseudoinverse Solution

Anatomy of the optimization through SVD
Using basis V for domain and U for co-domain, the variables are
transformed as

VT x = y and UTb = c.

Then,

Ax = b ⇒ UΣVT x = b ⇒ ΣVTx = UTb ⇒ Σy = c.

A completely decoupled system!
Usable components: yk = ck/σk for k = 1, 2, 3, · · · , r .
For k > r ,

I completely redundant information (ck = 0)

I purely unresolvable conflict (ck 6= 0)

SVD extracts this pure redundancy/inconsistency.
Setting ρk = 0 for k > r rejects it wholesale!
At the same time, ‖y‖ is minimized, and hence ‖x‖ too.



Applied Mathematical Methods Singular Value Decomposition 145,

SVD Theorem and Construction
Properties of SVD
Pseudoinverse and Solution of Linear Systems
Optimality of Pseudoinverse Solution
SVD Algorithm

Points to note

I SVD provides a complete orthogonal decomposition of the
domain and co-domain of a linear transformation, separating
out functionally distinct subspaces.

I If offers a complete diagnosis of the pathologies of systems of
linear equations.

I Pseudoinverse solution of linear systems satisfy meaningful
optimality requirements in several contexts.

I With the existence of SVD guaranteed, many important
results can be established in a straightforward manner.

Necessary Exercises: 2,4,5,6,7
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Group

A set G and a binary operation, say ‘+’, fulfilling

Closure: a + b ∈ G ∀a, b ∈ G

Associativity: a + (b + c) = (a + b) + c , ∀a, b, c ∈ G

Existence of identity: ∃0 ∈ G such that ∀a ∈ G , a + 0 = a = 0 + a

Existence of inverse: ∀a ∈ G , ∃(−a) ∈ G such that
a + (−a) = 0 = (−a) + a

Examples: (Z ,+), (Z ,+), (Q − {0}, ·), 2× 5 real matrices,
Rotations etc.

I Commutative group

I Subgroup
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Field

A set F and two binary operations, say ‘+’ and ‘·’, satisfying

Group property for addition: (F ,+) is a commutative group.
(Denote the identity element of this group as ‘0’.)

Group property for multiplication: (F − {0}, ·) is a commutative
group. (Denote the identity element of this group as
‘1’.)

Distributivity: a · (b + c) = a · b + a · c , ∀a, b, c ∈ F .

Concept of field: abstraction of a number system

Examples: (Q,+, ·), (R ,+, ·), (C ,+, ·) etc.

I Subfield
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Vector Space

A vector space is defined by

I a field F of ‘scalars’,

I a commutative group V of ‘vectors’, and

I a binary operation between F and V, that may be called
‘scalar multiplication’, such that ∀α, β ∈ F , ∀a,b ∈ V; the
following conditions hold.

Closure: αa ∈ V.
Identity: 1a = a.
Associativity: (αβ)a = α(βa).
Scalar distributivity: α(a + b) = αa + αb.
Vector distributivity: (α + β)a = αa + βa.

Examples: Rn, C n, m × n real matrices etc.

Field↔ Number system
Vector space ↔ Space
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Vector Space

Suppose V is a vector space.
Take a vector ξ1 6= 0 in it.

Then, vectors linearly dependent on ξ1:
α1ξ1 ∈ V ∀α1 ∈ F .

Question: Are the elements of V exhausted?

If not, then take ξ2 ∈ V: linearly independent from ξ1.

Then, α1ξ1 + α2ξ2 ∈ V ∀α1, α2 ∈ F .

Question: Are the elements of V exhausted now?
· · · · · · · · ·
Question: Will this process ever end?

Suppose it does.

finite dimensional vector space
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Vector Space

Finite dimensional vector space

Suppose the above process ends after n choices of linearly
independent vectors.

χ = α1ξ1 + α2ξ2 + · · ·+ αnξn

Then,

I n: dimension of the vector space

I ordered set ξ1, ξ2, · · · , ξn: a basis

I α1, α2, · · · , αn ∈ F : coordinates of χ in that basis

Rn, Rm etc: vector spaces over the field of real numbers

I Subspace

Applied Mathematical Methods Vector Spaces: Fundamental Concepts* 152,

Group
Field
Vector Space
Linear Transformation
Isomorphism
Inner Product Space
Function Space

Linear Transformation

A mapping T : V →W satisfying

T(αa + βb) = αT(a) + βT(b) ∀α, β ∈ F and ∀a,b ∈ V

where V and W are vector spaces over the field F .

Question: How to describe the linear transformation T?

I For V, basis ξ1, ξ2, · · · , ξn
I For W, basis η1, η2, · · · , ηm

ξ1 ∈ V gets mapped to T(ξ1) ∈W.

T(ξ1) = a11η1 + a21η2 + · · ·+ am1ηm

Similarly, enumerate T(ξj) =
∑m

i=1 aijηi .

Matrix A = [a1 a2 · · · an] codes this description!
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Linear Transformation

A general element χ of V can be expressed as

χ = x1ξ1 + x2ξ2 + · · · + xnξn

Coordinates in a column: x = [x1 x2 · · · xn]T

Mapping:

T(χ) = x1T(ξ1) + x2T(ξ2) + · · · + xnT(ξn),

with coordinates Ax, as we know!

Summary:

I basis vectors of V get mapped to vectors in W whose
coordinates are listed in columns of A, and

I a vector of V, having its coordinates in x, gets mapped to a
vector in W whose coordinates are obtained from Ax.
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Linear Transformation

Understanding:

I Vector χ is an actual object in the set V and the column
x ∈ Rn is merely a list of its coordinates.

I T : V →W is the linear transformation and the matrix A
simply stores coefficients needed to describe it.

I By changing bases of V and W, the same vector χ and the
same linear transformation are now expressed by different x
and A, respectively.

Matrix representation emerges as the natural description
of a linear transformation between two vector spaces.

Exercise: Set of all T : V →W form a vector space of their own!!
Analyze and describe that vector space.
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Isomorphism

Consider T : V →W that establishes a one-to-one correspondence.

I Linear transformation T defines a one-one onto mapping,
which is invertible.

I dim V = dim W

I Inverse linear transformation T−1 : W → V

I T defines (is) an isomorphism.

I Vector spaces V and W are isomorphic to each other.

I Isomorphism is an equivalence relation. V and W are
equivalent!

If we need to perform some operations on vectors in one vector
space, we may as well

1. transform the vectors to another vector space through an
isomorphism,

2. conduct the required operations there, and

3. map the results back to the original space through the inverse.
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Isomorphism

Consider vector spaces V and W over the same field F and of the
same dimension n.

Question: Can we define an isomorphism between them?

Answer: Of course. As many as we want!

The underlying field and the dimension together
completely specify a vector space, up to an isomorphism.

I All n-dimensional vector spaces over the field F are
isomorphic to one another.

I In particular, they are all isomorphic to F n.

I The representation (columns) can be considered as the
objects (vectors) themselves.
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Inner Product Space

Inner product (a,b) in a real or complex vector space: a scalar
function p : V ×V → F satisfying

Closure: ∀ a,b ∈ V, (a,b) ∈ F

Associativity: (αa,b) = α(a,b)

Distributivity: (a + b, c) = (a, c) + (b, c)

Conjugate commutativity: (b, a) = (a,b)

Positive definiteness: (a, a) ≥ 0; and (a, a) = 0 iff a = 0

Note: Property of conjugate commutativity forces (a, a) to be real.

Examples: aTb, aTWb in R , a∗b in C etc.

Inner product space: a vector space possessing an inner product

I Euclidean space: over R

I Unitary space: over C
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Inner Product Space

Inner products bring in ideas of angle and length in the geometry
of vector spaces.

Orthogonality: (a,b) = 0

Norm: ‖ · ‖ : V → R , such that ‖a‖ =
√

(a, a)

Associativity: ‖αa‖ = |α| ‖a‖
Positive definiteness: ‖a‖ > 0 for a 6= 0 and ‖0‖ = 0

Triangle inequality: ‖a + b‖ ≤ ‖a‖+ ‖b‖
Cauchy-Schwarz inequality: (a,b) ≤ ‖a‖ ‖b‖

A distance function or metric: dV : V ×V → R such that

dV(a,b) = ‖a − b‖
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Function Space

Suppose we decide to represent a continuous function
f : [a, b]→ R by the listing

vf = [f (x1) f (x2) f (x3) · · · f (xN)]T

with a = x1 < x2 < x3 < · · · < xN = b.

Note: The ‘true’ representation will require N to be infinite!

Here, vf is a real column vector.
Do such vectors form a vector space?

Correspondingly, does the set F of continuous functions
over [a, b] form a vector space?

infinite dimensional vector space
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Function Space

Vector space of continuous functions

First, (F ,+) is a commutative group.

Next, with α, β ∈ R , ∀x ∈ [a, b],

I if f (x) ∈ R , then αf (x) ∈ R

I 1 · f (x) = f (x)

I (αβ)f (x) = α[βf (x)]

I α[f1(x) + f2(x)] = αf1(x) + αf2(x)

I (α + β)f (x) = αf (x) + βf (x)

I Thus, F forms a vector space over R .

I Every function in this space is an (infinite dimensional) vector.

I Listing of values is just an obvious basis.
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Function Space

Linear dependence of (non-zero) functions f1 and f2

I f2(x) = kf1(x) for all x in the domain

I k1f1(x) + k2f2(x) = 0, ∀x with k1 and k2 not both zero.

Linear independence: k1f1(x) + k2f2(x) = 0 ∀x ⇒ k1 = k2 = 0

In general,

I Functions f1, f2, f3, · · · , fn ∈ F are linearly dependent if
∃ k1, k2, k3, · · · , kn, not all zero, such that
k1f1(x) + k2f2(x) + k3f3(x) + · · ·+ knfn(x) = 0 ∀x ∈ [a, b].

I k1f1(x) + k2f2(x) + k3f3(x) + · · ·+ knfn(x) = 0 ∀x ∈ [a, b] ⇒
k1, k2, k3, · · · , kn = 0 means that functions f1, f2, f3, · · · , fn are
linearly independent.

Example: functions 1, x , x2, x3, · · · are a set of linearly
independent functions.

Incidentally, this set is a commonly used basis.
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Function Space

Inner product: For functions f (x) and g(x) in F , the usual inner
product between corresponding vectors:

(vf , vg ) = vT
f vg = f (x1)g(x1) + f (x2)g(x2) + f (x3)g(x3) + · · ·

Weighted inner product: (vf , vg ) = vT
f Wvg =

∑
i wi f (xi )g(xi )

For the functions,

(f , g) =

∫ b

a

w(x)f (x)g(x)dx

I Orthogonality: (f , g) =
∫ b

a
w(x)f (x)g(x)dx = 0

I Norm: ‖f ‖ =
√∫ b

a
w(x)[f (x)]2dx

I Orthonormal basis:
(fj , fk ) =

∫ b

a
w(x)fj(x)fk (x)dx = δjk ∀j , k
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Points to note

I Matrix algebra provides a natural description for vector spaces
and linear transformations.

I Through isomorphisms, Rn can represent all n-dimensional
real vector spaces.

I Through the definition of an inner product, a vector space
incorporates key geometric features of physical space.

I Continuous functions over an interval constitute an infinite
dimensional vector space, complete with the usual notions.

Necessary Exercises: 6,7
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Derivatives in Multi-Dimensional Spaces

Gradient

∇f (x) ≡ ∂f

∂x
(x) =

[
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

]T

Up to the first order, δf ≈ [∇f (x)]T δx
Directional derivative

∂f

∂d
= lim

α→0

f (x + αd)− f (x)

α

Relationships:

∂f

∂ej
=
∂f

∂xj
,

∂f

∂d
= dT∇f (x) and

∂f

∂ĝ
= ‖∇f (x)‖

Among all unit vectors, taken as directions,

I the rate of change of a function in a direction is the same as
the component of its gradient along that direction, and

I the rate of change along the direction of the gradient is the
greatest and is equal to the magnitude of the gradient.
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Derivatives in Multi-Dimensional Spaces

Hessian

H(x) =
∂2f

∂x2
=




∂2f
∂x1

2
∂2f

∂x2∂x1
· · · ∂2f

∂xn∂x1
∂2f

∂x1∂x2

∂2f
∂x2

2 · · · ∂2f
∂xn∂x2

...
...

. . .
...

∂2f
∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f
∂xn

2




Meaning: ∇f (x + δx) −∇f (x) ≈
[
∂2f
∂x2 (x)

]
δx

For a vector function h(x), Jacobian

J(x) =
∂h

∂x
(x) =

[
∂h

∂x1

∂h

∂x2
· · · ∂h

∂xn

]

Underlying notion: δh ≈ [J(x)]δx
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Taylor’s Series

Taylor’s formula in the remainder form:

f (x + δx) = f (x) + f ′(x)δx

+
1

2!
f ′′(x)δx2 + · · ·+ 1

(n − 1)!
f (n−1)(x)δxn−1 +

1

n!
f (n)(xc)δxn

where xc = x + tδx with 0 ≤ t ≤ 1
Mean value theorem: existence of xc

Taylor’s series:

f (x + δx) = f (x) + f ′(x)δx +
1

2!
f ′′(x)δx2 + · · ·

For a multivariate function,

f (x + δx) = f (x) + [δxT∇]f (x) +
1

2!
[δxT∇]2f (x) + · · ·

+
1

(n − 1)!
[δxT∇]n−1f (x) +

1

n!
[δxT∇]nf (x + tδx)

f (x + δx) ≈ f (x) + [∇f (x)]T δx +
1

2
δxT

[
∂2f

∂x2
(x)

]
δx
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Chain Rule and Change of Variables

For f (x), the total differential:

df = [∇f (x)]T dx =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn

Ordinary derivative or total derivative:

df

dt
= [∇f (x)]T

dx

dt

For f (t, x(t)), total derivative: df
dt

= ∂f
∂t

+ [∇f (x)]T dx
dt

For f (v, x(v)) = f (v1, v2, · · · , vm, x1(v), x2(v), · · · , xn(v)),

∂f

∂vi

(v, x(v)) =

(
∂f

∂vi

)

x

+

[
∂f

∂x
(v, x)

]T ∂x

∂vi

=

(
∂f

∂vi

)

x

+[∇x f (v, x)]T
∂x

∂vi

⇒∇f (v, x(v)) = ∇v f (v, x) +

[
∂x

∂v
(v)

]T

∇x f (v, x)
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Chain Rule and Change of Variables

Let x ∈ Rm+n and h(x) ∈ Rm.

Partition x ∈ Rm+n into z ∈ Rn and w ∈ Rm.

System of equations h(x) = 0 means h(z,w) = 0.

Question: Can we work out the function w = w(z)?

Solution of m equations in m unknowns?

Question: If we have one valid pair (z,w), then is it possible to
develop w = w(z) in the local neighbourhood?
Answer: Yes, if Jacobian ∂h

∂w is non-singular.

Implicit function theorem

∂h

∂z
+
∂h

∂w

∂w

∂z
= 0 ⇒ ∂w

∂z
= −

[
∂h

∂w

]−1 [∂h
∂z

]

Upto first order, w1 = w +
[
∂w
∂z

]
(z1 − z).
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Chain Rule and Change of Variables

For a multiple integral

I =

∫ ∫

A

∫
f (x , y , z) dx dy dz ,

change of variables x = x(u, v ,w), y = y(u, v ,w), z = z(u, v ,w)
gives

I =

∫ ∫

Ā

∫
f (x(u, v ,w), y(u, v ,w), z(u, v ,w)) |J(u, v ,w)| du dv dw ,

where Jacobian determinant |J(u, v ,w)| =
∣∣∣ ∂(x ,y ,z)
∂(u,v ,w)

∣∣∣.
For the differential

P1(x)dx1 + P2(x)dx2 + · · ·+ Pn(x)dxn,

we ask: does there exist a function f (x),

I of which this is the differential;

I or equivalently, the gradient of which is P(x)?

Perfect or exact differential: can be integrated to find f .
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Chain Rule and Change of Variables

Differentiation under the integral sign

How To differentiate φ(x) = φ(x , u(x), v(x)) =
∫ v(x)
u(x) f (x , t) dt?

In the expression

φ′(x) =
∂φ

∂x
+
∂φ

∂u

du

dx
+
∂φ

∂v

dv

dx
,

we have ∂φ
∂x

=
∫ v

u
∂f
∂x

(x , t)dt.

Now, considering function F (x , t) such that f (x , t) = ∂F (x ,t)
∂t

,

φ(x) =

∫ v

u

∂F

∂t
(x , t)dt = F (x , v)− F (x , u) ≡ φ(x , u, v).

Using ∂φ
∂v

= f (x , v) and ∂φ
∂u

= −f (x , u),

φ′(x) =

∫ v(x)

u(x)

∂f

∂x
(x , t)dt + f (x , v)

dv

dx
− f (x , u)

du

dx
.

Leibnitz rule

Applied Mathematical Methods Topics in Multivariate Calculus 172,

Derivatives in Multi-Dimensional Spaces
Taylor’s Series
Chain Rule and Change of Variables
Numerical Differentiation
An Introduction to Tensors*

Numerical Differentiation
Forward difference formula

f ′(x) =
f (x + δx) − f (x)

δx
+O(δx)

Central difference formulae

f ′(x) =
f (x + δx) − f (x − δx)

2δx
+O(δx2)

f ′′(x) =
f (x + δx) − 2f (x) + f (x − δx)

δx2
+O(δx2)

For gradient ∇f (x) and Hessian,

∂f

∂xi
(x) =

1

2δ
[f (x + δei )− f (x − δei )],

∂2f

∂xi
2

(x) =
f (x + δei )− 2f (x) + f (x − δei )

δ2
, and

∂2f

∂xi∂xj

(x) =

f (x + δei + δej )− f (x + δei − δej )
− f (x − δei + δej ) + f (x − δei − δej )

4δ2

Applied Mathematical Methods Topics in Multivariate Calculus 173,

Derivatives in Multi-Dimensional Spaces
Taylor’s Series
Chain Rule and Change of Variables
Numerical Differentiation
An Introduction to Tensors*

An Introduction to Tensors*

I Indicial notation and summation convention

I Kronecker delta and Levi-Civita symbol

I Rotation of reference axes

I Tensors of order zero, or scalars

I Contravariant and covariant tensors of order one, or vectors

I Cartesian tensors

I Cartesian tensors of order two

I Higher order tensors

I Elementary tensor operations

I Symmetric tensors

I Tensor fields

I · · · · · · · · ·

Applied Mathematical Methods Topics in Multivariate Calculus 174,

Derivatives in Multi-Dimensional Spaces
Taylor’s Series
Chain Rule and Change of Variables
Numerical Differentiation
An Introduction to Tensors*

Points to note

I Gradient, Hessian, Jacobian and the Taylor’s series

I Partial and total gradients

I Implicit functions

I Leibnitz rule

I Numerical derivatives

Necessary Exercises: 2,3,4,8
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Recapitulation of Basic Notions

Dot and cross products: their implications

Scalar and vector triple products

Differentiation rules

Interface with matrix algebra:

a · x = aTx,

(a · x)b = (baT )x, and

a × x =

{
aT
⊥x, for 2-d vectors
∼
ax, for 3-d vectors

where

a⊥ =

[
−ay

ax

]
and

∼
a =




0 −az ay

az 0 −ax

−ay ax 0



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Curves in Space

Explicit equation: y = y(x) and z = z(x)

Implicit equation: F (x , y , z) = 0 = G (x , y , z)

Parametric equation:

r(t) = x(t)i + y(t)j + z(t)k ≡ [x(t) y(t) z(t)]T

I Tangent vector: r′(t)

I Speed: ‖r′‖
I Unit tangent: u(t) = r′

‖r′‖
I Length of the curve: l =

∫ b

a
‖dr‖ =

∫ b

a

√
r′ · r′ dt

Arc length function

s(t) =

∫ t

a

√
r′(τ) · r′(τ) dτ

with ds = ‖dr‖ =
√

dx2 + dy2 + dz2 and ds
dt

= ‖r′‖
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Curves in Space

Curve r(t) is regular if r′(t) 6= 0 ∀t.

I Reparametrization with respect to parameter t ∗, some
strictly increasing function of t

Observations

I Arc length s(t) is obviously a monotonically increasing
function.

I For a regular curve, ds
dt
6= 0.

I Then, s(t) has an inverse function.

I Inverse t(s) reparametrizes the curve as r(t(s)).

For a unit speed curve r(s), ‖r′(s)‖ = 1 and the unit tangent is

u(s) = r′(s).
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Curves in Space

Curvature: The rate at which the direction changes with arc
length.

κ(s) = ‖u′(s)‖ = ‖r′′(s)‖
Unit principal normal:

p =
1

κ
u′(s)

With general parametrization,

r′′(t) =
d‖r′‖
dt

u(t) + ‖r′(t)‖du

dt
=

d‖r′‖
dt

u(t) + κ(t)‖r′‖2p(t)

I Osculating plane

I Centre of curvature

I Radius of curvature

AC = ρ = 1/κ   

/ /r

u
C

A

/ 

x

y

z

r

O

r

p

Figure: Tangent and normal to a curve
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Curves in Space

Binormal: b = u × p

Serret-Frenet frame: Right-handed triad {u,p,b}
I Osculating, rectifying and normal planes

Torsion: Twisting out of the osculating plane

I rate of change of b with respect to arc length s

b′ = u′ × p + u × p′ = κ(s)p × p + u × p′ = u × p′

What is p′?

Taking p′ = σu + τb,

b′ = u × (σu + τb) = −τp.

Torsion of the curve

τ(s) = −p(s) · b′(s)
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Curves in Space

We have u′ and b′. What is p′?

From p = b × u,

p′ = b′ × u + b × u′ = −τp × u + b × κp = −κu + τb.

Serret-Frenet formulae

u′ = κp,
p′ = −κu + τb,
b′ = −τp





Intrinsic representation of a curve is complete with κ(s) and τ(s).

The arc-length parametrization of a curve is completely
determined by its curvature κ(s) and torsion τ(s)
functions, except for a rigid body motion.
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Surfaces*

Parametric surface equation:

r(u, v) = x(u, v)i+y(u, v)j+z(u, v)k ≡ [x(u, v) y(u, v) z(u, v)]T

Tangent vectors ru and rv define a tangent plane T .

N = ru × rv is normal to the surface and the unit normal is

n =
N

‖N‖ =
ru × rv
‖ru × rv‖

.

Question: How does n vary over the surface?

Information on local geometry: curvature tensor

I Normal and principal curvatures

I Local shape: convex, concave, saddle, cylindrical, planar
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Points to note

I Parametric equation is the general and most convenient
representation of curves and surfaces.

I Arc length is the natural parameter and the Serret-Frenet
frame offers the natural frame of reference.

I Curvature and torsion are the only inherent properties of a
curve.

I The local shape of a surface patch can be understood through
an analysis of its curvature tensor.

Necessary Exercises: 1,2,3,6
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Differential Operations on Field Functions

Scalar point function or scalar field φ(x , y , z): R 3 → R
Vector point function or vector field V(x , y , z): R 3 → R3

The del or nabla (∇) operator

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

I ∇ is a vector,
I it signifies a differentiation, and
I it operates from the left side.

Laplacian operator:

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= ∇ · ∇ ??

Laplace’s equation:

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0

Solution of ∇2φ = 0: harmonic function
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Differential Operations on Field Functions

Gradient

grad φ ≡ ∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k

is orthogonal to the level surfaces.

Flow fields: −∇φ gives the velocity vector.

Divergence

For V(x , y , z) ≡ Vx(x , y , z)i + Vy(x , y , z)j + Vz(x , y , z)k,

div V ≡ ∇ · V =
∂Vx

∂x
+
∂Vy

∂y
+
∂Vz

∂z

Divergence of ρV: flow rate of mass per unit volume out of the
control volume.

Similar relation between field and flux in electromagnetics.
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Differential Operations on Field Functions

Curl

curl V ≡ ∇×V =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣∣∣∣∣∣

=

(
∂Vz

∂y
− ∂Vy

∂z

)
i +

(
∂Vx

∂z
− ∂Vz

∂x

)
j +

(
∂Vy

∂x
− ∂Vx

∂y

)
k

If V = ω × r represents the velocity field, then angular velocity

ω =
1

2
curl V.

Curl represents rotationality.

Connections between electric and magnetic fields!
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Differential Operations on Field Functions

Composite operations

Operator ∇ is linear.

∇(φ+ ψ) = ∇φ+∇ψ,
∇ · (V + W) = ∇ ·V +∇ ·W, and

∇× (V + W) = ∇×V +∇×W.

Considering the products φψ, φV, V ·W, and V ×W;

∇(φψ) = ψ∇φ + φ∇ψ
∇ · (φV) = ∇φ ·V + φ∇ · V
∇× (φV) = ∇φ×V + φ∇×V
∇(V ·W) = (W ·∇)V + (V ·∇)W +W× (∇×V) +V× (∇×W)
∇ · (V ×W) = W · (∇×V)−V · (∇×W)
∇× (V×W) = (W · ∇)V−W(∇ ·V)− (V · ∇)W + V(∇·W)

Note: the expression V · ∇ ≡ Vx
∂
∂x

+ Vy
∂
∂y

+ Vz
∂
∂z

is an operator!
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Differential Operations on Field Functions

Second order differential operators

div grad φ ≡ ∇ · (∇φ)

curl grad φ ≡ ∇× (∇φ)

div curl V ≡ ∇ · (∇×V)

curl curl V ≡ ∇× (∇×V)

grad div V ≡ ∇(∇ ·V)

Important identities:

div grad φ ≡ ∇ · (∇φ) = ∇2φ

curl grad φ ≡ ∇× (∇φ) = 0

div curl V ≡ ∇ · (∇×V) = 0

curl curl V ≡ ∇× (∇×V)

= ∇(∇ ·V)−∇2V = grad div V −∇2V
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Integral Operations on Field Functions

Line integral along curve C :

I =

∫

C

V · dr =

∫

C

(Vxdx + Vydy + Vzdz)

For a parametrized curve r(t), t ∈ [a, b],

I =

∫

C

V · dr =

∫ b

a

V · dr

dt
dt.

For simple (non-intersecting) paths contained in a simply
connected region, equivalent statements:

I Vxdx + Vydy + Vzdz is an exact differential.

I V = ∇φ for some φ(r).

I

∫
C

V · dr is independent of path.

I Circulation
∮

V · dr = 0 around any closed path.

I curl V = 0.

I Field V is conservative.
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Integral Operations on Field Functions

Surface integral over an orientable surface S :

J =

∫

S

∫
V · dS =

∫

S

∫
V · ndS

For r(u,w), dS = ‖ru × rw‖ du dw and

J =

∫

S

∫
V · ndS =

∫

R

∫
V · (ru × rw ) du dw .

Volume integrals of point functions over a region T :

M =

∫ ∫

T

∫
φdv and F =

∫ ∫

T

∫
Vdv
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Integral Theorems

Green’s theorem in the plane

R: closed bounded region in the xy-plane
C: boundary, a piecewise smooth closed curve
F1(x , y) and F2(x , y): first order continuous functions

∮

C

(F1dx + F2dy) =

∫

R

∫ (
∂F2

∂x
− ∂F1

∂y

)
dx dy

x

y

R

(b) General domain(a) Simple domain                                                                          

OO

1

R

D

C

B

A

x (y)

2
y (x)

2x (y)

1
y (x)

ba

d

c

y

x

Figure: Regions for proof of Green’s theorem in the plane
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Integral Theorems

Proof:

∫

R

∫
∂F1

∂y
dxdy =

∫ b

a

∫ y2(x)

y1(x)

∂F1

∂y
dydx

=

∫ b

a

[F1{x , y2(x)} − F1{x , y1(x)}]dx

= −
∫ a

b

F1{x , y2(x)}dx −
∫ b

a

F1{x , y1(x)}dx

= −
∮

C

F1(x , y)dx

∫

R

∫
∂F2

∂x
dxdy =

∫ d

c

∫ x2(y)

x1(y)

∂F2

∂x
dxdy =

∮

C

F2(x , y)dy

Difference:
∮
C

(F1dx + F2dy) =
∫
R

∫ (
∂F2
∂x
− ∂F1

∂y

)
dx dy

In alternative form,
∮
C

F · dr =
∫
R

∫
curl F · k dx dy .
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Integral Theorems

Gauss’s divergence theorem

T: a closed bounded region
S: boundary, a piecewise smooth closed orientable
surface
F(x , y , z): a first order continuous vector function

∫ ∫

T

∫
div Fdv =

∫

S

∫
F · ndS

Interpretation of the definition extended to finite domains.

∫ ∫

T

∫ (
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

)
dx dy dz =

∫

S

∫
(Fxnx+Fyny+Fznz)dS

To show:
∫ ∫

T

∫
∂Fz

∂z
dx dy dz =

∫
S

∫
FznzdS

First consider a region, the boundary of which is intersected at
most twice by any line parallel to a coordinate axis.
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Integral Theorems

Lower and upper segments of S : z = z1(x , y) and z = z2(x , y).

∫ ∫

T

∫
∂Fz

∂z
dx dy dz =

∫

R

∫ [∫ z2

z1

∂Fz

∂z
dz

]
dx dy

=

∫

R

∫
[Fz{x , y , z2(x , y)} − Fz{x , y , z1(x , y)}]dx dy

R : projection of T on the xy -plane

Projection of area element of the upper segment: nzdS = dx dy
Projection of area element of the lower segment: nzdS = −dx dy

Thus,
∫ ∫

T

∫
∂Fz

∂z
dx dy dz =

∫
S

∫
FznzdS .

Sum of three such components leads to the result.

Extension to arbitrary regions by a suitable subdivision of domain!
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Integral Theorems

Green’s identities (theorem)

Region T and boundary S: as required in premises of
Gauss’s theorem
φ(x , y , z) and ψ(x , y , z): second order continuous scalar
functions

∫

S

∫
φ∇ψ · ndS =

∫ ∫

T

∫
(φ∇2ψ +∇φ · ∇ψ)dv

∫

S

∫
(φ∇ψ − ψ∇φ) · ndS =

∫ ∫

T

∫
(φ∇2ψ − ψ∇2φ)dv

Direct consequences of Gauss’s theorem

To establish, apply Gauss’s divergence theorem on φ∇ψ, and then
on ψ∇φ as well.

Applied Mathematical Methods Scalar and Vector Fields 197,

Differential Operations on Field Functions
Integral Operations on Field Functions
Integral Theorems
Closure

Integral Theorems

Stokes’s theorem

S: a piecewise smooth surface
C: boundary, a piecewise smooth simple closed curve
F(x , y , z): first order continuous vector function

∮

C

F · dr =

∫

S

∫
curl F · ndS

n: unit normal given by the right hand clasp rule on C

For F(x , y , z) = Fx(x , y , z)i,

∮

C

Fxdx =

∫

S

∫ (
∂Fx

∂z
j − ∂Fx

∂y
k

)
·ndS =

∫

S

∫ (
∂Fx

∂z
ny −

∂Fx

∂y
nz

)
dS .

First, consider a surface S intersected at most once by any line
parallel to a coordinate axis.
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Integral Theorems

Represent S as z = z(x , y) ≡ f (x , y).

Unit normal n = [nx ny nz ]T is proportional to [ ∂f
∂x

∂f
∂y
− 1]T .

ny = −nz
∂z

∂y

∫

S

∫ (
∂Fx

∂z
ny −

∂Fx

∂y
nz

)
dS = −

∫

S

∫ (
∂Fx

∂y
+
∂Fx

∂z

∂z

∂y

)
nzdS

Over projection R of S on xy -plane, φ(x , y) = Fx(x , y , z(x , y)).

LHS = −
∫

R

∫
∂φ

∂y
dx dy =

∮

C ′
φ(x , y)dx =

∮

C

Fxdx

Similar results for Fy(x , y , z)j and Fz(x , y , z)k.
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Points to note

I The ‘del’ operator ∇
I Gradient, divergence and curl

I Composite and second order operators

I Line, surface and volume intergals

I Green’s, Gauss’s and Stokes’s theorems

I Applications in physics (and engineering)

Necessary Exercises: 1,2,3,6,7
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Basic Principles

Fundamental theorem of algebra

p(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an−1x + an

has exactly n roots x1, x2, · · · , xn; with

p(x) = a0(x − x1)(x − x2)(x − x3) · · · (x − xn).

In general, roots are complex.
Multiplicity: A root of p(x) with multiplicity k satisfies

p(x) = p′(x) = p′′(x) = · · · = p(k−1)(x) = 0.

I Descartes’ rule of signs

I Bracketing and separation

I Synthetic division and deflation

p(x) = f (x)q(x) + r(x)
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Analytical Solution

Quadratic equation

ax2 + bx + c = 0 ⇒ x =
−b ±

√
b2 − 4ac

2a

Method of completing the square:

x2 +
b

a
x +

(
b

2a

)2

=
b2

4a2
− c

a
⇒

(
x +

b

2a

)2

=
b2 − 4ac

4a2

Cubic equations (Cardano):

x3 + ax2 + bx + c = 0

Completing the cube?
Substituting y = x + k ,

y3 + (a− 3k)y 2 + (b − 2ak + 3k2)y + (c − bk + ak2 − k3) = 0.

Choose the shift k = a/3.
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Analytical Solution

y3 + py + q = 0

Assuming y = u + v , we have y 3 = u3 + v3 + 3uv(u + v).

uv = −p/3

u3 + v3 = −q

and hence (u3 − v3)2 = q2 +
4p3

27
.

Solution:

u3, v3 = −q

2
±
√

q2

4
+

p3

27
= A,B (say).

u = A1,A1ω,A1ω
2, and v = B1,B1ω,B1ω

2

y1 = A1 + B1, y2 = A1ω + B1ω
2 and y3 = A1ω

2 + B1ω.

At least one of the roots is real!!
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Analytical Solution

Quartic equations (Ferrari)

x4+ax3+bx2+cx+d = 0 ⇒
(
x2 +

a

2
x
)2

=

(
a2

4
− b

)
x2−cx−d

For a perfect square,

(
x2 +

a

2
x +

y

2

)2
=

(
a2

4
− b + y

)
x2 +

(ay

2
− c
)

x +

(
y2

4
− d

)

Under what condition, the new RHS will be a perfect square?

(ay

2
− c
)2
− 4

(
a2

4
− b + y

)(
y2

4
− d

)
= 0

Resolvent of a quartic:

y3 − by2 + (ac − 4d)y + (4bd − a2d − c2) = 0
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Analytical Solution

Procedure

I Frame the cubic resolvent.

I Solve this cubic equation.

I Pick up one solution as y .

I Insert this y to form

(
x2 +

a

2
x +

y

2

)2
= (ex + f )2.

I Split it into two quadratic equations as

x2 +
a

2
x +

y

2
= ±(ex + f ).

I Solve each of the two quadratic equations to obtain a total of
four solutions of the original quartic equation.
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General Polynomial Equations

Analytical solution of the general quintic equation?

Galois: group theory:

A general quintic, or higher degree, equation is not
solvable by radicals.

General polynomial equations: iterative algorithms

I Methods for nonlinear equations

I Methods specific to polynomial equations

Solution through the companion matrix

Roots of a polynomial equation are the same as the
eigenvalues of its companion matrix.

Companion matrix:




0 0 · · · 0 −an

1 0 · · · 0 −an−1
...

...
. . .

...
...

0 0 · · · 0 −a2

0 0 · · · 1 −a1



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General Polynomial Equations

Bairstow’s method

to separate out factors of small degree.

Attempt to separate real linear factors?

Real quadratic factors

Synthetic division with a guess factor x 2 + q1x + q2:

remainder r1x + r2

r = [r1 r2]T is a vector function of q = [q1 q2]T .

Iterate over (q1, q2) to make (r1, r2) zero.

Newton-Raphson (Jacobian based) iteration: see exercise.
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Two Simultaneous Equations

p1x
2 + q1xy + r1y

2 + u1x + v1y + w1 = 0

p2x
2 + q2xy + r2y

2 + u2x + v2y + w2 = 0

Rearranging,

a1x
2 + b1x + c1 = 0

a2x
2 + b2x + c2 = 0

Cramer’s rule:

x2

b1c2 − b2c1
=

−x

a1c2 − a2c1
=

1

a1b2 − a2b1

⇒ x = −b1c2 − b2c1

a1c2 − a2c1
= − a1c2 − a2c1

a1b2 − a2b1

Consistency condition:

(a1b2 − a2b1)(b1c2 − b2c1)− (a1c2 − a2c1)2 = 0

A 4th degree equation in y
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Elimination Methods*

The method operates similarly even if the degrees of the original
equations in y are higher.

What about the degree of the eliminant equation?

Two equations in x and y of degrees n1 and n2:
x-eliminant is an equation of degree n1n2 in y

Maximum number of solutions:

Bezout number = n1n2

Note: Deficient systems may have less number of solutions.

Classical methods of elimination

I Sylvester’s dialytic method

I Bezout’s method
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Advanced Techniques*

Three or more independent equations in as many unknowns?

I Cascaded elimination? Objections!

I Exploitation of special structures through clever heuristics

(mechanisms kinematics literature)

I Gröbner basis representation

(algebraic geometry)

I Continuation or homotopy method by Morgan

For solving the system f(x) = 0, identify another
structurally similar system g(x) = 0 with known
solutions and construct the parametrized system

h(x) = tf(x) + (1− t)g(x) = 0 for t ∈ [0, 1].

Track each solution from t = 0 to t = 1.
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Points to note

I Roots of cubic and quartic polynomials by the methods of
Cardano and Ferrari

I For higher degree polynomials,
I Bairstow’s method: a clever implementation of

Newton-Raphson method for polynomials
I Eigenvalue problem of a companion matrix

I Reduction of a system of polynomial equations in two
unknowns by elimination

Necessary Exercises: 1,3,4,6
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Methods for Nonlinear Equations

Algebraic and transcendental equations in the form

f (x) = 0

Practical problem: to find one real root (zero) of f (x)

Example of f (x): x3 − 2x + 5, x3 ln x − sin x + 2, etc.

If f (x) is continuous, then

Bracketing: f (x0)f (x1) < 0⇒ there must be a root of f (x)
between x0 and x1.

Bisection: Check the sign of f ( x0+x1
2 ). Replace either x0 or x1

with x0+x1
2 .
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Methods for Nonlinear Equations

Fixed point iteration

Rearrange f (x) = 0 in
the form x = g(x).

Example:
For f (x) = tan x − x3 − 2,
possible rearrangements:
g1(x) = tan−1(x3 + 2)
g2(x) = (tan x − 2)1/3

g3(x) = tan x−2
x2

Iteration: xk+1 = g(xk)
  

l

xx

c

q rp

y

y = xw

vu

x

y = g(x)

    O

na

e
g

f

d

b

m

Figure: Fixed point iteration

If x∗ is the unique solution in interval J and
|g ′(x)| ≤ h < 1 in J, then any x0 ∈ J converges to x∗.
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Methods for Nonlinear Equations

Newton-Raphson method

First order Taylor series
f (x + δx) ≈ f (x) + f ′(x)δx
From f (xk + δx) = 0,
δx = −f (xk)/f ′(xk)
Iteration:
xk+1 = xk − f (xk )/f ′(xk )

Convergence criterion:
|f (x)f ′′(x)| < |f ′(x)|2
Draw tangent to f (x).
Take its x-intercept.

c

d

e

x0 x

a
f(x)

O
b f

g
x*

Figure: Newton-Raphson method

Merit: quadratic speed of convergence: |xk+1 − x∗| = c |xk − x∗|2
Demerit: If the starting point is not appropriate,

haphazard wandering, oscillations or outright divergence!
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Methods for Nonlinear Equations

Secant method and method of false position

In the Newton-Raphson formula,

f ′(x) ≈ f (xk )−f (xk−1)
xk−xk−1

⇒ xk+1 = xk − xk−xk−1

f (xk)−f (xk−1)
f (xk)

Draw the chord or
secant to f (x) through
(xk−1, f (xk−1)) and (xk , f (xk)).
Take its x-intercept.

f(x )1

f(x )0

x0

3xx21x
O x

x*

f(x)

Figure: Method of false position

Special case: Maintain a bracket over the root at every iteration.

The method of false position or regula falsi

Convergence is guaranteed!
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Methods for Nonlinear Equations

Quadratic interpolation method or Muller method
Evaluate f (x) at three points
and model y = a + bx + cx2.
Set y = 0 and solve for x .

Inverse quadratic interpolation
Evaluate f (x) at three points
and model x = a + by + cy 2.
Set y = 0 to get x = a.

Inverse
Quadratic
Interpolation

x3

1 1(x ,y )

0 0(x ,y )

2 2

x3

y

x
(x ,y )

O

Interpolation
Quadratic

Figure: Interpolation schemes

Van Wijngaarden-Dekker Brent method

I maintains the bracket,

I uses inverse quadratic interpolation, and

I accepts outcome if within bounds, else takes a bisection step.

Opportunistic manoeuvring between a fast method and a safe one!
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Systems of Nonlinear Equations

f1(x1, x2, · · · , xn) = 0,

f2(x1, x2, · · · , xn) = 0,

· · · · · · · · · · · ·
fn(x1, x2, · · · , xn) = 0.

f(x) = 0

I Number of variables and number of equations?
I No bracketing!
I Fixed point iteration schemes x = g(x)?

Newton’s method for systems of equations

f(x + δx) = f(x) +

[
∂f

∂x
(x)

]
δx + · · · ≈ f(x) + J(x)δx

⇒ xk+1 = xk − [J(xk )]−1f(xk)

with the usual merits and demerits!
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Closure

Modified Newton’s method

xk+1 = xk − αk [J(xk )]−1f(xk)

Broyden’s secant method

Jacobian is not evaluated at every iteration, but gets
developed through updates.

Optimization-based formulation

Global minimum of the function

‖f(x)‖2 = f 2
1 + f 2

2 + · · ·+ f 2
n

Levenberg-Marquardt method
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Points to note

I Iteration schemes for solving f (x) = 0

I Newton (or Newton-Raphson) iteration for a system of
equations

xk+1 = xk − [J(xk )]−1f(xk )

I Optimization formulation of a multi-dimensional root finding
problem

Necessary Exercises: 1,2,3
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The Methodology of Optimization

I Parameters and variables

I The statement of the optimization problem

Minimize f (x)
subject to g(x) ≤ 0,

h(x) = 0.

I Optimization methods

I Sensitivity analysis

I Optimization problems: unconstrained and constrained

I Optimization problems: linear and nonlinear

I Single-variable and multi-variable problems
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Single-Variable Optimization

For a function f (x), a point x∗ is defined as a relative (local)
minimum if ∃ ε such that f (x) ≥ f (x∗) ∀ x ∈ [x∗ − ε, x∗ + ε].

x1

f(  )x

x2 x4x3 x5
xa bO x6

Figure: Schematic of optima of a univariate function

Optimality criteria

First order necessary condition: If x ∗ is a local minimum or
maximum point and if f ′(x∗) exists, then f ′(x∗) = 0.

Second order necessary condition: If x ∗ is a local minimum point
and f ′′(x∗) exists, then f ′′(x∗) ≥ 0.

Second order sufficient condition: If f ′(x∗) = 0 and f ′′(x∗) > 0
then x∗ is a local minimum point.
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Single-Variable Optimization

Higher order analysis: From Taylor’s series,

∆f = f (x∗ + δx) − f (x∗)

= f ′(x∗)δx +
1

2!
f ′′(x∗)δx2 +

1

3!
f ′′′(x∗)δx3 +

1

4!
f iv(x∗)δx4 + · · ·

For an extremum to occur at point x ∗, the lowest order
derivative with non-zero value should be of even order.

If f ′(x∗) = 0, then

I x∗ is a stationary point, a candidate for an extremum.

I Evaluate higher order derivatives till one of them is found to
be non-zero.

I If its order is odd, then x∗ is an inflection point.
I If its order is even, then x∗ is a local minimum or maximum,

as the derivative value is positive or negative, respectively.
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Single-Variable Optimization

Iterative methods of line search
Methods based on gradient root finding

I Newton’s method

xk+1 = xk −
f ′(xk)

f ′′(xk)

I Secant method

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk )

I Method of cubic estimation
point of vanishing gradient of the cubic fit with
f (xk−1), f (xk ), f ′(xk−1) and f ′(xk )

I Method of quadratic estimation

point of vanishing gradient of the quadratic fit
through three points

Disadvantage: treating all stationary points alike!
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Single-Variable Optimization

Bracketing:

x1 < x2 < x3 with f (x1) ≥ f (x2) ≤ f (x3)

Exhaustive search method or its variants
Direct optimization algorithms

I Fibonacci search uses a pre-defined number N, of function
evaluations, and the Fibonacci sequence

F0 = 1, F1 = 1, F2 = 2, · · · , Fj = Fj−2 + Fj−1, · · ·
to tighten a bracket with economized number of function
evaluations.

I Golden section search uses a constant ratio

τ =

√
5− 1

2
≈ 0.618,

the golden section ratio, of interval reduction, that is
determined as the limiting case of N →∞ and the actual
number of steps is decided by the accuracy desired.
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Conceptual Background of Multivariate Optimization

Unconstrained minimization problem

x∗ is called a local minimum of f (x) if ∃ δ such that
f (x) ≥ f (x∗) for all x satisfying ‖x − x∗‖ < δ.

Optimality criteria
From Taylor’s series,

f (x) − f (x∗) = [g(x∗)]T δx +
1

2
δxT [H(x∗)]δx + · · · .

For x∗ to be a local minimum,

necessary condition: g(x∗) = 0 and H(x∗) is positive semi-definite,

sufficient condition: g(x∗) = 0 and H(x∗) is positive definite.

Indefinite Hessian matrix characterizes a saddle point.
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Conceptual Background of Multivariate Optimization

Convexity
Set S ⊆ Rn is a convex set if

∀ x1, x2 ∈ S and α ∈ (0, 1), αx1 + (1− α)x2 ∈ S .

Function f (x) over a convex set S : a convex function if
∀ x1, x2 ∈ S and α ∈ (0, 1),

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2).

Chord approximation is an overestimate at intermediate points!

x1

x2

X1

X2

O

Figure: A convex domain

x2

xf(  )

x1f(  )

f(  )x2

x1 xO

Figure: A convex function
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Conceptual Background of Multivariate Optimization

First order characterization of convexity

From f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2),

f (x1)− f (x2) ≥ f (x2 + α(x1 − x2))− f (x2)

α
.

As α→ 0, f (x1) ≥ f (x2) + [∇f (x2)]T (x1 − x2).

Tangent approximation is an underestimate at intermediate points!

Second order characterization: Hessian is positive semi-definite.

Convex programming problem: convex function over convex set

A local minimum is also a global minimum, and all
minima are connected in a convex set.

Note: Convexity is a stronger condition than unimodality!
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Conceptual Background of Multivariate Optimization

Quadratic function

q(x) =
1

2
xTAx + bTx + c

Gradient ∇q(x) = Ax + b and Hessian = A is constant.

I If A is positive definite, then the unique solution of Ax = −b
is the only minimum point.

I If A is positive semi-definite and −b ∈ Range(A), then the
entire subspace of solutions of Ax = −b are global minima.

I If A is positive semi-definite but −b /∈ Range(A), then the
function is unbounded!

Note: A quadratic problem (with positive definite Hessian) acts as
a benchmark for optimization algorithms.
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Conceptual Background of Multivariate Optimization

Optimization Algorithms

From the current point, move to another point, hopefully better.

Which way to go? How far to go? Which decision is first?

Strategies and versions of algorithms:

Trust Region: Develop a local quadratic model

f (xk + δx) = f (xk ) + [g(xk )]T δx +
1

2
δxTFkδx,

and minimize it in a small trust region around xk .
(Define trust region with dummy boundaries.)

Line search: Identify a descent direction dk and minimize the
function along it through the univariate function

φ(α) = f (xk + αdk).
I Exact or accurate line search
I Inexact or inaccurate line search

I Armijo, Goldstein and Wolfe conditions
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Conceptual Background of Multivariate Optimization

Convergence of algorithms: notions of guarantee and speed

Global convergence: the ability of an algorithm to approach and
converge to an optimal solution for an arbitrary
problem, starting from an arbitrary point

I Practically, a sequence (or even subsequence) of
monotonically decreasing errors is enough.

Local convergence: the rate/speed of approach, measured by p,
where

β = lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p <∞

I Linear, quadratic and superlinear rates of
convergence for p = 1, 2 and intermediate.

I Comparison among algorithms with linear rates
of convergence is by the convergence ratio β.
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Points to note

I Theory and methods of single-variable optimization

I Optimality criteria in multivariate optimization

I Convexity in optimization

I The quadratic function

I Trust region

I Line search

I Global and local convergence

Necessary Exercises: 1,2,5,7,8
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Multivariate Optimization
Direct Methods
Steepest Descent (Cauchy) Method
Newton’s Method
Hybrid (Levenberg-Marquardt) Method
Least Square Problems
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Direct Methods

Direct search methods using only function values

I Cyclic coordinate search

I Rosenbrock’s method

I Hooke-Jeeves pattern search

I Box’s complex method

I Nelder and Mead’s simplex search

I Powell’s conjugate directions method

Useful for functions, for which derivative either does not exist at all
points in the domain or is computationally costly to evaluate.

Note: When derivatives are easily available, gradient-based
algorithms appear as mainstream methods.
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Direct Methods

Nelder and Mead’s simplex method
Simplex in n-dimensional space: polytope formed by n + 1 vertices

Nelder and Mead’s method iterates over simplices that are
non-degenerate (i.e. enclosing non-zero hypervolume).

First, n + 1 suitable points are selected for the starting simplex.

Among vertices of the current simplex, identify the worst point xw ,
the best point xb and the second worst point xs .

Need to replace xw with a good point.

Centre of gravity of the face not containing xw :

xc =
1

n

n+1∑

i=1,i 6=w

xi

Reflect xw with respect to xc as xr = 2xc − xw . Consider options.
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Direct Methods
Default xnew = xr .
Revision possibilities:

xr

f(   )xwf(   )xb
Positive
Contraction Contraction

Negative 

xxw    = xxrxw xw xr xw xr

x

Expansion Default
x

newnew

new

sf(   )

Figure: Nelder and Mead’s simplex method

1. For f (xr ) < f (xb), expansion:
xnew = xc + α(xc − xw ), α > 1.

2. For f (xr ) ≥ f (xw ), negative contraction:
xnew = xc − β(xc − xw ), 0 < β < 1.

3. For f (xs) < f (xr ) < f (xw ), positive contraction:
xnew = xc + β(xc − xw ), with 0 < β < 1.

Replace xw with xnew . Continue with new simplex.
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Steepest Descent (Cauchy) Method

From a point xk , a move through α units in direction dk :

f (xk + αdk) = f (xk) + α[g(xk )]Tdk +O(α2)

Descent direction dk : For α > 0, [g(xk )]Tdk < 0

Direction of steepest descent: dk = −gk [ or dk = −gk/‖gk‖]

Minimize
φ(α) = f (xk + αdk).

Exact line search:

φ′(αk ) = [g(xk + αkdk)]Tdk = 0

Search direction tangential to the contour surface at (xk + αkdk).

Note: Next direction dk+1 = −g(xk+1) orthogonal to dk
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Steepest Descent (Cauchy) Method

Steepest descent algorithm

1. Select a starting point x0, set k = 0 and several parameters:
tolerance εG on gradient, absolute tolerance εA on reduction
in function value, relative tolerance εR on reduction in
function value and maximum number of iterations M.

2. If ‖gk‖ ≤ εG , STOP. Else dk = −gk/‖gk‖.
3. Line search: Obtain αk by minimizing φ(α) = f (xk + αdk ),
α > 0. Update xk+1 = xk + αkdk .

4. If |f (xk+1)− f (xk )| ≤ εA + εR |f (xk )|,STOP. Else k ← k + 1.

5. If k > M, STOP. Else go to step 2.

Very good global convergence.

But, why so many “STOPS”?
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Steepest Descent (Cauchy) Method

Analysis on a quadratic function

For minimizing q(x) = 1
2x

TAx + bTx, the error function:

E (x) =
1

2
(x − x∗)TA(x − x∗)

Convergence ratio: E(xk+1)
E(xk) ≤

(
κ(A)−1
κ(A)+1

)2

Local convergence is poor.

Importance of steepest descent method

I conceptual understanding

I initial iterations in a completely new problem

I spacer steps in other sophisticated methods

Re-scaling of the problem through change of variables?



Applied Mathematical Methods Multivariate Optimization 241,

Direct Methods
Steepest Descent (Cauchy) Method
Newton’s Method
Hybrid (Levenberg-Marquardt) Method
Least Square Problems

Newton’s Method
Second order approximation of a function:

f (x) ≈ f (xk ) + [g(xk )]T (x − xk ) +
1

2
(x − xk)TH(xk )(x − xk)

Vanishing of gradient

g(x) ≈ g(xk ) + H(xk )(x − xk )

gives the iteration formula

xk+1 = xk − [H(xk )]−1g(xk ).

Excellent local convergence property!

‖xk+1 − x∗‖
‖xk − x∗‖2 ≤ β

Caution: Does not have global convergence.

If H(xk ) is positive definite then dk = −[H(xk )]−1g(xk )
is a descent direction.
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Newton’s Method

Modified Newton’s method

I Replace the Hessian by Fk = H(xk ) + γI .

I Replace full Newton’s step by a line search.

Algorithm

1. Select x0, tolerance ε and δ > 0. Set k = 0.

2. Evaluate gk = g(xk ) and H(xk ).
Choose γ, find Fk = H(xk ) + γI , solve Fkdk = −gk for dk .

3. Line search: obtain αk to minimize φ(α) = f (xk + αdk ).
Update xk+1 = xk + αkdk .

4. Check convergence: If |f (xk+1)− f (xk )| < ε, STOP.
Else, k ← k + 1 and go to step 2.
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Hybrid (Levenberg-Marquardt) Method

Methods of deflected gradients

xk+1 = xk − αk [Mk ]gk

I identity matrix in place of Mk : steepest descent step

I Mk = F−1
k : step of modified Newton’s method

I Mk = [H(xk )]−1 and αk = 1: pure Newton’s step

In Mk = [H(xk ) + λk I ]−1, tune parameter λk over iterations.

I Initial value of λ: large enough to favour steepest descent
trend

I Improvement in an iteration: λ reduced by a factor

I Increase in function value: step rejected and λ increased

Opportunism systematized!

Note: Cost of evaluating the Hessian remains a bottleneck.
Useful for problems where Hessian estimates come cheap!
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Least Square Problems

Linear least square problem:

y(θ) = x1φ1(θ) + x2φ2(θ) + · · ·+ xnφn(θ)

For measured values y(θi ) = yi ,

ei =
n∑

k=1

xkφk (θi)− yi = [Φ(θi )]T x − yi .

Error vector: e = Ax − y

Last square fit:

Minimize E = 1
2

∑
i e

2
i = 1

2e
T e

Pseudoinverse solution and its variants
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Least Square Problems

Nonlinear least square problem

For model function in the form

y(θ) = f (θ, x) = f (θ, x1, x2, · · · , xn),

square error function

E (x) =
1

2
eTe =

1

2

∑

i

e2
i =

1

2

∑

i

[f (θi , x) − yi ]
2

Gradient: g(x) = ∇E (x) =
∑

i [f (θi , x) − yi ]∇f (θi , x) = JTe

Hessian: H(x) = ∂2

∂x2 E (x) = JTJ +
∑

i ei
∂2

∂x2 f (θi , x) ≈ JTJ

Combining a modified form λ diag(JTJ) δx = −g(x) of steepest
descent formula with Newton’s formula,

Levenberg-Marquardt step: [JTJ + λ diag(JTJ)]δx = −g(x)
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Least Square Problems

Levenberg-Marquardt algorithm

1. Select x0, evaluate E (x0). Select tolerance ε, initial λ and its
update factor. Set k = 0.

2. Evaluate gk and H̄k = JTJ + λ diag(JTJ).
Solve H̄kδx = −gk . Evaluate E (xk + δx).

3. If |E (xk + δx) − E (xk )| < ε, STOP.

4. If E (xk + δx) < E (xk ), then decrease λ,
update xk+1 = xk + δx, k ← k + 1.
Else increase λ.

5. Go to step 2.

Professional procedure for nonlinear least square problems and also
for solving systems of nonlinear equations in the form h(x) = 0.
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Points to note

I Simplex method of Nelder and Mead

I Steepest descent method with its global convergence

I Newton’s method for fast local convergence

I Levenberg-Marquardt method for equation solving and least
squares

Necessary Exercises: 1,2,3,4,5,6
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Conjugate Direction Methods

Conjugacy of directions:

Two vectors d1 and d2 are mutually conjugate with
respect to a symmetric matrix A, if dT

1 Ad2 = 0.

Linear independence of conjugate directions:

Conjugate directions with respect to a positive definite
matrix are linearly independent.

Expanding subspace property: In Rn, with conjugate vectors
{d0,d1, · · · ,dn−1} with respect to symmetric positive definite A,
for any x0 ∈ Rn, the sequence {x0, x1, x2, · · · , xn} generated as

xk+1 = xk + αkdk , with αk = − gT
k dk

dT
k Adk

,

where gk = Axk + b, has the property that

xk minimizes q(x) = 1
2x

TAx + bTx on the line
xk−1 + αdk−1, as well as on the linear variety x0 + Bk ,
where Bk is the span of d0, d1, · · · , dk−1.
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Conjugate Direction Methods

Question: How to find a set of n conjugate directions?

Gram-Schmidt procedure is a poor option!

Conjugate gradient method

Starting from d0 = −g0,

dk+1 = −gk+1 + βkdk

Imposing the condition of conjugacy of dk+1 with dk ,

βk =
gT

k+1Adk

dT
k Adk

=
gT

k+1(gk+1 − gk)

αkd
T
k Adk

Resulting dk+1 conjugate to all the earlier directions, for
a quadratic problem.
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Conjugate Direction Methods

Using k in place of k + 1 in the formula for dk+1,

dk = −gk + βk−1dk−1

⇒ gT
k dk = −gT

k gk and αk =
gT

k gk

dT
k Adk

Polak-Ribiere formula:

βk =
gT

k+1(gk+1 − gk)

gT
k gk

No need to know A!
Further,

gT
k+1dk = 0 ⇒ gT

k+1gk = βk−1(gT
k + αkd

T
k A)dk−1 = 0.

Fletcher-Reeves formula:

βk =
gT

k+1gk+1

gT
k gk
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Conjugate Direction Methods

Extension to general (non-quadratic) functions

I Varying Hessian A: determine the step size by line search.
I After n steps, minimum not attained.

But, gT
k dk = −gT

k gk implies guaranteed descent.
Globally convergent, with superlinear rate of convergence.

I What to do after n steps? Restart or continue?

Algorithm

1. Select x0 and tolerances εG , εD . Evaluate g0 = ∇f (x0).
2. Set k = 0 and dk = −gk .
3. Line search: find αk ; update xk+1 = xk + αkdk .
4. Evaluate gk+1 = ∇f (xk+1). If ‖gk+1‖ ≤ εG , STOP.

5. Find βk =
gT

k+1(gk+1−gk)

gT
k
gk

(Polak-Ribiere)

or βk =
gT

k+1gk+1

gT
k
gk

(Fletcher-Reeves).

Obtain dk+1 = −gk+1 + βkdk .

6. If 1−
∣∣∣ dT

k
dk+1

‖dk‖ ‖dk+1‖

∣∣∣ < εD , reset g0 = gk+1and go to step 2.

Else, k ← k + 1 and go to step 3.
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Conjugate Direction Methods

Powell’s conjugate direction method
For q(x) = 1

2x
TAx + bT x, suppose

x1 = xA + α1d such that dTg1 = 0 and
x2 = xB + α2d such that dTg2 = 0.

Then, dTA(x2 − x1) = dT (g2 − g1) = 0.

Parallel subspace property: In Rn, consider two parallel
linear varieties S1 = v1 + Bk and S2 = v2 + Bk , with
Bk = {d1,d2, · · · ,dk}, k < n.
If x1 and x2

minimize q(x) = 1
2x

TAx+bTx on S1 and S2, respectively,

then x2 − x1 is conjugate to d1, d2, · · · , dk .

Assumptions imply g1, g2 ⊥ Bk and hence

(g2−g1) ⊥ Bk ⇒ dT
i A(x2−x1) = dT

i (g2−g1) = 0 for i = 1, 2, · · · , k .
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Conjugate Direction Methods

Algoithm

1. Select x0, ε and a set of n linearly independent (preferably
normalized) directions d1, d2, · · · , dn; possibly di = ei .

2. Line search along dn and update x1 = x0 + αdn; set k = 1.

3. Line searches along d1, d2, · · · , dn in sequence to obtain
z = xk +

∑n
j=1 αjdj .

4. New conjugate direction d = z − xk . If ‖d‖ < ε, STOP.

5. Reassign directions dj ← dj+1 for j = 1, 2, · · · , (n − 1) and
dn = d/‖d‖.
(Old d1 gets discarded at this step.)

6. Line search and update xk+1 = z + αdn; set k ← k + 1 and
go to step 3.
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Conjugate Direction Methods

I x0-x1 and b-z1: x1-z1 is conjugate to b-z1.
I b-z1-x2 and c-d -z2: c-d , d -z2 and x2-z2 are mutually

conjugate.

x1

x0

x1

x3

x2

x3

z2

x2

z1

ba

d

c

Figure: Schematic of Powell’s conjugate direction method

Performance of Powell’s method approaches that of the
conjugate gradient method!
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Quasi-Newton Methods

Variable metric methods

attempt to construct the inverse Hessian Bk .

pk = xk+1 − xk and qk = gk+1 − gk ⇒ qk ≈ Hpk

With n such steps, B = PQ−1: update and construct Bk ≈ H−1.
Rank one correction: Bk+1 = Bk + akzkz

T
k ?

Rank two correction:

Bk+1 = Bk + akzkz
T
k + bkwkw

T
k

Davidon-Fletcher-Powell (DFP) method

Select x0, tolerance ε and B0 = In. For k = 0, 1, 2, · · · ,
I dk = −Bkgk .
I Line search for αk ; update pk = αkdk , xk+1 = xk + pk ,

qk = gk+1 − gk .
I If ‖pk‖ < ε or ‖qk‖ < ε, STOP.

I Rank two correction: BDFP
k+1 = Bk +

pkp
T
k

pT
k
qk
− BkqkqT

k
Bk

qT
k
Bkqk

.
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Quasi-Newton Methods

Properties of DFP iterations:

1. If Bk is symmetric and positive definite, then so is Bk+1.

2. For quadratic function with positive definite Hessian H,

pT
i Hpj = 0 for 0 ≤ i < j ≤ k ,

and Bk+1Hpi = pi for 0 ≤ i ≤ k .

Implications:

1. Positive definiteness of inverse Hessian estimate is never lost.

2. Successive search directions are conjugate directions.

3. With B0 = I, the algorithm is a conjugate gradient method.

4. For a quadratic problem, the inverse Hessian gets completely
constructed after n steps.

Variants: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method and the Broyden family of methods
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Table 23.1: Summary of performance of optimization methods

Cauchy Newton Levenberg-Marquardt DFP/BFGS FR/PR Powell
(Steepest (Hybrid) (Quasi-Newton) (Conjugate (Direction
Descent) (Deflected Gradient) (Variable Metric) Gradient) Set)

For Quadratic
Problems:

Convergence steps N 1 N n n n2

Indefinite Unknown

Evaluations Nf 2f Nf (n+ 1)f (n+ 1)f n2f
Ng 2g Ng (n+ 1)g (n+ 1)g

1H NH

Equivalent function
evaluations N(2n+ 1) 2n2 + 2n+ 1 N(2n2 + 1) 2n2 + 3n+ 1 2n2 + 3n+ 1 n2

Line searches N 0 N or 0 n n n2

Storage Vector Matrix Matrix Matrix Vector Matrix
Performance in

general problems Slow Risky Costly Flexible Good Okay
Practically good for Unknown Good NL Eqn. systems Bad Large Small

start-up functions NL least squares functions problems problems
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Points to note

I Conjugate directions and the expanding subspace property

I Conjugate gradient method

I Powell-Smith direction set method

I The quasi-Newton concept in professional optimization

Necessary Exercises: 1,2,3
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Constraints
Constrained optimization problem:

Minimize f (x)
subject to gi (x) ≤ 0 for i = 1, 2, · · · , l , or g(x) ≤ 0;

and hj(x) = 0 for j = 1, 2, · · · ,m, or h(x) = 0.

Conceptually, “minimize f (x), x ∈ Ω”.

Equality constraints reduce the domain to a surface or a manifold,
possessing a tangent plane at every point.

Gradient of the vector function h(x):

∇h(x) ≡ [∇h1(x) ∇h2(x) · · · ∇hm(x)] ≡




∂hT

∂x1

∂hT

∂x2
...

∂hT

∂xn



,

related to the usual Jacobian as Jh(x) = ∂h
∂x = [∇h(x)]T .
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Constraints

Constraint qualification

∇h1(x), ∇h2(x) etc are linearly independent, i.e. ∇h(x) is
full-rank.

If a feasible point x0, with h(x0) = 0, satisfies the constraint
qualification condition, we call it a regular point.

At a regular feasible point x0, tangent plane

M = {y : [∇h(x0)]Ty = 0}

gives the collection of feasible directions.

Equality constraints reduce the dimension of the problem.

Variable elimination?
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Constraints

Active inequality constraints gi (x0) = 0:

included among hj(x0)

for the tangent plane.

Cone of feasible directions:

[∇h(x0)]Td = 0 and [∇gi (x0)]Td ≤ 0 for i ∈ I

where I is the set of indices of active inequality constraints.

Handling inequality constraints:

I Active set strategy maintains a list of active constraints,
keeps checking at every step for a change of scenario and
updates the list by inclusions and exclusions.

I Slack variable strategy replaces all the inequality constraints
by equality constraints as gi (x) + xn+i = 0 with the inclusion
of non-negative slack variables (xn+i ).
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Optimality Criteria

Suppose x∗ is a regular point with

I active inequality constraints: g(a)(x) ≤ 0

I inactive constraints: g(i)(x) ≤ 0

Columns of ∇h(x∗) and ∇g(a)(x∗): basis for orthogonal
complement of the tangent plane

Basis of the tangent plane: D = [d1 d2 · · · dk ]

Then, [D ∇h(x∗) ∇g(a)(x∗)]: basis of Rn

Now, −∇f (x∗) is a vector in Rn.

−∇f (x∗) = [D ∇h(x∗) ∇g(a)(x∗)]




z
λ

µ(a)




with unique z, λ and µ(a) for a given ∇f (x∗).

What can you say if x∗ is a solution to the NLP problem?
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Optimality Criteria

Components of ∇f (x∗) in the tangent plane must be zero.

z = 0 ⇒ −∇f (x∗) = [∇h(x∗)]λ+ [∇g(a)(x∗)]µ(a)

For inactive constraints, insisting on µ(i) = 0,

−∇f (x∗) = [∇h(x∗)]λ+ [∇g(a)(x∗) ∇g(i)(x∗)]

[
µ(a)

µ(i)

]
,

or
∇f (x∗) + [∇h(x∗)]λ+ [∇g(x∗)]µ = 0

where g(x) =

[
g(a)(x)

g(i)(x)

]
and µ =

[
µ(a)

µ(i)

]
.

Notice: g(a)(x∗) = 0 and µ(i) = 0 ⇒ µigi (x
∗) = 0 ∀ i , or

µTg(x∗) = 0.

Now, components in g(x) are free to appear in any order.
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Optimality Criteria

Finally, what about the feasible directions in the cone?

Answer: Negative gradient −∇f (x∗) can have no component

towards decreasing g
(a)
i (x), i.e. µ

(a)
i ≥ 0, ∀ i .

Combining it with µ
(i)
i = 0, µ ≥ 0.

First order necessary conditions or Karusch-Kuhn-Tucker
(KKT) conditions: If x∗ is a regular point of the constraints and
a solution to the NLP problem, then there exist Lagrange
multiplier vectors, λ and µ, such that

Optimality: ∇f (x∗) + [∇h(x∗)]λ+ [∇g(x∗)]µ = 0, µ ≥ 0;
Feasibility: h(x∗) = 0, g(x∗) ≤ 0;
Complementarity: µTg(x∗) = 0.

Convex programming problem: Convex objective function f (x)
and convex domain (convex gi (x) and linear hj(x)):

KKT conditions are sufficient as well!
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Optimality Criteria

Lagrangian function:

L(x,λ,µ) = f (x) + λTh(x) + µTg(x)

Necessary conditions for a stationary point of the Lagrangian:

∇xL = 0, ∇λL = 0

Second order conditions
Consider curve z(t) in the tangent plane with z(0) = x∗.

d2

dt2
f (z(t))

∣∣∣∣
t=0

=
d

dt
[∇f (z(t))T ż(t)]

∣∣∣∣
t=0

= ż(0)TH(x∗)ż(0) + [∇f (x∗)]T z̈(0) ≥ 0

Similarly, from hj(z(t)) = 0,

ż(0)THhj
(x∗)ż(0) + [∇hj(x

∗)]T z̈(0) = 0.
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Optimality Criteria

Including contributions from all active constraints,

d2

dt2
f (z(t))

∣∣∣∣
t=0

= ż(0)THL(x∗)ż(0) + [∇xL(x∗,λ,µ)]T z̈(0) ≥ 0,

where HL(x) = ∂2L
∂x2 = H(x) +

∑
j λjHhj

(x) +
∑

i µiHgi
(x).

First order necessary condition makes the second term vanish!

Second order necessary condition:

The Hessian matrix of the Lagrangian function is positive
semi-definite on the tangent planeM.

Sufficient condition: ∇xL = 0 and HL(x) positive definite on M.

Restriction of the mapping HL(x∗) : Rn → Rn on subspace M?
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Optimality Criteria

Take y ∈M, operate HL(x∗) on it, project the image back to M.

Restricted mapping LM :M→M

Question: Matrix representation for LM of size (n−m)× (n−m)?

Select local orthonormal basis D ∈ Rn×(n−m) for M.

For arbitrary z ∈ Rn−m, map y = Dz ∈ Rn as HLy = HLDz.

Its component along di : dT
i HLDz

Hence, projection back on M:

LMz = DTHLDz,

The (n −m)× (n −m) matrix LM = DTHLD: the restriction!

Second order necessary/sufficient condition: LM p.s.d./p.d.

Applied Mathematical Methods Constrained Optimization 270,

Constraints
Optimality Criteria
Sensitivity
Duality*
Structure of Methods: An Overview*

Sensitivity

Suppose original objective and constraint functions as

f (x,p), g(x,p) and h(x,p)

By choosing parameters (p), we arrive at x∗. Call it x∗(p).

Question: How does f (x∗(p),p) depend on p?

Total gradients

∇̄pf (x∗(p),p) = ∇px
∗(p)∇x f (x∗,p) +∇pf (x∗,p),

∇̄ph(x∗(p),p) = ∇px
∗(p)∇xh(x∗,p) +∇ph(x∗,p) = 0,

and similarly for g(x∗(p),p).

In view of ∇xL = 0, from KKT conditions,

∇̄pf (x∗(p),p) = ∇pf (x∗,p) + [∇ph(x∗,p)]λ+ [∇pg(x∗,p)]µ
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Sensitivity

Sensitivity to constraints
In particular, in a revised problem, with h(x) = c and g(x) ≤ d,
using p = c,

∇pf (x∗,p) = 0, ∇ph(x∗,p) = −I and ∇pg(x∗,p) = 0.

∇̄c f (x∗(p),p) = −λ

Similarly, using p = d, we get ∇̄d f (x∗(p),p) = −µ.

Lagrange multipliers λ and µ signify costs of pulling the minimum
point in order to satisfy the constraints!

I Equality constraint: both sides infeasible, sign of λj identifies
one side or the other of the hypersurface.

I Inequality constraint: one side is feasible, no cost of pulling
from that side, so µi ≥ 0.
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Duality*

Dual problem:
Reformulation of a problem in terms of the Lagrange multipliers.
Suppose x∗ as a local minimum for the problem

Minimize f (x) subject to h(x) = 0,

with Lagrange multiplier (vector) λ∗.

∇f (x∗) + [∇h(x∗)]λ∗ = 0

If HL(x∗) is positive definite (assumption of local duality), then x∗

is also a local minimum of

f̄ (x) = f (x) + λ∗Th(x).

If we vary λ around λ∗, the minimizer of

L(x,λ) = f (x) + λTh(x)

varies continuously with λ.
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Duality*

In the neighbourhood of λ∗, define the dual function

Φ(λ) = min
x

L(x,λ) = min
x

[f (x) + λTh(x)].

For a pair {x,λ}, the dual solution is feasible if and only
if the primal solution is optimal.

Define x(λ) as the local minimizer of L(x,λ).

Φ(λ) = L(x(λ),λ) = f (x(λ)) + λTh(x(λ))

First derivative:

∇Φ(λ) = ∇λx(λ)∇xL(x(λ),λ) + h(x(λ)) = h(x(λ))

For a pair {x,λ}, the dual solution is optimal if and only
if the primal solution is feasible.
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Duality*

Hessian of the dual function:

Hφ(λ) = ∇λx(λ)∇xh(x(λ))

Differentiating ∇xL(x(λ),λ) = 0, we have

∇λx(λ)HL(x(λ),λ) + [∇xh(x(λ))]T = 0.

Solving for ∇λx(λ) and substituting,

Hφ(λ) = −[∇xh(x(λ))]T [HL(x(λ),λ)]−1∇xh(x(λ)),

negative definite!

At λ∗, x(λ∗) = x∗, ∇Φ(λ∗) = h(x∗) = 0, Hφ(λ∗) is negative
definite and the dual function is maximized.

Φ(λ∗) = L(x∗,λ∗) = f (x∗)
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Consolidation (including all constraints)

I Assuming local convexity, the dual function:

Φ(λ,µ) = min
x

L(x,λ,µ) = min
x

[f (x) + λTh(x) + µTg(x)].

I Constraints on the dual: ∇xL(x,λ,µ) = 0, optimality of the
primal.

I Corresponding to inequality constraints of the primal problem,
non-negative variables µ in the dual problem.

I First order necessary conditons for the dual optimality:
equivalent to the feasibility of the primal problem.

I The dual function is concave globally!

I Under suitable conditions, Φ(λ∗) = L(x∗,λ∗) = f (x∗).

I The Lagrangian L(x,λ,µ) has a saddle point in the combined
space of primal and dual variables: positive curvature along x
directions and negative curvature along λ and µ directions.
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For a problem of n variables, with m active constraints,
nature and dimension of working spaces

Penalty methods (Rn): Minimize the penalized function

q(c , x) = f (x) + cP(x).

Example: P(x) = 1
2‖h(x)‖2 + 1

2 [max(0, g(x))]2.

Primal methods (Rn−m): Work only in feasible domain, restricting
steps to the tangent plane.
Example: Gradient projection method.

Dual methods (Rm): Transform the problem to the space of
Lagrange multipliers and maximize the dual.
Example: Augmented Lagrangian method.

Lagrange methods (Rm+n): Solve equations appearing in the KKT
conditions directly.
Example: Sequential quadratic programming.
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Points to note

I Constraint qualification

I KKT conditions

I Second order conditions

I Basic ideas for solution strategy

Necessary Exercises: 1,2,3,4,5,6
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Linear Programming
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Standard form of an LP problem:

Minimize f (x) = cT x,
subject to Ax = b, x ≥ 0; with b ≥ 0.

Preprocessing to cast a problem to the standard form

I Maximization: Minimize the negative function.

I Variables of unrestricted sign: Use two variables.

I Inequality constraints: Use slack/surplus variables.

I Negative RHS: Multiply with −1.

Geometry of an LP problem

I Infinite domain: does a minimum exist?

I Finite convex polytope: existence guaranteed

I Operating with vertices sufficient as a strategy

I Extension with slack/surplus variables: original solution space
a subspace in the extented space, x ≥ 0 marking the domain

I Essence of the non-negativity condition of variables
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The simplex method

Suppose x ∈ RN , b ∈ RM and A ∈ RM×N full-rank, with M < N.

IMxB + A′xNB = b′

Basic and non-basic variables: xB ∈ RM and xNB ∈ RN−M

Basic feasible solution: xB = b′ ≥ 0 and xNB = 0

At every iteration,
I selection of a non-basic variable to enter the basis

I edge of travel selected based on maximum rate of descent
I no qualifier: current vertex is optimal

I selection of a basic variable to leave the basis
I based on the first constraint becoming active along the edge
I no constraint ahead: function is unbounded

I elementary row operations: new basic feasible solution

Two-phase method: Inclusion of a pre-processing phase with
artificial variables to develop a basic feasible solution
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General perspective
LP problem:

Minimize f (x, y) = cT
1 x + cT

2 y;
subject to A11x + A12y = b1, A21x + A22y ≤ b2, y ≥ 0.

Lagrangian:

L(x, y,λ,µ,ν) = cT
1 x + cT

2 y

+ λT (A11x + A12y − b1) + µT (A21x + A22y − b2)− νTy

Optimality conditions:

c1 + AT
11λ+ AT

21µ = 0 and ν = c2 + AT
12λ+ AT

22µ ≥ 0

Substituting back, optimal function value: f ∗ = −λTb1 −µTb2

Sensitivity to the constraints: ∂f ∗
∂b1

= −λ and ∂f ∗
∂b2

= −µ
Dual problem:

maximize Φ(λ,µ) = −bT
1 λ− bT

2 µ;
subject to AT

11λ+ AT
21µ = −c1, AT

12λ+ AT
22µ ≥ −c2, µ ≥ 0.

Notice the symmetry between the primal and dual problems.
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A quadratic objective function and linear constraints define

a QP problem.

Equations from the KKT conditions: linear!

Lagrange methods are the natural choice!

With equality constraints only,

Minimize f (x) =
1

2
xTQx + cTx, subject to Ax = b.

First order necessary conditions:

[
Q AT

A 0

] [
x∗

λ

]
=

[
−c
b

]

Solution of this linear system yields the complete result!

Caution: This coefficient matrix is indefinite.
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Active set method

Minimize f (x) = 1
2x

TQx + cT x;
subject to A1x = b1,

A2x ≤ b2.

Start the iterative process from a feasible point.
I Construct active set of constraints as Ax = b.
I From the current point xk , with x = xk + dk ,

f (x) =
1

2
(xk + dk)TQ(xk + dk) + cT (xk + dk)

=
1

2
dT

k Qdk + (c + Qxk )Tdk + f (xk ).

I Since gk ≡ ∇f (xk ) = c + Qxk , subsidiary quadratic program:

minimize 1
2d

T
k Qdk + gT

k dk subject to Adk = 0.

I Examining solution dk and Lagrange multipliers, decide to
terminate, proceed or revise the active set.
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Linear complementary problem (LCP)

Slack variable strategy with inequality constraints

Minimize 1
2x

TQx + cTx, subject to Ax ≤ b, x ≥ 0.

KKT conditions: With x, y,µ,ν ≥ 0,

Qx + c + ATµ− ν = 0,

Ax + y = b,

xTν = µTy = 0.

Denoting

z =

[
x
µ

]
,w =

[
ν
y

]
,q =

[
c
b

]
and M =

[
Q AT

−A 0

]
,

w −Mz = q, wT z = 0.

Find mutually complementary non-negative w and z.
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If q ≥ 0, then w = q, z = 0 is a solution!

Lemke’s method: artificial variable z0 with e = [1 1 1 · · · 1]T :

Iw −Mz − ez0 = q

With z0 = max(−qi),

w = q + ez0 ≥ 0 and z = 0: basic feasible solution

I Evolution of the basis similar to the simplex method.

I Out of a pair of w and z variables, only one can be there in
any basis.

I At every step, one variable is driven out of the basis and its
partner called in.

I The step driving out z0 flags termination.

Handling of equality constraints? Very clumsy!!
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I Fundamental issues and general perspective of the linear
programming problem

I The simplex method

I Quadratic programming
I The active set method
I Lemke’s method via the linear complementary problem

Necessary Exercises: 1,2,3,4,5
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Polynomial Interpolation

Problem: To develop an analytical representation of a function
from information at discrete data points.
Purpose

I Evaluation at arbitrary points

I Differentiation and/or integration

I Drawing conclusion regarding the trends or nature

Interpolation: one of the ways of function representation

I sampled data are exactly satisfied

Polynomial: a convenient class of basis functions
For yi = f (xi ) for i = 0, 1, 2, · · · , n with x0 < x1 < x2 < · · · < xn,

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n.

Find the coefficients such that p(xi) = f (xi ) for i = 0, 1, 2, · · · , n.

Values of p(x) for x ∈ [x0, xn] interpolate n + 1 values
of f (x), an outside estimate is extrapolation.
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Polynomial Interpolation

To determine p(x), solve the linear system




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xn x2
n · · · xn

n







a0

a1

a2

· · ·
an




=




f (x0)
f (x1)
f (x2)
· · ·

f (xn)




?

Vandermonde matrix: invertible, but typically ill-conditioned!

Invertibility means existence and uniqueness of polynomial p(x).

Two polynomials p1(x) and p2(x) matching the function f (x) at
x0, x1, x2, · · · , xn imply

n-th degree polynomial ∆p(x) = p1(x)− p2(x) with
n + 1 roots!

∆p ≡ 0 ⇒ p1(x) = p2(x): p(x) is unique.
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Polynomial Interpolation

Lagrange interpolation
Basis functions:

Lk (x) =

∏n
j=0,j 6=k(x − xj)∏n
j=0,j 6=k(xk − xj)

=
(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

Interpolating polynomial:

p(x) = α0L0(x) + α1L1(x) + α2L2(x) + · · ·+ αnLn(x)

At the data points, Lk (xi) = δik .

Coefficient matrix identity and αi = f (xi ).

Lagrange interpolation formula:

p(x) =
n∑

k=0

f (xk)Lk (x) = L0(x)f (x0)+L1(x)f (x1)+· · ·+Ln(x)f (xn)

Existence of p(x) is a trivial consequence!
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Polynomial Interpolation

Two interpolation formulae

I one costly to determine, but easy to process

I the other trivial to determine, costly to process

Newton interpolation for an intermediate trade-off:
p(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1) + · · ·+ cn

∏n−1
i=0 (x − xi)

Hermite interpolation

uses derivatives as well as function values.

Data: f (xi ), f ′(xi ), · · · , f (ni−1)(xi ) at x = xi , for i = 0, 1, · · · ,m:

I At (m + 1) points, a total of n + 1 =
∑m

i=0 ni conditions

Limitations of single-polynomial interpolation

With large number of data points, polynomial degree is high.

I Computational cost and numerical imprecision

I Lack of representative nature due to oscillations
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Piecewise Polynomial Interpolation

Piecewise linear interpolation

f (x) = f (xi−1) +
f (xi )− f (xi−1)

xi − xi−1
(x − xi−1) for x ∈ [xi−1, xi ]

Handy for many uses with dense data. But, not differentiable.

Piecewise cubic interpolation
With function values and derivatives at (n + 1) points,

n cubic Hermite segments

Data for the j-th segment:

f (xj−1) = fj−1, f (xj ) = fj , f ′(xj−1) = f ′j−1 and f ′(xj ) = f ′j

Interpolating polynomial:

pj(x) = a0 + a1x + a2x
2 + a3x

3

Coefficients a0, a1, a2, a3: linear combinations of fj−1, fj , f ′j−1, f ′j

Composite function C1 continuous at knot points.
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Piecewise Polynomial Interpolation

General formulation through normalization of intervals

x = xj−1 + t(xj − xj−1), t ∈ [0, 1]

With g(t) = f (x(t)), g ′(t) = (xj − xj−1)f ′(x(t));

g0 = fj−1, g1 = fj , g ′0 = (xj − xj−1)f ′j−1 and g ′1 = (xj − xj−1)f ′j .

Cubic polynomial for the j-th segment:

qj(t) = α0 + α1t + α2t
2 + α3t

3

Modular expression:

qj(t) = [α0 α1 α2 α3]




1
t
t2

t3


 = [g0 g1 g ′0 g ′1] W




1
t
t2

t3


 = GjWT

Packaging data, interpolation type and variable terms separately!

Question: How to supply derivatives? And, why?
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Piecewise Polynomial Interpolation

Spline interpolation

Spline: a drafting tool to draw a smooth curve through key points.

Data: fi = f (xi ), for x0 < x1 < x2 < · · · < xn.

If kj = f ′(xj), then

pj(x) can be determined in terms of fj−1, fj , kj−1, kj

and pj+1(x) in terms of fj , fj+1, kj , kj+1.

Then, p′′j (xj) = p′′j+1(xj): a linear equation in kj−1, kj and kj+1

From n− 1 interior knot points,

n − 1 linear equations in derivative values k0, k1, · · · , kn.

Prescribing k0 and kn, a diagonally dominant tridiagonal system!

A spline is a smooth interpolation, with C2 continuity.
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Interpolation of Multivariate Functions

Piecewise bilinear interpolation

Data: f (x , y) over a dense rectangular grid

x = x0, x1, x2, · · · , xm and y = y0, y1, y2, · · · , yn

Rectangular domain: {(x , y) : x0 ≤ x ≤ xm, y0 ≤ y ≤ yn}

For xi−1 ≤ x ≤ xi and yj−1 ≤ y ≤ yj ,

f (x , y) = a0,0 + a1,0x + a0,1y + a1,1xy = [1 x ]

[
a0,0 a0,1

a1,0 a1,1

] [
1
y

]

With data at four corner points, coefficient matrix determined from

[
1 xi−1

1 xi

] [
a0,0 a0,1

a1,0 a1,1

] [
1 1

yj−1 yj

]
=

[
fi−1,j−1 fi−1,j

fi ,j−1 fi ,j

]
.

Approximation only C0 continuous.
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Interpolation of Multivariate Functions

Alternative local formula through reparametrization
With u =

x−xi−1

xi−xi−1
and v =

y−yj−1

yj−yj−1
, denoting

fi−1,j−1 = g0,0, fi ,j−1 = g1,0, fi−1,j = g0,1 and fi ,j = g1,1;

bilinear interpolation:

g(u, v) = [1 u]

[
α0,0 α0,1

α1,0 α1,1

] [
1
v

]
for u, v ∈ [0, 1].

Values at four corner points fix the coefficient matrix as
[
α0,0 α0,1

α1,0 α1,1

]
=

[
1 0
−1 1

] [
g0,0 g0,1

g1,0 g1,1

] [
1 −1
0 1

]
.

Concisely, g(u, v) = UTWTGi ,jWV in which

U =

[
1
u

]
, V =

[
1
v

]
, W =

[
1 −1
0 1

]
, Gi ,j =

[
fi−1,j−1 fi−1,j

fi ,j−1 fi ,j

]
.
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Interpolation of Multivariate Functions

Piecewise bicubic interpolation

Data: f , ∂f
∂x

, ∂f
∂y

and ∂2f
∂x∂y

over grid points

With normalizing parameters u and v ,

∂g
∂u

= (xi − xi−1)∂f
∂x
, ∂g

∂v
= (yj − yj−1) ∂f

∂y
, and

∂2g
∂u∂v

= (xi − xi−1)(yj − yj−1) ∂2f
∂x∂y

In {(x , y) : xi−1 ≤ x ≤ xi , yj−1 ≤ y ≤ yj} or {(u, v) : u, v ∈ [0, 1]},

g(u, v) = UTWTGi ,jWV,

with U = [1 u u2 u3]T , V = [1 v v 2 v3]T , and

Gi ,j =




g(0, 0) g(0, 1) gv (0, 0) gv (0, 1)
g(1, 0) g(1, 1) gv (1, 0) gv (1, 1)
gu(0, 0) gu(0, 1) guv (0, 0) guv (0, 1)
gu(1, 0) gu(1, 1) guv (1, 0) guv (1, 1)


 .
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A Note on Approximation of Functions

A common strategy of function approximation is to

I express a function as a linear combination of a set of basis
functions (which?), and

I determine coefficients based on some criteria (what?).

Criteria:

Interpolatory approximation: Exact agreement with sampled data

Least square approximation: Minimization of a sum (or integral) of
square errors over sampled data

Minimax approximation: Limiting the largest deviation

Basis functions:

polynomials, sinusoids, orthogonal eigenfunctions or
field-specific heuristic choice
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Points to note

I Lagrange, Newton and Hermite interpolations

I Piecewise polynomial functions and splines

I Bilinear and bicubic interpolation of bivariate functions

Direct extension to vector functions: curves and surfaces!

Necessary Exercises: 1,2,4,6
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Newton-Cotes Integration Formulae

J =

∫ b

a

f (x)dx

Divide [a, b] into n sub-intervals with

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

where xi − xi−1 = h = b−a
n

.

J̄ =
n∑

i=1

hf (x∗i ) = h[f (x∗1 ) + f (x∗2 ) + · · ·+ f (x∗n )]

Taking x∗i ∈ [xi−1, xi ] as xi−1 and xi , we get summations J1 and J2.

As n→∞ (i.e. h→ 0), if J1 and J2 approach the same
limit, then function f (x) is integrable over interval [a, b].

A rectangular rule or a one-point rule

Question: Which point to take as x ∗i ?
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Newton-Cotes Integration Formulae

Mid-point rule
Selecting x∗i as x̄i =

xi−1+xi

2 ,

∫ xi

xi−1

f (x)dx ≈ hf (x̄i) and

∫ b

a

f (x)dx ≈ h

n∑

i=1

f (x̄i ).

Error analysis: From Taylor’s series of f (x) about x̄i ,
∫ xi

xi−1

f (x)dx =

∫ xi

xi−1

[
f (x̄i ) + f ′(x̄i )(x − x̄i ) + f ′′(x̄i )

(x − x̄i)
2

2
+ · · ·

]
dx

= hf (x̄i) +
h3

24
f ′′(x̄i) +

h5

1920
f iv (x̄i ) + · · · ,

third order accurate!
Over the entire domain [a, b],
∫ b

a

f (x)dx ≈ h

n∑

i=1

f (x̄i)+
h3

24

n∑

i=1

f ′′(x̄i ) = h

n∑

i=1

f (x̄i )+
h2

24
(b−a)f ′′(ξ),

for ξ ∈ [a, b] (from mean value theorem): second order accurate.
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Newton-Cotes Integration Formulae

Trapezoidal rule
Approximating function f (x) with a linear interpolation,

∫ xi

xi−1

f (x)dx ≈ h

2
[f (xi−1) + f (xi )]

and ∫ b

a

f (x)dx ≈ h

[
1

2
f (x0) +

n−1∑

i=1

f (xi ) +
1

2
f (xn)

]
.

Taylor series expansions about the mid-point:

f (xi−1) = f (x̄i )−
h

2
f ′(x̄i ) +

h2

8
f ′′(x̄i )−

h3

48
f ′′′(x̄i ) +

h4

384
f iv (x̄i )− · · ·

f (xi ) = f (x̄i ) +
h

2
f ′(x̄i ) +

h2

8
f ′′(x̄i ) +

h3

48
f ′′′(x̄i ) +

h4

384
f iv (x̄i ) + · · ·

⇒ h

2
[f (xi−1) + f (xi )] = hf (x̄i ) +

h3

8
f ′′(x̄i) +

h5

384
f iv(x̄i ) + · · ·

Recall
∫ xi

xi−1
f (x)dx = hf (x̄i ) + h3

24 f ′′(x̄i ) + h5

1920 f iv (x̄i ) + · · · .
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Newton-Cotes Integration Formulae

Error estimate of trapezoidal rule

∫ xi

xi−1

f (x)dx =
h

2
[f (xi−1) + f (xi )]− h3

12
f ′′(x̄i )−

h5

480
f iv (x̄i) + · · ·

Over an extended domain,

∫ b

a

f (x)dx = h

[
1

2
{f (x0) + f (xn)}+

n−1∑

i=1

f (xi)

]
−h2

12
(b−a)f ′′(ξ)+· · · .

The same order of accuracy as the mid-point rule!

Different sources of merit

I Mid-point rule: Use of mid-point leads to symmetric
error-cancellation.

I Trapezoidal rule: Use of end-points allows double utilization
of boundary points in adjacent intervals.

How to use both the merits?

Applied Mathematical Methods Basic Methods of Numerical Integration 305,

Newton-Cotes Integration Formulae
Richardson Extrapolation and Romberg Integration
Further Issues

Newton-Cotes Integration Formulae

Simpson’s rules
Divide [a, b] into an even number (n = 2m) of intervals.
Fit a quadratic polynomial over a panel of two intervals.
For this panel of length 2h, two estimates:

M(f ) = 2hf (xi ) and T (f ) = h[f (xi−1) + f (xi+1)]

J = M(f ) +
h3

3
f ′′(xi ) +

h5

60
f iv (xi) + · · ·

J = T (f )− 2h3

3
f ′′(xi )−

h5

15
f iv (xi ) + · · ·

Simpson’s one-third rule (with error estimate):
∫ xi+1

xi−1

f (x)dx =
h

3
[f (xi−1) + 4f (xi ) + f (xi+1)]− h5

90
f iv(xi )

Fifth (not fourth) order accurate!

A four-point rule: Simpson’s three-eighth rule
Still higher order rules NOT advisable!
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Richardson Extrapolation and Romberg Integration

To determine quantity F
I using a step size h, estimate F (h)
I error terms: hp, hq, hr etc (p < q < r)
I F = limδ→0 F (δ)?
I plot F (h), F (αh), F (α2h) (with α < 1) and extrapolate?

1 F (h) = F + chp +O(hq)

2 F (αh) = F + c(αh)p +O(hq)

4 F (α2h) = F + c(α2h)p +O(hq)

Eliminate c and determine (better estimates of) F :

3 F1(h) =
F (αh)− αpF (h)

1− αp
= F + c1h

q +O(hr )

5 F1(αh) =
F (α2h)− αpF (αh)

1− αp
= F + c1(αh)q +O(hr )

Still better estimate: 6 F2(h) = F1(αh)−αqF1(h)
1−αq = F +O(hr )

Richardson extrapolation



Applied Mathematical Methods Basic Methods of Numerical Integration 307,

Newton-Cotes Integration Formulae
Richardson Extrapolation and Romberg Integration
Further Issues

Richardson Extrapolation and Romberg Integration

Trapezoidal rule for J =
∫ b

a
f (x)dx : p = 2, q = 4, r = 6 etc

T (f ) = J + ch2 + dh4 + eh6 + · · ·

With α = 1
2 , half the sum available for successive levels.

Romberg integration
I Trapezoidal rule with h = H: find J11.
I With h = H/2, find J12.

J22 =
J12 −

(
1
2

)2
J11

1−
(

1
2

)2 =
4J12 − J11

3
.

I If |J22 − J12| is within tolerance, STOP. Accept J ≈ J22.
I With h = H/4, find J13.

J23 =
4J13 − J12

3
and J33 =

J23 −
(

1
2

)4
J22

1−
(

1
2

)4 =
16J23 − J22

15
.

I If |J33 − J23| is within tolerance, STOP with J ≈ J33.
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Further Issues

Featured functions: adaptive quadrature

I With prescribed tolerance ε, assign quota εi =
ε(xi−xi−1)

b−a
of

error to every interval [xi−1, xi ].

I For each interval, find two estimates of the integral and
estimate the error.

I If error estimate is not within quota, then subdivide.

Function as tabulated data

I Only trapezoidal rule applicable?

I Fit a spline over data points and integrate the segments?

Improper integral: Newton-Cotes closed formulae not applicable!

I Open Newton-Cotes formulae

I Gaussian quadrature
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Points to note

I Definition of an integral and integrability

I Closed Newton-Cotes formulae and their error estimates

I Richardson extrapolation as a general technique

I Romberg integration

I Adaptive quadrature

Necessary Exercises: 1,2,3,4
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A typical quadrature formula: a weighted sum
∑n

i=0 wi fi
I fi : function value at i -th sampled point

I wi : corresponding weight

Newton-Cotes formulae:

I Abscissas (xi ’s) of sampling prescribed

I Coefficients or weight values determined to eliminate
dominant error terms

Gaussian quadrature rules:

I no prescription of quadrature points

I only the ‘number’ of quadrature points prescribed

I locations as well as weights contribute to the accuracy criteria

I with n integration points, 2n degrees of freedom

I can be made exact for polynomials of degree up to 2n − 1

I best locations: interior points

I open quadrature rules: can handle integrable singularities
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Gauss-Legendre quadrature

∫ 1

−1
f (x)dx = w1f (x1) + w2f (x2)

Four variables: Insist that it is exact for 1, x , x 2 and x3.

w1 + w2 =

∫ 1

−1
dx = 2,

w1x1 + w2x2 =

∫ 1

−1
xdx = 0,

w1x
2
1 + w2x

2
2 =

∫ 1

−1
x2dx =

2

3

and w1x
3
1 + w2x

3
2 =

∫ 1

−1
x3dx = 0.

x1 = −x2, w1 = w2 ⇒ w1 = w2 = 1, x1 = − 1√
3

, x2 = 1√
3
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Two-point Gauss-Legendre quadrature formula
∫ 1
−1 f (x)dx = f (− 1√

3
) + f ( 1√

3
)

Exact for any cubic polynomial: parallels Simpson’s rule!
Three-point quadrature rule along similar lines:

∫ 1

−1
f (x)dx =

5

9
f

(
−
√

3

5

)
+

8

9
f (0) +

5

9
f

(√
3

5

)

A large number of formulae: Consult mathematical handbooks.
For domain of integration [a, b],

x =
a + b

2
+

b − a

2
t and dx =

b − a

2
dt

With scaling and relocation,

∫ b

a

f (x)dx =
b − a

2

∫ 1

−1
f [x(t)]dt
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General Framework for n-point formula

f (x): a polynomial of degree 2n − 1

p(x): Lagrange polynomial through the n quadrature points

f (x)− p(x): a (2n − 1)-degree polynomial having n of its roots at
the quadrature points

Then, with φ(x) = (x − x1)(x − x2) · · · (x − xn),

f (x)− p(x) = φ(x)q(x).

Quotient polynomial: q(x) =
∑n−1

i=0 αix
i

Direct integration:

∫ 1

−1
f (x)dx =

∫ 1

−1
p(x)dx +

∫ 1

−1

[
φ(x)

n−1∑

i=0

αix
i

]
dx

How to make the second term vanish?
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Choose quadrature points x1, x2, · · · , xn so that φ(x) is orthogonal
to all polynomials of degree less than n.

Legendre polynomial

Gauss-Legendre quadrature

1. Choose Pn(x), Legendre polynomial of degree n, as φ(x).

2. Take its roots x1, x2, · · · , xn as the quadrature points.

3. Fit Lagrange polynomial of f (x), using these n points.

p(x) = L1(x)f (x1) + L2(x)f (x2) + · · ·+ Ln(x)f (xn)

4. ∫ 1

−1
f (x)dx =

∫ 1

−1
p(x)dx =

n∑

j=1

f (xj )

∫ 1

−1
Lj (x)dx

Weight values: wj =
∫ 1
−1 Lj(x)dx , for j = 1, 2, · · · , n
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Weight functions in Gaussian quadrature

What is so great about exact integration of polynomials?

Demand something else: generalization

Exact integration of polynomials times function W (x)

Given weight function W (x) and number (n) of quadrature points,

work out the locations (xj ’s) of the n points and the
corresponding weights (wj ’s), so that integral

∫ b

a

W (x)f (x)dx =
n∑

j=1

wj f (xj)

is exact for an arbitrary polynomial f (x) of degree up to
(2n − 1).
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A family of orthogonal polynomials with increasing degree:

quadrature points: roots of n-th member of the family.

For different kinds of functions and different domains,

I Gauss-Chebyshev quadrature

I Gauss-Laguerre quadrature

I Gauss-Hermite quadrature

I · · · · · · · · ·
Several singular functions and infinite domains can be handled.

A very special case:

For W (x) = 1, Gauss-Legendre quadrature!
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S =

∫ b

a

∫ g2(x)

g1(x)
f (x , y) dy dx

⇒ F (x) =

∫ g2(x)

g1(x)
f (x , y) dy and S =

∫ b

a

F (x)dx

with complete flexibility of individual quadrature methods.

Double integral on rectangular domain

Two-dimensional version of Simpson’s one-third rule:

∫ 1

−1

∫ 1

−1
f (x , y)dxdy

= w0f (0, 0) + w1[f (−1, 0) + f (1, 0) + f (0,−1) + f (0, 1)]

+ w2[f (−1,−1) + f (−1, 1) + f (1,−1) + f (1, 1)]

Exact for bicubic functions: w0 = 16/9, w1 = 4/9 and w2 = 1/9.
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Monte Carlo integration

I =

∫

Ω
f (x)dV

Requirements:

I a simple volume V enclosing the domain Ω

I a point classification scheme

Generating random points in V ,

F (x) =

{
f (x) if x ∈ Ω,

0 otherwise .

I ≈ V

N

N∑

i=1

F (xi )

Estimate of I (usually) improves with increasing N.
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Gaussian Quadrature
Multiple IntegralsPoints to note

I Basic strategy of Gauss-Legendre quadrature

I Formulation of a double integral from fundamental principle

I Monte Carlo integration

Necessary Exercises: 2,5,6
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Single-Step Methods

Initial value problem (IVP) of a first order ODE:

dy

dx
= f (x , y), y(x0) = y0

To determine: y(x) for x ∈ [a, b] with x0 = a.

Numerical solution: Start from the point (x0, y0).

I y1 = y(x1) = y(x0 + h) =?

I Found (x1, y1). Repeat up to x = b.

Information at how many points are used at every step?

I Single-step method: Only the current value

I Multi-step method: History of several recent steps
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Single-Step Methods

Euler’s method

I At (xn, yn), evaluate slope dy
dx

= f (xn, yn).

I For a small step h,

yn+1 = yn + hf (xn, yn)

Repitition of such steps constructs y(x).

First order truncated Taylor’s series:

Expected error: O(h2)

Accumulation over steps

Total error: O(h)

Euler’s method is a first order method.

Question: Total error = Sum of errors over the steps?
Answer: No, in general.
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Single-Step Methods

Initial slope for the entire step: is it a good idea?

C3

x x x

C2

1

2 31

0y

0 x

y

∆ 3y

C

C

y

xO

3

Figure: Euler’s method
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Figure: Improved Euler’s method

Improved Euler’s method or Heun’s method

ȳn+1 = yn + hf (xn, yn)

yn+1 = yn + h
2 [f (xn, yn) + f (xn+1, ȳn+1)]

The order of Heun’s method is two.
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Single-Step Methods

Runge-Kutta methods
Second order method:

k1 = hf (xn, yn), k2 = hf (xn + αh, yn + βk1)
k = w1k1 + w2k2,

and xn+1 = xn + h, yn+1 = yn + k

Force agreement up to the second order.

yn+1

= yn + w1hf (xn, yn) + w2h[f (xn, yn) + αhfx(xn, yn) + βk1fy (xn, yn) + · · · ]
= yn + (w1 + w2)hf (xn, yn) + h2w2[αfx(xn, yn) + βf (xn, yn)fy (xn, yn)] + · · ·

From Taylor’s series, using y ′ = f (x , y) and y ′′ = fx + ffy ,

y(xn+1) = yn + hf (xn, yn) +
h2

2
[fx(xn, yn) + f (xn, yn)fy (xn, yn)] + · · ·

w1 + w2 = 1, αw2 = βw2 = 1
2 ⇒ α = β = 1

2w2
, w1 = 1− w2
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Single-Step Methods

With continuous choice of w2,

a family of second order Runge Kutta (RK2) formulae

Popular form of RK2: with choice w2 = 1,

k1 = hf (xn, yn), k2 = hf (xn + h
2 , yn + k1

2 )
xn+1 = xn + h, yn+1 = yn + k2

Fourth order Runge-Kutta method (RK4):

k1 = hf (xn, yn)

k2 = hf (xn + h
2 , yn + k1

2 )

k3 = hf (xn + h
2 , yn + k2

2 )
k4 = hf (xn + h, yn + k3)

k = 1
6(k1 + 2k2 + 2k3 + k4)

xn+1 = xn + h, yn+1 = yn + k
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Practical Implementation of Single-Step Methods

Question: How to decide whether the error is within tolerance?
Additional estimates:

I handle to monitor the error
I further efficient algorithms

Runge-Kutta method with adaptive step size
In an interval [xn, xn + h],

y
(1)
n+1 = yn+1 + ch5 + higher order terms

Over two steps of size h
2 ,

y
(2)
n+1 = yn+1 + 2c

(
h

2

)5

+ higher order terms

Difference of two estimates:

∆ = y
(1)
n+1 − y

(2)
n+1 ≈

15

16
ch5

Best available value: y ∗n+1 = y
(2)
n+1 − ∆

15 =
16y

(2)
n+1−y

(1)
n+1

15
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Practical Implementation of Single-Step Methods

Evaluation of a step:

∆ > ε: Step size is too large for accuracy.
Subdivide the interval.

∆ << ε: Step size is inefficient!

Start with a large step size.
Keep subdividing intervals whenever ∆ > ε.

Fast marching over smooth segments and small steps in
zones featured with rapid changes in y(x).

Runge-Kutta-Fehlberg method

With six function values,

An RK4 formula embedded in an RK5 formula

I two independent estimates and an error estimate!

RKF45 in professional implementations
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Systems of ODE’s

Methods for a single first order ODE

directly applicable to a first order vector ODE

A typical IVP with an ODE system:

dy

dx
= f(x , y), y(x0) = y0

An n-th order ODE: convert into a system of first order ODE’s

Defining state vector z(x) = [y(x) y ′(x) · · · y (n−1)(x)]T ,

work out dz
dx

to form the state space equation.

Initial condition: z(x0) = [y(x0) y ′(x0) · · · y (n−1)(x0)]T

A system of higher order ODE’s with the highest order derivatives
of orders n1, n2, n3, · · · , nk

I Cast into the state space form with the state vector of
dimension n = n1 + n2 + n3 + · · ·+ nk
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Systems of ODE’s

State space formulation is directly applicable when

the highest order derivatives can be solved explicitly.

The resulting form of the ODE’s: normal system of ODE’s

Example:

y
d2x

dt2
− 3

(
dy

dt

)(
dx

dt

)2

+ 2x

(
dx

dt

)√
d2y

dt2
+ 4 = 0

exy d3y

dt3
− y

(
d2y

dt2

)3/2

+ 2x + 1 = e−t

State vector: z(t) =
[
x dx

dt
y dy

dt
d2y
dt2

]T

With three trivial derivatives z ′1(t) = z2, z ′3(t) = z4 and z ′4(t) = z5

and the other two obtained from the given ODE’s,

we get the state space equations as dz
dt

= f(t, z).
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Multi-Step Methods*

Single-step methods: every step a brand new IVP!

Why not try to capture the trend?

A typical multi-step formula:

yn+1 = yn + h[c0f (xn+1, yn+1) + c1f (xn, yn)

+ c2f (xn−1, yn−1) + c3f (xn−2, yn−2) + · · · ]

Determine coefficients by demanding the exactness for leading
polynomial terms.

Explicit methods: c0 = 0, evaluation easy, but involves
extrapolation.

Implicit methods: c0 6= 0, difficult to evaluate, but better stability.

Predictor-corrector methods

Example: Adams-Bashforth-Moulton method
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Points to note

I Euler’s and Runge-Kutta methods

I Step size adaptation

I State space formulation of dynamic systems

Necessary Exercises: 1,2,5,6
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Stability Analysis

Adaptive RK4 is an extremely successful method.

But, its scope has a limitation.

Focus of explicit methods (such as RK) is accuracy and efficiency.

The issue of stabilty is handled indirectly.

Stabilty of explicit methods
For the ODE system y′ = f(x , y), Euler’s method gives

yn+1 = yn + f(xn, yn)h +O(h2).

Taylor’s series of the actual solution:

y(xn+1) = y(xn) + f(xn, y(xn))h +O(h2)

Discrepancy or error:

∆n+1 = yn+1 − y(xn+1)

= [yn − y(xn)] + [f(xn, yn)− f(xn, y(xn))]h +O(h2)

= ∆n +

[
∂f

∂y
(xn, ȳn)∆n

]
h +O(h2) ≈ (I + hJ)∆n
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Stability Analysis

Euler’s step magnifies the error by a factor (I + hJ).

Using J loosely as the representative Jacobian,

∆n+1 ≈ (I + hJ)n∆1.

For stability, ∆n+1 → 0 as n→∞.

Eigenvalues of (I + hJ) must fall within the unit circle
|z | = 1. By shift theorem, eigenvalues of hJ must fall
inside the unit circle with the centre at z0 = −1.

|1 + hλ| < 1 ⇒ h <
−2Re (λ)

|λ|2
Note: Same result for single ODE w ′ = λw , with complex λ.
For second order Runge-Kutta method,

∆n+1 =

[
1 + hλ+

h2λ2

2

]
∆n

Region of stability in the plane of z = hλ:
∣∣∣1 + z + z2

2

∣∣∣ < 1
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Stability Analysis
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Figure: Stability regions of explicit methods

Question: What do these stability regions mean with reference to
the system eigenvalues?
Question: How does the step size adaptation of RK4 operate on a
system with eigenvalues on the left half of complex plane?

Step size adaptation tackles instability by its symptom!
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Implicit Methods

Backward Euler’s method

yn+1 = yn + f(xn+1, yn+1)h

Solve it? Is it worth solving?

∆n+1 ≈ yn+1 − y(xn+1)

= [yn − y(xn)] + h[f(xn+1, yn+1)− f(xn+1, y(xn+1))]

= ∆n + hJ(xn+1, ȳn+1)∆n+1

Notice the flip in the form of this equation.

∆n+1 ≈ (I − hJ)−1∆n

Stability: eigenvalues of (I − hJ) outside the unit circle |z | = 1

|hλ− 1| > 1 ⇒ h >
2Re (λ)

|λ|2
Absolute stability for a stable ODE, i.e. one with Re (λ) < 0
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Implicit Methods
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Figure: Stability region of backward Euler’s method

How to solve g(yn+1) = yn + hf(xn+1, yn+1)− yn+1 = 0 for yn+1?
Typical Newton’s iteration:

y
(k+1)
n+1 = y

(k)
n+1 + (I − hJ)−1

[
yn − y

(k)
n+1 + hf

(
xn+1, y

(k)
n+1

)]

Semi-implicit Euler’s method for local solution:

yn+1 = yn + h(I − hJ)−1f(xn+1, yn)
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Stiff Differential Equations

Example: IVP of a mass-spring-damper system:

ẍ + cẋ + kx = 0, x(0) = 0, ẋ(0) = 1

(a) c = 3, k = 2: x = e−t − e−2t

(b) c = 49, k = 600: x = e−24t − e−25t
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(a) Case of c = 3, k = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x

(b) Case of c = 49, k = 600

Figure: Solutions of a mass-spring-damper system: ordinary situations
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Stiff Differential Equations

(c) c = 302, k = 600: x = e−2t−e−300t
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(d) With implicit Euler

Figure: Solutions of a mass-spring-damper system: stiff situation

To solve stiff ODE systems,

use implicit method, preferably with explicit Jacobian.
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Boundary Value Problems

A paradigm shift from the initial value problems

I A ball is thrown with a particular velocity. What trajectory
does the ball follow?

I How to throw a ball such that it hits a particular window at a
neighbouring house after 15 seconds?

Two-point BVP in ODE’s:

boundary conditions at two values of the independent
variable

Methods of solution

I Shooting method

I Finite difference (relaxation) method

I Finite element method
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Boundary Value Problems

Shooting method

follows the strategy to adjust trials to hit a target.

Consider the 2-point BVP

y′ = f(x , y), g1(y(a)) = 0, g2(y(b)) = 0,

where g1 ∈ Rn1 , g2 ∈ Rn2 and n1 + n2 = n.

I Parametrize initial state: y(a) = h(p) with p ∈ R n2 .

I Guess n2 values of p to define IVP

y′ = f(x , y), y(a) = h(p).

I Solve this IVP for [a, b] and evaluate y(b).

I Define error vector E(p) = g2(y(b)).



Applied Mathematical Methods ODE Solutions: Advanced Issues 343,

Stability Analysis
Implicit Methods
Stiff Differential Equations
Boundary Value Problems

Boundary Value Problems

Objective: To solve E(p) = 0

From current vector p, n2 perturbations as p + eiδ: Jacobian ∂E
∂p

Each Newton’s step: solution of n2 + 1 initial value
problems!

I Computational cost

I Convergence not guaranteed (initial guess important)

Merits of shooting method

I Very few parameters to start

I In many cases, it is found quite efficient.
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Boundary Value Problems

Finite difference (relaxation) method

adopts a global perspective.

1. Discretize domain [a, b]: grid of points
a = x0 < x1 < x2 < · · · < xN−1 < xN = b.
Function values y(xi ): n(N + 1) unknowns

2. Replace the ODE over intervals by finite difference equations.
Considering mid-points, a typical (vector) FDE:

yi−yi−1−hf

(
xi + xi−1

2
,
yi + yi−1

2

)
= 0, for i = 1, 2, 3, · · · ,N

nN (scalar) equations

3. Assemble additional n equations from boundary conditions.

4. Starting from a guess solution over the grid, solve this system.
(Sparse Jacobian is an advantage.)

Iterative schemes for solution of systems of linear equations.
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Points to note

I Numerical stability of ODE solution methods

I Computational cost versus better stability of implicit methods

I Multiscale responses leading to stiffness: failure of explicit
methods

I Implicit methods for stiff systems

I Shooting method for two-point boundary value problems

I Relaxation method for boundary value problems

Necessary Exercises: 1,2,3,4,5
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Well-Posedness of Initial Value Problems
Pierre Simon de Laplace (1749-1827):

”We may regard the present state of the

universe as the effect of its past and the

cause of its future. An intellect which at a

certain moment would know all forces that

set nature in motion, and all positions of all

items of which nature is composed, if this

intellect were also vast enough to submit

these data to analysis, it would embrace in a

single formula the movements of the greatest

bodies of the universe and those of the

tiniest atom; for such an intellect nothing

would be uncertain and the future just like

the past would be present before its eyes.”
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Well-Posedness of Initial Value Problems

Initial value problem

y ′ = f (x , y), y(x0) = y0

From (x , y), the trajectory develops according to y ′ = f (x , y).

The new point: (x + δx , y + f (x , y)δx)
The slope now: f (x + δx , y + f (x , y)δx)

Question: Was the old direction of approach valid?

With δx → 0, directions appropriate, if

lim
x→x̄

f (x , y) = f (x̄ , y(x̄)),

i.e. if f (x , y) is continuous.

If f (x , y) =∞, then y ′ =∞ and trajectory is vertical.

For the same value of x, several values of y!

y(x) not a function, unless f (x , y) 6=∞, i.e. f (x , y) is bounded.
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Well-Posedness of Initial Value Problems
Peano’s theorem: If f (x , y) is continuous and bounded in a
rectangle R = {(x , y) : |x − x0| < h, |y − y0| < k}, with
|f (x , y)| ≤ M <∞, then the IVP y ′ = f (x , y), y(x0) = y0 has a
solution y(x) defined in a neighbourhood of x0.

),y0(x0(x),y0(x0(x
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Figure: Regions containing the trajectories

Guaranteed neighbourhood:

[x0 − δ, x0 + δ], where δ = min(h, k
M

) > 0
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Well-Posedness of Initial Value Problems

Example:

y ′ =
y − 1

x
, y(0) = 1

Function f (x , y) = y−1
x

undefined at (0, 1).

Premises of existence theorem not satisfied.

But, premises here are sufficient, not necessary!

Result inconclusive.

The IVP has solutions: y(x) = 1 + cx for all values of c .

The solution is not unique.

Example: y ′2 = |y |, y(0) = 0

Existence theorem guarantees a solution.

But, there are two solutions:

y(x) = 0 and y(x) = sgn(x) x2/4.
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Well-Posedness of Initial Value Problems

Physical system to mathematical model
I Mathematical solution

I Interpretation about the physical system

Meanings of non-uniqueness of a solution

I Mathematical model admits of extraneous solution(s)?

I Physical system itself can exhibit alternative behaviours?

Indeterminacy of the solution

I Mathematical model of the system is not complete.

The initial value problem is not well-posed.

After existence, next important question:

Uniqueness of a solution
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Well-Posedness of Initial Value Problems

Continuous dependence on initial condition

Suppose that for IVP y ′ = f (x , y), y(x0) = y0,

I unique solution: y1(x).

Applying a small perturbation to the initial condition, the new IVP:
y ′ = f (x , y), y(x0) = y0 + ε

I unique solution: y2(x)

Question: By how much y2(x) differs from y1(x) for x > x0?

Large difference: solution sensitive to initial condition

I Practically unreliable solution

Well-posed IVP:

An initial value problem is said to be well-posed if there
exists a solution to it, the solution is unique and it
depends continuously on the initial conditions.
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Uniqueness Theorems

Lipschitz condition:

|f (x , y)− f (x , z)| ≤ L|y − z |
L: finite positive constant (Lipschitz constant)

Theorem: If f (x , y) is a continuous function satisfying a
Lipschitz condition on a strip
S = {(x , y) : a < x < b,−∞ < y <∞}, then for any
point (x0, y0) ∈ S, the initial value problem of
y ′ = f (x , y), y(x0) = y0 is well-posed.

Assume y1(x) and y2(x): solutions of the ODE y ′ = f (x , y) with
initial conditions y(x0) = (y1)0 and y(x0) = (y2)0

Consider E (x) = [y1(x)− y2(x)]2.

E ′(x) = 2(y1 − y2)(y ′1 − y ′2) = 2(y1 − y2)[f (x , y1)− f (x , y2)]

Applying Lipschitz condition,

|E ′(x)| ≤ 2L(y1 − y2)2 = 2LE (x).

Need to consider the case of E ′(x) ≥ 0 only.
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Uniqueness Theorems

E ′(x)

E (x)
≤ 2L ⇒

∫ x

x0

E ′(x)

E (x)
dx ≤ 2L(x − x0)

Integrating, E (x) ≤ E (x0)e2L(x−x0).

Hence,
|y1(x) − y2(x)| ≤ eL(x−x0)|(y1)0 − (y2)0|.

Since x ∈ [a, b], eL(x−x0) is finite.

|(y1)0 − (y2)0| = ε ⇒ |y1(x)− y2(x)| ≤ eL(x−x0)ε

continuous dependence of the solution on initial condition

In particular, (y1)0 = (y2)0 = y0 ⇒ y1(x) = y2(x) ∀ x ∈ [a, b].

The initial value problem is well-posed.
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Uniqueness Theorems

A weaker theorem (hypotheses are stronger):

Picard’s theorem: If f (x , y) and ∂f
∂y

are continuous and
bounded on a rectangle
R = {(x , y) : a < x < b, c < y < d}, then for every
(x0, y0) ∈ R, the IVP y ′ = f (x , y), y(x0) = y0 has a
unique solution in some neighbourhood |x − x0| ≤ h.

From the mean value theorem,

f (x , y1)− f (x , y2) =
∂f

∂y
(ξ)(y1 − y2).

With Lipschitz constant L = sup
∣∣∣ ∂f
∂y

∣∣∣,

Lipschitz condition is satisfied ‘lavishly’ !

Note: All these theorems give only sufficient conditions!
Hypotheses of Picard’s theorem ⇒ Lipschitz condition ⇒
Well-posedness ⇒ Existence and uniqueness
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Extension to ODE Systems

For ODE System

dy

dx
= f(x , y), y(x0) = y0

I Lipschitz condition:

‖f(x , y) − f(x , z)‖ ≤ L‖y − z‖

I Scalar function E (x) generalized as

E (x) = ‖y1(x) − y2(x)‖2 = (y1 − y2)T (y1 − y2)

I Partial derivative ∂f
∂y

replaced by the Jacobian A = ∂f
∂y

I Boundedness to be inferred from the boundedness of its norm

With these generalizations, the formulations work as usual.
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Extension to ODE Systems

IVP of linear first order ODE system

y′ = A(x)y + g(x), y(x0) = y0

Rate function: f(x , y) = A(x)y + g(x)

Continuity and boundedness of the coefficient functions
in A(x) and g(x) are sufficient for well-posedness.

An n-th order linear ordinary differential equation

y (n)+P1(x)y (n−1)+P2(x)y (n−2)+· · ·+Pn−1(x)y ′+Pn(x)y = R(x)

State vector: z = [y y ′ y ′′ · · · y (n−1)]T

With z ′1 = z2, z ′2 = z3, · · · , z ′n−1 = zn and z ′n from the ODE,

I state space equation in the form z′ = A(x)z + g(x)

Continuity and boundedness of P1(x),P2(x), · · · ,Pn(x)
and R(x) guarantees well-posedness.
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Closure

A practical by-product of existence and uniqueness results:

I important results concerning the solutions

A sizeable segment of current research: ill-posed problems
I Dynamics of some nonlinear systems

I Chaos: sensitive dependence on initial conditions

For boundary value problems,

No general criteria for existence and uniqueness

Note: Taking clue from the shooting method, a BVP in ODE’s
can be visualized as a complicated root-finding problem!

Multiple solutions or non-existence of solution is no surprise.
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Points to note

I For a solution of initial value problems, questions of existence,
uniqueness and continuous dependence on initial condition are
of crucial importance.

I These issues pertain to aspects of practical relevance
regarding a physical system and its dynamic simulation

I Lipschitz condition is the tightest (avaliable) criterion for
deciding these questions regarding well-posedness

Necessary Exercises: 1,2
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Formation of Differential Equations and Their Solutions

A differential equation represents a class of functions.

Example: y(x) = cxk

With dy
dx

= ckxk−1 and d2y
dx2 = ck(k − 1)xk−2,

xy
d2y

dx2
= x

(
dy

dx

)2

− y
dy

dx

A compact ‘intrinsic’ description.

Important terms

I Order and degree of differential equations

I Homogeneous and non-homogeneous ODE’s

Solution of a differential equation

I general, particular and singular solutions
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Separation of Variables

ODE form with separable variables:

y ′ = f (x , y) ⇒ dy

dx
=
φ(x)

ψ(y)
or ψ(y)dy = φ(x)dx

Solution as quadrature:

∫
ψ(y)dy =

∫
φ(x)dx + c .

Separation of variables through substitution

Example:
y ′ = g(αx + βy + γ)

Substitute v = αx + βy + γ to arrive at

dv

dx
= α + βg(v) ⇒ x =

∫
dv

α + βg(v)
+ c
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ODE’s with Rational Slope Functions

y ′ =
f1(x , y)

f2(x , y)

If f1 and f2 are homogeneous functions of n-th degree, then
substitution y = ux separates variables x and u.

dy

dx
=
φ1(y/x)

φ2(y/x)
⇒ u+x

du

dx
=
φ1(u)

φ2(u)
⇒ dx

x
=

φ2(u)

φ1(u)− uφ2(u)
du

For y ′ = a1x+b1y+c1
a2x+b2y+c2

, coordinate shift

x = X + h, y = Y + k ⇒ y ′ =
dy

dx
=

dY

dX
produces

dY

dX
=

a1X + b1Y + (a1h + b1k + c1)

a2X + b2Y + (a2h + b2k + c2)
.

Choose h and k such that

a1h + b1k + c1 = 0 = a2h + b2k + c2.

If the system is inconsistent, then substitute u = a2x + b2y .
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Some Special ODE’s

Clairaut’s equation
y = xy ′ + f (y ′)

Substitute p = y ′ and differentiate:

p = p + x
dp

dx
+ f ′(p)

dp

dx
⇒ dp

dx
[x + f ′(p)] = 0

dp
dx

= 0 means y ′ = p = m (constant)

I family of straight lines y = mx + f (m) as general solution

Singular solution:

x = −f ′(p) and y = f (p)− pf ′(p)

Singular solution is the envelope of the family of straight
lines that constitute the general solution.
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Some Special ODE’s

Second order ODE’s with the function not appearing
explicitly

f (x , y ′, y ′′) = 0

Substitute y ′ = p and solve f (x , p, p′) = 0 for p(x).
Second order ODE’s with independent variable not appearing
explicitly

f (y , y ′, y ′′) = 0

Use y ′ = p and

y ′′ =
dp

dx
=

dp

dy

dy

dx
= p

dp

dy
⇒ f (y , p, p

dp

dy
) = 0.

Solve for p(y).
Resulting equation solved through a quadrature as

dy

dx
= p(y) ⇒ x = x0 +

∫
dy

p(y)
.
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Exact Differential Equations and Reduction to the Exact Form

Mdx + Ndy : an exact differential if

M =
∂φ

∂x
and N =

∂φ

∂y
, or,

∂M

∂y
=
∂N

∂x

M(x , y)dx + N(x , y)dy = 0 is an exact ODE if ∂M
∂y

= ∂N
∂x

With M(x , y) = ∂φ
∂x

and N(x , y) = ∂φ
∂y

,

∂φ

∂x
dx +

∂φ

∂y
dy = 0 ⇒ dφ = 0.

Solution: φ(x , y) = c

Working rule:

φ1(x , y) =

∫
M(x , y)dx+g1(y) and φ2(x , y) =

∫
N(x , y)dy+g2(x)

Determine g1(y) and g2(x) from φ1(x , y) = φ2(x , y) = φ(x , y).
If ∂M

∂y
6= ∂N

∂x
, but ∂

∂y
(FM) = ∂

∂x
(FN)?

F : Integrating factor
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First Order Linear (Leibnitz) ODE and Associated Forms

General first order linear ODE:

dy

dx
+ P(x)y = Q(x)

Leibnitz equation

For integrating factor F (x),

F (x)
dy

dx
+ F (x)P(x)y =

d

dx
[F (x)y ] ⇒ dF

dx
= F (x)P(x).

Separating variables,
∫

dF

F
=

∫
P(x)dx ⇒ ln F =

∫
P(x)dx .

Integrating factor: F (x) = e
R

P(x)dx

ye
R

P(x)dx =

∫
Q(x)e

R

P(x)dxdx + C
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First Order Linear (Leibnitz) ODE and Associated Forms

Bernoulli’s equation

dy

dx
+ P(x)y = Q(x)y k

Substitution: z = y 1−k , dz
dx

= (1− k)y−k dy
dx

gives

dz

dx
+ (1− k)P(x)z = (1− k)Q(x),

in the Leibnitz form.
Riccati equation

y ′ = a(x) + b(x)y + c(x)y 2

If one solution y1(x) is known, then propose y(x) = y1(x) + z(x).

y ′1(x) + z ′(x) = a(x) + b(x)[y1(x) + z(x)] + c(x)[y1(x) + z(x)]2

Since y ′1(x) = a(x) + b(x)y1(x) + c(x)[y1(x)]2,

z ′(x) = [b(x) + 2c(x)y1(x)]z(x) + c(x)[z(x)]2,

in the form of Bernoulli’s equation.
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Orthogonal Trajectories

In xy -plane, one-parameter equation φ(x , y , c) = 0:

a family of curves

Differential equation of the family of curves:

dy

dx
= f1(x , y)

Slope of curves orthogonal to φ(x , y , c) = 0:

dy

dx
= − 1

f1(x , y)

Solving this ODE, another family of curves ψ(x , y , k) = 0.

Orthogonal trajectories

If φ(x , y , c) = 0 represents the potential lines (contours),
then ψ(x , y , k) = 0 will represent the streamlines!
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Points to note

I Meaning and solution of ODE’s

I Separating variables

I Exact ODE’s and integrating factors

I Linear (Leibnitz) equations

I Orthogonal families of curves

Necessary Exercises: 1,3,5,7
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Second Order Linear Homogeneous ODE’s
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Introduction

Second order ODE:
f (x , y , y ′, y ′′) = 0

Special case of a linear (non-homogeneous) ODE:

y ′′ + P(x)y ′ + Q(x)y = R(x)

Non-homogeneous linear ODE with constant coefficients:

y ′′ + ay ′ + by = R(x)

For R(x) = 0, linear homogeneous differential equation

y ′′ + P(x)y ′ + Q(x)y = 0

and linear homogeneous ODE with constant coefficients

y ′′ + ay ′ + by = 0
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Homogeneous Equations with Constant Coefficients

y ′′ + ay ′ + by = 0

Assume
y = eλx ⇒ y ′ = λeλx and y ′′ = λ2eλx .

Substitution: (λ2 + aλ+ b)eλx = 0

Auxiliary equation:
λ2 + aλ+ b = 0

Solve for λ1 and λ2:

Solutions: eλ1x and eλ2x

Three cases

I Real and distinct (a2 > 4b): λ1 6= λ2

y(x) = c1y1(x) + c2y2(x) = c1e
λ1x + c2e

λ2x
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Homogeneous Equations with Constant Coefficients

I Real and equal (a2 = 4b): λ1 = λ2 = λ = − a
2

only solution in hand: y1 = eλx

Method to develop another solution?
I Verify that y2 = xeλx is another solution.

y(x) = c1y1(x) + c2y2(x) = (c1 + c2x)eλx

I Complex conjugate (a2 < 4b): λ1,2 = −a
2 ± iω

y(x) = c1e
(− a

2
+iω)x + c2e

(− a
2
−iω)x

= e−
ax
2 [c1(cosωx + i sinωx) + c2(cosωx − i sinωx)]

= e−
ax
2 [A cosωx + B sinωx ],

with A = c1 + c2, B = i(c1 − c2).
I A third form: y(x) = Ce−

ax
2 cos(ωx − α)
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Euler-Cauchy Equation

x2y ′′ + axy ′ + by = 0

Substituting y = xk , auxiliary (or indicial) equation:

k2 + (a − 1)k + b = 0

1. Roots real and distinct [(a− 1)2 > 4b]: k1 6= k2.

y(x) = c1x
k1 + c2x

k2 .

2. Roots real and equal [(a − 1)2 = 4b]: k1 = k2 = k = − a−1
2 .

y(x) = (c1 + c2 ln x)xk .

3. Roots complex conjugate [(a − 1)2 < 4b]: k1,2 = − a−1
2 ± iν.

y(x) = x−
a−1

2 [A cos(ν ln x)+B sin(ν ln x)] = Cx−
a−1

2 cos(ν ln x−α).

Alternative approach: substitution

x = et ⇒ t = ln x ,
dx

dt
= et = x and

dt

dx
=

1

x
, etc.
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Theory of the Homogeneous Equations

y ′′ + P(x)y ′ + Q(x)y = 0

Well-posedness of its IVP:

The initial value problem of the ODE, with arbitrary
initial conditions y(x0) = Y0, y ′(x0) = Y1, has a unique
solution, as long as P(x) and Q(x) are continuous in the
interval under question.

At least two linearly independent solutions:

I y1(x): IVP with initial conditions y(x0) = 1, y ′(x0) = 0

I y2(x): IVP with initial conditions y(x0) = 0, y ′(x0) = 1

c1y1(x) + c2y2(x) = 0 ⇒ c1 = c2 = 0

At most two linearly independent solutions?
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Theory of the Homogeneous Equations

Wronskian of two solutions y1(x) and y2(x):

W (y1, y2) =

∣∣∣∣
y1 y2

y ′1 y ′2

∣∣∣∣ = y1y
′
2 − y2y

′
1

Solutions y1 and y2 are linearly dependent, if and only if ∃ x0

such that W [y1(x0), y2(x0)] = 0.

I W [y1(x0), y2(x0)] = 0 ⇒ W [y1(x), y2(x)] = 0 ∀x .
I W [y1(x1), y2(x1)] 6= 0 ⇒ W [y1(x), y2(x)] 6= 0 ∀x , and y1(x)

and y2(x) are linearly independent solutions.

Complete solution:

If y1(x) and y2(x) are two linearly independent solutions,
then the general solution is

y(x) = c1y1(x) + c2y2(x).

And, the general solution is the complete solution .

No third linearly independent solution. No singular solution.
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Theory of the Homogeneous Equations

If y1(x) and y2(x) are linearly dependent, then y2 = ky1.

W (y1, y2) = y1y
′
2 − y2y

′
1 = y1(ky ′1)− (ky1)y ′1 = 0

In particular, W [y1(x0), y2(x0)] = 0

Conversely, if there is a value x0, where

W [y1(x0), y2(x0)] =

∣∣∣∣
y1(x0) y2(x0)
y ′1(x0) y ′2(x0)

∣∣∣∣ = 0,

then for [
y1(x0) y2(x0)
y ′1(x0) y ′2(x0)

] [
c1

c2

]
= 0,

coefficient matrix is singular.

Choose non-zero

[
c1

c2

]
and frame y(x) = c1y1 + c2y2, satisfying

IVP y ′′ + Py ′ + Qy = 0, y(x0) = 0, y ′(x0) = 0.

Therefore, y(x) = 0 ⇒ y1 and y2 are linearly dependent.
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Theory of the Homogeneous Equations

Pick a candidate solution Y (x), choose a point x0, evaluate
functions y1, y2, Y and their derivatives at that point, frame

[
y1(x0) y2(x0)
y ′1(x0) y ′2(x0)

] [
C1

C2

]
=

[
Y (x0)
Y ′(x0)

]

and ask for solution

[
C1

C2

]
.

Unique solution for C1,C2. Hence, particular solution

y∗(x) = C1y1(x) + C2y2(x)

is the “unique” solution of the IVP

y ′′ + Py ′ + Qy = 0, y(x0) = Y (x0), y ′(x0) = Y ′(x0).

But, that is the candidate function Y (x)! Hence, Y (x) = y ∗(x).
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Basis for Solutions

For completely describing the solutions, we need

two linearly independent solutions.

No guaranteed procedure to identify two basis members!

If one solution y1(x) is available, then to find another?
Reduction of order

Assume the second solution as

y2(x) = u(x)y1(x)

and determine u(x) such that y2(x) satisfies the ODE.

u′′y1 + 2u′y ′1 + uy ′′1 + P(u′y1 + uy ′1) + Quy1 = 0

⇒ u′′y1 + 2u′y ′1 + Pu′y1 + u(y ′′1 + Py ′1 + Qy1) = 0.

Since y ′′1 + Py ′1 + Qy1 = 0, we have y1u
′′ + (2y ′1 + Py1)u′ = 0
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Basis for Solutions

Denoting u′ = U, U ′ + (2
y ′1
y1

+ P)U = 0.

Rearrangement and integration of the reduced equation:

dU

U
+ 2

dy1

y1
+ Pdx = 0 ⇒ Uy 2

1 e
R

Pdx = C = 1 (choose).

Then,

u′ = U =
1

y2
1

e−
R

Pdx ,

Integrating,

u(x) =

∫
1

y2
1

e−
R

Pdxdx ,

and

y2(x) = y1(x)

∫
1

y2
1

e−
R

Pdxdx .

Note: The factor u(x) is never constant!
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Basis for Solutions
Function space perspective:

Operator ‘D’ means differentiation, operates on an infinite
dimensional function space as a linear transformation.

I It maps all constant functions to zero.
I It has a one-dimensional null space.

Second derivative or D2 is an operator that has a two-dimensional
null space, c1 + c2x , with basis {1, x}.
Examples of composite operators

I (D + a) has a null space ce−ax .

I (xD + a) has a null space cx−a.

A second order linear operator D2 + P(x)D + Q(x) possesses a
two-dimensional null space.

I Solution of [D2 + P(x)D + Q(x)]y = 0: description of the
null space, or a basis for it..

I Analogous to solution of Ax = 0, i.e. development of a basis
for Null(A).
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Points to note

I Second order linear homogeneous ODE’s

I Wronskian and related results

I Solution basis

I Reduction of order

I Null space of a differential operator

Necessary Exercises: 1,2,3,7,8
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Linear ODE’s and Their Solutions
The Complete Analogy

Table: Linear systems and mappings: algebraic and differential

In ordinary vector space In infinite-dimensional function space

Ax = b y ′′ + Py ′ + Qy = R

The system is consistent. P(x), Q(x), R(x) are continuous.

A solution x∗ A solution yp(x)

Alternative solution: x̄ Alternative solution: ȳ(x)

x̄ − x∗ satisfies Ax = 0, ȳ(x)− yp(x) satisfies y ′′ + Py ′ + Qy = 0,
is in null space of A. is in null space of D2 + P(x)D + Q(x).

Complete solution: Complete solution:
x = x∗ +

∑
i ci (x0)i yp(x) +

∑
i ciyi(x)

Methodology: Methodology:
Find null space of A Find null space of D2 + P(x)D + Q(x)

i.e. basis members (x0)i . i.e. basis members yi(x).
Find x∗ and compose. Find yp(x) and compose.
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Linear ODE’s and Their Solutions
Procedure to solve y ′′ + P(x)y ′ + Q(x)y = R(x)

1. First, solve the corresponding homogeneous equation, obtain a
basis with two solutions and construct

yh(x) = c1y1(x) + c2y2(x).

2. Next, find one particular solution yp(x) of the NHE and
compose the complete solution

y(x) = yh(x) + yp(x) = c1y1(x) + c2y2(x) + yp(x).

3. If some initial or boundary conditions are known, they can be
imposed now to determine c1 and c2.

Caution: If y1 and y2 are two solutions of the NHE, then
do not expect c1y1 + c2y2 to satisfy the equation.

Implication of linearity or superposition:

With zero initial conditions, if y1 and y2 are responses
due to inputs R1(x) and R2(x), respectively, then the
response due to input c1R1 + c2R2 is c1y1 + c2y2.
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Method of Undetermined Coefficients

y ′′ + ay ′ + by = R(x)

I What kind of function to propose as yp(x) if R(x) = xn?
I And what if R(x) = eλx?
I If R(x) = xn + eλx , i.e. in the form k1R1(x) + k2R2(x)?

The principle of superposition (linearity)

Table: Candidate solutions for linear non-homogeneous ODE’s

RHS function R(x) Candidate solution yp(x)

pn(x) qn(x)

eλx keλx

cosωx or sinωx k1 cosωx + k2 sinωx

eλx cosωx or eλx sinωx k1e
λx cosωx + k2e

λx sinωx

pn(x)eλx qn(x)eλx

pn(x) cosωx or pn(x) sinωx qn(x) cosωx + rn(x) sinωx

pn(x)eλx cosωx or pn(x)eλx sinωx qn(x)eλx cosωx + rn(x)eλx sinωx
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Method of Undetermined Coefficients

Example:
(a) y ′′ − 6y ′ + 5y = e3x

(b) y ′′ − 5y ′ + 6y = e3x

(c) y ′′ − 6y ′ + 9y = e3x

In each case, the first official proposal: yp = ke3x

(a) y(x) = c1e
x + c2e

5x − e3x/4

(b) y(x) = c1e
2x + c2e

3x+ xe3x

(c) y(x) = c1e
3x + c2xe

3x+ 1
2x2e3x

Modification rule

I If the candidate function (keλx , k1 cosωx + k2 sinωx or
k1e

λx cosωx + k2e
λx sinωx) is a solution of the corresponding

HE; with λ, ±iω or λ± iω (respectively) satisfying the
auxiliary equation; then modify it by multiplying with x .

I In the case of λ being a double root, i.e. both eλx and xeλx

being solutions of the HE, choose yp = kx2eλx .
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Method of Variation of Parameters

Solution of the HE:

yh(x) = c1y1(x) + c2y2(x),

in which c1 and c2 are constant ‘parameters’.

For solution of the NHE,

how about ‘variable parameters’?

Propose
yp(x) = u1(x)y1(x) + u2(x)y2(x)

and force yp(x) to satisfy the ODE.

A single second order ODE in u1(x) and u2(x).
We need one more condition to fix them.
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Method of Variation of Parameters
From yp = u1y1 + u2y2,

y ′p = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2.

Condition u′1y1 + u′2y2 = 0 gives

y ′p = u1y
′
1 + u2y

′
2.

Differentiating,

y ′′p = u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2 .

Substitution into the ODE:

u′1y
′
1+u′2y

′
2+u1y

′′
1 +u2y

′′
2 +P(x)(u1y

′
1+u2y

′
2)+Q(x)(u1y1+u2y2) = R(x)

Rearranging,

u′1y
′
1+u′2y

′
2+u1(y ′′1 +P(x)y ′1+Q(x)y1)+u2(y ′′2 +P(x)y ′2+Q(x)y2) = R(x).

As y1 and y2 satisfy the associated HE, u ′1y
′
1 + u′2y

′
2 = R(x)
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Method of Variation of Parameters

[
y1 y2

y ′1 y ′2

] [
u′1
u′2

]
=

[
0
R

]

Since Wronskian is non-zero, this system has unique solution

u′1 = −y2R

W
and u′2 =

y1R

W
.

Direct quadrature:

u1(x) = −
∫

y2(x)R(x)

W [y1(x), y2(x)]
dx and u2(x) =

∫
y1(x)R(x)

W [y1(x), y2(x)]
dx

In contrast to the method of undetermined multipliers,
variation of parameters is general. It is applicable for all
continuous functions as P(x), Q(x) and R(x).
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Points to note

I Function space perspective of linear ODE’s

I Method of undetermined coefficients

I Method of variation of parameters

Necessary Exercises: 1,3,5,6
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Theory of Linear ODE’s

y (n)+P1(x)y (n−1)+P2(x)y (n−2)+· · ·+Pn−1(x)y ′+Pn(x)y = R(x)

General solution: y(x) = yh(x) + yp(x), where
I yp(x): a particular solution
I yh(x): general solution of corresponding HE

y (n)+P1(x)y (n−1)+P2(x)y (n−2)+· · ·+Pn−1(x)y ′+Pn(x)y = 0

For the HE, suppose we have n solutions y1(x), y2(x), · · · , yn(x).
Assemble the state vectors in matrix

Y(x) =




y1 y2 · · · yn

y ′1 y ′2 · · · y ′n
y ′′1 y ′′2 · · · y ′′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n



.

Wronskian:
W (y1, y2, · · · , yn) = det[Y(x)]
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Theory of Linear ODE’s

I If solutions y1(x), y2(x), · · · , yn(x) of HE are linearly
dependent, then for a non-zero k ∈ Rn,
n∑

i=1

kiyi (x) = 0 ⇒
n∑

i=1

kiy
(j)
i (x) = 0 for j = 1, 2, 3, · · · , (n − 1)

⇒ [Y(x)]k = 0 ⇒ [Y(x)] is singular,

⇒ W [y1(x), y2(x), · · · , yn(x)] = 0.

I If Wronskian is zero at x = x0, then Y(x0) is singular and a
non-zero k ∈ Null [Y(x0)] gives

∑n
i=1 kiyi(x) = 0, implying

y1(x), y2(x), · · · , yn(x) to be linearly dependent.
I Zero Wronskian at some x = x0 implies zero Wronskian

everywhere. Non-zero Wronskian at some x = x1 ensures
non-zero Wronskian everywhere and the corrseponding
solutions as linearly independent.

I With n linearly independent solutions y1(x), y2(x), · · · , yn(x)
of the HE, we have its general solution yh(x) =

∑n
i=1 ciyi (x),

acting as the complementary function for the NHE.
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Homogeneous Equations with Constant Coefficients

y (n) + a1y
(n−1) + a2y

(n−2) + · · ·+ an−1y
′ + any = 0

With trial solution y = eλx , the auxiliary equation:

λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ+ an = 0

Construction of the basis:

1. For every simple real root λ = γ, eγx is a solution.

2. For every simple pair of complex roots λ = µ± iω,
eµx cosωx and eµx sinωx are linearly independent solutions.

3. For every real root λ = γ of multiplicity r ; eγx , xeγx , x2eγx ,
· · · , x r−1eγx are all linearly independent solutions.

4. For every complex pair of roots λ = µ± iω of multiplicity r ;
eµx cosωx , eµx sinωx , xeµx cosωx , xeµx sinωx , · · · ,
x r−1eµx cosωx , x r−1eµx sinωx are the required solutions.
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Non-Homogeneous Equations

Method of undetermined coefficients

y (n) + a1y
(n−1) + a2y

(n−2) + · · ·+ an−1y
′ + any = R(x)

Extension of the second order case
Method of variation of parameters

yp(x) =
n∑

i=1

ui(x)yi (x)

Imposed condition Derivative∑n
i=1 u′i (x)yi (x) = 0 ⇒ y ′p(x) =

∑n
i=1 ui (x)y ′i (x)∑n

i=1 u′i (x)y ′i (x) = 0 ⇒ y ′′p (x) =
∑n

i=1 ui (x)y ′′i (x)

· · · · · · · · · ⇒ · · · · · · · · ·∑n
i=1 u′i (x)y

(n−2)
i (x) = 0 ⇒ y

(n−1)
p (x) =

∑n
i=1 ui(x)y

(n−1)
i (x)

Finally, y
(n)
p (x) =

∑n
i=1 u′i (x)y

(n−1)
i (x) +

∑n
i=1 ui (x)y

(n)
i (x)

⇒
n∑

i=1

u′i (x)y
(n−1)
i (x)+

n∑

i=1

ui (x)
[
y

(n)
i + P1y

(n−1)
i + · · · + Pnyi

]
= R(x).
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Non-Homogeneous Equations

Since each yi (x) is a solution of the HE,

n∑

i=1

u′i(x)y
(n−1)
i (x) = R(x).

Assembling all conditions on u′(x) together,

[Y(x)]u′(x) = enR(x).

Since Y−1 = adj Y
det(Y) ,

u′(x) =
1

det[Y(x)]
[adj Y(x)]enR(x) =

R(x)

W (x)
[last column of adj Y(x)].

Using cofactors of elements from last row only,

u′i (x) =
Wi(x)

W (x)
R(x),

with Wi (x) = Wronskian evaluated with en in place of i -th column.

ui(x) =
∫ Wi (x)R(x)

W (x) dx
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Points to note

I Wronskian for a higher order ODE

I General theory of linear ODE’s
I Variation for parameters for n-th order ODE

Necessary Exercises: 1,3,4
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Introduction

Classical perspective

I Entire differential equation is known in advance.

I Go for a complete solution first.

I Afterwards, use the initial (or other) conditions.

A practical situation

I You have a plant
I intrinsic dynamic model as well as the starting conditions.

I You may drive the plant with different kinds of inputs on
different occasions.

Implication

I Left-hand side of the ODE and the initial conditions are
known a priori.

I Right-hand side, R(x), changes from task to task.
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Introduction
Another question: What if R(x) is not continuous?

I When power is switched on or off, what happens?

I If there is a sudden voltage fluctuation, what happens to the
equipment connected to the power line?

Or, does “anything” happen in the immediate future?

“Something” certainly happens. The IVP has a solution!

Laplace transforms provide a tool to find the solution, in
spite of the discontinuity of R(x).

Integral transform:

T [f (t)](s) =

∫ b

a

K (s, t)f (t)dt

s: frequency variable

K (s, t): kernel of the transform

Note: T [f (t)] is a function of s, not t.
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Introduction

With kernel function K (s, t) = e−st , and limits a = 0, b =∞,
Laplace transform

F (s) = L{f (t)} =

∫ ∞

0
e−st f (t)dt = lim

b→∞

∫ b

0
e−st f (t)dt

When this integral exists, f (t) has its Laplace transform.

Sufficient condition:

I f (t) is piecewise continuous, and

I it is of exponential order, i.e. |f (t)| < Mect for some (finite)
M and c .

Inverse Laplace transform:

f (t) = L−1{F (s)}
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Basic Properties and Results

Linearity:

L{af (t) + bg(t)} = aL{f (t)}+ bL{g(t)}
First shifting property or the frequency shifting rule:

L{eat f (t)} = F (s − a)

Laplace transforms of some elementary functions:

L(1) =

∫ ∞

0
e−stdt =

[
e−st

−s

]∞

0

=
1

s
,

L(t) =

∫ ∞

0
e−st tdt =

[
t
e−st

−s

]∞

0

+
1

s

∫ ∞

0
e−stdt =

1

s2
,

L(tn) =
n!

sn+1
(for positive integer n),

L(ta) =
Γ(a + 1)

sa+1
(for a ∈ R+)

and L(eat ) =
1

s − a
.

Applied Mathematical Methods Laplace Transforms 405,

Introduction
Basic Properties and Results
Application to Differential Equations
Handling Discontinuities
Convolution
Advanced Issues

Basic Properties and Results

L(cosωt) =
s

s2 + ω2
, L(sinωt) =

ω

s2 + ω2
;

L(cosh at) =
s

s2 − a2
, L(sinh at) =

a

s2 − a2
;

L(eµt cosωt) =
s − µ

(s − µ)2 + ω2
, L(eµt sinωt) =

ω

(s − µ)2 + ω2
.

Laplace transform of derivative:

L{f ′(t)} =

∫ ∞

0
e−st f ′(t)dt

=
[
e−st f (t)

]∞
0

+ s

∫ ∞

0
e−st f (t)dt = sL{f (t)} − f (0)

Using this process recursively,

L{f (n)(t)} = snL{f (t)}−s(n−1)f (0)−s(n−2)f ′(0)−· · ·− f (n−1)(0).

For integral g(t) =
∫ t

0 f (t)dt, g(0) = 0, and
L{g ′(t)} = sL{g(t)}−g(0) = sL{g(t)} ⇒ L{g(t)} = 1

s
L{f (t)}.
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Application to Differential Equations

Example:
Initial value problem of a linear constant coefficient ODE

y ′′ + ay ′ + by = r(t), y(0) = K0, y ′(0) = K1

Laplace transforms of both sides of the ODE:

s2Y (s)− sy(0)− y ′(0) + a[sY (s)− y(0)] + bY (s) = R(s)

⇒ (s2 + as + b)Y (s) = (s + a)K0 + K1 + R(s)

A differential equation in y(t) has been converted to an
algebraic equation in Y (s).

Transfer function: ratio of Laplace transform of output function
y(t) to that of input function r(t), with zero initial conditions

Q(s) =
Y (s)

R(s)
=

1

s2 + as + b
(in this case)

Y (s) = [(s + a)K0 + K1]Q(s) + Q(s)R(s)

Solution of the given IVP: y(t) = L−1{Y (s)}
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Handling Discontinuities

Unit step function

u(t − a) =

{
0 if t < a
1 if t > a

Its Laplace transform:

L{u(t−a)} =

∫ ∞

0
e−stu(t−a)dt =

∫ a

0
0 ·dt +

∫ ∞

a

e−stdt =
e−as

s

For input f (t) with a time delay,

f (t − a)u(t − a) =

{
0 if t < a

f (t − a) if t > a

has its Laplace transform as

L{f (t − a)u(t − a)} =

∫ ∞

a

e−st f (t − a)dt

=

∫ ∞

0
e−s(a+τ)f (τ)dτ = e−asL{f (t)}.

Second shifting property or the time shifting rule
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Handling Discontinuities

Define

fk(t − a) =

{
1/k if a ≤ t ≤ a + k

0 otherwise

=
1

k
u(t − a)− 1

k
u(t − a− k)

1
k

1
k

k
1

k
1

1
k

f
k

o a t

1

u(t−a)

f
k

o o

1

1

a a+k

u(t−a−k)

u(t−a)

1

a a+k

(t−a)

tt

−
−

o a t

1

(t−a)δ

(a) (c) Function (b) Composition (d) Dirac’s − functionδ    

   

Unit step function

Figure: Step and impulse functions

and note that its integral

Ik =

∫ ∞

0
fk(t − a)dt =

∫ a+k

a

1

k
dt = 1.

does not depend on k .
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Handling Discontinuities

In the limit,

δ(t − a) = lim
k→0

fk(t − a)

or, δ(t − a) =

{
∞ if t = a

0 otherwise
and

∫ ∞

0
δ(t − a)dt = 1.

Unit impulse function or Dirac’s delta function

L{δ(t − a)} = lim
k→0

1

k
[L{u(t − a)} − L{u(t − a− k)}]

= lim
k→0

e−as − e−(a+k)s

ks
= e−as

Through step and impulse functions, Laplace transform
method can handle IVP’s with discontinuous inputs.
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Convolution
A generalized product of two functions

h(t) = f (t) ∗ g(t) =

∫ t

0
f (τ)g(t − τ) dτ

Laplace transform of the convolution:

H(s) =

∫ ∞

0
e−st

∫ t

0
f (τ)g(t−τ)dτ dt =

∫ ∞

0
f (τ)

∫ ∞

τ
e−stg(t−τ)dt dτ

������������������

���
���
���
���
���
���

�
�
�
�
�
�

t = τ

τ

ot

= 

τ

o t

(a) Original order  (b) Changed order

τt

Figure: Region of integration for L{h(t)}
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Convolution

Through substitution t ′ = t − τ ,

H(s) =

∫ ∞

0
f (τ)

∫ ∞

0
e−s(t′+τ)g(t ′) dt ′ dτ

=

∫ ∞

0
f (τ)e−sτ

[∫ ∞

0
e−st′g(t ′) dt ′

]
dτ

H(s) = F (s)G (s)

Convolution theorem:

Laplace transform of the convolution integral of two
functions is given by the product of the Laplace
transforms of the two functions.

Utilities:

I To invert Q(s)R(s), one can convolute y(t) = q(t) ∗ r(t).

I In solving some integral equation.
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Points to note

I A paradigm shift in solution of IVP’s

I Handling discontinuous input functions

I Extension to ODE systems

I The idea of integral transforms

Necessary Exercises: 1,2,4
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Fundamental Ideas

y′ = f(t, y)

Solution: a vector function y = h(t)

Autonomous system: y′ = f(y)

I Points in y-space where f(y) = 0:

equilibrium points or critical points

System of linear ODE’s:

y′ = A(t)y + g(t)

I autonomous systems if A and g are constant

I homogeneous systems if g(t) = 0

I homogeneous constant coefficient systems if A is constant
and g(t) = 0
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Fundamental Ideas

For a homogeneous system,

y′ = A(t)y

I Wronskian: W (y1, y2, y3, · · · , yn) = |y1 y2 y3 · · · yn|

If Wronskian is non-zero, then

I Fundamental matrix: Y(t) = [y1 y2 y3 · · · yn],

giving a basis.

General solution:

y(t) =
n∑

i=1

ciyi (t) = [Y(t)] c
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Linear Homogeneous Systems with Constant Coefficients

y′ = Ay

Non-degenerate case: matrix A non-singular

I Origin (y = 0) is the unique equilibrium point.

Attempt y = xeλt ⇒ y′ = λxeλt .

Substitution: Axeλt = λxeλt ⇒ Ax = λx
If A is diagonalizable,

I n linearly independent solutions yi = xie
λi t corresponding to n

eigenpairs

If A is not diagonalizable?

All xie
λi t together will not complete the basis.

Try y = xteµt? Substitution leads to

xeµt + µxteµt = Axteµt ⇒ xeµt = 0 ⇒ x = 0.

Absurd!
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Linear Homogeneous Systems with Constant Coefficients

Try a linearly independent solution in the form

y = xteµt + ueµt .

Linear independence here has two implications: in
function space AND in ordinary vector space!

Substitution:

xeµt + µxteµt + µueµt = Axteµt + Aueµt ⇒ (A − µI)u = x

Solve for u, the generalized eigenvector of A.
For Jordan blocks of larger sizes,

y1 = xeµt , y2 = xteµt +u1e
µt , y3 =

1

2
xt2eµt +u1te

µt +u2e
µt etc.

Jordan canonical form (JCF) of A provides a set of basis
functions to describe the complete solution of the ODE
system.
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Linear Non-Homogeneous Systems

y′ = Ay + g(t)

Complementary function:

yh(t) =
n∑

i=1

ciyi (t) = [Y(t)]c

Complete solution:

y(t) = yh(t) + yp(t)

We need to develop one particular solution yp .

Method of undetermined coefficients
Based on g(t), select candidate function Gk(t) and propose

yp =
∑

k

ukGk(t),

vector coefficients (uk ) to be determined by substitution.
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Linear Non-Homogeneous Systems

Method of diagonalization

If A is a diagonalizable constant matrix, with X−1AX = D,

changing variables to z = X−1y, such that y = Xz,

Xz′ = AXz+g(t) ⇒ z′ = X−1AXz+X−1g(t) = Dz+h(t) (say).

Single decoupled Leibnitz equations

z ′k = dkzk + hk(t), k = 1, 2, 3, · · · , n;

leading to individual solutions

zk(t) = ckedk t + edk t

∫
e−dk thk(t)dt.

After assembling z(t), we reconstruct y = Xz.
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Linear Non-Homogeneous Systems

Method of variation of parameters
If we can supply a basis Y(t) of the complementary function yh(t),
then we propose

yp(t) = [Y(t)]u(t)

Substitution leads to

Y ′u + Yu′ = AYu + g.

Since Y ′ = AY,

Yu′ = g, or, u′ = [Y]−1g.

Complete solution:

y(t) = yh + yp = [Y]c + [Y]

∫
[Y]−1gdt

This method is completely general.
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Points to note

I Theory of ODE’s in terms of vector functions

I Methods to find
I complementary functions in the case of constant coefficients
I particular solutions for all cases

Necessary Exercises: 1
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Second Order Linear Systems

A system of two first order linear differential equations:

y ′1 = a11y1 + a12y2

y ′2 = a21y1 + a22y2

or, y′ = Ay

Phase: a pair of values of y1 and y2

Phase plane: plane of y1 and y2

Trajectory: a curve showing the evolution of the system for a
particular initial value problem

Phase portrait: all trajectories together showing the complete
picture of the behaviour of the dynamic system

Allowing only isolated equilibrium points,
I matrix A is non-singular: origin is the only equilibrium point.

Eigenvalues of A:

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0
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Second Order Linear Systems

Characteristic equation:

λ2 − pλ+ q = 0,

with p = (a11 + a22) = λ1 + λ2 and q = a11a22 − a12a21 = λ1λ2

Discriminant D = p2 − 4q and

λ1,2 =
p

2
±
√(p

2

)2
− q =

p

2
±
√

D

2
.

Solution (for diagonalizable A):

y = c1x1e
λ1t + c2x2e

λ2t

Solution for deficient A:

y = c1x1e
λt + c2(tx1 + u)eλt

⇒ y′ = c1λx1e
λt + c2(x1 + λu)eλt + λtc2x1e

λt
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Second Order Linear Systems

y1 y1

y1y1

y2 y2

y2

y2

y1

y2

y1

y2

o

o
o o

oo

(a) Saddle point (b) Centre (c) Spiral

(d) Improper node (e) Proper node (f) Degenerate node 

Figure: Neighbourhood of critical points
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Second Order Linear Systems
Table: Critical points of linear systems

Type Sub-type Eigenvalues Position in p-q chart Stability
Saddle pt real, opposite signs q < 0 unstable
Centre pure imaginary q > 0, p = 0 stable
Spiral complex, both q > 0, p 6= 0 stable

non-zero components D = p2 − 4q < 0 if p < 0,
Node real, same sign q > 0, p 6= 0, D ≥ 0 unstable

improper unequal in magnitude D > 0 if p > 0
proper equal, diagonalizable D = 0
degenerate equal, deficient D = 0

= 0q
− 4p2

spiral spiral

o p

q

saddle point

c
e
n
t
r
e

unstablestable

node node

unstable

Figure: Zones of critical points in p-q chart
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Nonlinear Dynamic Systems

Phase plane analysis

I Determine all the critical points.

I Linearize the ODE system around each of them as

y′ = J(y0)(y − y0).

I With z = y − y0, analyze each neighbourhood from z′ = Jz.

I Assemble outcomes of local phase plane analyses.

‘Features’ of a dynamic system are typically captured by
its critical points and their neighbourhoods.

Limit cycles

I isolated closed trajectories (only in nonlinear systems)

Systems with arbitrary dimension of state space?
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Lyapunov Stability Analysis

Important terms

Stability: If y0 is a critical point of the dynamic system
y′ = f(y) and for every ε > 0, ∃ δ > 0 such that

‖y(t0)− y0‖ < δ ⇒ ‖y(t) − y0‖ < ε ∀ t > t0,

then y0 is a stable critical point. If, further,
y(t)→ y0 as t →∞, then y0 is said to be
asymptotically stable.

Positive definite function: A function V (y), with V (0) = 0, is
called positive definite if

V (y) > 0 ∀y 6= 0.

Lyapunov function: A positive definite function V (y), having
continuous ∂V

∂yi
, with a negative semi-definite rate of

change
V ′ = [∇V (y)]T f(y).
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Lyapunov Stability Analysis

Lyapunov’s stability criteria:

Theorem: For a system y′ = f(y) with the origin as a
critical point, if there exists a Lyapunov function V (y),
then the system is stable at the origin, i.e. the origin is a
stable critical point.
Further, if V ′(y) is negative definite, then it is
asymptotically stable.

A generalization of the notion of total energy: negativity of its rate
correspond to trajectories tending to decrease this ‘energy’.

Note: Lyapunov’s method becomes particularly important when a
linearized model allows no analysis or when its results are suspect.

Caution: It is a one-way criterion only!
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Points to note

I Analysis of second order systems

I Classification of critical points

I Nonlinear systems and local linearization

I Phase plane analysis

Examples in physics, engineering, economics,
biological and social systems

I Lyapunov’s method of stability analysis

Necessary Exercises: 1,2,3,4,5
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Power Series Method
Methods to solve an ODE in terms of elementary functions:

I restricted in scope

Theory allows study of the properties of solutions!

When elementary methods fail,
I gain knowledge about solutions through properties, and
I for actual evaluation develop infinite series.

Power series:

y(x) =
∞∑

n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 + · · ·

or in powers of (x − x0).

A simple exercise:

Try developing power series solutions in the above form
and study their properties for differential equations

y ′′ + y = 0 and 4x2y ′′ = y .
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Power Series Method

y ′′ + P(x)y ′ + Q(x)y = 0

If P(x) and Q(x) are analytic at a point x = x0,

i.e. if they possess convergent series expansions in powers
of (x − x0) with some radius of convergence R,

then the solution is analytic at x0, and a power series solution

y(x) = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + · · ·
is convergent at least for |x − x0| < R .

For x0 = 0 (without loss of generality), suppose

P(x) =
∞∑

n=0

pnx
n = p0 + p1x + p2x

2 + p3x
3 + · · · ,

Q(x) =
∞∑

n=0

qnx
n = q0 + q1x + q2x

2 + q3x
3 + · · · ,

and assume y(x) =
∑∞

n=0 anx
n.
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Power Series Method
Differentiation of y(x) =

∑∞
n=0 anx

n as

y ′(x) =
∞∑

n=0

(n + 1)an+1x
n and y ′′(x) =

∞∑

n=0

(n + 2)(n + 1)an+2x
n

leads to

P(x)y ′ =
∞∑

n=0

pnx
n

[ ∞∑

n=0

(n + 1)an+1x
n

]
=
∞∑

n=0

n∑

k=0

pn−k(k + 1)ak+1x
n

Q(x)y =
∞∑

n=0

qnx
n

[ ∞∑

n=0

anx
n

]
=
∞∑

n=0

n∑

k=0

qn−kakxn

⇒
∞∑

n=0

[
(n + 2)(n + 1)an+2 +

n∑

k=0

pn−k(k + 1)ak+1 +
n∑

k=0

qn−kak

]
xn = 0

Recursion formula:

an+2 = − 1

(n + 2)(n + 1)

n∑

k=0

[(k + 1)pn−kak+1 + qn−kak ]

Applied Mathematical Methods Series Solutions and Special Functions 435,

Power Series Method
Frobenius’ Method
Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE’s

Frobenius’ Method

For the ODE y ′′ + P(x)y ′ + Q(x)y = 0, a point x = x0 is

ordinary point if P(x) and Q(x) are analytic at x = x0: power
series solution is analytic

singular point if any of the two is non-analytic (singular) at x = x0

I regular singularity: (x − x0)P(x) and
(x − x0)2Q(x) are analytic at the point

I irregular singularity

The case of regular singularity

For x0 = 0, with P(x) = b(x)
x

and Q(x) = c(x)
x2 ,

x2y ′′ + xb(x)y ′ + c(x)y = 0

in which b(x) and c(x) are analytic at the origin.
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Frobenius’ Method

Working steps:

1. Assume the solution in the form y(x) = x r
∑∞

n=0 anx
n.

2. Differentiate to get the series expansions for y ′(x) and y ′′(x).

3. Substitute these series for y(x), y ′(x) and y ′′(x) into the
given ODE and collect coefficients of x r , x r+1, x r+2 etc.

4. Equate the coefficient of x r to zero to obtain an equation in
the index r , called the indicial equation as

r(r − 1) + b0r + c0 = 0;

allowing a0 to become arbitrary.

5. For each solution r , equate other coefficients to obtain a1, a2,
a3 etc in terms of a0.

Note: The need is to develop two solutions.

Applied Mathematical Methods Series Solutions and Special Functions 437,

Power Series Method
Frobenius’ Method
Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE’s

Special Functions Defined as Integrals

Gamma function: Γ(n) =
∫∞
0 e−xxn−1dx , convergent for n > 0.

Recurrence relation Γ(1) = 1, Γ(n + 1) = nΓ(n)
allows extension of the definition for the entire real
line except for zero and negative integers.
Γ(n + 1) = n! for non-negative integers.
(A generalization of the factorial function.)

Beta function: B(m, n) =
∫ 1
0 xm−1(1− x)n−1dx =

2
∫ π/2
0 sin2m−1 θ cos2n−1 θ dθ; m, n > 0.

B(m, n) = B(n,m); B(m, n) = Γ(m)Γ(n)
Γ(m+n)

Error function: erf (x) = 2√
π

∫ x

0 e−t2
dt.

(Area under the normal or Gaussian distribution)

Sine integral function: Si (x) =
∫ x

0
sin t
t

dt.
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Special Functions Arising as Solutions of ODE’s

In the study of some important problems in physics,

some variable-coefficient ODE’s appear recurrently,

defying analytical solution!

Series solutions ⇒ properties and connections
⇒ further problems ⇒ further solutions ⇒ · · ·

Table: Special functions of mathematical physics

Name of the ODE Form of the ODE Resulting functions

Legendre’s equation (1− x2)y′′ − 2xy′ + k(k + 1)y = 0 Legendre functions
Legendre polynomials

Airy’s equation y ′′ ± k2xy = 0 Airy functions

Chebyshev’s equation (1− x2)y′′ − xy′ + k2y = 0 Chebyshev polynomials

Hermite’s equation y ′′ − 2xy′ + 2ky = 0 Hermite functions
Hermite polynomials

Bessel’s equation x2y′′ + xy′ + (x2 − k2)y = 0 Bessel functions
Neumann functions
Hankel functions

Gauss’s hypergeometric x(1− x)y ′′ + [c − (a + b + 1)x ]y′ − aby = 0 Hypergeometric function
equation

Laguerre’s equation xy ′′ + (1 − x)y′ + ky = 0 Laguerre polynomials
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Special Functions Arising as Solutions of ODE’s

Legendre’s equation

(1− x2)y ′′ − 2xy ′ + k(k + 1)y = 0

P(x) = − 2x
1−x2 and Q(x) = k(k+1)

1−x2 are analytic at x = 0 with
radius of convergence R = 1.

x = 0 is an ordinary point and a power series solution
y(x) =

∑∞
n=0 anx

n is convergent at least for |x | < 1.

Apply power series method:

a2 = −k(k + 1)

2!
a0,

a3 = −(k + 2)(k − 1)

3!
a1

and an+2 = −(k − n)(k + n + 1)

(n + 2)(n + 1)
an for n ≥ 2.

Solution: y(x) = a0y1(x) + a1y2(x)

Applied Mathematical Methods Series Solutions and Special Functions 440,

Power Series Method
Frobenius’ Method
Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE’s

Special Functions Arising as Solutions of ODE’s

Legendre functions

y1(x) = 1− k(k + 1)

2!
x2 +

k(k − 2)(k + 1)(k + 3)

4!
x4 − · · ·

y2(x) = x − (k − 1)(k + 2)

3!
x3 +

(k − 1)(k − 3)(k + 2)(k + 4)

5!
x5 − · · ·

Special significance: non-negative integral values of k

For each k = 0, 1, 2, 3, · · · ,
one of the series terminates at the term containing x k .

Polynomial solution: valid for the entire real line!

Recurrence relation in reverse:

ak−2 = − k(k − 1)

2(2k − 1)
ak
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Special Functions Arising as Solutions of ODE’s

Legendre polynomial
Choosing ak = (2k−1)(2k−3)···3·1

k! ,

Pk(x) =
(2k − 1)(2k − 3) · · · 3 · 1

k!

×
[
xk − k(k − 1)

2(2k − 1)
xk−2 +

k(k − 1)(k − 2)(k − 3)

2 · 4(2k − 1)(2k − 3)
xk−4 − · · ·

]
.

This choice of ak ensures Pk(1) = 1 and implies Pk(−1) = (−1)k .
Initial Legendre polynomials:

P0(x) = 1,

P1(x) = x ,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3) etc.
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Special Functions Arising as Solutions of ODE’s
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Figure: Legendre polynomials

All roots of a Legendre polynomial are real and they lie in [−1, 1].

Orthogonality?
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Special Functions Arising as Solutions of ODE’s

Bessel’s equation

x2y ′′ + xy ′ + (x2 − k2)y = 0

x = 0 is a regular singular point.
Frobenius’ method: carrying out the early steps,

(r2−k2)a0x
r +[(r+1)2−k2]a1x

r+1+
∞∑

n=2

[an−2+{r2−k2+n(n+2r)}an]x r+n = 0

Indicial equation: r 2 − k2 = 0⇒ r = ±k
With r = k , (r + 1)2 − k2 6= 0 ⇒ a1 = 0 and

an = − an−2

n(n + 2r)
for n ≥ 2.

Odd coefficients are zero and

a2 = − a0

2(2k + 2)
, a4 =

a0

2 · 4(2k + 2)(2k + 4)
, etc.
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Special Functions Arising as Solutions of ODE’s

Bessel functions:
Selecting a0 = 1

2kΓ(k+1)
and using n = 2m,

am =
(−1)m

2k+2mm!Γ(k + m + 1)
.

Bessel function of the first kind of order k :

Jk(x) =
∞∑

m=0

(−1)m xk+2m

2k+2mm!Γ(k + m + 1)
=
∞∑

m=0

(−1)m
(

x
2

)k+2m

m!Γ(k + m + 1)

When k is not an integer, J−k(x) completes the basis.

For integer k , J−k(x) = (−1)kJk(x), linearly dependent!
Reduction of order can be used to find another solution.

Bessel function of the second kind or Neumann function
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Points to note

I Solution in power series

I Ordinary points and singularities

I Definition of special functions

I Legendre polynomials

I Bessel functions

Necessary Exercises: 2,3,4,5
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A simple boundary value problem:

y ′′ + 2y = 0, y(0) = 0, y(π) = 0

General solution of the ODE:

y(x) = a sin(x
√

2) + b cos(x
√

2)

Condition y(0) = 0 ⇒ b = 0. Hence, y(x) = a sin(x
√

2).

Then, y(π) = 0 ⇒ a = 0. Only solution is y(x) = 0.

Now, consider the BVP

y ′′ + 4y = 0, y(0) = 0, y(π) = 0.

The same steps give y(x) = a sin(2x), with arbitrary value of a.

Infinite number of non-trivial solutions!
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Boundary value problems as eigenvalue problems
Explore the possible solutions of the BVP

y ′′ + ky = 0, y(0) = 0, y(π) = 0.

I With k ≤ 0, no hope for a non-trivial solution. Consider
k = ν2 > 0.

I Solutions: y = a sin(νx), only for specific values of ν (or k):
ν = 0,±1,±2,±3, · · · ; i.e. k = 0, 1, 4, 9, · · · .

Question:

I For what values of k (eigenvalues), does the given BVP
possess non-trivial solutions, and

I what are the corresponding solutions (eigenfunctions), up to
arbitrary scalar multiples?

Analogous to the algebraic eigenvalue problem Av = λv!
Analogy of a Hermitian matrix: self-adjoint differential operator.
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Consider the ODE y ′′ + P(x)y ′ + Q(x)y = 0.
Question:

Is it possible to find functions F (x) and G (x) such that

F (x)y ′′ + F (x)P(x)y ′ + F (x)Q(x)y

gets reduced to the derivative of F (x)y ′ + G (x)y?

Comparing with

d

dx
[F (x)y ′ + G (x)y ] = F (x)y ′′ + [F ′(x) + G (x)]y ′ + G ′(x)y ,

F ′(x) + G (x) = F (x)P(x) and G ′(x) = F (x)Q(x).

Elimination of G (x):

F ′′(x)− P(x)F ′(x) + [Q(x)− P ′(x)]F (x) = 0

This is the adjoint of the original ODE.

Applied Mathematical Methods Sturm-Liouville Theory 450,

Preliminary Ideas
Sturm-Liouville Problems
Eigenfunction Expansions

Preliminary Ideas

The adjoint ODE

I The adjoint of the ODE y ′′ + P(x)y ′ + Q(x)y = 0 is

F ′′ + P1F
′ + Q1F = 0,

where P1 = −P and Q1 = Q − P ′.
I Then, the adjoint of F ′′ + P1F

′ + Q1F = 0 is

φ′′ + P2φ
′ + Q2φ = 0,

where P2 = −P1 = P and
Q2 = Q1 − P ′1 = Q − P ′ − (−P ′) = Q.

The adjoint of the adjoint of a second order linear
homogeneous equation is the original equation itself.

I When is an ODE its own adjoint?
I y ′′ + P(x)y ′ + Q(x)y = 0 is self-adjoint only in the trivial case

of P(x) = 0.
I What about F (x)y ′′ + F (x)P(x)y ′ + F (x)Q(x)y = 0?
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Second order self-adjoint ODE

Question: What is the adjoint of Fy ′′ + FPy ′ + FQy = 0?

Rephrased question: What is the ODE that φ(x) has to satisfy if

φFy ′′ + φFPy ′ + φFQy =
d

dx

[
φFy ′ + ξ(x)y

]
?

Comparing terms,

d

dx
(φF ) + ξ(x) = φFP and ξ′(x) = φFQ.

Eliminating ξ(x), we have d2

dx2 (φF ) + φFQ = d
dx

(φFP).

Fφ′′ + 2F ′φ′ + F ′′φ+ FQφ = FPφ′ + (FP)′φ

⇒ Fφ′′ + (2F ′ − FP)φ′ +
[
F ′′ − (FP)′ + FQ

]
φ = 0

This is the same as the original ODE, when F ′(x) = F (x)P(x)
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Casting a given ODE into the self-adjoint form:

Equation y ′′ + P(x)y ′ + Q(x)y = 0 is converted to the
self-adjoint form through the multiplication of
F (x) = e

R

P(x)dx .

General form of self-adjoint equations:

d

dx
[F (x)y ′] + R(x)y = 0

Working rules:

I To determine whether a given ODE is in the self-adjoint form,
check whether the coefficient of y ′ is the derivative of the
coefficient of y ′′.

I To convert an ODE into the self-adjoint form, first obtain the
equation in normal form by dividing with the coefficient of y ′′.
If the coefficient of y ′ now is P(x), then next multiply the
resulting equation with e

R

Pdx .
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Sturm-Liouville Problems

Sturm-Liouville equation

[r(x)y ′]′ + [q(x) + λp(x)]y = 0,

where p, q, r and r ′ are continuous on [a, b], with p(x) > 0 on
[a, b] and r(x) > 0 on (a, b).

With different boundary conditions,

Regular S-L problem:
a1y(a) + a2y

′(a) = 0 and b1y(b) + b2y
′(b) = 0,

vectors [a1 a2]T and [b1 b2]T being non-zero.

Periodic S-L problem: With r(a) = r(b),
y(a) = y(b) and y ′(a) = y ′(b).

Singular S-L problem: If r(a) = 0, no boundary condition is
needed at x = a. If r(b) = 0, no boundary condition
is needed at x = b.
(We just look for bounded solutions over [a, b].)
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Orthogonality of eigenfunctions

Theorem: If ym(x) and yn(x) are eigenfunctions
(solutions) of a Sturm-Liouville problem corresponding to
distinct eigenvalues λm and λn respectively, then

(ym, yn) ≡
∫ b

a

p(x)ym(x)yn(x)dx = 0,

i.e. they are orthogonal with respect to the weight
function p(x).

From the hypothesis,

(ry ′m)′ + (q + λmp)ym = 0 ⇒ (q + λmp)ymyn = −(ry ′m)′yn

(ry ′n)′ + (q + λnp)yn = 0 ⇒ (q + λnp)ymyn = −(ry ′n)′ym

Subtracting,

(λm − λn)pymyn = (ry ′n)′ym + (ry ′n)y ′m − (ry ′m)y ′n − (ry ′m)′yn

=
[
r(ymy ′n − yny

′
m)
]′
.
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Sturm-Liouville Problems
Integrating both sides,

(λm − λn)

∫ b

a

p(x)ym(x)yn(x)dx

= r(b)[ym(b)y ′n(b)− yn(b)y ′m(b)]− r(a)[ym(a)y ′n(a)− yn(a)y ′m(a)].

I In a regular S-L problem, from the boundary condition at
x = a, the homogeneous system[

ym(a) y ′m(a)
yn(a) y ′n(a)

] [
a1

a2

]
=

[
0
0

]
has non-trivial solutions.

Therefore, ym(a)y ′n(a)− yn(a)y ′m(a) = 0.
Similarly, ym(b)y ′n(b)− yn(b)y ′m(b) = 0.

I In a singular S-L problem, zero value of r(x) at a boundary
makes the corresponding term vanish even without a BC.

I In a periodic S-L problem, the two terms cancel out together.

Since λm 6= λn, in all cases,
∫ b

a

p(x)ym(x)yn(x)dx = 0.
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Sturm-Liouville Problems
Example: Legendre polynomials over [−1, 1]
Legendre’s equation

d

dx
[(1− x2)y ′] + k(k + 1)y = 0

is self-adjoint and defines a singular Sturm Liouville problem over
[−1, 1] with p(x) = 1, q(x) = 0, r(x) = 1− x 2 and λ = k(k + 1).

(m−n)(m+n+1)

∫ 1

−1
Pm(x)Pn(x)dx = [(1−x2)(PmP ′n−PnP

′
m)]1−1 = 0

From orthogonal decompositions 1 = P0(x), x = P1(x),

x2 =
1

3
(3x2 − 1) +

1

3
=

2

3
P2(x) +

1

3
P0(x),

x3 =
1

5
(5x3 − 3x) +

3

5
x =

2

5
P3(x) +

3

5
P1(x),

x4 =
8

35
P4(x) +

4

7
P2(x) +

1

5
P0(x) etc;

Pk(x) is orthogonal to all polynomials of degree less than k .
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Sturm-Liouville Problems
Real eigenvalues

Eigenvalues of a Sturm-Liouville problem are real.

Let eigenvalue λ = µ+ iν and eigenfunction y(x) = u(x) + iv(x).
Substitution leads to

[r(u′ + iv ′)]′ + [q + (µ+ iν)p](u + iv) = 0.

Separation of real and imaginary parts:

[ru′]′ + (q + µp)u − νpv = 0 ⇒ νpv 2 = [ru′]′v + (q + µp)uv

[rv ′]′ + (q + µp)v + νpu = 0 ⇒ νpu2 = −[rv ′]′u − (q + µp)uv

Adding together,

νp(u2 +v2) = [ru′]′v + [ru′]v ′− [rv ′]u′− [rv ′]′u = −
[
r(uv ′ − vu′)

]′

Integration and application of boundary conditions leads to

ν

∫ b

a

p(x)[u2(x) + v2(x)]dx = 0.

ν = 0 and λ = µ
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Eigenfunction Expansions

Eigenfunctions of Sturm-Liouville problems:

convenient and powerful instruments to represent and
manipulate fairly general classes of functions

{y0, y1, y2, y3, · · · }: a family of continuous functions over [a, b],
mutually orthogonal with respect to p(x).

Representation of a function f (x) on [a, b]:

f (x) =
∞∑

m=0

amym(x) = a0y0(x) + a1y1(x) + a2y2(x) + a3y3(x) + · · ·

Generalized Fourier series
Analogous to the representation of a vector as a linear combination
of a set of mutually orthogonal vectors.

Question: How to determine the coefficients (an)?
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Eigenfunction Expansions

Inner product:

(f , yn) =

∫ b

a

p(x)f (x)yn(x)dx

=

∫ b

a

∞∑

m=0

[amp(x)ym(x)yn(x)]dx =
∞∑

m=0

am(ym, yn) = an‖yn‖2

where

‖yn‖ =
√

(yn, yn) =

√∫ b

a

p(x)y2
n (x)dx

Fourier coefficients: an = (f ,yn)
‖yn‖2

Normalized eigenfunctions:

φm(x) =
ym(x)

‖ym(x)‖
Generalized Fourier series (in orthonormal basis):

f (x) =
∞∑

m=0

cmφm(x) = c0φ0(x)+c1φ1(x)+c2φ2(x)+c3φ3(x)+ · · ·
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Eigenfunction Expansions

In terms of a finite number of members of the family {φk (x)},

ΦN(x) =
N∑

m=0

αmφm(x) = α0φ0(x)+α1φ1(x)+α2φ2(x)+· · ·+αNφN(x).

Error

E = ‖f − ΦN‖2 =

∫ b

a

p(x)

[
f (x)−

N∑

m=0

αmφm(x)

]2

dx

Error is minimized when

∂E

∂αn
=

∫ b

a

2p(x)

[
f (x)−

N∑

m=0

αmφm(x)

]
[−φn(x)]dx = 0

⇒
∫ b

a

αnp(x)φ2
n(x)dx =

∫ b

a

p(x)f (x)φn(x)dx .

αn = cn

best approximation in the mean or least square approximation
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Using the Fourier coefficients, error

E = (f , f )−2
N∑

n=0

cn(f , φn)+
N∑

n=0

c2
n (φn, φn) = ‖f ‖2−2

N∑

n=0

c2
n +

N∑

n=0

c2
n

E = ‖f ‖2 −
N∑

n=0

c2
n ≥ 0.

Bessel’s inequality:

N∑

n=0

c2
n ≤ ‖f ‖2 =

∫ b

a

p(x)f 2(x)dx

Partial sum

sk(x) =
k∑

m=0

amφm(x)

Question: Does the sequence of {sk} converge?
Answer: The bound in Bessel’s inequality ensures convergence.

Applied Mathematical Methods Sturm-Liouville Theory 462,

Preliminary Ideas
Sturm-Liouville Problems
Eigenfunction Expansions

Eigenfunction Expansions

Question: Does it converge to f ?

lim
k→∞

∫ b

a

p(x)[sk (x)− f (x)]2dx = 0?

Answer: Depends on the basis used.
Convergence in the mean or mean-square convergence:

An orthonormal set of functions {φk (x)} on an interval
a ≤ x ≤ b is said to be complete in a class of functions,
or to form a basis for it, if the corresponding generalized
Fourier series for a function converges in the mean to the
function, for every function belonging to that class.

Parseval’s identity:
∑∞

n=0 c2
n = ‖f ‖2

Eigenfunction expansion: generalized Fourier series in terms of
eigenfunctions of a Sturm-Liouville problem

I convergent for continuous functions with piecewise continuous
derivatives, i.e. they form a basis for this class.
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Points to note

I Eigenvalue problems in ODE’s

I Self-adjoint differential operators

I Sturm-Liouville problems

I Orthogonal eigenfunctions

I Eigenfunction expansions

Necessary Exercises: 1,2,4,5
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Fourier Series and Integrals
Basic Theory of Fourier Series
Extensions in Application
Fourier Integrals
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Basic Theory of Fourier Series

With q(x) = 0 and p(x) = r(x) = 1, periodic S-L problem:

y ′′ + λy = 0, y(−L) = y(L), y ′(−L) = y ′(L)

Eigenfunctions 1, cos πx
L
, sin πx

L
, cos 2πx

L
, sin 2πx

L
, · · ·

constitute an orthogonal basis for representing functions.
For a periodic function f (x) of period 2L, we propose

f (x) = a0 +
∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)

and determine the Fourier coefficients from Euler formulae

a0 =
1

2L

∫ L

−L

f (x)dx ,

am =
1

L

∫ L

−L

f (x) cos
mπx

L
dx and bm =

1

L

∫ L

−L

f (x) sin
mπx

L
dx .

Question: Does the series converge?

Applied Mathematical Methods Fourier Series and Integrals 466,

Basic Theory of Fourier Series
Extensions in Application
Fourier Integrals

Basic Theory of Fourier Series

Dirichlet’s conditions:

If f (x) and its derivative are piecewise continuous on
[−L, L] and are periodic with a period 2L, then the series

converges to the mean f (x+)+f (x−)
2 of one-sided limits, at

all points.

Fourier series
Note: The interval of integration can be [x0, x0 + 2L] for any x0.

I It is valid to integrate the Fourier series term by term.

I The Fourier series uniformly converges to f (x) over an
interval on which f (x) is continuous. At a jump discontinuity,

convergence to f (x+)+f (x−)
2 is not uniform. Mismatch peak

shifts with inclusion of more terms (Gibb’s phenomenon).

I Term-by-term differentiation of the Fourier series at a point
requires f (x) to be smooth at that point.
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Basic Theory of Fourier Series

Multiplying the Fourier series with f (x),

f 2(x) = a0f (x) +
∞∑

n=1

[
anf (x) cos

nπx

L
+ bnf (x) sin

nπx

L

]

Parseval’s identity:

⇒ a2
0 +

1

2

∞∑

n=1

(a2
n + b2

n) =
1

2L

∫ L

−L

f 2(x)dx

The Fourier series representation is complete.

I A periodic function f (x) is composed of its mean value and
several sinusoidal components, or harmonics.

I Fourier coefficients are corresponding amplitudes.
I Parseval’s identity is simply a statement on energy balance!

Bessel’s inequality

a2
0 +

1

2

N∑

n=1

(a2
n + b2

n) ≤ 1

2L
‖f (x)‖2
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Extensions in Application

Original spirit of Fouries series
I representation of periodic functions over (−∞,∞).

Question: What about a function f (x) defined only on [−L, L]?
Answer: Extend the function as

F (x) = f (x) for − L ≤ x ≤ L, and F (x + 2L) = F (x).

Fourier series of F (x) acts as the Fourier series representation of
f (x) in its own domain.
In Euler formulae, notice that bm = 0 for an even function.

The Fourier series of an even function is a Fourier
cosine series

f (x) = a0 +
∞∑

n=1

an cos
nπx

L
,

where a0 = 1
L

∫ L

0 f (x)dx and an = 2
L

∫ L

0 f (x) cos nπx
L

dx.

Similarly, for an odd function, Fourier sine series.
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Extensions in Application

Over [0, L], sometimes we need a series of sine terms only, or
cosine terms only!

x

s

c

O−L−2L−3L L 2L 3L x

O−3L

L

f(x)

O

x

f (x)

f (x)

3L2L−2L

(b) Even periodic extension

−L L

0,L(a) Function over (     ) 

(c) Odd periodic extension

Figure: Periodic extensions for cosine and sine series
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Extensions in Application

Half-range expansions

I For Fourier cosine series of a function f (x) over [0, L], even
periodic extension:

fc(x) =

{
f (x) for 0 ≤ x ≤ L,
f (−x) for −L ≤ x < 0,

and fc(x+2L) = fc(x)

I For Fourier sine series of a function f (x) over [0, L], odd
periodic extension:

fs(x) =

{
f (x) for 0 ≤ x ≤ L,
−f (−x) for −L ≤ x < 0,

and fs(x+2L) = fs(x)

To develop the Fourier series of a function, which is available as a
set of tabulated values or a black-box library routine,

integrals in the Euler formulae are evaluated numerically.

Important: Fourier series representation is richer and more
powerful compared to interpolatory or least square approximation
in many contexts.
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Fourier Integrals

Question: How to apply the idea of Fourier series to a
non-periodic function over an infinite domain?
Answer: Magnify a single period to an infinite length.

Fourier series of function fL(x) of period 2L:

fL(x) = a0 +
∞∑

n=1

(an cos pnx + bn sin pnx),

where pn = nπ
L

is the frequency of the n-th harmonic.

Inserting the expressions for the Fourier coefficients,

fL(x) =
1

2L

∫ L

−L

fL(x)dx

+
1

π

∞∑

n=1

[
cos pnx

∫ L

−L

fL(v) cos pnv dv + sin pnx

∫ L

−L

fL(v) sin pnv dv

]
∆p,

where ∆p = pn+1 − pn = π
L

.
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Fourier Integrals

In the limit (if it exists), as L→∞, ∆p → 0,

f (x) =
1

π

∫ ∞

0

[
cos px

∫ ∞

−∞
f (v) cos pv dv + sin px

∫ ∞

−∞
f (v) sin pv dv

]
dp.

Fourier integral of f (x):

f (x) =

∫ ∞

0
[A(p) cos px + B(p) sin px ]dp,

where amplitude functions

A(p) =
1

π

∫ ∞

−∞
f (v) cos pv dv and B(p) =

1

π

∫ ∞

−∞
f (v) sin pv dv

are defined for a continuous frequency variable p.

In phase angle form,

f (x) =
1

π

∫ ∞

0

∫ ∞

−∞
f (v) cos p(x − v)dv dp.
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Fourier Integrals

Using cos θ = e iθ+e−iθ

2 in the phase angle form,

f (x) =
1

2π

∫ ∞

0

∫ ∞

−∞
f (v)[e ip(x−v) + e−ip(x−v)]dv dp.

With substitution p = −q,

∫ ∞

0

∫ ∞

−∞
f (v)e−ip(x−v)dv dp =

∫ 0

−∞

∫ ∞

−∞
f (v)e iq(x−v)dv dq.

Complex form of Fourier integral

f (x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (v)e ip(x−v)dv dp =

∫ ∞

−∞
C (p)e ipxdp,

in which the complex Fourier integral coefficient is

C (p) =
1

2π

∫ ∞

−∞
f (v)e−ipvdv .
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Points to note

I Fourier series arising out of a Sturm-Liouville problem

I A versatile tool for function representation

I Fourier integral as the limiting case of Fourier series

Necessary Exercises: 1,3,6,8
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Definition and Fundamental Properties

Complex form of the Fourier integral:

f (t) =
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f (v)e−iwvdv

]
e iwtdw

Composition of an infinite number of functions in the
form e iwt√

2π
, over a continuous distribution of frequency w.

Fourier transform: Amplitude of a frequency component:

F(f ) ≡ f̂ (w) =
1√
2π

∫ ∞

−∞
f (t)e−iwtdt

Function of the frequency variable.

Inverse Fourier transform

F−1(f̂ ) ≡ f (t) =
1√
2π

∫ ∞

−∞
f̂ (w)e iwtdw

recovers the original function.
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Definition and Fundamental Properties

Example: Fourier transform of f (t) = 1?
Let us find out the inverse Fourier transform of f̂ (w) = kδ(w).

f (t) = F−1(f̂ ) =
1√
2π

∫ ∞

−∞
kδ(w)e iwtdw =

k√
2π

F(1) =
√

2πδ(w)

Linearity of Fourier transforms:

F{αf1(t) + βf2(t)} = αf̂1(w) + β f̂2(w)

Scaling:

F{f (at)} =
1

|a| f̂
(w

a

)
and F−1

{
f̂
(w

a

)}
= |a|f (at)

Shifting rules:

F{f (t − t0)} = e−iwt0F{f (t)}
F−1{f̂ (w − w0)} = e iw0tF−1{f̂ (w)}
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Important Results on Fourier Transforms

Fourier transform of the derivative of a function:

If f (t) is continuous in every interval and f ′(t) is piecewise
continuous,

∫∞
−∞ |f (t)|dt converges and f (t) approaches zero as

t → ±∞, then

F{f ′(t)} =
1√
2π

∫ ∞

−∞
f ′(t)e−iwtdt

=
1√
2π

[
f (t)e−iwt

]∞
−∞ −

1√
2π

∫ ∞

−∞
(−iw)f (t)e−iwtdt

= iw f̂ (w).

Alternatively, differentiating the inverse Fourier transform,

d

dt
[f (t)] =

d

dt

[
1√
2π

∫ ∞

−∞
f̂ (w)e iwtdw

]

=
1√
2π

∫ ∞

−∞

∂

∂t

[
f̂ (w)e iwt

]
dw = F−1{iw f̂ (w)}.
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Important Results on Fourier Transforms

Under appropriate premises,

F{f ′′(t)} = (iw)2 f̂ (w) = −w 2f̂ (w).

In general, F{f (n)(t)} = (iw)n f̂ (w).

Fourier transform of an integral:

If f (t) is piecewise continuous on every interval,∫∞
−∞ |f (t)|dt converges and f̂ (0) = 0, then

F
{∫ t

−∞
f (τ)dτ

}
=

1

iw
f̂ (w).

Derivative of a Fourier transform (with respect to the frequency
variable):

F{tnf (t)} = in
dn

dwn
f̂ (w),

if f (t) is piecewise continuous and
∫∞
−∞ |tnf (t)|dt converges.
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Important Results on Fourier Transforms

Convolution of two functions:

h(t) = f (t) ∗ g(t) =

∫ ∞

−∞
f (τ)g(t − τ)dτ

ĥ(w) = F{h(t)}

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f (τ)g(t − τ)e−iwtdτ dt

=
1√
2π

∫ ∞

−∞
f (τ)e−iwτ

[∫ ∞

−∞
g(t − τ)e−iw(t−τ)dt

]
dτ

=

∫ ∞

−∞
f (τ)e−iwτ

[
1√
2π

∫ ∞

−∞
g(t ′)e−iwt′dt ′

]
dτ

Convolution theorem for Fourier transforms:

ĥ(w) =
√

2πf̂ (w)ĝ (w)
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Conjugate of the Fourier transform:

f̂ ∗(w) =
1√
2π

∫ ∞

−∞
f ∗(t)e iwtdt

Inner product of f̂ (w) and ĝ(w):
∫ ∞

−∞
f̂ ∗(w)ĝ(w)dw =

∫ ∞

−∞

1√
2π

∫ ∞

−∞
f ∗(t)e iwtdt ĝ (w)dw

=

∫ ∞

−∞
f ∗(t)

[
1√
2π

∫ ∞

−∞
ĝ(w)e iwtdw

]
dt

=

∫ ∞

−∞
f ∗(t)g(t)dt.

Parseval’s identity: For g(t) = f (t) in the above,
∫ ∞

−∞
‖f̂ (w)‖2dw =

∫ ∞

−∞
‖f (t)‖2dt,

equating the total energy content of the frequency spectrum of a
wave or a signal to the total energy flow over time.
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Discrete Fourier Transform

Consider a signal f (t) from actual measurement or sampling.
We want to analyze its amplitude spectrum (versus frequency).

For the FT, how to evaluate the integral over (−∞,∞)?

Windowing: Sample the signal f (t) over a finite interval.

A window function:

g(t) =

{
1 for a ≤ t ≤ b
0 otherwise

Actual processing takes place on the windowed function f (t)g(t).

Next question: Do we need to evaluate the amplitude for all
w ∈ (−∞,∞)?

Most useful signals are particularly rich only in their own
characteristic frequency bands.

Decide on an expected frequency band, say [−wc ,wc ].
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Discrete Fourier Transform

Time step for sampling?

With N sampling over [a, b),

wc∆ ≤ π,

data being collected at t = a, a + ∆, a + 2∆, · · · , a + (N − 1)∆,
with N∆ = b − a.

Nyquist critical frequency

Note the duality.

I Decision of sampling rate ∆ determines the band of frequency
content that can be accommodated.

I Decision of the interval [a, b) dictates how finely the
frequency spectrum can be developed.

Shannon’s sampling theorem

A band-limited signal can be reconstructed from a finite
number of samples.
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Discrete Fourier Transform

With discrete data at tk = k∆ for k = 0, 1, 2, 3, · · · ,N − 1,

f̂(w) =
∆√
2π

[
mk

j

]
f(t),

where mj = e−iwj∆ and
[
mk

j

]
is an N × N matrix.

A similar discrete version of inverse Fourier transform.

Reconstruction: a trigonometric interpolation of sampled data.

I Structure of Fourier and inverse Fourier transforms reduces the
problem with a system of linear equations [O(N 3) operations]
to that of a matrix-vector multiplication [O(N 2) operations].

I Structure of matrix
[
mk

j

]
, with patterns of redundancies,

opens up a trick to reduce it further to O(N log N) operations.

Cooley-Tuckey algorithm:

fast Fourier transform (FFT)
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Discrete Fourier Transform
DFT representation reliable only if the incoming signal is really
band-limited in the interval [−wc ,wc ].

Frequencies beyond [−wc ,wc ] distort the spectrum near w = ±wc

by folding back.
Aliasing

Detection: a posteriori

Bandpass filtering: If we expect a signal having components only
in certain frequency bands and want to get rid of unwanted noise
frequencies,

for every band [w1,w2] of our interest, we define window
function φ̂(w) with intervals [−w2,−w1] and [w1,w2].

Windowed Fourier transform φ̂(w)f̂ (w) filters out frequency
components outside this band.

For recovery,

convolve raw signal f (t) with IFT φ(t) of φ̂(w).
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Points to note

I Fourier transform as amplitude function in Fourier integral

I Basic operational tools in Fourier and inverse Fourier
transforms

I Conceptual notions of discrete Fourier transform (DFT)

Necessary Exercises: 1,3,6
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Chebyshev polynomials:
Polynomial solutions of the singular Sturm-Liouville problem

(1− x2)y ′′ − xy ′ + n2y = 0 or
[√

1− x2 y ′
]′

+
n2

√
1− x2

y = 0

over −1 ≤ x ≤ 1, with Tn(1) = 1 for all n.

Closed-form expressions:

Tn(x) = cos(n cos−1 x),

or,

T0(x) = 1, T1(x) = x , T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x , · · · ;

with the three-term recurrence relation

Tk+1(x) = 2xTk(x) − Tk−1(x).
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Immediate observations
I Coefficients in a Chebyshev polynomial are integers. In

particular, the leading coefficient of Tn(x) is 2n−1.
I For even n, Tn(x) is an even function, while for odd n it is an

odd function.
I Tn(1) = 1, Tn(−1) = (−1)n and |Tn(x)| ≤ 1 for −1 ≤ x ≤ 1.
I Zeros of a Chebyshev polynomial Tn(x) are real and lie inside

the interval [−1, 1] at locations x = cos (2k−1)π
2n for

k = 1, 2, 3, · · · , n.
These locations are also called Chebyshev accuracy points.
Further, zeros of Tn(x) are interlaced by those of Tn+1(x).

I Extrema of Tn(x) are of magnitude equal to unity, alternate in
sign and occur at x = cos kπ

n
for k = 0, 1, 2, 3, · · · , n.

I Orthogonality and norms:

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =





0 if m 6= n,
π
2 if m = n 6= 0, and
π if m = n = 0.
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Figure: Extrema and zeros of T3(x)
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Figure: Contrast: P8(x) and T8(x)

Being cosines and polynomials at the same time, Chebyshev
polynomials possess a wide variety of interesting properties!

Most striking property:

equal-ripple oscillations, leading to minimax property
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Minimax property

Theorem: Among all polynomials pn(x) of degree n > 0
with the leading coefficient equal to unity, 21−nTn(x)
deviates least from zero in [−1, 1]. That is,

max
−1≤x≤1

|pn(x)| ≥ max
−1≤x≤1

|21−nTn(x)| = 21−n.

If there exists a monic polynomial pn(x) of degree n such that

max
−1≤x≤1

|pn(x)| < 21−n,

then at (n + 1) locations of alternating extrema of 21−nTn(x), the
polynomial

qn(x) = 21−nTn(x)− pn(x)

will have the same sign as 21−nTn(x).
With alternating signs at (n + 1) locations in sequence, qn(x) will
have n intervening zeros, even though it is a polynomial of degree
at most (n − 1): CONTRADICTION!
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Chebyshev series

f (x) = a0T0(x) + a1T1(x) + a2T2(x) + a3T3(x) + · · ·

with coefficients

a0 =
1

π

∫ 1

−1

f (x)T0(x)√
1− x2

dx and an =
2

π

∫ 1

−1

f (x)Tn(x)√
1− x2

dx for n = 1, 2, 3, · · ·

A truncated series
∑n

k=0 akTk(x):

Chebyshev economization

Leading error term an+1Tn+1(x) deviates least from zero over
[−1, 1] and is qualitatively similar to the error function.

Question: How to develop a Chebyshev series approximation?
Find out so many Chebyshev polynomials and evaluate coefficients?
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For approximating f (t) over [a, b], scale the variable as
t = a+b

2 + b−a
2 x , with x ∈ [−1, 1].

Remark: The economized series
∑n

k=0 akTk(x) gives minimax
deviation of the leading error term an+1Tn+1(x).

Assuming an+1Tn+1(x) to be the error, at the zeros of Tn+1(x),
the error will be ‘officially’ zero, i.e.

n∑

k=0

akTk(xj ) = f (t(xj)),

where x0, x1, x2, · · · , xn are the roots of Tn+1(x).

Recall: Values of an n-th degree polynomial at n + 1
points uniquely fix the entire polynomial.

Interpolation of these n + 1 values leads to the same polynomial!

Chebyshev-Lagrange approximation
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Situations in which minimax approximation is desirable:
I Develop the approximation once and keep it for use in future.

Requirement: Uniform quality control over the entire domain

Minimax approximation:

deviation limited by the constant amplitude of ripple

Chebyshev’s minimax theorem

Theorem: Of all polynomials of degree up to n, p(x) is
the minimax polynomial approximation of f (x), i.e. it
minimizes

max |f (x)− p(x)|,
if and only if there are n + 2 points xi such that

a ≤ x1 < x2 < x3 < · · · < xn+2 ≤ b,

where the difference f (x)− p(x) takes its extreme values
of the same magnitude and alternating signs.
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Utilize any gap to reduce the deviation at the other extrema with
values at the bound.

p(x)∆

y

ε

−ε/2

/2

ε

nm w
b

x

f(x) − p(x)

l
aO

d

−d

Figure: Schematic of an approximation that is not minimax

Construction of the minimax polynomial: Remez algorithm

Note: In the light of this theorem and algorithm, examine how
Tn+1(x) is qualitatively similar to the complete error function!
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I Unique features of Chebyshev polynomials

I The equal-ripple and minimax properties

I Chebyshev series and Chebyshev-Lagrange approximation

I Fundamental ideas of general minimax approximation

Necessary Exercises: 2,3,4
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Introduction
Quasi-linear second order PDE’s

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y2
= F (x , y , u, ux , uy )

hyperbolic if b2 − ac > 0, modelling phenomena which evolve in
time perpetually and do not approach a steady state

parabolic if b2 − ac = 0, modelling phenomena which evolve in
time in a transient manner, approaching steady state

elliptic if b2 − ac < 0, modelling steady-state configurations,
without evolution in time

If F (x , y , u, ux , uy ) = 0,

second order linear homogeneous differential equation

Principle of superposition: A linear combination of different
solutions is also a solution.
Solutions are often in the form of infinite series.

I Solution techniques in PDE’s typically attack the boundary
value problem directly.
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Introduction

Initial and boundary conditions
Time and space variables are qualitatively different.

I Conditions in time: typically initial conditions.
For second order PDE’s, u and ut over the entire space
domain: Cauchy conditions

I Time is a single variable and is decoupled from the space
variables.

I Conditions in space: typically boundary conditions.
For u(t, x , y), boundary conditions over the entire curve in the
x-y plane that encloses the domain. For second order PDE’s,

I Dirichlet condition: value of the function
I Neumann condition: derivative normal to the boundary
I Mixed (Robin) condition

Dirichlet, Neumann and Cauchy problems
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Introduction
Method of separation of variables
For u(x , y), propose a solution in the form

u(x , y) = X (x)Y (y)

and substitute

ux = X ′Y , uy = XY ′, uxx = X ′′Y , uxy = X ′Y ′, uyy = XY ′′

to cast the equation into the form

φ(x ,X ,X ′,X ′′) = ψ(y ,Y ,Y ′,Y ′′).

If the manoeuvre succeeds then, x and y being independent
variables, it implies

φ(x ,X ,X ′,X ′′) = ψ(y ,Y ,Y ′,Y ′′) = k .

Nature of the separation constant k is decided based on the
context, resulting ODE’s are solved in consistency with the
boundary conditions and assembled to construct u(x , y).
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Hyperbolic Equations

Transverse vibrations of a string

δx

δx
P

Q

θ+δθ

T
θ

T

xLO

u

Q
P

Figure: Transverse vibration of a stretched string

Small deflection and slope: cos θ ≈ 1, sin θ ≈ θ ≈ tan θ

Horizontal (longitudinal) forces on PQ balance.
From Newton’s second law, vertical (transverse) deflection u(x , t):

T sin(θ + δθ)− T sin θ = ρδx
∂2u

∂t2
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Hyperbolic Equations

Under the assumptions, denoting c 2 = T
ρ ,

δx
∂2u

∂t2
= c2

[
∂u

∂x

∣∣∣∣
Q

− ∂u

∂x

∣∣∣∣
P

]
.

In the limit, as δx → 0, PDE of transverse vibration:

∂2u

∂t2
= c2∂

2u

∂x2

one-dimensional wave equation

Boundary conditions (in this case): u(0, t) = u(L, t) = 0

Initial configuration and initial velocity:

u(x , 0) = f (x) and ut(x , 0) = g(x)

Cauchy problem: Determine u(x , t) for 0 ≤ x ≤ L, t ≥ 0.
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Hyperbolic Equations

Solution by separation of variables

utt = c2uxx , u(0, t) = u(L, t) = 0, u(x , 0) = f (x), ut(x , 0) = g(x)

Assuming
u(x , t) = X (x)T (t),

and substituting utt = XT ′′ and uxx = X ′′T , variables are
separated as

T ′′

c2T
=

X ′′

X
= −p2.

The PDE splits into two ODE’s

X ′′ + p2X = 0 and T ′′ + c2p2T = 0.

Eigenvalues of BVP X ′′ + p2X = 0, X (0) = X (L) = 0 are p = nπ
L

and eigenfunctions

Xn(x) = sin px = sin
nπx

L
for n = 1, 2, 3, · · · .

Second ODE: T ′′ + λ2
nT = 0, with λn = cnπ

L
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Hyperbolic Equations

Corresponding solution:

Tn(t) = An cos λnt + Bn sinλnt

Then, for n = 1, 2, 3, · · · ,

un(x , t) = Xn(x)Tn(t) = (An cos λnt + Bn sinλnt) sin
nπx

L

satisfies the PDE and the boundary conditions.

Since the PDE and the BC’s are homogeneous, by superposition,

u(x , t) =
∞∑

n=1

[An cos λnt + Bn sinλnt] sin
nπx

L
.

Question: How to determine coefficients An and Bn?

Answer: By imposing the initial conditions.
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Hyperbolic Equations

Initial conditions: Fourier sine series of f (x) and g(x)

u(x , 0) = f (x) =
∞∑

n=1

An sin
nπx

L

ut(x , 0) = g(x) =
∞∑

n=1

λnBn sin
nπx

L

Hence, coefficients:

An =
2

L

∫ L

0
f (x) sin

nπx

L
dx and Bn =

2

cnπ

∫ L

0
g(x) sin

nπx

L
dx

Related problems:

I Different boundary conditions: other kinds of series
I Long wire: infinite domain, continuous frequencies and

solution from Fourier integrals
Alternative: Reduce the problem using Fourier transforms.

I General wave equation in 3-d: utt = c2∇2u
I Membrane equation: utt = c2(uxx + uyy)
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Hyperbolic Equations

D’Alembert’s solution of the wave equation

Method of characteristics
Canonical form

By coordinate transformation from (x , y) to (ξ, η), with
U(ξ, η) = u[x(ξ, η), y(ξ, η)],

hyperbolic equation: Uξη = Φ

parabolic equation: Uξξ = Φ

elliptic equation: Uξξ + Uηη = Φ

in which Φ(ξ, η,U,Uξ,Uη) is free from second derivatives.

For a hyperbolic equation, entire domain becomes a network of ξ-η
coordinate curves, known as characteristic curves,

along which decoupled solutions can be tracked!
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Hyperbolic Equations

For a hyperbolic equation in the form

a
∂2u

∂x2
+ 2b

∂2u

∂x∂y
+ c

∂2u

∂y2
= F (x , y , u, ux , uy ),

roots of am2 + 2bm + c are

m1,2 =
−b ±

√
b2 − ac

a
,

real and distinct.
Coordinate transformation

ξ = y + m1x , η = y + m2x

leads to Uξη = Φ(ξ, η,U,Uξ ,Uη).
For the BVP

utt = c2uxx , u(0, t) = u(L, t) = 0, u(x , 0) = f (x), ut(x , 0) = g(x),

canonical coordinate transformation:

ξ = x − ct, η = x + ct, with x =
1

2
(ξ + η), t =

1

2c
(η − ξ).
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Hyperbolic Equations

Substitution of derivatives

ux = Uξξx + Uηηx = Uξ + Uη ⇒ uxx = Uξξ + 2Uξη + Uηη

ut = Uξξt + Uηηt = −cUξ + cUη ⇒ utt = c2Uξξ − 2c2Uξη + c2Uηη

into the PDE utt = c2uxx gives

c2(Uξξ − 2Uξη + Uηη) = c2(Uξξ + 2Uξη + Uηη).

Canonical form: Uξη = 0

Integration:

Uξ =

∫
Uξηdη + ψ(ξ) = ψ(ξ)

⇒ U(ξ, η) =

∫
ψ(ξ)dξ + f2(η) = f1(ξ) + f2(η)

D’Alembert’s solution: u(x , t) = f1(x − ct) + f2(x + ct)
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Hyperbolic Equations

Physical insight from D’Alembert’s solution:

f1(x − ct): a progressive wave in forward direction with speed c

Reflection at boundary:

in a manner depending upon the boundary condition

Reflected wave f2(x + ct): another progressive wave, this one in
backward direction with speed c

Superposition of two waves: complete solution (response)

Note: Components of the earlier solution: with λn = cnπ
L

,

cosλnt sin
nπx

L
=

1

2

[
sin

nπ

L
(x − ct) + sin

nπ

L
(x + ct)

]

sinλnt sin
nπx

L
=

1

2

[
cos

nπ

L
(x − ct)− cos

nπ

L
(x + ct)

]
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Parabolic Equations

Heat conduction equation or diffusion equation:

∂u

∂t
= c2∇2u

One-dimensional heat (diffusion) equation:

ut = c2uxx

Heat conduction in a finite bar: For a thin bar of length L with
end-points at zero temperature,

ut = c2uxx , u(0, t) = u(L, t) = 0, u(x , 0) = f (x).

Assumption u(x , t) = X (x)T (t) leads to

XT ′ = c2X ′′T ⇒ T ′

c2T
=

X ′′

X
= −p2,

giving rise to two ODE’s as

X ′′ + p2X = 0 and T ′ + c2p2T = 0.
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Parabolic Equations

BVP in the space coordinate X ′′ + p2X = 0, X (0) = X (L) = 0
has solutions

Xn(x) = sin
nπx

L
.

With λn = cnπ
L

, the ODE in T (t) has the corresponding solutions

Tn(t) = Ane
−λ2

nt .

By superposition,

u(x , t) =
∞∑

n=1

An sin
nπx

L
e−λ

2
nt ,

coefficients being determined from initial condition as

u(x , 0) = f (x) =
∞∑

n=1

An sin
nπx

L
,

a Fourier sine series.
As t →∞, u(x , t)→ 0 (steady state)
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Parabolic Equations

Non-homogeneous boundary conditions:

ut = c2uxx , u(0, t) = u1, u(L, t) = u2, u(x , 0) = f (x).

For u1 6= u2, with u(x , t) = X (x)T (t), BC’s do not separate!
Assume

u(x , t) = U(x , t) + uss(x),

where component uss(x), steady-state temperature (distribution),
does not enter the differential equation.

u′′ss(x) = 0, uss(0) = u1, uss(L) = u2 ⇒ uss(x) = u1 +
u2 − u1

L
x

Substituting into the BVP,

Ut = c2Uxx , U(0, t) = U(L, t) = 0, U(x , 0) = f (x) − uss(x).

Final solution:

u(x , t) =
∞∑

n=1

Bn sin
nπx

L
e−λ

2
nt + uss(x),

Bn being coefficients of Fourier sine series of f (x)− uss(x).
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Parabolic Equations

Heat conduction in an infinite wire

ut = c2uxx , u(x , 0) = f (x)

In place of nπ
L

, now we have continuous frequency p.

Solution as superposition of all frequencies:

u(x , t) =

∫ ∞

0
up(x , t)dp =

∫ ∞

0
[A(p) cos px+B(p) sin px ]e−c2p2tdp

Initial condition

u(x , 0) = f (x) =

∫ ∞

0
[A(p) cos px + B(p) sin px ]dp

gives the Fourier integral of f (x) and amplitude functions

A(p) =
1

π

∫ ∞

−∞
f (v) cos pv dv and B(p) =

1

π

∫ ∞

−∞
f (v) sin pv dv .
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Parabolic Equations

Solution using Fourier transforms

ut = c2uxx , u(x , 0) = f (x)

Using derivative formula of Fourier transforms,

F(ut) = c2(iw)2F(u) ⇒ ∂û

∂t
= −c2w2û,

since variables x and t are independent.
Initial value problem in û(w , t):

∂û

∂t
= −c2w2û, û(0) = f̂ (w)

Solution: û(w , t) = f̂ (w)e−c2w2t

Inverse Fourier transform gives solution of the original problem as

u(x , t) = F−1{û(w , t)} =
1√
2π

∫ ∞

−∞
f̂ (w)e−c2w2te iwxdw

⇒ u(x , t) =
1

π

∫ ∞

−∞
f (v)

∫ ∞

0
cos(wx − wv)e−c2w2tdw dv .
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Elliptic Equations

Heat flow in a plate: two-dimensional heat equation

∂u

∂t
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)

Steady-state temperature distribution:

∂2u

∂x2
+
∂2u

∂y2
= 0

Laplace’s equation
Steady-state heat flow in a rectangular plate:

uxx + uyy = 0, u(0, y) = u(a, y) = u(x , 0) = 0, u(x , b) = f (x);

a Dirichlet problem over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b.
Proposal u(x , y) = X (x)Y (y) leads to

X ′′Y + XY ′′ = 0 ⇒ X ′′

X
= −Y ′′

Y
= −p2.

Separated ODE’s:

X ′′ + p2X = 0 and Y ′′ − p2Y = 0
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Elliptic Equations

From BVP X ′′ + p2X = 0, X (0) = X (a) = 0, Xn(x) = sin nπx
a

Corresponding solution of Y ′′ − p2Y = 0:

Yn(y) = An cosh
nπy

a
+ Bn sinh

nπy

a

Condition Y (0) = 0 ⇒ An = 0, and

un(x , y) = Bn sin
nπx

a
sinh

nπy

a

The complete solution:

u(x , y) =
∞∑

n=1

Bn sin
nπx

a
sinh

nπy

a

The last boundary condition u(x , b) = f (x) fixes the coefficients
from the Fourier sine series of f (x).

Note: In the example, BC’s on three sides were homogeneous.
How did it help? What if there are more non-homogeneous BC’s?
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Elliptic Equations

Steady-state heat flow with internal heat generation

∇2u = φ(x , y)

Poisson’s equation

Separation of variables impossible!

Consider function u(x , y) as

u(x , y) = uh(x , y) + up(x , y)

Sequence of steps

I one particular solution up(x , y) that may or may not satisfy
some or all of the boundary conditions

I solution of the corresponding homogeneous equation, namely
uxx + uyy = 0 for uh(x , y)

I such that u = uh + up satisfies all the boundary conditions
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Two-Dimensional Wave Equation

Transverse vibration of a rectangular membrane:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)

A Cauchy problem of the membrane:

utt = c2(uxx + uyy); u(x , y , 0) = f (x , y), ut(x , y , 0) = g(x , y);
u(0, y , t) = u(a, y , t) = u(x , 0, t) = u(x , b, t) = 0.

Separate the time variable from the space variables:

u(x , y , t) = F (x , y)T (t) ⇒ Fxx + Fyy

F
=

T ′′

c2T
= −λ2

Helmholtz equation:

Fxx + Fyy + λ2F = 0
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Two-Dimensional Wave Equation

Assuming F (x , y) = X (x)Y (y),

X ′′

X
= −Y ′′ + λ2Y

Y
= −µ2

⇒ X ′′ + µ2X = 0 and Y ′′ + ν2Y = 0,

such that λ =
√
µ2 + ν2.

With BC’s X (0) = X (a) = 0 and Y (0) = Y (b) = 0,

Xm(x) = sin
mπx

a
and Yn(y) = sin

nπy

b
.

Corresponding values of λ are

λmn =

√(mπ

a

)2
+
(nπ

b

)2

with solutions of T ′′ + c2λ2T = 0 as

Tmn(t) = Amn cos cλmnt + Bmn sin cλmnt.

Applied Mathematical Methods Partial Differential Equations 520,

Introduction
Hyperbolic Equations
Parabolic Equations
Elliptic Equations
Two-Dimensional Wave Equation

Two-Dimensional Wave Equation

Composing Xm(x), Yn(y) and Tmn(t) and superposing,

u(x , y , t) =
∞∑

m=1

∞∑

n=1

[Amn cos cλmnt+Bmn sin cλmnt] sin
mπx

a
sin

nπy

b
,

coefficients being determined from the double Fourier series

f (x , y) =
∞∑

m=1

∞∑

n=1

Amn sin
mπx

a
sin

nπy

b

and g(x , y) =
∞∑

m=1

∞∑

n=1

cλmnBmn sin
mπx

a
sin

nπy

b
.

BVP’s modelled in polar coordinates
For domains of circular symmetry, important in many practical
systems, the BVP is conveniently modelled in polar coordinates,

the separation of variables quite often producing

I Bessel’s equation, in cylindrical coordinates, and
I Legendre’s equation, in spherical coordinates
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Points to note

I PDE’s in physically relevant contexts

I Initial and boundary conditions

I Separation of variables
I Examples of boundary value problems with hyperbolic,

parabolic and elliptic equations
I Modelling, solution and interpretation

I Cascaded application of separation of variables for problems
with more than two independent variables

Necessary Exercises: 1,2,4,7,9,10
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Analyticity of Complex Functions

Function f of a complex variable z

gives a rule to associate a unique complex number
w = u + iv to every z = x + iy in a set.

Limit: If f (z) is defined in a neighbourhood of z0 (except possibly
at z0 itself) and ∃l ∈ C such that ∀ ε > 0, ∃ δ > 0 such that

0 < |z − z0| < δ ⇒ |f (z)− l | < ε,

then
l = lim

z→z0

f (z).

Crucial difference from real functions: z can approach z0 in all
possible manners in the complex plane.

Definition of the limit is more restrictive.

Continuity: limz→z0 f (z) = f (z0)

Continuity in a domain D: continuity at every point in D
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Analyticity of Complex Functions

Derivative of a complex function:

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0
= lim

δz→0

f (z0 + δz)− f (z0)

δz

When this limit exists, function f (z) is said to be differentiable.

Extremely restrictive definition!

Analytic function

A function f (z) is called analytic in a domain D if it is
defined and differentiable at all points in D.

Points to be settled later:

I Derivative of an analytic function is also analytic.

I An analytic function possesses derivatives of all orders.

A great qualitative difference between functions of a real variable
and those of a complex variable!
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Analyticity of Complex Functions

Cauchy-Riemann conditions
If f (z) = u(x , y) + iv(x , y) is analytic then

f ′(z) = lim
δx ,δy→0

δu + iδv

δx + iδy

along all paths of approach for δz = δx + iδy → 0 or δx , δy → 0.

3
2

1

5

4

O

y

x

0z

Figure: Paths approaching z0

δz = iδy

δδz = xz0

xO

y

Figure: Paths in C-R equations

Two expressions for the derivative:

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i

∂u

∂y
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Analyticity of Complex Functions

Cauchy-Riemann equations or conditions
∂u
∂x

= ∂v
∂y

and ∂u
∂y

= −∂v
∂x

are necessary for analyticity.
Question: Do the C-R conditions imply analyticity?
Consider u(x , y) and v(x , y) having continuous first order partial
derivatives that satisfy the Cauchy-Riemann conditions.
By mean value theorem,

δu = u(x + δx , y + δy)− u(x , y) = δx
∂u

∂x
(x1, y1) + δy

∂u

∂y
(x1, y1)

with x1 = x + ξδx , y1 = y + ξδy for some ξ ∈ [0, 1]; and

δv = v(x + δx , y + δy)− v(x , y) = δx
∂v

∂x
(x2, y2) + δy

∂v

∂y
(x2, y2)

with x2 = x + ηδx , y2 = y + ηδy for some η ∈ [0, 1].
Then,

δf =

[
δx
∂u

∂x
(x1, y1) + iδy

∂v

∂y
(x2, y2)

]
+i

[
δx
∂v

∂x
(x2, y2)− iδy

∂u

∂y
(x1, y1)

]
.
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Analyticity of Complex Functions

Using C-R conditions ∂v
∂y

= ∂u
∂x

and ∂u
∂y

= −∂v
∂x

,

δf = (δx + iδy)
∂u

∂x
(x1, y1) + iδy

[
∂u

∂x
(x2, y2)− ∂u

∂x
(x1, y1)

]

+ i(δx + iδy)
∂v

∂x
(x1, y1) + iδx

[
∂v

∂x
(x2, y2)− ∂v

∂x
(x1, y1)

]

⇒ δf

δz
=

∂u

∂x
(x1, y1) + i

∂v

∂x
(x1, y1) +

i
δx

δz

[
∂v

∂x
(x2, y2)− ∂v

∂x
(x1, y1)

]
+ i

δy

δz

[
∂u

∂x
(x2, y2)− ∂u

∂x
(x1, y1)

]
.

Since
∣∣ δx
δz

∣∣ ,
∣∣∣ δyδz
∣∣∣ ≤ 1, as δz → 0, the limit exists and

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+
∂v

∂y
.

Cauchy-Riemann conditions are necessary and sufficient
for function w = f (z) = u(x , y) + iv(x , y) to be analytic.
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Analyticity of Complex Functions

Harmonic function
Differentiating C-R equations ∂v

∂y
= ∂u

∂x
and ∂u

∂y
= −∂v

∂x
,

∂2u

∂x2
=

∂2v

∂x∂y
,
∂2u

∂y2
= − ∂2v

∂y∂x
,

∂2u

∂y∂x
=
∂2v

∂y2
,

∂2u

∂x∂y
= −∂

2v

∂x2

⇒ ∂2u

∂x2
+
∂2u

∂y2
= 0 =

∂2v

∂x2
+
∂2v

∂y2
.

Real and imaginary components of an analytic functions
are harmonic functions.

Conjugate harmonic function of u(x , y): v(x , y)

Families of curves u(x , y) = c and v(x , y) = k are mutually
orthogonal, except possibly at points where f ′(z) = 0.

Question: If u(x , y) is given, then how to develop the complete
analytic function w = f (z) = u(x , y) + iv(x , y)?
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Conformal Mapping

Function: mapping of elements in domain to their images in range
Depiction of a complex variable requires a plane with two axes.
Mapping of a complex function w = f (z) is shown in two planes.
Example: mapping of a rectangle under transformation w = e z

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

x

y

O A B 

C D 

(a) The z-plane

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

u

v
A’ B’ O’ 

C’ 

D’ 

(b) The w -plane

Figure: Mapping corresponding to function w = e z
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Conformal Mapping

Conformal mapping: a mapping that preserves the angle between
any two directions in magnitude and sense.
Verify: w = ez defines a conformal mapping.

Through relative orientations of curves at the points of
intersection, ‘local’ shape of a figure is preserved.

Take curve z(t), z(0) = z0 and image w(t) = f [z(t)],w0 = f (z0).
For analytic f (z), ẇ(0) = f ′(z0)ż(0), implying

|ẇ(0)| = |f ′(z0)| |ż(0)| and arg ẇ(0) = arg f ′(z0) + arg ż(0).

For several curves through z0,

image curves pass through w0 and all of them turn by the
same angle arg f ′(z0).

Cautions
I f ′(z) varies from point to point. Different scaling and turning

effects take place at different points. ‘Global’ shape changes.
I For f ′(z) = 0, argument is undefined and conformality is lost.
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Conformal Mapping

An analytic function defines a conformal mapping except
at its critical points where its derivative vanishes.

Except at critical points, an analytic function is invertible.

We can establish an inverse of any conformal mapping.

Examples
I Linear function w = az + b (for a 6= 0)
I Linear fractional transformation

w =
az + b

cz + d
, ad − bc 6= 0

I Other elementary functions like zn, ez etc

Special significance of conformal mappings:

A harmonic function φ(u, v) in the w-plane is also a
harmonic function, in the form φ(x , y) in the z-plane, as
long as the two planes are related through a conformal
mapping.
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Potential Theory

Riemann mapping theorem: Let D be a simply connected
domain in the z-plane bounded by a closed curve C . Then there
exists a conformal mapping that gives a one-to-one correspondence
between D and the unit disc |w | < 1 as well as between C and the
unit circle |w | = 1, bounding the unit disc.

Application to boundary value problems

I First, establish a conformal mapping between the given
domain and a domain of simple geometry.

I Next, solve the BVP in this simple domain.

I Finally, using the inverse of the conformal mapping, construct
the solution for the given domain.

Example: Dirichlet problem with Poisson’s integral formula

f (re iθ) =
1

2π

∫ 2π

0

(R2 − r2)f (Re iφ)

R2 − 2Rr cos(θ − φ) + r 2
dφ
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Potential Theory

Two-dimensional potential flow

I Velocity potential φ(x , y) gives velocity components Vx = ∂φ
∂x

and Vy = ∂φ
∂y

.

I A streamline is a curve in the flow field, the tangent to which
at any point is along the local velocity vector.

I Stream function ψ(x , y) remains constant along a streamline.

I ψ(x , y) is the conjugate harmonic function of φ(x , y).

I Complex potential function Φ(z) = φ(x , y) + iψ(x , y) defines
the flow.

If a flow field encounters a solid boundary of a complicated shape,

transform the boundary conformally to a simple boundary

to facilitate the study of the flow pattern.
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Points to note

I Analytic functions and Cauchy-Riemann conditions

I Conformality of analytic functions

I Applications in solving BVP’s and flow description

Necessary Exercises: 1,2,3,4,7,9
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Integrals in the Complex Plane
Line Integral
Cauchy’s Integral Theorem
Cauchy’s Integral Formula

Applied Mathematical Methods Integrals in the Complex Plane 536,

Line Integral
Cauchy’s Integral Theorem
Cauchy’s Integral Formula

Line Integral

For w = f (z) = u(x , y) + iv(x , y), over a smooth curve C ,
∫

C

f (z)dz =

∫

C

(u+iv)(dx+idy) =

∫

C

(udx−vdy)+i

∫

C

(vdx+udy).

Extension to piecewise smooth curves is obvious.

With parametrization, for z = z(t), a ≤ t ≤ b, with ż(t) 6= 0,
∫

C

f (z)dz =

∫ b

a

f [z(t)]ż(t)dt.

Over a simple closed curve, contour integral:
∮
C

f (z)dz
Example:

∮
C

zndz for integer n, around circle z = ρe iθ

∮

C

zndz = iρn+1

∫ 2π

0
e i(n+1)θdθ =

{
0 for n 6= −1,

2πi for n = −1.

The M-L inequality: If C is a curve of finite length L and
|f (z)| < M on C , then

∣∣∣∣
∫

C

f (z)dz

∣∣∣∣ ≤
∫

C

|f (z)| |dz | < M

∫

C

|dz | = ML.
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Cauchy’s Integral Theorem

I C is a simple closed curve in a simply connected domain D.
I Function f (z) = u + iv is analytic in D.

Contour integral
∮
C

f (z)dz =?
If f ′(z) is continuous, then by Green’s theorem in the plane,
∮

C

f (z)dz =

∫

R

∫ (
−∂v

∂x
− ∂u

∂y

)
dxdy+i

∫

R

∫ (
∂u

∂x
− ∂v

∂y

)
dxdy ,

where R is the region enclosed by C .

From C-R conditions,
∮
C

f (z)dz = 0.

Proof by Goursat: without the hypothesis of continuity of f ′(z)

Cauchy-Goursat theorem

If f (z) is analytic in a simply connected domain D, then∮
C

f (z)dz = 0 for every simple closed curve C in D.

Importance of Goursat’s contribution:

I continuity of f ′(z) appears as consequence!
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Cauchy’s Integral Theorem

Principle of path independence
Two points z1 and z2 on the close curve C

I two open paths C1 and C2 from z1 to z2

Cauchy’s theorem on C , comprising of C1 in the forward direction
and C2 in the reverse direction:
∫

C1

f (z)dz−
∫

C2

f (z)dz = 0⇒
∫ z2

z1

f (z)dz =

∫

C1

f (z)dz =

∫

C2

f (z)dz

For an analytic function f (z) in a simply connected
domain D,

∫ z2

z1
f (z)dz is independent of the path and

depends only on the end-points, as long as the path is
completely contained in D.

Consequence: Definition of the function

F (z) =

∫ z

z0

f (ξ)dξ

What does the formulation suggest?
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Cauchy’s Integral Theorem

Indefinite integral
Question: Is F (z) analytic? Is F ′(z) = f (z)?

F (z + δz)− F (z)

δz
− f (z) =

1

δz

[∫ z+δz

z0

f (ξ)dξ −
∫ z

z0

f (ξ)dξ

]
− f (z)

=
1

δz

∫ z+δz

z

[f (ξ)− f (z)]dξ

f is continuous ⇒ ∀ε,∃δ such that |ξ− z | < δ ⇒ |f (ξ)− f (z)| < ε
Choosing δz < δ,

∣∣∣∣
F (z + δz)− F (z)

δz
− f (z)

∣∣∣∣ <
ε

δz

∫ z+δz

z

dξ = ε.

If f (z) is analytic in a simply connected domain D, then
there exists an analytic function F (z) in D such that

F ′(z) = f (z) and

∫ z2

z1

f (z)dz = F (z2)− F (z1).
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Cauchy’s Integral Theorem

Principle of deformation of paths

f (z) analytic everywhere other
than isolated points s1, s2, s3

∫

C1

f (z)dz =

∫

C2

f (z)dz =

∫

C3

f (z)dz

Not so for path C ∗.

2z

D

C

C *

sz1

C

C s

s

1

2

3
3

2

1

Figure: Path deformation

The line integral remains unaltered through a continuous
deformation of the path of integration with fixed
end-points, as long as the sweep of the deformation
includes no point where the integrand is non-analytic.
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Cauchy’s Integral Theorem

Cauchy’s theorem in multiply connected domain

L
C

L

L3

C

C2

1

1

2

3

C

Figure: Contour for multiply connected domain
∮

C

f (z)dz −
∮

C1

f (z)dz −
∮

C2

f (z)dz −
∮

C3

f (z)dz = 0.

If f (z) is analytic in a region bounded by the contour C
as the outer boundary and non-overlapping contours C1,
C2, C3, · · · , Cn as inner boundaries, then

∮

C

f (z)dz =
n∑

i=1

∮

Ci

f (z)dz .
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Cauchy’s Integral Formula

f (z): analytic function in a simply connected domain D

For z0 ∈ D and simple closed curve C in D,

∮

C

f (z)

z − z0
dz = 2πif (z0).

Consider C as a circle with centre at z0 and radius ρ,

with no loss of generality (why?).

∮

C

f (z)

z − z0
dz = f (z0)

∮

C

dz

z − z0
+

∮

C

f (z)− f (z0)

z − z0
dz

From continuity of f (z), ∃δ such that for any ε,

|z − z0| < δ ⇒ |f (z)− f (z0)| < ε and

∣∣∣∣
f (z)− f (z0)

z − z0

∣∣∣∣ <
ε

ρ
,

with ρ < δ. From M-L inequality, the second integral vanishes.

Applied Mathematical Methods Integrals in the Complex Plane 543,

Line Integral
Cauchy’s Integral Theorem
Cauchy’s Integral Formula

Cauchy’s Integral Formula

Direct applications

I Evaluation of contour integral:
I If g(z) is analytic on the contour and in the enclosed region,

the Cauchy’s theorem implies
∮
C

g(z)dz = 0.
I If the contour encloses a singularity at z0, then Cauchy’s

formula supplies a non-zero contribution to the integral, if
f (z) = g(z)(z − z0) is analytic.

I Evaluation of function at a point: If finding the integral on
the left-hand-side is relatively simple, then we use it to
evaluate f (z0).

Significant in the solution of boundary value
problems!

Example: Poisson’s integral formula

u(r , θ) =
1

2π

∫ 2π

0

(R2 − r2)u(R , φ)

R2 − 2Rr cos(θ − φ) + r 2
dφ

for the Dirichlet problem over a circular disc.
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Cauchy’s Integral Formula

Poisson’s integral formula
Taking z0 = re iθ and z = Re iφ (with r < R) in Cauchy’s formula,

2πif (re iθ) =

∫ 2π

0

f (Re iφ)

Re iφ − re iθ
(iRe iφ)dφ.

How to get rid of imaginary quantities from the expression?
Develop a complement. With R2

r
in place of r ,

0 =

∫ 2π

0

f (Re iφ)

Re iφ − R2

r
e iθ

(iRe iφ)dφ =

∫ 2π

0

f (Re iφ)

re−iθ − Re−iφ
(ire−iθ)dφ.

Subtracting,

2πif (re iθ) = i

∫ 2π

0
f (Re iφ)

[
Re iφ

Re iφ − re iθ
+

re−iθ

Re−iφ − re−iθ

]
dφ

= i

∫ 2π

0

(R2 − r2)f (Re iφ)

(Re iφ − re iθ)(Re−iφ − re−iθ)
dφ

⇒ f (re iθ) =
1

2π

∫ 2π

0

(R2 − r2)f (Re iφ)

R2 − 2Rr cos(θ − φ) + r 2
dφ.
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Cauchy’s Integral Formula

Cauchy’s integral formula evaluates contour integral of g(z),

if the contour encloses a point z0 where g(z) is
non-analytic but g(z)(z − z0) is analytic.

If g(z)(z − z0) is also non-analytic, but g(z)(z − z0)2 is analytic?

f (z0) =
1

2πi

∮

C

f (z)

z − z0
dz ,

f ′(z0) =
1

2πi

∮

C

f (z)

(z − z0)2
dz ,

f ′′(z0) =
2!

2πi

∮

C

f (z)

(z − z0)3
dz ,

· · · = · · · · · · · · · ,

f (n)(z0) =
n!

2πi

∮

C

f (z)

(z − z0)n+1
dz .

The formal expressions can be established through differentiation
under the integral sign.
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Cauchy’s Integral Formula

f (z0 + δz)− f (z0)

δz
=

1

2πiδz

∮

C

f (z)

[
1

z − z0 − δz
− 1

z − z0

]
dz

=
1

2πi

∮

C

f (z)dz

(z − z0 − δz)(z − z0)

=
1

2πi

∮

C

f (z)dz

(z − z0)2
+

1

2πi

∮

C

f (z)

[
1

(z − z0 − δz)(z − z0)
− 1

(z − z0)2

]
dz

=
1

2πi

∮

C

f (z)dz

(z − z0)2
+

1

2πi
δz

∮

C

f (z)dz

(z − z0 − δz)(z − z0)2

If |f (z)| < M on C , L is path length and d0 = min |z − z0|,∣∣∣∣δz
∮

C

f (z)dz

(z − z0 − δz)(z − z0)2

∣∣∣∣ <
ML|δz |

d2
0 (d0 − |δz |)

→ 0 as δz → 0.

An analytic function possesses derivatives of all orders at
every point in its domain.

Analyticity implies much more than mere differentiability!
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Points to note

I Concept of line integral in complex plane

I Cauchy’s integral theorem

I Consequences of analyticity

I Cauchy’s integral formula

I Derivatives of arbitrary order for analytic functions

Necessary Exercises: 1,2,5,7
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Series Representations of Complex Functions

Taylor’s series of function f (z), analytic in a neighbourhood of z0:

f (z) =
∞∑

n=0

an(z−z0)n = a0+a1(z−z0)+a2(z−z0)2+a3(z−z0)3+· · · ,

with coefficients

an =
1

n!
f (n)(z0) =

1

2πi

∮

C

f (w)dw

(w − z0)n+1
,

where C is a circle with centre at z0.
Form of the series and coefficients: similar to real functions

The series representation is convergent within a disc
|z − z0| < R, where radius of convergence R is the
distance of the nearest singularity from z0.

Note: No valid power series representation around z0, i.e. in
powers of (z − z0), if f(z) is not analytic at z0

Question: In that case, what about a series representation that
includes negative powers of (z − z0) as well?
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Series Representations of Complex Functions

Laurent’s series: If f (z) is analytic on circles C1 (outer) and C2

(inner) with centre at z0, and in the annulus in between, then

f (z) =
∞∑

n=−∞
an(z − z0)n =

∞∑

m=0

bm(z − z0)m +
∞∑

m=1

cm

(z − z0)m
;

with coefficients

an =
1

2πi

∮

C

f (w)dw

(w − z0)n+1
;

or, bm =
1

2πi

∮

C

f (w)dw

(w − z0)m+1
, cm =

1

2πi

∮

C

f (w)(w − z0)m−1dw ;

the contour C lying in the annulus and enclosing C2.

Validity of this series representation: in annular region obtained by
growing C1 and shrinking C2 till f (z) ceases to be analytic.

Observation: If f (z) is analytic inside C2 as well, then cm = 0 and
Laurent’s series reduces to Taylor’s series.
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Series Representations of Complex Functions

Proof of Laurent’s series
Cauchy’s integral formula for any point z in the annulus,

f (z) =
1

2πi

∮

C1

f (w)dw

w − z
− 1

2πi

∮

C2

f (w)dw

w − z
.

Organization of the series:

1

w − z
=

1

(w − z0)[1− (z − z0)/(w − z0)]

1

w − z
= − 1

(z − z0)[1− (w − z0)/(z − z0)]

C2 1

0

z

z

C

w

Figure: The annulus

Using the expression for the sum of a geometric series,

1+q+q2+· · ·+qn−1 =
1− qn

1− q
⇒ 1

1− q
= 1+q+q2+· · ·+qn−1+

qn

1− q
.

We use q = z−z0
w−z0

for integral over C1 and q = w−z0
z−z0

over C2.
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Series Representations of Complex Functions

Proof of Laurent’s series (contd)
Using q = z−z0

w−z0
,

1

w − z
=

1

w − z0
+

z − z0

(w − z0)2
+· · ·+(z − z0)n−1

(w − z0)n
+

(
z − z0

w − z0

)n 1

w − z

⇒ 1

2πi

∮

C1

f (w)dw

w − z
= a0 +a1(z− z0) + · · ·+an−1(z− z0)n−1 +Tn,

with coefficients as required and

Tn =
1

2πi

∮

C1

(
z − z0

w − z0

)n f (w)

w − z
dw .

Similarly, with q = w−z0
z−z0

,

− 1

2πi

∮

C2

f (w)dw

w − z
= a−1(z − z0)−1 + · · · + a−n(z − z0)−n + T−n,

with appropriate coefficients and the remainder term

T−n =
1

2πi

∮

C2

(
w − z0

z − z0

)n f (w)

z − w
dw .
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Series Representations of Complex Functions

Convergence of Laurent’s series

f (z) =
n−1∑

k=−n

ak(z − z0)k + Tn + T−n,

where Tn =
1

2πi

∮

C1

(
z − z0

w − z0

)n f (w)

w − z
dw

and T−n =
1

2πi

∮

C2

(
w − z0

z − z0

)n f (w)

z − w
dw .

I f (w) is bounded

I

∣∣∣ z−z0
w−z0

∣∣∣ < 1 over C1 and
∣∣∣w−z0

z−z0

∣∣∣ < 1 over C2

Use M-L inequality to show that

remainder terms Tn and T−n approach zero as n→∞.

Remark: For actually developing Taylor’s or Laurent’s series of a
function, algebraic manipulation of known facts are employed quite
often, rather than evaluating so many contour integrals!
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Zeros and Singularities

Zeros of an analytic function: points where the function vanishes

If, at a point z0,

a function f (z) vanishes along with first m − 1 of its
derivatives, but f (m)(z0) 6= 0;

then z0 is a zero of f (z) of order m, giving the Taylor’s series as

f (z) = (z − z0)mg(z).

An isolated zero has a neighbourhood containing no other zero.

For an analytic function, not identically zero, every point
has a neighbourhood free of zeros of the function, except
possibly for that point itself. In particular, zeros of such
an analytic function are always isolated.

Implication: If f (z) has a zero in every neighbourhood around
z0 then it cannot be analytic at z0, unless it is the zero function
[i.e. f (z) = 0 everywhere].
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Zeros and Singularities

Entire function: A function which is analytic everywhere
Examples: zn (for positive integer n), ez , sin z etc.

The Taylor’s series of an entire function has an infinite
radius of convergence.

Singularities: points where a function ceases to be analytic

Removable singularity: If f (z) is not defined at z0, but has a limit.
Example: f (z) = ez−1

z
at z = 0.

Pole: If f (z) has a Laurent’s series around z0, with a finite
number of terms with negative powers. If an = 0 for
n < −m, but a−m 6= 0, then z0 is a pole of order m,
limz→z0(z − z0)mf (z) being a non-zero finite number.
A simple pole: a pole of order one.

Essential singularity: A singularity which is neither a removable
singularity nor a pole. If the function has a Laurent’s
series, then it has infinite terms with negative
powers. Example: f (z) = e1/z at z = 0.
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Zeros and Singularities

Zeros and poles: complementary to each other

I Poles are necessarily isolated singularities.
I A zero of f (z) of order m is a pole of 1

f (z) of the same order
and vice versa.

I If f (z) has a zero of order m at z0 where g(z) has a pole of
the same order, then f (z)g(z) is either analytic at z0 or has a
removable singularity there.

I Argument theorem:

If f (z) is analytic inside and on a simple closed
curve C except for a finite number of poles inside
and f (z) 6= 0 on C, then

1

2πi

∮

C

f ′(z)

f (z)
dz = N − P ,

where N and P are total numbers of zeros and poles
inside C respectively, counting multiplicities (orders).
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Residues
Term by term integration of Laurent’s series:

∮
C

f (z)dz = 2πia−1

Residue: Res
z0

f (z) = a−1 = 1
2πi

∮
C

f (z)dz

If f (z) has a pole (of order m) at z0, then

(z − z0)mf (z) =
∞∑

n=−m

an(z − z0)m+n

is analytic at z0, and

dm−1

dzm−1
[(z − z0)mf (z)] =

∞∑

n=−1

(m + n)!

(n + 1)!
an(z − z0)n+1

⇒ Res
z0

f (z) = a−1 =
1

(m − 1)!
lim

z→z0

dm−1

dzm−1
[(z − z0)mf (z)].

Residue theorem: If f (z) is analytic inside and on simple closed
curve C , with singularities at z1, z2, z3, · · · , zk inside C ; then

∮

C

f (z)dz = 2πi

k∑

i=1

Res
zi

f (z).
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Evaluation of Real Integrals

General strategy
I Identify the required integral as a contour integral of a

complex function, or a part thereof.
I If the domain of integration is infinite, then extend the

contour infinitely, without enclosing new singularities.

Example:

I =

∫ 2π

0
φ(cos θ, sin θ)dθ

With z = e iθ and dz = izdθ,

I =

∮

C

φ

[
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

)]
dz

iz
=

∮

C

f (z)dz ,

where C is the unit circle centred at the origin.
Denoting poles falling inside the unit circle C as pj ,

I = 2πi
∑

j

Res
pj

f (z).
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Evaluation of Real Integrals

Example: For real rational function f (x),

I =

∫ ∞

−∞
f (x)dx ,

denominator of f (x) being of degree two higher than numerator.

Consider contour C enclosing semi-circular region |z | ≤ R , y ≥ 0,
large enough to enclose all singularities above the x-axis.

∮

C

f (z)dz =

∫ R

−R

f (x)dx +

∫

S

f (z)dz

For finite M, |f (z)| < M
R2 on C

∣∣∣∣
∫

S

f (z)dz

∣∣∣∣ <
M

R2
πR =

πM

R
.

I =

∫ ∞

−∞
f (x)dx = 2πi

∑

j

Res
pj

f (z) as R →∞.

S

iR

−R RO x

p

p

p

R

y

Figure: The contour
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Evaluation of Real Integrals

Example: Fourier integral coefficients

A(s) =

∫ ∞

−∞
f (x) cos sx dx and B(s) =

∫ ∞

−∞
f (x) sin sx dx

Consider

I = A(s) + iB(s) =

∫ ∞

−∞
f (x)e isxdx .

Similar to the previous case,
∮

C

f (z)e iszdz =

∫ R

−R

f (x)e isxdx +

∫

S

f (z)e iszdz .

As |e isz | = |e isx | |e−sy | = |e−sy | ≤ 1 for y ≥ 0, we have
∣∣∣∣
∫

S

f (z)e iszdz

∣∣∣∣ <
M

R2
πR =

πM

R
,

which yields, as R →∞,

I = 2πi
∑

j

Res
pj

[f (z)e isz ].
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Points to note

I Taylor’s series and Laurent’s series

I Zeros and poles of analytic functions

I Residue theorem

I Evaluation of real integrals through contour integration of
suitable complex functions

Necessary Exercises: 1,2,3,5,8,9,10
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Introduction

Consider a particle moving on a smooth surface z = ψ(q1, q2).

With position r = [q1(t) q2(t) ψ(q1(t), q2(t))]T on the surface
and δr = [δq1 δq2 (∇ψ)T δq]T in the tangent plane, length of the
path from qi = q(ti) to qf = q(tf ) is

l =

∫
‖δr‖ =

∫ tf

ti

‖ṙ‖dt =

∫ tf

ti

[
q̇2

1 + q̇2
2 + (∇ψT q̇)2

]1/2
dt.

For shortest path or geodesic, minimize the path length l .

Question: What are the variables of the problem?

Answer: The entire curve or function q(t).

Variational problem:
Optimization of a function of functions, i.e. a functional.
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Functionals and their extremization

Suppose that a candidate curve is represented as a sequence of
points qj = q(tj) at time instants

ti = t0 < t1 < t2 < t3 < · · · < tN−1 < tN = tf .

Geodesic problem: a multivariate optimization problem with the
2(N − 1) variables in {qj , 1 ≤ j ≤ N − 1}.

With N →∞, we obtain the actual function.

First order necessary condition: Functional is stationary with
respect to arbitrary small variations in {qj}.

[Equivalent to vanishing of the gradient]

This gives equations for the stationary points.

Here, these equations are differential equations!
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Examples of variational problems

Geodesic path: Minimize l =
∫ b

a
‖r′(t)‖dt

Minimal surface of revolution: Minimize
S =

∫
2πyds = 2π

∫ b

a
y
√

1 + y ′2dx
The brachistochrone problem: To find the curve along which the

descent is fastest.

Minimize T =
∫

ds
v

=
∫ b

a

√
1+y ′2
2gy dx

Fermat’s principle: Light takes the fastest path.

Minimize T =
∫ u2

u1

√
x ′2+y ′2+z ′2

c(x ,y ,z) du
Isoperimetric problem: Largest area in the plane enclosed by a

closed curve of given perimeter. By extension,
extremize a functional under one or more equality
constraints.

Hamilton’s principle of least action: Evolution of a dynamic
system through the minimization of the action

s =

∫ t2

t1

Ldt =

∫ t2

t1

(K − P)dt
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Euler’s Equation

Find out a function y(x), that will make the functional

I [y(x)] =

∫ x2

x1

f [x , y(x), y ′(x)]dx

stationary, with boundary conditions y(x1) = y1 and y(x2) = y2.
Consider variation δy(x) with δy(x1) = δy(x2) = 0 and consistent
variation δy ′(x).

δI =

∫ x2

x1

(
∂f

∂y
δy +

∂f

∂y ′
δy ′
)

dx

Integration of the second term by parts:
∫ x2

x1

∂f

∂y ′
δy ′dx =

∫ x2

x1

∂f

∂y ′
d

dx
(δy)dx =

[
∂f

∂y ′
δy

]x2

x1

−
∫ x2

x1

d

dx

∂f

∂y ′
δy dx

With δy(x1) = δy(x2) = 0, the first term vanishes identically, and

δI =

∫ x2

x1

[
∂f

∂y
− d

dx

∂f

∂y ′

]
δy dx .
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For δI to vanish for arbitrary δy(x),
d
dx

∂f
∂y ′ − ∂f

∂y
= 0.

Functions involving higher order derivatives

I [y(x)] =

∫ x2

x1

f
(
x , y , y ′, y ′′, · · · , y (n)

)
dx

with prescribed boundary values for y , y ′, y ′′, · · · , y (n−1)

δI =

∫ x2

x1

[
∂f

∂y
δy +

∂f

∂y ′
δy ′ +

∂f

∂y ′′
δy ′′ + · · · + ∂f

∂y (n)
δy (n)

]
dx

Working rule: Starting from the last term, integrate one term at
a time by parts, using consistency of variations and BC’s.
Euler’s equation:

∂f

∂y
− d

dx

∂f

∂y ′
+

d2

dx2

∂f

∂y ′′
− · · ·+ (−1)n dn

dxn

∂f

∂y (n)
= 0,

an ODE of order 2n, in general.
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Euler’s Equation

Functionals of a vector function

I [r(t)] =

∫ t2

t1

f (t, r, ṙ)dt

In terms of partial gradients ∂f
∂r and ∂f

∂ ṙ ,

δI =

∫ t2

t1

[(
∂f

∂r

)T

δr +

(
∂f

∂ṙ

)T

δṙ

]
dt

=

∫ t2

t1

(
∂f

∂r

)T

δrdt +

[(
∂f

∂ṙ

)T

δr

]t2

t1

−
∫ t2

t1

d

dt

(
∂f

∂ṙ

)T

δrdt

=

∫ t2

t1

[
∂f

∂r
− d

dt

∂f

∂ṙ

]T

δrdt.

Euler’s equation: a system of second order ODE’s

d

dt

∂f

∂ṙ
− ∂f

∂r
= 0 or

d

dt

∂f

∂ ṙi
− ∂f

∂ri
= 0 for each i .
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Euler’s Equation

Functionals of functions of several variables

I [u(x , y)] =

∫

D

∫
f (x , y , u, ux , uy )dx dy

Euler’s equation: ∂
∂x

∂f
∂ux

+ ∂
∂y

∂f
∂uy
− ∂f

∂u
= 0

Moving boundaries
Revision of the basic case: allowing non-zero δy(x1), δy(x2)

At an end-point, ∂f
∂y ′ δy has to vanish for arbitrary δy(x).

∂f
∂y ′ vanishes at the boundary.

Euler boundary condition or natural boundary condition

Equality constraints and isoperimetric problems

Minimize I =
∫ x2

x1
f (x , y , y ′)dx subject to J =

∫ x2

x1
g(x , y , y ′)dx = J0.

In another level of generalization, constraint φ(x , y , y ′) = 0.

Operate with f ∗(x , y , y ′, λ) = f (x , y , y ′) + λ(x)g(x , y , y ′).
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Direct Methods
Finite difference method
With given boundary values y(a) and y(b),

I [y(x)] =

∫ b

a

f [x , y(x), y ′(x)]dx

I Represent y(x) by its values over xi = a + ih with
i = 0, 1, 2, · · · ,N, where b − a = Nh.

I Approximate the functional by

I [y(x)] ≈ φ(y1, y2, y3, · · · , yN−1) =
N∑

i=1

f (x̄i , ȳi , ȳ
′
i )h,

where x̄i =
xi+xi−1

2 , ȳi =
yi+yi−1

2 and ȳ ′i =
yi−yi−1

h
.

I Minimize φ(y1, y2, y3, · · · , yN−1) with respect to yi ;
for example, by solving ∂φ

∂yi
= 0 for all i .

Exercise: Show that ∂φ
∂yi

= 0 is equivalent to Euler’s equation.
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Rayleigh-Ritz method
In terms of a set of basis functions, express the solution as

y(x) =
N∑

i=1

αiwi (x).

Represent functional I [y(x)] as a multivariate function φ(α).

Optimize φ(α) to determine αi ’s.

Note: As N →∞, the numerical solution approaches exactitude.
For a particular tolerance, one can truncate appropriately.

Observation: With these direct methods, no need to reduce the
variational (optimization) problem to Euler’s equation!

Question: Is it possible to reformulate a BVP as a variational
problem and then use a direct method?
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Direct Methods
The inverse problem: From

I [y(x)] ≈ φ(α) =

∫ b

a

f

(
x ,

N∑

i=1

αiwi (x),
N∑

i=1

αiw
′
i (x)

)
dx ,

∂φ

∂αi

=

Z

b

a

2

4

∂f

∂y

0

@x,
N

X

i=1

αiwi ,
N

X

i=1

αiw
′
i

1

A wi (x) +
∂f

∂y′

0

@x,
N

X

i=1

αiwi ,
N

X

i=1

αiw
′
i

1

A w
′
i (x)

3

5 dx.

Integrating the second term by parts and using wi (a) = wi (b) = 0,

∂φ

∂αi

=

∫ b

a

R
[

N∑

i=1

αiwi

]
wi (x)dx ,

where R[y ] ≡ ∂f
∂y
− d

dx
∂f
∂y ′ = 0 is the Euler’s equation of the

variational problem.
Def.: R[z(x)]: residual of the differential equation R[y ] = 0
operated over the function z(x)

Residual of the Euler’s equation of a variational problem
operated upon the solution obtained by Rayleigh-Ritz
method is orthogonal to basis functions wi(x).
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Direct Methods
Galerkin method
Question: What if we cannot find a ‘corresponding’ variational
problem for the differential equation?
Answer: Work with the residual directly and demand

∫ b

a

R[z(x)]wi (x)dx = 0.

Freedom to choose two different families of functions as basis
functions ψj (x) and trial functions wi (x):

∫ b

a

R


∑

j

αjψj(x)


wi(x)dx = 0

A singular case of the Galerkin method:

delta functions, at discrete points, as trial functions

Satisfaction of the differential equation exactly at the chosen
points, known as collocation points:

Collocation method
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Direct Methods

Finite element methods

I discretization of the domain into elements of simple geometry

I basis functions of low order polynomials with local scope

I design of basis functions so as to achieve enough order of
continuity or smoothness across element boundaries

I piecewise continuous/smooth basis functions for entire
domain, with a built-in sparse structure

I some weighted residual method to frame the algebraic
equations

I solution gives coefficients which are actually the nodal values

Suitability of finite element analysis in software environments

I effectiveness and efficiency

I neatness and modularity
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Points to note

I Optimization with respect to a function

I Concept of a functional

I Euler’s equation

I Rayleigh-Ritz and Galerkin methods

I Optimization and equation-solving in the infinite-dimensional
function space: practical methods and connections

Necessary Exercises: 1,2,4,5
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Source for further information:

http://home.iitk.ac.in/˜ dasgupta/MathBook

Destination for feedback:

dasgupta@iitk.ac.in

Some general courses in immediate continuation

I Advanced Mathematical Methods

I Scientific Computing

I Advanced Numerical Analysis

I Optimization

I Advanced Differential Equations

I Partial Differential Equations

I Finite Element Methods
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Some specialized courses in immediate continuation

I Linear Algebra and Matrix Theory

I Approximation Theory

I Variational Calculus and Optimal Control

I Advanced Mathematical Physics

I Geometric Modelling

I Computational Geometry

I Computer Graphics

I Signal Processing

I Image Processing
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