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Mathematical Methods in Engineering and Science Preliminary Background

Theme of the Course

Theme of the Course

To develop a firm mathematical background necessary for graduate
studies and research
» a fast-paced recapitulation of UG mathematics

> extension with supplementary advanced ideas for a mature
and forward orientation

» exposure and highlighting of interconnections

To pre-empt needs of the future challenges

» trade-off between sufficient and reasonable

» target mid-spectrum majority of students

Notable beneficiaries (at two ends)
» would-be researchers in analytical/computational areas

» students who are till now somewhat afraid of mathematics

11,
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Course Contents

Applied linear algebra

Multivariate calculus and vector calculus
Numerical methods

Differential equations + +

vV v . v v Y

Complex analysis

Course Contents

Preliminary Background
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Sources for More Detailed Study

Sources for More Detailed Study

If you have the time, need and interest, then you may consult
» individual books on individual topics;

» another "umbrella” volume, like Kreyszig, McQuarrie, O’Neil
or Wylie and Barrett;

» a good book of numerical analysis or scientific computing, like
Acton, Heath, Hildebrand, Krishnamurthy and Sen, Press et
al, Stoer and Bulirsch;

» friends, in joint-study groups.

13,
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Logistic Strategy

Logistic Strategy
» Study in the given sequence, to the extent possible.
» Do not read mathematics.

» Use lots of pen and paper.
Read “mathematics books” and do mathematics.
» Exercises are must.
» Use as many methods as you can think of, certainly including
the one which is recommended.
» Consult the Appendix after you work out the solution. Follow
the comments, interpretations and suggested extensions.
» Think. Get excited. Discuss. Bore everybody in your known
circles.
» Not enough time to attempt all? Want a 7
» Program implementation is needed in algorithmic exercises.

» Master a programming environment.
» Use mathematical/numerical library/software.

Take a MATLAB tutorial session?

14,
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Logistic Strategy

Preliminary Background

Theme of the Course

Course Contents

Sources for More Detailed Study
Logistic Strategy

Expected Background

Tutorial Plan

Chapter | Selection [Tutorial| [Chapter| Selection [Tutorial
2 2,3 3 26 1,2,4,6 4
3 2,456 45 27 1234 34
4 12,457 45 28 25,6 6
5 145 4 29 1,256 6
6 12,47 4 30 12345 4
7 1234 2 31 12 1(d)
8 1,2,3,4,6 4 32 1,357 7
9 12,4 4 33 12378 8
10 234 4 34 1,356 5
11 2,45 5 35 134 3
12 13 3 36 124 4
13 12 1 37 1 1(c)
14 2,45,6,7 4 38 12,345 5
15 6,7 7 39 2,345 4
16 2348 8 40 12,45 4
17 1,2,3,6 6 41 1,3,6,8 8
18 1,2,3,6,7 3 42 13,6 6
19 1,346 6 43 234 3
20 12,3 2 44 12,479,100 7,10
21 12,578 7 45 12,3479 4,9
22 1,2345, 3,4 46 1,257 7
23 12,3 3 47 [1,2,358,9,1 9,10
24 1,2,3,45, 1 48 12,45 5
25 1,2,3,45 5

15,
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Expected Background

Expected Background

» moderate background of undergraduate mathematics

» firm understanding of school mathematics and undergraduate

calculus
Take the preliminary test. [p 3, App. Math. Meth.]
Grade yourself sincerely. [p 4, App. Math. Meth.]

Prerequisite Problem Sets* [p 4-8, App. Math. Meth)

16,
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Points to note

Expected Background

» Put in effort, keep pace.

» Stress concept as well as problem-solving.
» Follow methods diligently.

» Ensure background skills.

Necessary Exercises: Prerequisite problem sets 77

17,
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Outline

Matrices and Linear Transformations
Matrices
Geometry and Algebra
Linear Transformations
Matrix Terminology

Matrices and Linear Iranstormations
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Matrices

Matrices

Question: What is a “matrix’?
Answers:

> a rectangular array of numbers/elements 7

» a mapping f : M x N — F, where M = {1,2,3,--- , m},
N ={1,2,3,--- ,n} and F is the set of real numbers or
complex numbers 7

Question: What does a matrix do?
Explore: With an m x n matrix A,

Y1 = auxy+awpxe+ -+ anXy
Yo = aoixy+ axpXxo+ -+ anXp
or Ax=y

Ym = amiXy+ameXo + -+ amnXn

19,
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Matrlces Matrices
Consider these definitions:
>y =f(x)

v

y = f(X) = f(X].aXZ?"' 7Xn)

>_yk:fk(x):fk(XLXZy'”7Xr7)7 k:1727"'7m
>y = f(x)
> y:Ax

Further Answer:
A matrix is the definition of a linear vector function of a
vector variable.

Anything deeper?

Caution: Matrices do not define vector functions whose components are
of the form

Yk = ako + ak1x1 + akoxe + - - + aknXn.

20,
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Geometry a nd Alge bra Geometry and Algebra

Let vector x = [x; x» x3] denote a point (x1,x2, x3) in
3-dimensional space in frame of reference OX3.X>.X3.
Example: With m =2 and n =3,

Yi = ai1xy + axe + aizxs
Yo = aoixy + axnxe + axx3

Plot y1 and y» in the OY1Y5 plane.

A RELR?

Domain Co-domain

Figure: Linear transformation: schematic illustration

What is matrix A doing? ‘

21,
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Geometry a nd Alge bra Geometry and Algebra

Operating on point x in R3, matrix A transforms it to y in R2.

Point y is the image of point x under the mapping defined by

matrix A.

Note domain R3, co-domain R? with reference to the and
verify that A : R3 — R? fulfils the requirements of a mapping, by
definition.

A matrix gives a definition of a linear transformation
from one vector space to another.

22,
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Linear Transformations
Linear Transformations
Operate A on a large number of points x; € R3.
Obtain corresponding images y; € R?.

The linear transformation represented by A implies the totality of
these correspondences.

We decide to use a different frame of reference OX{X3X} for R3.
[And, possibly OY]Y; for R? at the same time.]

Coordinates change, i.e. x; changes to x} (and possibly y; to y}).
Now, we need a different matrix, say A’, to get back the
correspondence as 'y = A'x’.

A matrix: just one description. ‘

Question: How to get the new matrix A’?

23,
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Matrix Terminology

vV vV vV V. V. Y V. VvV VY

Matrix Terminology

Matrix product

Transpose

Conjugate transpose

Symmetric and skew-symmetric matrices
Hermitian and skew-Hermitian matrices
Determinant of a square matrix

Inverse of a square matrix

Adjoint of a square matrix

24,
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Points to note

Matrix Terminology

» A matrix defines a linear transformation from one vector space
to another.

» Matrix representation of a linear transformation depends on
the selected bases (or frames of reference) of the source and
target spaces.

Important: Revise matrix algebra basics as necessary tools.

Necessary Exercises: 2,3

25,
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Outline

Operational Fundamentals of Linear Algebra
Range and Null Space: Rank and Nullity
Basis
Change of Basis
Elementary Transformations
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Range and Null Space: Rank and Nulfjggsn M space: Rankand Rulliy

Consider A € R™*" as a mapping

A:R"— R™, Ax =y, x € R", y € R™.

Observations

1. Every x € R™ has an imagey € R™, but every y € R™ need
not have a pre-image in R".

Range (or range space) as subset/subspace of
co-domain: containing images of all x € R".

2. Image of x € R" in R™ is unique, but pre-image of y € R™
need not be.
It may be non-existent, unique or infinitely many.

Null space as subset/subspace of domain:
containing pre-images of only 0 € R™.

217,
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Domain Co-domain

Figure: Range and null space: schematic representation

Question: What is the dimension of a vector space?
Linear dependence and independence: Vectors xi, X2, -+, X,
in a vector space are called linearly independent if

k]_x1+k2X2+”’+err:0 = k].:kZ:"':kl’:O’

) = {y:y=Ax, xe€R"}
) = {x:xeR" Ax=0}
) = dim Range(A)

) = dim Null(A)

Range
Null
Rank

(A
(A
(A
Nullity (A
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BaSIS Basis
Take a set of vectors vi, Vo, -+, Vv, in a vector space.
Question: Given a vector v in the vector space, can we describe it
as

v = kivi + kovo + - - + kv, = VK,

where V=1[v;i v --- v/]andk=1[k ko - k]'?
Answer: Not necessarily.

Span, denoted as < vi,vp, - ,v, >: the subspace
described/generated by a set of vectors.

Basis:
A basis of a vector space is composed of an ordered
minimal set of vectors spanning the entire space.

The basis for an n-dimensional space will have exactly n
members, all linearly independent.
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Basis Basic
Orthogonal basis: {vi,va, -+ ,v,} with
vivi=0 Vj#k
Orthonormal basis:
Foesne {0011
Members of an orthonormal basis form an orthogonal matrix.

Properties of an orthogonal matrix:
V! = V' or VW =1, and

detV = +1lor —1,
Natural basis:
[ 1] [0 ] [0 ]
1 0
e1=]0], e=1]0]/, . e,=10
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Change of Basis

Operational Fundamentals of Linear Algebra

Change of Basis
Suppose x represents a vector (point) in R” in"some basis.

Question: If we change over to a new basis {c1,¢c2, - ,c,}, how
does the representation of a vector change?

X = X1€1 + Xo€2 + -+ + XnCp
X1
X2
Xn
WithC=[c; ¢ - ¢

new to old coordinates: CX = x and
old to new coordinates: x = C~1x.

Note: Matrix C is invertible. How?
Special case with C orthogonal:
orthogonal coordinate transformation.

31,
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Change of Basis

Change of Basis

Question: And, how does basis change affect the representation of
a linear transformation?

Consider the mapping A:R"—R™ Ax=y.

Change the basis of the domain through P € R™" and that of the
co-domain through Q € R™*™M,

New and old vector representations are related as
Px=x and Qy=yvy.

Then, Ax =y = Ax = y, with
A=Q!AP

Special case: m = n and P = Q gives a similarity transformation

A=P'AP
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Elementary Transformations

Elementary Transformations

Observation: Certain reorganizations of equations in a system
have no effect on the solution(s).

Elementary Row Transformations:
1. interchange of two rows,
2. scaling of a row, and

3. addition of a scalar multiple of a row to another.

Elementary Column Transformations: Similar operations with
columns, equivalent to a corresponding shuffling of the variables
(unknowns).

33,
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Elementary Transformations

Elementary Transformations

Equivalence of matrices: An elementary transformation defines
an equivalence relation between two matrices.

Reduction to normal form:
I, 0
mv=15 o)

Rank invariance: Elementary transformations do not alter the
rank of a matrix.

Elementary transformation as matrix multiplication:

an elementary row transformation on a matrix is
equivalent to a pre-multiplication with an elementary
matrix, obtained through the same row transformation on
the identity matrix (of appropriate size).

Similarly, an elementary column transformation is equivalent to
post-multiplication with the corresponding elementary matrix.
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Points to note

Elementary Transformations

» Concepts of range and null space of a linear transformation.

» Effects of change of basis on representations of vectors and
linear transformations.

» Elementary transformations as tools to modify (simplify)
systems of (simultaneous) linear equations.

Necessary Exercises: 2,4,5,6

35,
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Outline

Systems of Linear Equations
Nature of Solutions
Basic Idea of Solution Methodology
Homogeneous Systems
Pivoting
Partitioning and Block Operations

Systems of Linear Equations
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Nature of Solutions

Nature of Solutions

Ax =b

Coefficient matrix: A, augmented matrix: [A | b].
Existence of solutions or consistency:

Ax =b has a solution
& b € Range(A)
& Rank(A) = Rank([A | b])

Uniqueness of solutions:

Rank(A) = Rank([A | b]) = n
< Solution of Ax = b is unique.

< Ax = 0 has only the trivial (zero) solution.
Infinite solutions: For Rank(A) = Rank([A|b]) = k < n, solution

x=X+xy, with Ax=b and xy e Null(A)

37,
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BaSIC Idea Of SOlUtIOﬂ Methodology Basic Idea of Solution Methodology

To diagnose the non-existence of a solution,
To determine the unique solution, or

To describe infinite solutions;

decouple the equations using elementary transformations.

For solving Ax = b, apply suitable elementary row transformations
on both sides, leading to
RqRq_l s R2R1AX = RqRq_l s R2R1b,
or, [RA]x = Rb;
such that matrix [RA] is greatly simplified.

In the best case, with complete reduction, RA =1,, and
components of x can be read off from Rb.

For inverting matrix A, treat AA~! = 1,, similarly.
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Homogeneous Systems

Homogeneous Systems

To solve Ax = 0 or to describe Null(A),
apply a series of elementary row transformations on A to reduce it

to the A,
the row-reduced echelon form or RREF.
Features of RREF:
1. The first non-zero entry in any row is a ‘1", the leading ‘1".
2. In the same column as the leading ‘1’, other entries are zero.

3. Non-zero entries in a lower row appear later.

Variables corresponding to columns having leading ‘1's
are expressed in terms of the remaining variables.

i
. uz
Solution of Ax =0: x = [ Z1 2Zp o Zp_k ]

Un—k
Basis of Null(A): {z1,z2,--- ,zp—k}



Mathematical Methods in Engineering and Science Systems of Linear Equations
Pivoting

Pivoting

Attempt:
To get ‘1" at diagonal (or leading) position, with ‘0" elsewhere.
Key step: division by the diagonal (or leading) entry.
Consider

L

BIG

D
Il

big

Cannot divide by zero. Should not divide by §.

» partial pivoting: row interchange to get ‘big’ in place of ¢
» complete pivoting: row and column interchanges to get
‘BIG’ in place of §

Complete pivoting does not give a huge advantage over partial pivoting,
but requires maintaining of variable permutation for later unscrambling.
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Partitioning and Block Operations

Partitioning and Block Operations

Equation Ax =y can be written as

X
Air Ap A ] x; _ [ Y1 }
Ay Axn A X3 y2 |’

with x1, xo etc being themselves vectors (or matrices).

>
>
>
>

For a valid partitioning, block sizes should be consistent.
Elementary transformations can be applied over blocks.
Block operations can be computationally economical at times.

Conceptually, different blocks of contributions/equations can
be assembled for mathematical modelling of complicated
coupled systems.

41,
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Points to note

Partitioning and Block Operations

» Solution(s) of Ax = b may be non-existent, unique or
infinitely many.

» Complete solution can be described by composing a particular
solution with the null space of A.

» Null space basis can be obtained conveniently from the
row-reduced echelon form of A.

» For a strategy of solution, pivoting is an important step.

Necessary Exercises: 1,2,4,5,7

42,
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Outline

Gauss Elimination Family of Methods
Gauss-Jordan Elimination
Gaussian Elimination with Back-Substitution
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Gauss-Jordan Elimination

Gauss-Jordan Elimination

Task: Solve Ax = by, Ax = b, and Ax = bs; find A~! and
evaluate A~1B, where A € R"™<" and B € R"*P,

Assemble C=[A by by bz I, B] € R"™(@nt3+p)
and follow the

Collect solutions from the result

C—~C=[, Alb, Alb, Alb; Al A-lB]

Remarks:
» Premature termination: matrix A singular — decision?

» If you use complete pivoting, unscramble permutation.

Identity matrix in both C and C? Store A~! ‘in place'.

>
» For evaluating A~'b, do not develop A~L.
» Gauss-Jordan elimination an overkill? Want something

?
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Gauss-Jordan Elimination Cavesan Elmintion wi

Gauss-Jordan Algorithm
» A=1
» For k=1,2,3,--- ,(n—1)
1. Pivot : identify / such that |ci| = max|cy| for k < j < n.
If ¢ =0, then A =0 and exit.
Else, interchange row k and row /.
2. A — CkkA,
Divide row k by ckk.
3. Subtract cjx times row k from row j, Vj # k.
> A — cpA
If ¢, = 0, then exit.
Else, divide row n by c,,.

In case of non-singular A,

This outline is for partial pivoting.

45,
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GaUSSIan Ellmlnatlon Wlth BaCk-SUbStiLthation with Back-Substitution
Gaussian elimination:

Ax =
— Ax =
/ !
91 912 0 91, X1
/ /
dyp ot dy, X2

/
1

b

O

\."1
O
L
3>

1
—_— o T
o ...
=

Xn

Back-substitutions:

/ /

Xn = bn/anm

n
_ 1 b ! fi = 1 2 2.1

X, —_ —, I_ aUX_, or I =n-— ,n_ 9y 1T 9Ly
3.
ii j=i+1

Remarks

» Computational cost half compared to G-J elimination.
» Like G-J elimination, prior knowledge of RHS needed.

46,
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Anatomy of the Gaussian elimination:

Gauss Elimination Family of Methods

GaUSSIan Ellmlnatlon Wlth Back'substitutmmion with Back-Substitution

The process of Gaussian elimination (with no pivoting) leads to

U=R,R, 1 --RR;A =RA.

The steps given by
fork=1,2,3,--- (n—1)

j-th row «— j-th row — ‘%x k-th row for

j=k+1,k+2---,n

involve elementary matrices

1 00
a
Rk|k:1: Tan 0
an
_—a—li 00

WithL=R™1, A =LU.

etc.

47,
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LU Decomposition

LU Decomposition

‘A square matrix with non-zero leading minors is LU-decomposable.
No reference to a right-hand-side (RHS) vector!
To solve Ax = b, denote y = Ux and split as

Ax=b = LUx=b
= Ly=b and Ux=y.
Forward substitutions:

i—1

1
= b._E:/... for i=1,2.3,--- .
Yi Ii i p ijYj or I y &9 9y , N

Back-substitutions:

n
1 .
Xi=_—|Yi~ E ujjx; fori=nn—-1,n-2,---,1
i j=it1

48,
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LU Decomposition

LU Decomposition

Question: How to LU-decompose a given matrix?

hi 0 0 0 U1 U U3
hi by O 0 0 U2 U223
L= | Bt h2 I3 0 and U=| 0 0 us
/nl /n2 /n3 /nn 0 0 0

Elements of the product give
i
Z/,-kukj = ajj for I'gj,
k=1
J
and Z/,-kukj = ajj for i > J.
k=1

n? equations in n? 4+ n unknowns: choice of n unknowns

Uin
U2pn
uzn

unn

49,
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LU Decomposition

LU Decomposition

Doolittle’s algorithm
» Choose [;; =1
» For j=1,2,3,--- ,n
Louy=ay;— Y, lwug for 1<i<j
2. = E(ay — X4y luwg) for i >

Evaluation proceeds in column order of the matrix (for storage)

ux U2 13 - Uip
b1 uxn w3 - U
A*=| Bt h w3z - w3

It l2 I3 -+ Unp

50,
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LU Decomposition

LU Decomposition
Question: What about matrices which are not LU-decomposable?
Question: What about pivoting?

Consider the non-singular matrix

01 2 1 0 0 uil = 0 uip  U13
31 2 = /21 =7 1 0 0 uzp U3
2 1 3 /31 /32 1 0 0 us3

LU-decompose a permutation of its rows

01 2 010 31 2
3 12| = 1]100 01 2
2 1 3 00 1][213
o1 071 00 31 2
= 100 010 01 2
001 2 11 001

In this PLU decomposition, permutation P is recorded in a vector.
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Points to note

LU Decomposition

For invertible coefficient matrices, use

» Gauss-Jordan elimination for large number of RHS vectors
available all together and also for matrix inversion,

» Gaussian elimination with back-substitution for small number
of RHS vectors available together,

» LU decomposition method to develop and maintain factors to
be used as and when RHS vectors are available.

Pivoting is almost necessary (without further special structure).

Necessary Exercises: 1,4,5

52,
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Outline

Special Systems and Special Methods
Quadratic Forms, Symmetry and Positive Definiteness
Cholesky Decomposition
Sparse Systems*
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Quadratic Forms, Symmetry and PositiV& DEfififterass >
Quadratic form
q(x) =x"Ax = Z Z ajjXiXj
i=1 j=1
defined with respect to a symmetric matrix.

Quadratic form g(x), equivalently matrix A, is called positive
definite (p.d.) when

x"TAx >0 Vx#0
and positive semi-definite (p.s.d.) when

x"TAx >0 Vx#0.
Sylvester's criteria:

a1 4a12
az1 ax

31120, 207 ) detAZO.

i.e. all leading minors non-negative, for p.s.d.
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C hOIGS ky Decom pOSItIOﬂ Cholesky Decomposition

If A € R™" is symmetric and positive definite, then there exists a
non-singular lower triangular matrix L € R"*" such that

A=LL".

Algorithm For i =1,2,3,--- |n

> Ly = ai — i L
> Lj= Ll” (aj,- - Z;;ll ijL,-k> for i<j<n
For solving Ax = b,
Forward substitutions: Ly = b
Back-substitutions: LTx =y
Remarks
» Test of positive definiteness.
» Stable algorithm: no pivoting necessary!

» Economy of space and time.
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Sparse Systems*

Sparse Systems*

What is a sparse matrix?
Bandedness and bandwidth
Efficient storage and processing

Updates
» Sherman-Morrison formula

vV vy VvV Yy

(A"tu)(vTATY)

A T*]-:A*l_
(A+uv’) 1+v ATy

» Woodbury formula
Conjugate gradient method
» efficiently implemented matrix-vector products

v
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Points to note

Sparse Systems*

» Concepts and criteria of positive definiteness and positive
semi-definiteness

» Cholesky decomposition method in symmetric positive definite
systems

» Nature of sparsity and its exploitation

Necessary Exercises: 1,2,4,7
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Outline

Numerical Aspects in Linear Systems
Norms and Condition Numbers
[ll-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Iterative Methods

98,
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Norms and Condition Numbers
Norm of a vector: a measure of size

» Euclidean norm or 2-norm

x|l = lIxll2 = [ +x3 + -

» The p-norm

x[lp = [Pxa|” + [xal® +

» The 1-norm: ||x||1 = |x1| + |xe| + - -

» The oo-norm:

[X[[oo = lim [x1|P + x2l? + -
p—o0

» Weighted norm

Numerical Aspects in Linear Systems
Norms and Condition Numbers

1
_|_ |Xn‘p]P

+ [xn]

1
+ [xnlP]P = max|x;|
J

Ixllw = v/x"Wx

where weight matrix W is symmetric and positive definite.
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Norms and Condition Numbers

Norms and Condition Numbers

Norm of a matrix: magnitude or scale of the transformation

Matrix norm (induced by a vector norm) is given by the largest
magnification it can produce on a vector

A
IAX] oy ax]

[|A]| = max
xx[]x)=1

Direct consequence: ||Ax|| < [|A] ||x]|

Index of closeness to singularity: Condition number

R(A) = [|A] AT, 1< kK(A) < oo

** |sotropic, well-conditioned, ill-conditioned and singular matrices

60,
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I”-Condltlonlng and SenSItIVIty lll-conditioning and Sensitivity

0.9999x; — 1.0001x, = 1
X1 — X = 1+e€
- 10001e+1 1
Solution: x; = 000%, Xp = %
> sensitive to small changes in the RHS
> insensitive to error in a guess

For the system Ax = b, solution is x = A~1b and
ox = A715b — A"1HA x

If the matrix A is exactly known, then

19|} _ 1,110b]] [[db]|
<A [[AT | T = K(A) T
Hi oIl =" A b
If the RHS is known exactly, then
9] _ 1 I0A] oAl
< [|A[ AT Tx = R(A) T
[l Al Al
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lll-conditioning and Sensitivity

X2
@)
@
o X1
X (@)
(a) Reference system
X2
@)
1)
0 %x© Xq

(c) Guess validation

Numerical Aspects in Linear Systems

Norms and Condition Numbers
lll-conditioning and Sensitivity
Rectangular Systems
Singularity-Robust Solutions
Iterative thods

@_ @20
AW
X1
(b) Parallel shift
X2
@). (2d)
7
X1

(d) Singularity

Figure: Ill-conditioning: a geometric perspective

62,



Mathematical Methods in Engineering and Science

Rectangular Systems

Numerical Aspects in Linear Systems 63,

Rectangular Systems

Consider Ax = b with A € R™*" and Rank{A)-=n.< m.

ATAx=A"b = x=(ATA)'ATb

Square of error norm

1 1
Ux) = 5llAx- b|? = 5 (Ax — b)"(Ax — b)
1 1
= 5xTATAx —x"ATb + 5bTb

Least square error solution:

a—U:ATAx—Aszﬂ
ox

Pseudoinverse or Moore-Penrose inverse or left-inverse

A7 = (ATA)IAT
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Rectangular Systems
Rectangular Systems

Consider Ax = b with A € R™*" and Rank(A)-=m:< n.
Look for A € R™ that satisfies AT\ = x and

AA"X=b
Solution
x=ATA=AT(AAT) b
Consider the problem
minimize U(x) = ix"x  subject to Ax =b.

Extremum of the Lagrangian £(x,A) = 2x7x — AT(Ax —b) is
given by

oL oL T

I 0, X 0=x A, Ax=Db
Solution x = AT(AAT)~!b gives foot of the perpendicular on the
solution ‘plane’ and the pseudoinverse

A7 = AT(AAT)!

hare ic a rioh+_invorcal
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Singularity-Robust Solutions

Singularity-Robust Solutions

lll-posed problems: Tikhonov regularization

» recipe for any linear system (m > n, m = n or m < n), with
any condition!

Ax = b may have conflict: form ATAx = A'b.

ATA may be ill-conditioned: rig the system as
(ATA +2°1,)x =ATb

Coefficient matrix: symmetric and positive definite!
The idea: Immunize the system, paying a small price.
Issues:

» The choice of v7

» When m < n, computational advantage by

(AAT + 21,0 =b, x=ATX
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[terative Methods

Jacobi's iteration method:

n
k+1 1
x,.( ):a_;,- b; — Z ajjx

=1, j#i
Gauss-Seidel method:

ajj

Numerical Aspects in Linear Systems

Iterative Methods

A9 for =123, ,n.

Jj=i+1

The category of relaxation methods:

diagonal dominance and availability of good initial

approximations

06,

bi — Z a"J'Xj(k+1) — Z a,-jxj(k) for i =1,2,3,---,n.
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Points to note

Iterative Methods

» Solutions are unreliable when the coefficient matrix is
ill-conditioned.

» Finding pseudoinverse of a full-rank matrix is ‘easy’.
» Tikhonov regularization provides singularity-robust solutions.

> lterative methods may have an edge in certain situations!

Necessary Exercises: 1,2,3,4

67,



Mathematical Methods in Engineering and Science Eigenvalues and Eigenvectors

Outline

Eigenvalues and Eigenvectors
Eigenvalue Problem
Generalized Eigenvalue Problem
Some Basic Theoretical Results
Power Method



Mathematical Methods in Engineering and Science Eigenvalues and Eigenvectors

Eigenvalue Problem

Eigenvalue Problem

In mapping A : R" — R", special vectors of matrix A € R"™*"

» mapped to scalar multiples, i.e. undergo pure scaling

Av = \v

Eigenvector (v) and eigenvalue (\): eigenpair (A, v)

‘ algebraic eigenvalue problem ‘

(A=A =0

For non-trivial (non-zero) solution v,
det(A\l — A) =0

Characteristic equation: characteristic polynomial: n roots
» n eigenvalues — for each, find eigenvector(s)

Multiplicity of an eigenvalue: algebraic and geometric
Multiplicity mismatch: diagonalizable and defective matrices

09,



Mathematical Methods in Engineering and Science Eigenvalues and Eigenvectors

Genera | |Zed Elgenva | ue P rOblem Generalized Eigenvalue Problem

1-dof mass-spring system: mx + kx = 0

Natural frequency of vibration: w, = /%

m

Free vibration of n-dof system:
Mx + Kx =0,

Natural frequencies and corresponding modes?
Assuming a vibration mode x = ® sin(wt + ),

(~w’M® + K®)sin(wt+a) =0 = | Ko = w*M® |

Reduce as (M_lK) & = w2®d? Why is it not a good idea?

‘ K symmetric, M symmetric and positive definite!! ‘

WithM = LLT, @ = LT® and K = L-!KL-T,

Ko =’
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Some Basic Theoretical Results

Some Basic Theoretical Results
Eigenvalues of transpose

Eigenvalues of AT are the same as those of A.

Caution: Eigenvectors of A and AT need not be same.

Diagonal and block diagonal matrices
Eigenvalues of a diagonal matrix are its diagonal entries.
Corresponding eigenvectors: natural basis members (e1, e; etc).

Eigenvalues of a block diagonal matrix: those of diagonal blocks.
Eigenvectors: coordinate extensions of individual eigenvectors.
With (A2, v2) as eigenpair of block Ay,

A; 0 O 0 0 0
AV2 = 0 A2 0 Vo = A2V2 = )\2 Vo
0 0 A; 0 0 0

11,
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Some Basic Theoretical Results

Some Basic Theoretical Results
Triangular and block triangular matrices
Eigenvalues of a triangular matrix are its diagonal entries.

Eigenvalues of a block triangular matrix are the collection of
eigenvalues of its diagonal blocks.

Take

_ A B rxr SXS
H_[O c]’ AcR™ and CER

If Av = )\v, then

o] =lo eJls =1 =[5 ] 15]

If 11 is an eigenvalue of C, then it is also an eigenvalue of CT and

cummenr [ S [0 &[0 ] 0] 2]



Mathematical Methods in Engineering and Science Eigenvalues and Eigenvectors

Some Basic Theoretical Results

Some Basic Theoretical Results

Shift theorem
Eigenvectors of A + ul are the same as those of A.
Eigenvalues: shifted by p.

Deflation
For a symmetric matrix A, with mutually orthogonal eigenvectors,
having (\j,v;) as an eigenpair,

v/
VJVJ-
Ty.
Vj Vj

B=A—)

has the same eigenstructure as A, except that the eigenvalue
corresponding to v; is zero.
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Some Basic Theoretical Results

Some Basic Theoretical Results

Eigenspace
If vi, vo, -+, v are eigenvectors of A corresponding to the same
eigenvalue ), then

eigenspace: < Vi,Vp,--- V) >

Similarity transformation
B = S~'AS: same transformation expressed in new basis.

det(Al — A) = det S~ det(Al — A) detS = det(Al — B)

Same characteristic polynomial!
Eigenvalues are the property of a linear transformation,
not of the basis.

An eigenvector v of A transforms to S~!v, as the corresponding
eigenvector of B.
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Power Method

. . . Power Method
Consider matrix A with

ALl > [A2] > [As] = -+ > [Aao1] > A

and a full set of n eigenvectors vi, vp, - -+, V.

For vector x = aivy + apvo + - + apvp,

p p p
APx = X\ lagvy + A2 Vo + A3 a3v3 + -+ An QpVp
)\1 )\]_ )\1

As p — oo, APx — Aajvi, and

APx),
A= lim (A"X)

AR —1.23 - n.
p—oo (AP~1x),’ T e h

At convergence, n ratios will be the same.

Question: How to find the least magnitude eigenvalue?
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Points to note

Power Method

» Meaning and context of the algebraic eigenvalue problem
» Fundamental deductions and vital relationships

» Power method as an inexpensive procedure to determine
extremal magnitude eigenvalues

Necessary Exercises: 1,2,3,4,6
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Diagonalizability

Outllne Canonical Forms

Symmetric Matrices
Similarity Transformations

Diagonalization and Similarity Transformations
Diagonalizability
Canonical Forms
Symmetric Matrices
Similarity Transformations
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Diagonalizability

Diagonalizability

Consider A € R"™", having n eigenvectors vi, Vo, -+, Vp;
with corresponding eigenvalues A1, Ao, - -+, Ap.
AS = A[V1 Vo e Vn] = [)\1V1 )\2V2 tee )\,,v,,]
M O -0
0 X -+ 0
= vi vo - v | C | =8sA
0 0 - A,

=A=SAS! and S IAS=A

Diagonalization: The process of changing the basis of a linear
transformation so that its new matrix representation is diagonal,
i.e. so that it is decoupled among its coordinates.

78,
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Diagonalizability

Diagonalizability

Diagonalizability:

A matrix having a complete set of n linearly independent
eigenvectors is diagonalizable.

Existence of a complete set of eigenvectors:

A diagonalizable matrix possesses a complete set of n
linearly independent eigenvectors.

» All distinct eigenvalues implies diagonalizability.
» But, diagonalizability does not imply distinct eigenvalues!

» However, a lack of diagonalizability certainly implies a
multiplicity mismatch.
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Ca non |Ca| FormS Canonical Forms

Jordan canonical form (JCF)
Diagonal (canonical) form

Triangular (canonical) form

Other convenient forms
Tridiagonal form
Hessenberg form

80,
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Ca nonlcal FOTmS Canonical Forms
Jordan canonical form (JCF): composed of'Jordan-blocks
)1 -
)1 Al
J>
J= . , dr= A
i 1
. A -

The key equation AS = SJ in extended form gives
A[-- S, -]=[- S -] J, :

where Jordan block J, is associated with the subspace of

sr:[\[ W2 W3 ]

8l,
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Ca nonlcal FOTmS Canonical Forms
Equating blocks as AS, = S,J, gives

> =
> =

[AV AW2 AW3 .. ] = [V Wy w3 .. ]

Columnwise equality leads to
Av =)v, Aw; =v + wy, Awsz = ws + Aws,
Generalized eigenvectors w», ws etc:

(A = X)v =0,
(A-Awy=v and (A —\l)*w, =0,
(A-A)ws=wp and (A —\)w3=0,

82,
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Ca non |Ca| FOTmS Canonical Forms

Diagonal form
» Special case of Jordan form, with each Jordan block of 1 x 1
size
» Matrix is diagonalizable

» Similarity transformation matrix S is composed of n linearly
independent eigenvectors as columns

» None of the eigenvectors admits any generalized eigenvector

» Equal geometric and algebraic multiplicities for every
eigenvalue

83,



Mathematical Methods in Engineering and Science Diagonalization and Similarity Transformations

Ca non |Ca| FOTmS Canonical Forms

Triangular form
Triangularization: Change of basis of a linear tranformation so as

to get its matrix in the triangular form

» For real eigenvalues, always possible to accomplish with
orthogonal similarity transformation

» Always possible to accomplish with unitary similarity
transformation, with complex arithmetic

» Determination of eigenvalues
Note: The case of complex eigenvalues: 2 x 2 real diagonal block

a —f3 a+if 0
8 « 0 a—if

84,
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Ca non |Ca| FormS Canonical Forms

Forms that can be obtained with pre-determined number of
arithmetic operations (without iteration):

Tridiagonal form: non-zero entries only in the (leading) diagonal,
sub-diagonal and super-diagonal

» useful for symmetric matrices

Hessenberg form: A slight generalization of a triangular matrix

* *

Note: Tridiagonal and Hessenberg forms do not fall in the
category of canonical forms.
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Symmetric Matrices

Symmetric Matrices

A real symmetric matrix has all real eigenvalues and
is diagonalizable through an orthogonal similarity
transformation.

Eigenvalues must be real.

A complete set of eigenvectors exists.

Eigenvectors corresponding to distinct eigenvalues are
necessarily orthogonal.

Corresponding to repeated eigenvalues, orthogonal eigenvectors
are available.

In all cases of a symmetric matrix, we can form an
orthogonal matrix VI, such that VT AV = A is a real
diagonal matrix.

A =VAVT,

Similar results for complex Hermitian matrices.

86,
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Symmetric Matrices

Symmetric Matrices
Proposition: Eigenvalues of a real symmetric matrix must be real.
Take A € R™" such that A = AT, with eigenvalue A = h + ik.
Since Al — A is singular, so is

B = (M—A)(Al—A)=(hl —A + ikl)(hl — A — ikl)
= (hl —A)? 4 K21

For some x £ 0, Bx =0, and
x"Bx=0=x"(hl = A)T(hl —A)x + k’>x"x =0

Thus, ||(hl — A)x|]? + |[kx|[2 =0

| k=0and A= h |
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Symmetric Matrices

Symmetric Matrices

Proposition: A symmetric matrix possesses a complete set of
eigenvectors.

Consider a repeated real eigenvalue X\ of A and examine its Jordan
block(s).

Suppose Av = \v.
The first generalized eigenvector w satisfies (A — A\l)w = v, giving
vVIA-Mw=v'v = vIATw - xw'w=v'v
= (Av)"w — v w = |jv|]?

= v[*=0

which is absurd.
An eigenvector will not admit a generalized eigenvector.
All Jordan blocks will be of 1 x 1 size.
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Symmetric Matrices

Symmetric Matrices

Proposition: Eigenvectors of a symmetric matrix corresponding to
distinct eigenvalues are necessarily orthogonal.

Take two eigenpairs (A1,v1) and (A2, v2), with A1 # Ap.
vIAv2 = vir()\2v2) = )\2virv2
vIAv2 = V]-_I—ATVQ = (Avl)Tv2 = (Alvl)Tv2 = Alvz—v2

From the two expressions, (A1 — )\g)vlTvQ =0

viv, =0

Proposition: Corresponding to a repeated eigenvalue of a
symmetric matrix, an appropriate number of orthogonal
eigenvectors can be selected.

If A1 = A, then the entire subspace < vi,vs > is an eigenspace.
Select any two mutually orthogonal eigenvectors for the basis.
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Symmetric Matrices

Symmetric Matrices

Facilities with the ‘omnipresent’ symmetric matrices:

» Expression

A = VAVT
)\1 VlT
)\2 Vér
= [Vl V2 Vn] :
An v/

n

T T T T

= Avivy + Xovovy, + - vy, = E AiViv;
i=1

» Reconstruction from a sum of rank-one components

» Efficient storage with only large eigenvalues and corresponding
eigenvectors

» Deflation technique

> Stable and effective methods: easier to solve the eigenvalue
problem
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Diagonalization and Similarity Transformations

Diagonalizability

Similarity Transformations Canonical Forme

Symmetric Matrices
Similarity Transformations

Hessenberg

> Symmetric Tridiagonz%l

Diagonal

Figure: Eigenvalue problem: forms and steps

How to find suitable similarity transformations?

1.

2.
3.
4

rotation
reflection
matrix decomposition or factorization

elementary transformation

91,
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Points to note

Similarity Transformations

» Generally possible reduction: Jordan canonical form
» Condition of diagonalizability and the diagonal form

» Possible with orthogonal similarity transformations: triangular
form

» Useful non-canonical forms: tridiagonal and Hessenberg

» Orthogonal diagonalization of symmetric matrices

Caution: Each step in this context to be effected through
similarity transformations

Necessary Exercises: 1,2,4
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Outline

Jacobi and Givens Rotation Methods
(for symmetric matrices)
Plane Rotations
Jacobi Rotation Method
Givens Rotation Method



Jacobi and Givens Rotation Methods 94,

Mathematical Methods in Engineering and Science
Plane Rotations

Plane Rotations

YA Y/
P(x,y)
(]
y
y/
L X _|m _
o) ¢ l ! =X
x7 1 !
K "7 N
X/

Figure: Rotation of axes and change of basis

OL+ LM = OL+ KN = x' cosp + y'sing
PN — MN = PN — LK = y' cos ¢ — x'sin
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Plane Rotations

Plane Rotations

Orthogonal change of basis:
| x| _| cos¢ sing X
r_[y]_[—singb cosqb} [y’}_%r
Mapping of position vectors with

1 _ T _ | CcOsp —sing
=R _[sinqb cosqb]

In three-dimensional (ambient) space,

cos¢p sing 0 cos¢ 0 sing
Ry = | —sing cos¢p 0 |, RN, = 01 0 | etc.
0 01 —sing 0 cos¢

95,
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Plane Rotations

Generalizing to n-dimensional Euclidean space (R"),

Plane Rotations

1 0 0
1 0 0
1 0 0

00 0 c 0 0 s 0
Py = 0 1 0
0 10

00 0 —s 0 0 c 0

I 0 0 1]

Matrix A is transformed as
-1 T
A = P,yAPpy = P, AP,

only the p-th and g-th rows and columns being affected.

96,
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Jacobi Rotation Method Jacobi Rotation Method
ay =a,, = Cap—saqforp#r#gq,
dgy = a,;, = Cag+sapforp#r#aq,
a, = Clapp+SPagg — 25Capq,
a;q = szapp + czaqq + 2scapq, and
g = Agp = (¢® = 5%)apq + sc(app — aqq)

In a Jacobi rotation,

/ ¢ =5 dgq — dpp
a =0= = =k (say).
2sc 2apqg (say)

Left side is cot 2¢: solve this equation for ¢.

Jacobi rotation transformations P15, P13, -+, P1p; Pa3, -+, Pap;
- Pp_1,, complete a full sweep.

Note: The resulting matrix is far from diagonal!
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JaCObI ROtatlon MethOd Jacobi Rotation Method
Sum of squares of off-diagonal terms before the transformation

S = Dlal’ =23 a+ > o

r#s r#p P#r#q

= 2 Z (afp + afq) + afznq
p#r#q

and that afterwards

S =2 Z (a7 +aj7) + aZ,

p#r#q
= 2 Z (afp—i-afq)
p#r#q

differ by
A5:5'—5:—2al23q§0; and S — 0.

98,
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Givens Rotation Method

Givens Rotation Method

While applying the rotation P,,, demand a’,q =0: tan¢ = —:%

P
r = p — 1: Givens rotation

» Once ap_1 4 is annihilated, it is never updated again!

Sweep P23, Pog, -+, Pan; P3g, oo+, P3sy oo+ Ppogpto

annihilate a3, a4, --+, aip; @24, *-+, @n; 5 an—2.n-

Symmetric tridiagonal matrix ‘

How do eigenvectors transform through Jacobi/Givens rotation
steps?

A—..p@Q pM ApMWp® ...
Product matrix POP2) ... gives the basis.

To record it, initialize V by identity and keep multiplying new
rotation matrices on the right side.
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Givens Rotation Method

Givens Rotation Method

Contrast between Jacobi and Givens rotation methods

v

What happens to intermediate zeros?

What do we get after a complete sweep?

How many sweeps are to be applied?

What is the intended final form of the matrix?

vV v v Vv

How is size of the matrix relevant in the choice of the method?

Fast forward ... ‘

» Householder method accomplishes ‘tridiagonalization’ more
efficiently than Givens rotation method.

» But, with a half-processed matrix, there come situations in
which Givens rotation method turns out to be more efficient!

100,
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Points to note

Givens Rotation Method

Rotation transformation on symmetric matrices

» Plane rotations provide orthogonal change of basis that can
be used for diagonalization of matrices.

» For small matrices (say 4 < n < 8), Jacobi rotation sweeps
are competitive enough for diagonalization upto a reasonable
tolerance.

» For large matrices, one sweep of Givens rotations can be
applied to get a symmetric tridiagonal matrix, for efficient
further processing.

Necessary Exercises: 2,3,4

101,



Mathematical Methods in Engineering and Science Householder Transformation and Tridiagonal Matrices

Outline

Householder Transformation and Tridiagonal Matrices
Householder Reflection Transformation
Householder Method
Eigenvalues of Symmetric Tridiagonal Matrices

102,
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Householder Reflection Transformatioffesis frectin Transformation

u / u-v
T ,,,,,, Plane of
o) X_-~_—" Reflection

v

Figure: Vectors in Householder reflection

Consider u,v € R¥, [lu]| = [v] and w = =¥,

Householder reflection matrix
Hk = Ik — 2WWT

is symmetric and orthogonal.

For any vector x orthogonal to w,
Hix = (I, —2ww’)x =x and Hew = (I, —2ww)w = —w.

Hence, Hyy = Hi(yw +y1) = —yw + Y., Hiu =v and Hyv = u.

103,
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Householder MethOd Householder Method

Consider n x n symmetric matrix A.
Letu=1[ap a3 -~ am]" € R"!andv=|ulle; € R"L

Construct P = [ } and operate as

0 Hn—l

1 0 171 o
AT = P.APy = [0 H_1}[alil Zl:|[0 H_1]

_ [311 v’ }
v H,_;AH, ;|
Reorganizing and re-naming,
d1 € 0

A(l): € d2 u2T
0 us A2

104,
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Householder MethOd Householder Method
Next, with vo = |luz|le1, we form

L0
=[5 w. ]
and operate as A@ = P,AQ)P,.

After j steps,

d e
_ e o
AU) —
€j+1
.
&+1 dip1 Uiy
uir1 Ajnr

By n — 2 steps, with P = P1P,P3---P,_»,
A2 — pTApP

is symmetric tridiagonal.
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Eigenvalues of Symmetric Tridiagonal:Matrices "

Eigenvalues of Symmetric Tridiagonal Matrices

d e
&
T =
€n—1
€n—1 dn—l €n
- en dn -
Characteristic polynomial
A—di —e&
— € A — d2
p(A) = e s
—en—1 A—dp_1 —€n
—e, A—d,




Mathematical Methods in Engineering and Science Householder Transformation and Tridiagonal Matrices 107,

Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Characteristic polynomial of the leading k x k sub-matrix: px(A)

po(A) = 1,
pi(A) = A—di,
p2(A) = (A—d)(A—d1) -3,

(A = dk1)P(A) — €g1pk-1(N).

Pr+1(A)

P(A) = {po(A), pr(A), -, pn(A)}
> a Sturmian sequence if ¢; # 0 V)

Question: What if ¢; = 0 for some ;7!
Answer: That is good news. Split the matrix.
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Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Sturmian sequence property of P()) with e; # 0:

Interlacing property: Roots of pyt1(\) interlace the
roots of px(A). That is, if the roots of pyy1()\) are
A1 > A2 > -+ > Ay and those of pi(\) are

1 > o > - > g, then

AL > 1 > A > up > ”’>)\k>Hk>)\k+1-

‘This property leads to a convenient
Proof

p1(A) has a single root, d.
p2(d1) = —622 <0,

Since pp(£o00) = 00 > 0, roots t1 and tp of pa(\) are separated as
oo >t > dp > th > —o0.

‘ The statement is true for k = 1. ‘
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Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Next, we assume that the statement is true for k = /.
Roots of pj(A): a1 > ax > -+ > q;

Roots of pi11(A): 1> 2> - > B > Bina

Roots of pjya(A): 71 > 72 > -+ > i > Yit1 > Vis2

Assumption: 51 > a1 > G >ap > -+ - > 0 > i > Bit1
ST — wo
B., B, B, B,

(a) Roots OQ(A) andJM()\ )

Oy | a; |
\ \
B B;

_ve -ve

U

(b) Sign of R R,

Figure: Interlacing of roots of characteristic polynomials

Toshow: 71> 01 >7> 0> - >741> fit1 > Vit



Mathematical Methods in Engineering and Science Householder Transformation and Tridiagonal Matrices 110,

Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Since 51 > oy, pi(f1) is of the same sign as p;(c0), i.e. positive.

Therefore, pii2(61) = —e,-2+2p,-(ﬂl) is negative.
But, pit2(00) is clearly positive.

Hence, 71 € (01, 00).
Similarly, vi42 € (=00, fi+1).
Question: Where are the rest of the i roots of p;;2(A\)?

piv2(B) = (B — dis2)pis1(B) — € 2pi(B8) = —€712pi(B7)
pir2(Bi+1) = —eopi(Bi+1)

That is, p; and pj;> are of opposite signs at each S.

Over [Bi+1,51], pi+2(X) changes sign over each sub-interval
[Bj+1, 3], along with p;(\), to maintain opposite signs at each f3.

Conclusion: p;;2()) has exactly one root in (8j11, 3;).
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Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Examine sequence P(w) = {po(w), p1(w), pa(w), -+ , pa(w)}.
If px(w) and pki1(w) have opposite signs then pyy1(A) has one
root more than pi(A) in the interval (w, c0).

Number of roots of p,(\) above w = number of sign

changes in the sequence P(w).

Consequence: Number of roots of p,(A) in (a, b) = difference

between numbers of sign changes in P(a) and P(b).
Bisection method: Examine the sequence at %b.

Separate roots, bracket each of them and then squeeze
the interval!

Any way to start with an interval to include all eigenvalues?

IAil < Apng = max {[ej| + |dj| + [ej11]}
1<j<n
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Eigenvalues of Symmetric Tridiagonal:Matrices

Eigenvalues of Symmetric Tridiagonal Matrices

Algorithm
» Identify the interval [a, b] of interest.

» For a degenerate case (some e; = 0), split the given matrix.
» For each of the non-degenerate matrices,
» by repeated use of bisection and study of the sequence P(}),
bracket individual eigenvalues within small sub-intervals, and
» by further use of the bisection method (or a substitute) within
each such sub-interval, determine the individual eigenvalues to
the desired accuracy.

Note: The algorithm is based on
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Points to note

Eigenvalues of Symmetric Tridiagonal Matrices

» A Householder matrix is symmetric and orthogonal. It effects
a reflection transformation.
» A sequence of Householder transformations can be used to

convert a symmetric matrix into a symmetric tridiagonal form.

» Eigenvalues of the leading square sub-matrices of a symmetric
tridiagonal matrix exhibit a useful interlacing structure.

» This property can be used to separate and bracket eigenvalues.

» Method of bisection is useful in the separation as well as
subsequent determination of the eigenvalues.

Necessary Exercises: 2,4,5
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Outline

QR Decomposition Method
QR Decomposition
QR lterations
Conceptual Basis of QR Method*
QR Algorithm with Shift*

R Decomposition Method
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QR Decomposition

QR Decomposition

Decomposition (or factorization) A = QR into ‘two' factors,
orthogonal Q and upper-triangular R:
(a) It always exists.
(b) Performing this decomposition is pretty straightforward.
(c) It has a number of properties useful in the solution of the
eigenvalue problem.
i -+ fp
[ar -+ ap]=[am -+ ai
rnn
A simple method based on Gram-Schmidt orthogonalization:
Considering columnwise equality a; = Z{:l riigi,
for j=1,2,3,--- ,m
j-1
rj = ala; Vi<j, al=a;—Y rai, ry=|ajl;

i=1
o { a;-/rjj, if rjj #0;
q =

any vector satisfying q,-qu =6 for 1 <i <y, if rj=0.
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QR Decomposition

QR Decomposition
Practical method: one-sided Householder transformations,
starting with

Up — Vo
up =aj, vp=|juglle; € R" and wog= ———
[luo — vol|

and Po=H, =1, — 2wow0T.

a kk
P, 2P, 3---P,P1PoA =P, 2P, 3---PyP; 2]
0 Ag

ri * *k
=P, P, 3 --P, fy A% | =--+ ---=R
A,

With
Q = (P, 2P, 3---P2P1Pg)T = PoP1Py---P, 3P, 2,

we have QTA =R = A = QR.
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QR Decomposition

QR Decomposition

Alternative method useful for tridiagonal and Hessenberg
matrices: One-sided plane rotations

> rotations P1», P»3 etc to annihilate a»1, az» etc in that
sequence

Givens rotation matrices!

Application in solution of a linear system: Q and R factors of
a matrix A come handy in the solution of Ax = b

QRx=b=Rx=Q'b

needs only a sequence of back-substitutions.
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QR Iteratlons QR lterations

Multiplying Q and R factors in reverse,
A'=RQ=Q'AQ,

an orthogonal similarity transformation.

1. If A is symmetric, then so is A’.
2. If A is in upper Hessenberg form, then so is A’.
3. If A is symmetric tridiagonal, then so is A’.
Complexity of QR iteration: O(n) for a symmetric tridiagonal

matrix, (’)(nz) operation for an upper Hessenberg matrix and
O(n3) for the general case.

Algorithm: Set A; = A and for k=1,2,3,---,
» decompose A, = QxRy,
> reassemble Ay 1 = R Q.

As k — 0o, Ay approaches the quasi-upper-triangular form.
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QR Iteratlons QR lterations
Quasi-upper-triangular form:
[ A % - % xk i
)\2 *x
x x
Ar Kk -
Bk * * ’
o —w
I w B ]

with ‘)\1‘ > ‘)\2‘ > e
» Diagonal blocks By correspond to eigenspaces of equal/close
(magnitude) eigenvalues.
» 2 x 2 diagonal blocks often correspond to pairs of complex
eigenvalues (for non-symmetric matrices).
» For symmetric matrices, the quasi-upper-triangular form
reduces to quasi-diagonal form.

119,
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Conceptual Basis of QR Method*

Conceptual Basis of QR Method*

QR decomposition algorithm operates on the basis of the relative
magnitudes of eigenvalues and segregates subspaces.

With k — oo,
A*Range{e;} = Range{q:} — Range{vi}
and (a1)k — Q] Aqr = \1Q/ q1 = \ey.
Further,
AXRange{e;,e,} = Range{q1,q2} — Range{vi,vs}.

(A1 — A2)az
and (a2)x — QJ Aqz = A2
0

And, so on ...
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QR Algorithm with Shift*

For A\;j < J;j, entry aj; decays through iterations as %
J

With shift,

QR Algorithm wit}>Skjft*

Ap=Ap — il
A = QRi, Axy1 = ReQy;
A1 = Appr + pl.

Resulting transformation is

Aii = ReQp+ il = QALQy + skl
= Q[ (Ax — u)Qk + il = QAL Q.
For the iteration,

convergence ratio = @
\j — Hk

Question: How to find a suitable value for i ?

121,
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Points to note

>

>

>

QR Algorithm with Shift*
QR decomposition can be effected on any square matrix.
Practical methods of QR decomposition use Householder
transformations or Givens rotations.

A QR iteration effects a similarity transformation on a matrix,
preserving symmetry, Hessenberg structure and also a
symmetric tridiagonal form.

A sequence of QR iterations converge to an almost
upper-triangular form.

Operations on symmetric tridiagonal and Hessenberg forms
are computationally efficient.

QR iterations tend to order subspaces according to the
relative magnitudes of eigenvalues.

Eigenvalue shifting is useful as an expediting strategy.

Necessary Exercises: 1,3

122,
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Eigenvalue Problem of General Matrices

123,
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IntrOd UCtOFy Remarks Introductory Remarks

> A general (non-symmetric) matrix may not be diagonalizable.
We attempt to triangularize it.

» With real arithmetic, 2 x 2 diagonal blocks are inevitable —
signifying complex pair of eigenvalues.

» Higher computational complexity, slow convergence and lack
of numerical stability.

A non-symmetric matrix is usually unbalanced and is prone to
higher round-off errors.

Balancing as a pre-processing step: multiplication of a row and
division of the corresponding column with the same number,
ensuring similarity.

Note: A balanced matrix may get unbalanced again through
similarity transformations that are not orthogonal!
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Red UCtIOﬁ tO Hessen bel’g FOFm * Reduction to Hessenberg Form*

Methods to find appropriate similarity transformations
1. a full sweep of Givens rotations,

2. a sequence of n — 2 steps of Householder transformations, and

3. a cycle of coordinated Gaussian elimination.

Method based on Gaussian elimination or elementary
transformations:
The pre-multiplying matrix corresponding to the
elementary row transformation and the post-multiplying
matrix corresponding to the matching column
transformation must be inverses of each other.

Two kinds of steps
» Pivoting

» Elimination

125,
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Red UCtIOﬁ tO Hessen bel’g FOFm * Reduction to Hessenberg Form*

Pivoting step: A = P,,AP, = P.!AP,.
» Permutation P,s: interchange of r-th and s-th columns.

» P! = P,: interchange of r-th and s-th rows.

» Pivot locations: a1, az2, -+, ap—1,n—2.

Elimination step: A = G, 'AG, with elimination matrix

I 0 0 I, 0 0
G =01 0 and G'=|0 1 0
0 k In—r—1 0 —k In—r—1

» G 1 Row (r+1+41i) « Row (r +1+i)— kjx Row (r +1)
for i=1,2,3,--- ,n—r—1

» G,: Column (r + 1) < Column (r 4+ 1)+

S ki Column (r+1+4 1) ]
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QR Algorithm on Hessenberg Matrices*

QR Algorithm on Hessenberg Matrices*

QR iterations: (O(n?) operations for upper Hessenberg form.

Whenever a sub-diagonal zero appears, the matrix is split
into two smaller upper Hessenberg blocks, and they are
processed separately, thereby reducing the cost drastically.

Particular cases:
> ann—1 — 0: Accept a,, = A, as an eigenvalue, continue with
the leading (n — 1) x (n — 1) sub-matrix.
> ap—1,n—2 — 0: Separately find the eigenvalues \,_; and A,
dn—1,n—1 dn—1,n

an,n—1 an,n
(n —2) x (n — 2) sub-matrix.

from , continue with the leading

Shift strategy: Double QR steps.

127,
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Inverse lteration
Inverse Iteration

Assumption: Matrix A has a complete set of eigenvectors.
(Ai)o: a good estimate of an eigenvalue \; of A.
Purpose: To find A; precisely and also to find v;.

Step: Select a random vector yo (with ||yp]| = 1) and solve

[A — (Ai)ol]y = Yo.
Result: y is a good estimate of v; and

(A1 = (Ai)o + yoTy

is an improvement in the estimate of the eigenvalue.

How to establish the result and work out an 7
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Inverse lteration

Inverse Iteration

Withyo =>"7 ; ayvjandy = 37, Byv;, [A=(Xi)ol]ly = yo gives

Z@[A Dollvi = D ajy;
j=1

=SB — (] = o = B=—d

Aj = (Ao’

0; is typically large and eigenvector v; dominates y.

Av; = \v; gives [A — (A\))ol]vi = [Ai — (Ai)o]vi. Hence,
[Ai = (Aioly = [A = (Ai)olly = Yo

Inner product with yg gives

1
i — (A)olygy 1 = A~ (Ai)o + Ty
0

129,
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Inverse lteration

Inverse Iteration

Algorithm:
Start with estimate (\;)o, guess yo (normalized).
For k=0,1,2,---
> Solve [A — (X\j)kl]ly =
» Normalize yy1 = ﬁ
» Improve (Aj)k+1 = (Ai)k 7y

> If ||yk+1 — Yill < termmate.

Important issues
» Update eigenvalue once in a while, not at every iteration.
» Use some acceptable small number as artificial pivot.

» The method may not converge for defective matrix or for one
having complex eigenvalues.

» Repeated eigenvalues may inhibit the process.
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Recommendation

Eigenvalue Problem of General Matrices

Recommendation

Table: Eigenvalue problem: summary of methods

Type Size Reduction Algorithm Post-processing
General Small Definition: Polynomial Solution of
(up to 4) Characteristic root finding linear systems
polynomial (eigenvalues) (eigenvectors)
Symmetric Intermediate Jacobi sweeps Selective
(say, 4-12) Jacobi rotations
Tridiagonalization Sturm sequence Inverse iteration
(Givens rotation property: (eigenvalue
or Householder Bracketing and improvement
method) bisection and eigenvectors)
(rough eigenvalues)
Large Tridiagonalization QR decomposition
(usually iterations
Householder method)
Balancing, and then
Non- Intermediate Reduction to QR decomposition Inverse iteration
symmetric Large Hessenberg form iterations (eigenvectors)
(Above methods or (eigenvalues)
Gaussian elimination)
General Very large Power method,
(selective shift and deflation
requirement)
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Points to note

Recommendation

» Eigenvalue problem of a non-symmetric matrix is difficult!

» Balancing and reduction to Hessenberg form are desirable
pre-processing steps.

» QR decomposition algorithm is typically used for reduction to
an upper-triangular form.

» Use inverse iteration to polish eigenvalue and find
eigenvectors.

» In algebraic eigenvalue problems, different methods or
combinations are suitable for different cases; regarding matrix
size, symmetry and the requirements.

Necessary Exercises: 1,2
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Outline

Singular Value Decomposition
SVD Theorem and Construction
Properties of SVD
Pseudoinverse and Solution of Linear Systems
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SVD Theorem and Constructlon SVD Theorem and Construction

Eigenvalue problem: A = UAV~! where U &V

Do not ask for similarity. Focus on the form of the decomposition.
Guaranteed decomposition with orthogonal U, V, and
non-negative diagonal entries in A — by allowing U # V.

A =UXV7T such that UTAV =Y

SVD Theorem For any real matrix A € R™*", there
exist orthogonal matrices U € R™*™ and V € R"*" such

that
UTAV =¥ € R™"
is a diagonal matrix, with diagonal entries o1,05,--- > 0,
obtained by appending the square diagonal matrix
diag (01,02, -+ ,0p) with (m — p) zero rows or (n — p)

zero columns, where p = min(m, n).

Singular values: 01,09, ,0p.
Similar result for complex matrices
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SVD Theorem and COHStI’UCtIOﬂ SVD Theorem and Construction
Question: How to construct U, V and X7
For A ¢ RM*n,

ATA =(VZTUT)(UZVT) =VEI'xV' =VvAVT,

where A = £ 7Y is an n x n diagonal matrix.

01
02

|
|
0
Op |
- - - - __|__ -

i 0 | x

Determine V and A. Work out >~ and we have

A=UxV’ = AV =UX

This provides a proof as well!

135,
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SVD Theorem and Constructlon SVD Theorem and Construction

From AV = UX, determine columns of U.

1. Column Avy = gyuy, with oy # 0: determine column uy.

Columns developed are bound to be mutually
orthonormal!

-
Verify u,-Tuj = (UiiAv,-) (%AVJ) = 0jj.

2. Column Av, = oruy, with o, = 0: uy is left indeterminate
(free).

3. In the case of m < n, identically zero columns Av, = 0 for
k > m: no corresponding columns of U to determine.

4. In the case of m > n, there will be (m — n) columns of U left
indeterminate.

Extend columns of U to an orthonormal basis.

All three factors in the decomposition are constructed, as desired.
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PrOpertleS Of SVD Properties of SVD

For a given matrix, the SVD is unique up to

(a) the same permutations of columns of U, columns of V and
diagonal elements of ¥;

(b) the same orthonormal linear combinations among columns of
U and columns of V, corresponding to equal singular values;
and

(c) arbitrary orthonormal linear combinations among columns of
U or columns of V, corresponding to zero or non-existent
singular values.

Ordering of the singular values:
op>03>:-+-20,>0, and 0,41 =0,20=---=0,=0.

Rank(A) = Rank(¥X) =r
Rank of a matrix is the same as the number of its
non-zero singular values.
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PrOpertleS Of SVD Properties of SVD

o1y1

OrYr

= 01y1U1 + 02yoU2 + -+ Ory U,
has non-zero components along only the first r columns of U.

U gives an orthonormal basis for the co-domain such that
Range(A) = < uj,up, -+ ,u, >.
With VTx = Y, v,z—x = ¥, and

X =yiVi+yovo+ -+ YV + YVrt1Vetr1 + - YnVan-

V gives an orthonormal basis for the domain such that

Null(A) = < Vi 1,Vpgo, - v, > .
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PrOpertleS Of SVD Properties of SVD
In basis V, v = cvi + ovp + - - 4 ¢cpv, =V e€and the norm is
given by
Av|? viIATAv
Al |Av]? _
Al T i
TyTAT TS T
c'V'A'"AVc c'Y'Yc 2c2
c c’'Vive c c’c chk
2.2
JA] = \/maxe ZEEE = 01

For a non-singular square matrix,

1 1 1
= UVt =vIlUT =V diag <_ S ,_> u”.
g1 02 On
Then, |[A~1|| = -X— and the condition number is

_ g
K(A) = Al [|A7H] = ==,

min
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PrOpertIeS Of SVD Properties of SVD

Revision of definition of norm and condition number:

The norm of a matrix is the same as its largest singular
value, while its condition number is given by the ratio of
the largest singular value to the least.

Arranging singular values in decreasing order, with Rank(A) = r,

U=[U, U] and V=[V, V],

B T - | X 0 v/
A=UxXV' =|[U, U][O 0][\7T )

or,

A=UZxV] => o).
k=1

Efficient storage and reconstruction!

140,
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Pseudoinverse and Solution of Linear iSysténis

Pseudoinverse and Solution of Linear Systems
Generalized inverse: G is called a generalized inverse or g-inverse
of A if, for b € Range(A), Gb is a solution of Ax = b.

The Moore-Penrose inverse or the pseudoinverse:

A* = (UXVT)# = (VT#Z#U# = vI#u’

. >, 0 -1 0
_ r # r
Wlthz—[o 0],2 —[ 0 0].

P1
P2

|

\

|
Pp ‘
- - - - __|__ -
|

0

Uik, for ok # 0 or for |ok| > €;

h —
Where pi { 0, forox=0or for |ok| <e.
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Pseudoinverse and Solution of Linear iSysténis

Pseudoinverse and Solution of Linear Systems

Inverse-like facets and beyond
» (A7)#* = A.
> If A is invertible, then A% = A~1.
» A7b gives the correct unique solution.

» If Ax = b is an under-determined consistent system, then
A#b selects the solution x* with the minimum norm.

> If the system is inconsistent, then A#b minimizes the least
square error |[Ax —b||.

» If the minimizer of ||[Ax — b|| is not unique, then it picks up
that minimizer which has the minimum norm ||x|| among such

minimizers.

Contrast with Tikhonov regularization:
Pseudoinverse solution for precision and diagnosis.
Tikhonov's solution for continuity of solution over
variable A and computational efficiency.
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Optimality of Pseudoinverse Solution

Optimality of Pseudoinverse Solution

Pseudoinverse solution of Ax = b:

r

x* =VE#FUTb =) " peveulb =) (u/b/oy)vi
k=1 k=1

Minimize
1 T L TAT TAT 1T
E(x)zE(Ax—b) (Ax—b):§x A'Ax —x'A b—i—§b b
Condition of vanishing gradient:

OF

= _o0 A'Ax=ATb
ox

V(Z'Z)Vix =vX'u’b
(EZTD)Vix=x"U"b
aiv,z—x = aku,z—b

V[X:u[b/o’k fork:172’37...’r.

R
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Optimality of Pseudoinverse Solution

Optimality of Pseudoinverse Solution
With V. =[v,11 V42 -+ vy, then

r

X = Z(u[b/ak)vk +Vy =x* + Vy.
k=1

How to minimize ||x||? subject to E(x) minimum?

Minimize Ey(y) = ||x* + Vy|2.

Since x* and Vy are mutually orthogonal,
Ei(y) = [[x* + Vyl* = [x*|? + || Vy|?

is minimum when Vy =0, ie. y =0.
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Optimality of Pseudoinverse Solution

ality of Pseudoinverse Solution

Anatomy of the optimization through SV
Using basis V for domain and U for co-domain, the variables are
transformed as

Vix = y and U'b=c.

Then,
Ax=b = UXV'x=b = IV'x=U"b = Yy=c.

A completely decoupled system!
Usable components: y, = cx/ok for k =1,2,3,--- r.
For k > r,

» completely redundant information (cx = 0)

» purely unresolvable conflict (cx # 0)

SVD extracts this pure redundancy/inconsistency.
Setting px = 0 for k > r rejects it wholesale!
At the same time, ||y|| is minimized, and hence ||x|| too.
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Mathematical Methods in Engineering and Science Singular Value Decomposition

Points to note
SVD Algorithm

» SVD provides a complete orthogonal decomposition of the
domain and co-domain of a linear transformation, separating
out functionally distinct subspaces.

» If offers a complete diagnosis of the pathologies of systems of
linear equations.

» Pseudoinverse solution of linear systems satisfy meaningful
optimality requirements in several contexts.

> With the existence of SVD guaranteed, many important
results can be established in a straightforward manner.

Necessary Exercises: 2,4,5,6,7
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Outline

Vector Spaces: Fundamental Concepts*
Group
Field
Vector Space
Linear Transformation
Isomorphism
Inner Product Space
Function Space

Vector Spaces: Fundamental Concepts™
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Group Growe

A set G and a binary operation, say ‘+', fulfilling

Closure: a+beGVabeG

Associativity: a+ (b+c¢)=(a+ b)+c, Va,b,ce G

Existence of identity: 30 € G such that Vae G,a+0=a=0+a

Existence of inverse: Ya € G, 3(—a) € G such that
a+(—-a)=0=(—a)+a

Examples: (Z,+), (R,+), (@ — {0},-), 2 x 5 real matrices,
Rotations etc.

» Commutative group
Examples:(Z,+), (R,4), (Q —{0},:), @(F,+).

» Subgroup
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Fleld Field

A set F and two binary operations, say ‘+' and..<,.satisfying

Group property for addition: (F,~+) is a commutative group.
(Denote the identity element of this group as ‘0'.)

Group property for multiplication: (F — {0},-) is a commutative
group. (Denote the identity element of this group as
‘1)

Distributivity: a-(b+c)=a-b+a-c, Va,b,c€F.

Concept of field: abstraction of a number system

Examples: (Q,+,-), (R,+,-), (C,+,") etc.

» Subfield
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Vector Space

Vector Space

A vector space is defined by

» a field F of ‘scalars’,

» a commutative group V of ‘vectors’, and

» a binary operation between F and V, that may be called
‘scalar multiplication’, such that Va, 5 € F, Va,b € V; the
following conditions hold.
Closure: aa eV.
Identity: la =a.
Associativity: (af)a = a(fa).
Scalar distributivity: a(a +b) = aa + ab.
Vector distributivity: (o + #)a = aa + fa.

Examples: R", C", m x n real matrices etc.

Field <~ Number system
Vector space <> Space
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Vector Space

Vector Space

Suppose V is a vector space.
Take a vector & # 0 in it.

Then, vectors linearly dependent on &;:
alfl eV Voay € F.

Question: Are the elements of V exhausted?

If not, then take & € V: linearly independent from &.
Then, a1&y + axér € V Vag,ap € F.

Question: Are the elements of V exhausted now?

Question: Will this process ever end?

Suppose it does.

finite dimensional vector space
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Vector Space

Vector Space

Finite dimensional vector space

Suppose the above process ends after n choices of linearly
independent vectors.

X = 181 + @b + - -+ + anén
Then,
» n: dimension of the vector space

» ordered set £1,&p, -+ , &, a basis

> ai1,ap,--- ,an € F: coordinates of x in that basis

R", R™ etc: vector spaces over the field of real numbers

» Subspace



Mathematical Methods in Engineering and Science Vector Spaces: Fundamental Concepts™
Linear Transformation

Linear Transformation

A mapping T : V — W satisfying
T(aa + fb) =aT(a)+ fT(b) Va,5 € F and Va,b eV
where V and W are vector spaces over the field F.

Question: How to describe the linear transformation T7?

» For V, basis 517527"' 7£n
» For W, basis 1,172, ,m

& € V gets mapped to T(£1) € W.
T(&1) = aum + a2z + -+ + am1nm
Similarly, enumerate T(&;) = -7 1 ajn;.

Matrix A =[a; ay --- a,] codes this description!
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Linear Transformation

Linear Transformation

A general element y of V can be expressed as
X = X181 + %82 + -+ + Xnn
Coordinates in a column: x = [x; x» --- x|
Mapping:
TO) =xT(&1) +xT (&) + -+ x,T(En),
with coordinates Ax, as we know!

Summary:
» basis vectors of V get mapped to vectors in W whose
coordinates are listed in columns of A, and

» a vector of V, having its coordinates in x, gets mapped to a
vector in W whose coordinates are obtained from Ax.
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Linear Transformation

Linear Transformation
Understanding:
» Vector x is an actual object in the set V and the column
x € R" is merely a list of its coordinates.
» T :V — W is the linear transformation and the matrix A
simply stores coefficients needed to describe it.

» By changing bases of V and W, the same vector x and the
same linear transformation are now expressed by different x
and A, respectively.

Matrix representation emerges as the natural description
of a linear transformation between two vector spaces.

Exercise: Set of all T : V — W form a vector space of their own!!
Analyze and describe that vector space.
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Isomorphism

Consider T : V — W that establishes a onert@s@he correspondence.

>

vV v.v. v Y

Linear transformation T defines a one-one onto mapping,
which is invertible.

dimV =dimW

Inverse linear transformation T~1: W — V

T defines (is) an isomorphism.

Vector spaces V and W are isomorphic to each other.

Isomorphism is an equivalence relation. V and W are
equivalent!

If we need to perform some operations on vectors in one vector
space, we may as well

1.

transform the vectors to another vector space through an
isomorphism,

2. conduct the required operations there, and

3. map the results back to the original space through the inverse.
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Isomorphism

Isomorphism

Consider vector spaces V and W over the samé-fieldrF- and of the
same dimension n.

Question: Can we define an isomorphism between them?

Answer: Of course. As many as we want!

The underlying field and the dimension together
completely specify a vector space, up to an isomorphism.

» All n-dimensional vector spaces over the field F are
isomorphic to one another.

» In particular, they are all isomorphic to F".

» The representation (columns) can be considered as the
objects (vectors) themselves.

157,
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Inner Product Space

Inner product (a,b) in a real or complex vectérspaece: a scalar
function p:V xV — F satisfying

Closure: Va,beV, (a,b)cF

Associativity: (ca,b) = «a(a,b)

Distributivity: (a +b,c) = (a,c) + (b,c)

Conjugate commutativity: (b,a) = (a,b)
Positive definiteness: (a,a) > 0; and (a,a) =0iffa=0

Note: Property of conjugate commutativity forces (a,a) to be real.
Examples: a’b, a’Whb in R, a*b in C etc.

Inner product space: a vector space possessing an inner product
» Euclidean space: over R

» Unitary space: over C
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Inner Product Space

Inner products bring in ideas of angle and ISRgER A 1HE geometry
of vector spaces.

Orthogonality: (a,b) =0

Norm: || - || : V — R, such that ||a]| = /(a,a)
Associativity: ||aal| = |« ||a]|

Positive definiteness: ||al| > 0 for a # 0 and ||0|| =0
Triangle inequality: |la + b]| < |ja|| + ||b]|
Cauchy-Schwarz inequality: |(a,b)| < ||a]| ||b]]

A distance function or metric: dy : V x V — R such that

dy(a,b) = [la — b

159,
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Function Space

Suppose we decide to represent a continuous, function
f : [a, b] — R by the listing

vi=[f(a) fOe) fls) - foa)]”
witha=x3 <x <x3<---<xy=b.
Note: The ‘true’ representation will require N to be infinite!

Here, v¢ is a real column vector.
Do such vectors form a vector space?

Correspondingly, does the set F of continuous functions
over [a, b] form a vector space?

‘ infinite dimensional vector space
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Function Space

Vector space of continuous functions

Function Space

First, @(F,+) is a commutative group.

Next, with a, B € R, Vx € [a, b],

» if f(x) € R, then af(x) € R

> 1-f(x)="f(x)

> (af)f(x) = a[Bf (x)]
a[fi(x) + (x)] = afi(x) + af(x)
(o + B)f(x) = af(x) + Bf(x)

v

v

v

Thus, F forms a vector space over R.

v

Every function in this space is an (infinite dimensional) vector.

v

Listing of values is just an obvious basis.
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Function Space

Linear dependence of (non-zero) functions. fiahd. f

> f(x) = kfi(x) for all x in the domain e s

> kifi(x) + kafa(x) =0, Vx with k; and ky not both zero.
Linear independence: kifi(x) + kofa(x) =0Vx = ki =ky =0

In general,
» Functions f1, o, f3,--- , f, € F are linearly dependent if
d ki, ko, k3, -+, kn, not all zero, such that

klfl(X) + k2f2(X) + k3f3(X) —+ o+ knfn(X) =0Vxe [a, b]

> kifi(x) + kofa(x) + kaf3(x) + -+ + knfa(x) = 0 Vx € [a,b] =
ki, ko, k3, - , ky = 0 means that functions f;, >, f3,--- , f, are
linearly independent.

Example: functions 1,x,x%,x3,--- are a set of linearly
independent functions.

Incidentally, this set is a commonly used basis.
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Function Space

Inner product: For functions f(x) and g(x)in, the usual inner
product between corresponding vectors: ~ Function spece

(Ve vg) = vivg = f(x1)g(x1) + F(x2)g(x2) + F(x3)g(x3) + - -

Weighted inner product: (vr,vg) = v/ Wvg, = > wif(x)g(x;)

For the functions,

b
(F.g) = / w(x)F (x)g (x)dx

» Orthogonality: (f,g) = f w(x)f(x)g(x)dx =0
> Norm: [If]| = /2 w(x)[Ff (x)]2dx

> Orthonormal basis:
(fi, fx) = f w(x)f;(x)f(x)dx = dj Vj, k

163,
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Points to note

Function Space

» Matrix algebra provides a natural description for vector spaces
and linear transformations.

» Through isomorphisms, R” can represent all n-dimensional
real vector spaces.

» Through the definition of an inner product, a vector space
incorporates key geometric features of physical space.

» Continuous functions over an interval constitute an infinite
dimensional vector space, complete with the usual notions.

Necessary Exercises: 6,7
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Outline

Topics in Multivariate Calculus
Derivatives in Multi-Dimensional Spaces
Taylor's Series
Chain Rule and Change of Variables
Numerical Differentiation
An Introduction to Tensors*
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igtives in Multi-Dimensional Spaces

Derivatives in Multi-Dimensional Spaé&g
Gradient

of of  oOf of
f — |2
v (X) ( ) 8X1 aXQ ax,,
Up to the first order, 6f ~ [V£(x)]7 ox
Directional derivative

of i f(x + ad) — f(x)
od _aanO «
Relationships:
of  of of T or
8—ej = 7 =d'Vf(x) and % = |[VF(x)]]

Among all unit vectors, taken as directions,
» the rate of change of a function in a direction is the same as
the component of its gradient along that direction, and
» the rate of change along the direction of the gradient is the
greatest and is equal to the magnitude of the gradient.
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Der|vat|ve5 |n Mu|t|—D|menS|Ona| Spaeéigtivesin Multi-Dimensional Spaces

Hessian
O*F 0% f . O%f
Ox12 Ox00x1 OxnOX1 8x1
62 f >r ﬁ . P°f
(X) o 8x18><2 8X22 8xn8><2
ox2 S
O*f O%f . O%f
Ox10xn  Ox00xn Oxn?

Meaning: Vf(x + 0x) — Vf(x) ~ [%(x)} ox

For a vector function h(x), Jacobian

oh [8h oh Oh}

1K) =50 =130 7 Ox,

Underlying notion: h ~ [J(x)]dx
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Taylor's Series

Topics in Multivariate Calculus 168,

Taylor's Series

Taylor's formula in the remainder form:
f(x 4+ dx) = f(x) + f'(x)dx

—l—%f"(x)éxz +o FI=1(x)ox"t + L

n!

1 n n
CE (1) (xc)6x

where x, = x + tdx with 0 <t <1
Mean value theorem: existence of x.
Taylor's series:

1
f(x + 6x) = f(x) + f'(x)dx + jf”(x)éx2 + .-
For a multivariate function,

f(x +0x) = f(x)+ [0xT V]f(x)+ %[5XTV]2f(x) +

+(n%[5xTv1"—1f(x) [T (x4 1)

)I
02

ot 00) = £+ VA o+ 506" [ 5500 o

%



Mathematical Methods in Engineering and Science

Chain Rule and Change of Variables

Chain Rule and Change of Variables

Topics in Multivariate Calculus 169,

For f(x), the total differential:

f f f
df = [VFf(x)]Tdx = g—dxl + g—dxz ot a%cfxn

Ordinary derivative or total derivative:

df

dx
=T

dt

For f(t,x(t)), total derivative: dt = 8t L [VF(x) T%

For f(v,x(v)) = f(vi,va, -, Vm, x1(v),x2(Vv), -+, xs(V)),
gt = (50) ] 3= (5 ) AT

= VF(v,x(v)) = V,f(v,x) + [ v)] TVXf
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Chain Rule and Change of Variables

Chain Rule and Change of Variables
Let x € R™" and h(x) € R™
Partition x € R™*" into z € R" and w € R™.
System of equations h(x) = 0 means h(z,w) = 0.
Question: Can we work out the function w = w(z)?
Solution of m equations in m unknowns?

Question: If we have one valid pair (z,w), then is it possible to

develop w = w(z) in the local neighbourhood?

Answer: Yes, if Jacobian g—:\‘, is non-singular.

‘ Implicit function theorem ‘

- " low] |0z

on o ow o ow_ [on] 7 [on
0z  Ow 0z 0z

Upto first order, w; = w + [%—‘;’] (z1 — 2).
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Chain Rule and Change of Variables

For a multiple integral

I:///f(x,y,z)dxdydz,
A

change of variables x = x(u, v,w), y = y(u,v,w), z = z(u, v, w)
gives

| = //Z\/ f(x(u,v,w),y(u,v,w),z(u,v,w))|J(u,v,w)|du dv dw,

Chain Rule and Change of Variables

A(x,y,2)
8(u7v7w)

where Jacobian determinant |J(u, v, w)| = ‘
For the differential

Pl(x)dxl + P2(X)dX2 + -+ P,,(x)dx,,,

we ask: does there exist a function f(x),

» of which this is the differential;

> or equivalently, the gradient of which is P(x)?
Perfect or exact differential: can be integrated to find f.
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Chain Rule and Change of Variables

Chain Rule and Change of Variables
Differentiation under the integral sign

How To differentiate ¢(x) = ¢(x, u(x), v(x)) = fuv(x f(x,t)dt?
In the expression
8¢ Opdu  O¢ dv
, —_—
)=t duax T avax

o)
we have 9 = [V 9f(x t)dt.

u Ox

Now, considering function F(x, t) such that f(x,t) = 8F(X t),
v OF
o(x) = 5 —(x, t)dt = F(x,v) — F(x,u) = ¢(x, u, v).
u

Using 2 30 = f(x,v) and % = —f(x,u),
V) of dv du
/ fr— _ —_ _
000 = [ S+ xS~ ) G

(x)

172,
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Numerical Differentiation
Forward difference formula

(x 4+ 0x) — f(x)

Topics in Multivariate Calculus 173,

Numerical Differentiation

f.’
f'(x) =
Central difference formulae
F(x) = f(x + ox) —

0x

+ O(6x)

f(x — ox) + 0(x?)

f'(x) =

20x
f(x +0x) — 2f(x) + f(x — 0x)

+ O(6x?)

For gradient Vf(x) and Hessian,

of 1

O%f B f(x + de;) — 2f(x) + f(x — de;)

dx2

56,’) — f(X — 56,’)],

2 = 52

, and

f(x + de; + 5ej) - f(x + de; — 56‘_,')

— f(x — de; + dej) + f(x — de; — Je;)

442
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An Introduction to Tensors*

vV vV vV VvV V V.V VvV Vv VY%

An Introduction to Tensors*

Indicial notation and summation convention

Kronecker delta and Levi-Civita symbol

Rotation of reference axes

Tensors of order zero, or scalars

Contravariant and covariant tensors of order one, or vectors
Cartesian tensors

Cartesian tensors of order two

Higher order tensors

Elementary tensor operations

Symmetric tensors

Tensor fields

174,
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Points to note

An Introduction to Tensors*

Gradient, Hessian, Jacobian and the Taylor's series

Partial and total gradients

>
>
» Implicit functions
» Leibnitz rule

>

Numerical derivatives

Necessary Exercises: 2,3,4,8
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O I' Recapitulation of Basic Notions
Ut Ine Curves in Space

Surfaces*

Vector Analysis: Curves and Surfaces
Recapitulation of Basic Notions
Curves in Space
Surfaces*

176,
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Recapitulation of Basic Notions Corves in S oo Notions
Dot and cross products: their implications
Scalar and vector triple products

Differentiation rules

Interface with matrix algebra:

a-x = aTx
(a-x)b = (ba T)x and
a for 2-d vectors
axx =
for 3-d vectors
where
., 0 —a, ay,
aL—[ y} and a= a, 0 —ay
dx

177,
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C u I’VGS |n S pa Ce Curves in Space

Explicit equation: y = y(x) and z = z(x)
Implicit equation: F(x,y,z) =0= G(x,y,z)

Parametric equation:

r(t) = x(2)i + y(2) + z(t)k = [x(t) y(t) 2z(1)]

» Tangent vector: r'(t)
> Speed: |||

rl

("1l
> Length of the curve: | = fab lldr| = fab v dt
Arc length function

s(t) = / )P0 dr

with ds = ||dr|| = \/dx? + dy? + dz2 and & = ||F'||

» Unit tangent: u(t) =

178,
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C u I’VGS |n S pa Ce Curves in Space

Curve r(t) is regular if ¥'(t) # 0 Vt.

» Reparametrization with respect to parameter t*, some
strictly increasing function of t

Observations

» Arc length s(t) is obviously a monotonically increasing
function.

» For a regular curve, % = 0.
» Then, s(t) has an inverse function.

» Inverse t(s) reparametrizes the curve as r(t(s)).

For a unit speed curve r(s), [[r'(s)|| =1 and the unit tangent is

u(s) =r'(s).
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C u I’VGS |n S pa Ce Curves in Space

Curvature: The rate at which the direction changes with arc

length.
K(s) = ' (s)]| = [I¥"(s)
Unit principal normal:
1 /
= —u'(s
p=—u(s)
With general parametrization,

() = D) + o1 2 = Ahue) 4 wioy1wPo(e)

» Osculating plane
» Centre of curvature

» Radius of curvature

Figure: Tangent and normal to a curve

130,
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C u I’VGS |n S pa Ce Curves in Space

Binormal: b=u x p
Serret-Frenet frame: Right-handed triad {u,p,b}

» Osculating, rectifying and normal planes

Torsion: Twisting out of the osculating plane
> rate of change of b with respect to arc length s
b'=uxptuxp =s(s)pxp+uxp =uxp
What is p’?
Taking p’ = ou + 7b,
b’ =u x (ou + 7b) = —7p.

Torsion of the curve

7(s) = —p(s) - b(s)
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C u I’VGS |n S pa Ce Curves in Space

We have u’ and b’. What is p/?

From p =b X u,

!/

pPP=b xu+bxu =—-7pxu+bxrp=—kru-+r7b.

Serret-Frenet formulae

v = kP,
pp = —ku + 7b,
b = —Tp

Intrinsic representation of a curve is complete with x(s) and 7(s).

The arc-length parametrization of a curve is completely
determined by its curvature k(s) and torsion 7(s)
functions, except for a rigid body motion.

182,
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Surfaces*

Surfaces*

Parametric surface equation:
(1, v) = x(u, )ity (1, Vi+2(u, vk = [x(0,v) y(u,v) 2(uv)]7
Tangent vectors r, and r, define a tangent plane 7.

N =r, X r, is normal to the surface and the unit normal is

N ryxry
NI flry <o

n

Question: How does n vary over the surface?

Information on local geometry: curvature tensor

» Normal and principal curvatures

» Local shape: convex, concave, saddle, cylindrical, planar

133,
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Points to note

Surfaces*

» Parametric equation is the general and most convenient
representation of curves and surfaces.

> Arc length is the natural parameter and the Serret-Frenet
frame offers the natural frame of reference.

» Curvature and torsion are the only inherent properties of a
curve.

» The local shape of a surface patch can be understood through
an analysis of its curvature tensor.

Necessary Exercises: 1,2,3,6

134,
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Outline

Scalar and Vector Fields
Differential Operations on Field Functions
Integral Operations on Field Functions
Integral Theorems
Closure
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Differential Operations on Field FunctiBis, s en it s

Scalar point function or scalar field ¢(x,y,z):'R3 — R
Vector point function or vector field V(x,y, z): R — R3
The del or nabla (V) operator

0 0 0
=i—+j=—+k—
v I8X+Jay+ 0z

» V is a vector,
» it signifies a differentiation, and
> it operates from the left side.
Laplacian operator:
82 82 82
V= 4+ — +—
O0x2 * Oy? + 022

Laplace's equation:

=V.v 7

Solution of V2¢ = 0: harmonic function
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Differential Operations on Field Functl

f| rﬁ§| Operations on Field Functions

Gradient

dp. 0¢. 0¢
P 225 Pk
8xl + 8yj + 0z

is orthogonal to the level surfaces.

grad ¢ = V¢ =

Flow fields: —V ¢ gives the velocity vector.

Divergence
For V(x,y,z) = Vi(x,y,2)i + V,(x,y, 2)j + Vz(x,y, z)k,

) . oV 9V, OV,
dvv=V-V= I + 3y + 57

Divergence of pV: flow rate of mass per unit volume out of the
control volume.

Similar relation between field and flux in electromagnetics.
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Mathematical Methods in Engineering and Science
fferential Operations on Field Functions
GHS

Differential Operations on Field Functl

Curl

i k

arlV = VxV=|4£ 2
Vi Vz

AV,

_ (9Vz oV, - Az - v,  OVi K
N dy 0z 0z Ox . ox dy

If V = w X r represents the velocity field, then angular velocity

K<<\33|Q3h'

1
w = 5 curl V.

Curl represents rotationality.

Connections between electric and magnetic fields!
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Differential Operations on Field Functl

f| rﬁ§| Operations on Field Functions

Composite operations

Operator V is linear.

V(ig+y) = Vo+ Vi,
V- (V+W) = V-V4+V-W, and
Vx(VFW) = VxV+VxW.

Considering the products ¢, ¢V, V-W, and V x W;

V(g1) = ¥V + Vi
V- (¢V)=Vep -V +¢V-V
VXx(pV) =V xV +¢V xV
V(V-W) = (W-V)V+(V-V)W+W x (VxV)+V x (Vx W)
V- (VXW)=W-(VxV)-V.(VxW)
V x (Vx W) = (W-V)V-W(V-V)—(V-V)W +V(V-W)

Note: the expression V -V = VX% + Vya% + VZ% is an operator!
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Differential Operations on Field Functl

f| rﬁ§| Operations on Field Functions

Second order differential operators

div grad ¢ = V-(V9)
curl gradp = V x (Vo)
div curlV. = V- (VxV)
curl curl V.= V x(VxV)
grad divV = V(V-V)

Important identities:

div grad ¢ = V-(V¢)= V3¢

curl grad¢p = V x(Vgp)=0
div cul V.= V- (VxV)=0
curl curl V.= V x(VxV)

=V(V-V)—-V?V = grad divV — V3V
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Integral Operations on Field Functionea opersions on Fieid Funciions

Line integral along curve C:
I = / V. dr :/(dex—l— Vydy + V,dz)
C C

For a parametrized curve r(t), t € [a, b],

b
l:/V-dr:/ V-ﬂdt.
c a dt

For simple (non-intersecting) paths contained in a simply
connected region, equivalent statements:

Vidx 4 V), dy + V,dz is an exact differential.

V = V¢ for some ¢(r).

JcV - dr is independent of path.

Circulation ¢ V - dr = 0 around any closed path.
curl V =0.

Field V is conservative.

v

vV v v v Y

191,



Mathematical Methods in Engineering and Science Scalar and Vector Fields

Integral Operations on Field Functionea opersions on Fieid Funciions

Surface integral over an orientable surface S:

J:/S/V-dS:/S/V-ndS

For r(u,w), dS = ||r, X ry| dudw and
J://V-ndS://V-(ruxrw)dudw.
S R

Volume integrals of point functions over a region T:

I\/I://T/qbdv and F://T/Vdv

192,
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Integral Theorems

Integral Theorems

Green'’s theorem in the plane

R: closed bounded region in the xy-plane
C: boundary, a piecewise smooth closed curve
Fi(x,y) and Fy(x,y): first order continuous functions

F. F-
%(Fldx—k Fady) = / / <2 _ @) dx dy

e )

(a) Simple domain (b) General domain

Figure: Regions for proof of Green's theorem in the plane
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Integral Theorems

Integral Theorems

Proof:
y2(x)
/ / R oy = / / R i
a y1(x) 8)/
b
— / [F{x. y2(x)} — Fu{x, y1(x) b

— _/ba Fi{x, y2(x)}dx — /ab Fi{x, y1(x)}dx
= —7{CF1(x,y)dx

X2()’)
//—8F2dd —/ / —8F2d dy—j{Fz(x,y)dy
C

Difference: §-(Frdx + Fady) = [ [ (% — 8Fl> dx dy

X

In alternative form, ¢-F -dr = [, [ curl F -k dxdy.
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Integral Theorems

Integral Theorems
Gauss’s divergence theorem

T: a closed bounded region
S: boundary, a piecewise smooth closed orientable

surface
F(x,y,z): a first order continuous vector function

/] didev:/S/F-ndS

Interpretation of the definition extended to finite domains.

///( X 8F +aa/:z> dxdydz://(FXnX+Fyny+anz)d5
s

To show: [ [; [ %=dxdydz = [ [ F,n.dS
First consider a region, the boundary of which is intersected at
most twice by any line parallel to a coordinate axis.
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Integral Theorems

Integral Theorems

Lower and upper segments of S: z = z1(x,y) and z = z(x, y).

[ LS G [ o]

= /R/[Fz{x,y,22(><,y)} - Fz{X,y,Z1(X,y)}]dX dy

R: projection of T on the xy-plane

Projection of area element of the upper segment: n,dS = dx dy
Projection of area element of the lower segment: n,dS = —dx dy

Thus, [ [ [ %=zdxdydz = [, [ F.n.dS.
Sum of three such components leads to the result.

Extension to arbitrary regions by a suitable subdivision of domain!
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Integral Theorems

Integral Theorems

Green’s identities (theorem)

Region T and boundary S: as required in premises of
Gauss’s theorem
o(x,y,z) and (x,y, z): second order continuous scalar

functions
/S/¢Vw-nd5 = //T/(¢V2¢+V¢'Vw)dv

/5 J@vis—vve)nas = [ [ [ovie-uvio)a

Direct consequences of Gauss's theorem

To establish, apply Gauss's divergence theorem on ¢V1), and then
on YV ¢ as well.
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Integral Theorems

Integral Theorems

Stokes’s theorem
S: a piecewise smooth surface
C: boundary, a piecewise smooth simple closed curve
F(x,y,z): first order continuous vector function

%F-dr:// curl F - ndS
C S
n: unit normal given by the right hand clasp rule on C

For F(x,y,z) = Fx(x,y, 2)i,

OF,. OF; OF, OF,
F.dx = —j - k|- = —n, — —=n, .
745 dx /5/<8z dy >nd5 /5/<8zny ay”>d5

First, consider a surface S intersected at most once by any line
parallel to a coordinate axis.
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Integral Theorems

Integral Theorems

Represent S as z = z(x,y) = f(x, y).

Unit normal n = [ny n, n,]7 is proportional to ‘W g—; —1]7.
0z
n,=—n;—
y Zay

[ G =gne) == [ (5 5 55) s

Over projection R of S on xy-plane, ¢(x,y) = Fx(x,y, z(x,y)).

LHS :—/R/%dxdy:7{/gb(x,y)dx:7{chdx

Similar results for F,(x,y,z)j and F,(x,y,z)k.



Mathematical Methods in Engineering and Science Scalar and Vector Fields 200,

Points to note

Closure

The ‘del” operator V

Gradient, divergence and curl
Composite and second order operators
Line, surface and volume intergals

Green's, Gauss's and Stokes's theorems

vV v v v Vv Y

Applications in physics (and engineering)

Necessary Exercises: 1,2,3,6,7
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Outline

Polynomial Equations
Basic Principles
Analytical Solution
General Polynomial Equations
Two Simultaneous Equations
Elimination Methods*
Advanced Techniques*
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Basic Principles

Basic Principles
Fundamental theorem of algebra
p(x) = aox" + a1x" "L+ ax" 2 + -+ + ap_1x + ap
has exactly n roots x1, x2, - -+, X,; with
p(x) = ao(x — x1)(x — x2)(x — x3) - - - (x — xp).

In general, roots are complex.
Multiplicity: A root of p(x) with multiplicity k satisfies

p(x) = p'(x) = p"(x) = ple(x) = 0.

» Descartes’ rule of signs
» Bracketing and separation
» Synthetic division and deflation

p(x) = f(x)a(x) + r(x)

202,
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Analytlcal SOlUtIOﬂ Analytical Solution

Quadratic equation

—b+Vb*>—4
ax* 4+ bx+c=0 = x= > ac
a

Method of completing the square:

a 2a) 4322 a2 2a) 432

Cubic equations (Cardano):
X34 ax® +bx+c=0

Completing the cube?
Substituting y = x + k,

y? 4 (a — 3k)y? 4 (b — 2ak + 3k?®)y + (c — bk + ak® — k) = 0.

Choose the shift k = a/3.
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Analytlcal SOlUtIOﬂ Analytical Solution

Y’ +py+qg=0

Assuming y = u + v, we have y3 = 13 + v3 + 3uv(u + v).

uv = —p/3
w4+ o= —q

4 3
and hence (u® —v3)? = q2+i.

27

Solution:
2 3

u3,v3:—g:|: %4—% = A, B (say).

u= A1, Alw, Aiw?, and v = By, Biw, Biw?

yvi=A1+4+ B, w=Aw+ Blw2 and y3 = A1w2 + Biw.

At least one of the solutions is reall!!
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Analytical Solution

Polynomial Equations

Analytical Solution

Quartic equations (Ferrari)

2 2
xt+axd+bxP+ex+d =0 = <x2 + gx) = (a_ — b> 2 _cx—d

For a perfect square,
2 2
2 3 U (2 by )t () (L
<x+2x+2 <4 ty )P4 (F o) x+ (5
Under what condition, the new RHS will be a perfect square?
2 2
ay )2 a y
- — —4(——b ——d]| =
(2 c (4 +y> <4 > 0
Resolvent of a quartic:

y?® — by? + (ac — 4d)y + (4bd — a°d — c?) =0

205,
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Analytlcal SOlUtIOﬂ Analytical Solution

Procedure
» Frame the cubic resolvent.
» Solve this cubic equation.
» Pick up one solution as y.
>

Insert this y to form

2
<X2 + gx + %) = (ex + ).
» Split it into two quadratic equations as
g2t = +(ex + f).
2 2
» Solve each of the two quadratic equations to obtain a total of

four solutions of the original quartic equation.
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General Polynomial Equations

General Polynomial Equations

Analytical solution of the general quintic equation?
Galois: group theory:

A general quintic, or higher degree, equation is not
solvable by radicals.

General polynomial equations: iterative algorithms
» Methods for nonlinear equations
» Methods specific to polynomial equations
Solution through the companion matrix

Roots of a polynomial are the same as the eigenvalues of
its companion matrix.

[0 0 --- 0 —an
1 0 --- 0 —dp—-1
Companion matrix: Do : :
00 0 —a
| 00 1 —dail ]

207,
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General Polynomial Equations

General Polynomial Equations

Bairstow’s method
to separate out factors of small degree.

Attempt to separate real linear factors?

Real quadratic factors

Synthetic division with a guess factor x> + qix + go:

remainder rnx + r

r=[rn ]’ is a vector function of q = [q1 q2]”.
Iterate over (g1, g2) to make (ri, r2) zero.

Newton-Raphson (Jacobian based) iteration: see exercise.

208,
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Two Simultaneous Equations

Two Simultaneous Equations

p1x° + qixy + ny® + nix + viy + w
p2x® + qoxy + oy’ + ipx+vay +wp = 0
Rearranging,
ax’+bix+c =
ax’+bx+c = 0
Cramer’s rule:
x? —X 1

bicy — byci a1y —axcy  aiby — aaby

N bico — bycy aic — axcy
X=-- ' = —-\ ——
aic — axCy aiby — axby

Consistency condition:

(31b2 — a2b1)(b1C2 — b2C1) — (31C2 — 32C1)2 =0

‘A 4th degree equation in y‘

209,
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Elimination Methods

Elimination Methods*
The method operates similarly even if the degrees of the original
equations in y are higher.

What about the degree of the eliminant equation?
Two equations in x and y of degrees ny and ny:
x-eliminant is an equation of degree niny in'y

Maximum number of solutions:
Bezout number = nin>

Note: Deficient systems may have less number of solutions.

Classical methods of elimination
> Sylvester's dialytic method

» Bezout's method

210,
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Advanced Techniques*

Three or more independent equations in as fiany, Hfiknowns?

niqu

v

Cascaded elimination?  Objections!

v

Exploitation of special structures through clever heuristics

(mechanisms kinematics literature)

v

Grobner basis representation
(algebraic geometry)

v

Continuation or homotopy method by Morgan

For solving the system f(x) = 0, identify another
structurally similar system g(x) = 0 with known
solutions and construct the parametrized system

h(x) = tf(x) + (1 — t)g(x) =0 for t € [0,1].

Track each solution fromt =0 to t = 1.
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Points to note

Advanced Techniques*

» Roots of cubic and quartic polynomials by the methods of
Cardano and Ferrari
» For higher degree polynomials,

» Bairstow's method: a clever implementation of
Newton-Raphson method for polynomials
» Eigenvalue problem of a companion matrix

» Reduction of a system of polynomial equations in two
unknowns by elimination

Necessary Exercises: 1,3,4,6

212,
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O I' Methods for Nonlinear Equations
Ut Ine Systems of Nonlinear Equations

Closure

Solution of Nonlinear Equations and Systems
Methods for Nonlinear Equations
Systems of Nonlinear Equations
Closure

213,



Solution of Nonlinear Equations and Systems
Methods for Nonlinear Equations

Mathematical Methods in Engineering and Science

Methods for Nonlinear Equations

Algebraic and transcendental equations in the form
f(x)=0

Practical problem: to find one real root (zero) of f(x)
Example of f(x): x3 —2x+5, x3Inx —sinx + 2, etc.

If f(x) is continuous, then
Bracketing: f(xp)f(x1) < 0 = there must be a root of f(x)
between xg and xi.

Bisection: Check the sign of f(%£21). Replace either xo or x;
with 03X

214,
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Methods for Nonlinear Equations

Fixed point iteration

Rearrange f(x) =0 in
the form x = g(x).

Example:

For f(x) =tanx — x> — 2,

possible rearrangements:

gi(x) =tan"1(x3 +2)

g(x) = (tanx — 2)/3
tanx—2

g3(x) = X2
Iteration: xx11 = g(xk)

Solution of Nonlinear Equations and Systems
Methods for Nonlinear Equations

x* p axr X

Figure: Fixed point iteration

If x* is the unique solution in interval J and
lg'(x)] < h<1inJ, then any xo € J converges to x*.

215,
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Methods for Nonlinear Equations

Methods for Nonlinear Equations

Newton-Raphson method
First order Taylor series (x)
f(x +x) ~ f(x) + f'(x)dx
From f(xx + dx) =0,

dx = —f(xk)/f"(xk) e
Iteration:

X1 = xk — f(xi)/f' (%)
Convergence criterion:
[FO)F" ()] < IF ()17 o T
Draw tangent to f(x).

Take its x-intercept.

Figure: Newton-Raphson method

Merit: quadratic speed of convergence: |xx; 1 — x*| = c|xx — x*|?
Demerit: If the starting point is not appropriate,

haphazard wandering, oscillations or outright divergence!
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Methods for Nonlinear Equations

Methods for Nonlinear Equations

Secant method and method of false position

f(x)
In the Newton-Raphson formula, f%/
f’(X) ~ ) —f(Xk—1)

Xk —Xk—1

XX
= Xkt = Xk )=l | )

Draw the chord or )
secant to f(x) through o7 g X
(Xk_]_, f(Xk_]_)) and (Xk, f(Xk)) f(x)

Take its x-intercept.

Figure: Method of false position

Special case: Maintain a bracket over the root at every iteration.

The method of false position or regula falsi

Convergence is guaranteed!
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Methods for Nonlinear Equations

Solution of Nonlinear Equations and Systems
Methods for Nonlinear Equations

Quadratic interpolation method or Muller method

Evaluate f(x) at three points
and model y = a + bx + cx?.
Set y = 0 and solve for x.

Inverse quadratic interpolation
Evaluate f(x) at three points
and model x = a + by + cy?.

Set y =0 to get x = a.

Y|

060:%)
Quadratic
Interpolation

Inverse
Quadratic
Interpolation

04¥)

%
o % X
(o)

Figure: Interpolation schemes

Van Wijngaarden-Dekker Brent method

» maintains the bracket,

> uses inverse quadratic interpolation, and

» accepts outcome if within bounds, else takes a bisection step.

Opportunistic manoeuvring between a fast method and a safe one!

218,
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SyStemS Of Nonllneal’ Equatlons Systems of Nonlinear Equations
ﬁ.(X1>X2>"' axn) = Oa
f2(X1>X2>"' axn) = Oa
fn(X17X2>”' 7Xn) = 0.
f(x)=0

» Number of variables and number of equations?
» No bracketing!
» Fixed point iteration schemes x = g(x)?

Newton’s method for systems of equations
of
f(x + 0x) = f(x) + &(x) ox + - - & f(x) + J(x)dx

= Xk41 = Xk — [J (xk)]_lf(xk)

with the usual merits and demerits!

219,
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Closure

Closure

Modified Newton’s method
Xpr1 = Xk — o [I(xi)] i (xk)

Broyden’s secant method

Jacobian is not evaluated at every iteration, but gets
developed through updates.

Optimization-based formulation
Global minimum of the function

IFX)> =R+ K+ + £

Levenberg-Marquardt method
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Points to note

Closure

> Iteration schemes for solving f(x) =0

» Newton (or Newton-Raphson) iteration for a system of
equations

Xier1 = Xk — [I(x)] ()

» Optimization formulation of a multi-dimensional root finding
problem

Necessary Exercises: 1,2,3
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Outline

Optimization: Introduction
The Methodology of Optimization
Single-Variable Optimization
Conceptual Background of Multivariate Optimization

222,
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The Methodology of Optimization

The Methodology of Optimization

Parameters and variables

v

v

The statement of the optimization problem
Minimize  f(x)
subject to g(x) <0

h(x) = 0.

Optimization methods

Sensitivity analysis

Optimization problems: unconstrained and constrained

Optimization problems: linear and nonlinear

vV v.v. v Y

Single-variable and multi-variable problems

223,



Mathematical Methods in Engineering and Science Optimization: Introduction 224,

Sl ngle'va rla ble O ptl m |Zat|on Single-Variable Optimization

For a function f(x), a point x* is defined as a relative (local)
minimum if 3 € such that f(x) > f(x*) V x € [x* — €, x* + €.

(x)

O ax X X % % X b

Figure: Schematic of optima of a univariate function

Optimality criteria

First order necessary condition: If x* is a local minimum or
maximum point and if f'(x*) exists, then f'(x*) = 0.

Second order necessary condition: If x* is a local minimum point
and f”(x*) exists, then f”(x*) > 0.

Second order sufficient condition: If f/(x*) =0 and f”(x*) > 0
then x* is a local minimum point.
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Sl ngl e‘va rla ble O ptl m |Zat|on Single-Variable Optimization

Higher order analysis: From Taylor's series,

Af

f(x* +dx) — f(x*)
= f'(x*)ox + %f”(x*)5x2 + %f"’(x*)éxz‘ - %f""(x*)éxd' + e

For an extremum to occur at point x*, the lowest order
derivative with non-zero value should be of even order.

If /(x*) =0, then
» x* is a stationary point, a candidate for an extremum.

» Evaluate higher order derivatives till one of them is found to
be non-zero.
» If its order is odd, then x* is an inflection point.
» If its order is even, then x* is a local minimum or maximum,
as the derivative value is positive or negative, respectively.
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Sl ngl e‘va rla ble O ptl m |Zat|on Single-Variable Optimization

Iterative methods of line search
Methods based on gradient root finding
» Newton's method

f'(xk)
Xk+1 = Xk — f//(Xk)

» Secant method
. — Xk — Xk—1

» Method of cubic estimation
point of vanishing gradient of the cubic fit with
f(Xk_]_), f(Xk), f/(Xk_]_) and f/(Xk)

» Method of quadratic estimation

f'(xk)

point of vanishing gradient of the quadratic fit
through three points

Disadvantage: treating all stationary points alike!

226,
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Slngle‘va rlable Optlmlzatlon Single-Variable Optimization
Bracketing:
x1 < xp < x3 with f(Xl) > f(Xz) < f(X3)

Exhaustive search method or its variants
Direct optimization algorithms
» Fibonacci search uses a pre-defined number N, of function
evaluations, and the Fibonacci sequence

Fo=1 k=1 F=2 -, FF=F o+ F_1, -

to tighten a bracket with economized number of function
evaluations.
» Golden section search uses a constant ratio
V5 -1

= Y27 o6l
T > 0.618,

the golden section ratio, of interval reduction, that is
determined as the limiting case of N — oo and the actual
number of steps is decided by the accuracy desired.

227,



Mathematical Methods in Engineering and Science Optimization: Introduction 228,

Conceptual Background of Multivariaté:Qptindization

Conceptual Background of Multivariate Optimizatio

Unconstrained minimization problem

*

x* is called a local minimum of f(x) if 3 § such that
f(x) > f(x*) for all x satisfying ||x — x*|| < 4.

Optimality criteria
From Taylor's series,

f(x)—f(x") = [g(x*)]T(Sx + %5XT[H(X*)]5X + e

For x* to be a local minimum,
necessary condition: g(x*) =0 and H(x*) is positive semi-definite,

sufficient condition: g(x*) = 0 and H(x*) is positive definite.

Indefinite Hessian matrix characterizes a saddle point.



Mathematical Methods in Engineering and Science Optimization: Introduction 229,

Conceptual Background of Multivariaté Optimization

Conceptual Background of Multivariate Optimizatio

Convexity
Set S C R" is a convex set if

Vxi,x2 €S and a€(0,1), ax; + (1 —a)x2 € S.

Function f(x) over a convex set S: a convex function if
V x1,x2 € S and «a € (0,1),

flax: + (1 — a)xz) < af(x1) + (1 — a)f(x2).

Chord approximation is an overestimate at intermediate points!

% f(x)

()
f(x)

o X o

Figure: A convex domain Figure: A convex function
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Conceptual Background of Multivariaté:Qptindization

Conceptual Background of Multivariate Optimizatio
First order characterization of convexity
From f(ax; + (1 — a)x2) < af(x1) + (1 — a)f(x2),

f(X2 + Oz(Xl — X2)) — f(Xz) '

f(Xl) — f(Xz) Z

Asa —0, f(x1)>f(x2)+[VF(x2)]” (x1 — x2).
Tangent approximation is an underestimate at intermediate points!
Second order characterization: Hessian is positive semi-definite.

Convex programming problem: convex function over convex set

A local minimum is also a global minimum, and all
minima are connected in a convex set.

Note: Convexity is a stronger condition than unimodality!
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Conceptual Background of Multivariaté:Qptindization

Conceptual Background of Multivariate Optimizatio
Quadratic function
1 r T
g(x) ==x Ax+b'x+c

2
Gradient Vg(x) = Ax + b and Hessian = A is constant.

» If A is positive definite, then the unique solution of Ax = —b
is the only minimum point.

» If A is positive semi-definite and —b € Range(A), then the
entire subspace of solutions of Ax = —b are global minima.

» If A is positive semi-definite but —b ¢ Range(A), then the
function is unbounded!

Note: A quadratic problem (with positive definite Hessian) acts as
a benchmark for optimization algorithms.
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Conceptual Background of Multivariaté Optimization

Conceptual Background of Multivariate Optimizatio

Optimization Algorithms

From the current point, move to another point, hopefully better.
Which way to go? How far to go? Which decision is first?

Strategies and versions of algorithms:
Trust Region: Develop a local quadratic model

Fxi+0) = Flxe) + [g0x0)] o + 50x Fiox,

and minimize it in a small trust region around x.

(Define trust region with dummy boundaries.)
Line search: ldentify a descent direction dx and minimize the

function along it through the univariate function

d(a) = f(xx + ady).
» Exact or accurate line search
» Inexact or inaccurate line search
» Armijo, Goldstein and Wolfe conditions
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Ptimization

Background of Multivariate Optimizatio

Mathematical Methods in Engineering and Science

Conceptual Background of Multivariate:Q

Conceptua

Convergence of algorithms: notions of guarantee and speed

Global convergence: the ability of an algorithm to approach and
converge to an optimal solution for an arbitrary
problem, starting from an arbitrary point

» Practically, a sequence (or even subsequence) of
monotonically decreasing errors is enough.

Local convergence: the rate/speed of approach, measured by p,

where .
I X1 — x*||

< 0
k—o00 ||Xk — X*Hp

6=

» Linear, quadratic and superlinear rates of
convergence for p =1, 2 and intermediate.

» Comparison among algorithms with linear rates
of convergence is by the convergence ratio S.
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Points to note

Conceptual Background of Multivariate Optimizatio

Theory and methods of single-variable optimization
Optimality criteria in multivariate optimization
Convexity in optimization

The quadratic function

Trust region

Line search

vV vV vV V. VvV Vv Y

Global and local convergence

Necessary Exercises: 1,2,5,7,8
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Outline

Multivariate Optimization
Direct Methods
Steepest Descent (Cauchy) Method
Newton's Method
Hybrid (Levenberg-Marquardt) Method
Least Square Problems

Multivariate Optimization

235,
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D | rect M ethods Direct Methods

Direct search methods using only function values

v

Cyclic coordinate search
» Rosenbrock’'s method

» Hooke-Jeeves pattern search

» Box's complex method

» Nelder and Mead's simplex search

» Powell’s conjugate directions method

Useful for functions, for which derivative either does not exist at all
points in the domain or is computationally costly to evaluate.

Note: When derivatives are easily available, gradient-based
algorithms appear as mainstream methods.
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D | rect M ethods Direct Methods

Nelder and Mead’s simplex method
Simplex in n-dimensional space: polytope formed by n+ 1 vertices

Nelder and Mead's method iterates over simplices that are
non-degenerate (i.e. enclosing non-zero hypervolume).

First, n 4+ 1 suitable points are selected for the starting simplex.

Among vertices of the current simplex, identify the worst point x,,,
the best point x, and the second worst point xs.

Need to replace x,, with a good point.

Centre of gravity of the face not containing x,,:

n+1
1
Xe = — E X
n. -
i=1,i#w

Reflect x,, with respect to x. as x, = 2x. — X,,. Consider options.
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Direct Methods

Default xpey = X,.
Revision possibilities:

Direct Methods

| | |
T T T
f(xo) f(xs) f(xw)
Expansion Default Positive Negative
Contraction Contraction

Xne
L ) 7
X > X =Xnew  Xw L X KN { =X

Figure: Nelder and Mead'’s simplex method

1. For f(x,) < f(xp), expansion:
Xnew = Xc + a(Xc — Xy ), a > 1.

2. For f(x,) > f(xw), negative contraction:
Xnew = Xc — B(Xc — Xw), 0 < G < 1.

3. For f(xs) < f(x,) < f(xw), positive contraction:
Xnew = Xc + B(Xc — Xw ), with 0 < 5 < 1.

Replace x,, with Xpe,. Continue with new simplex.

Multivariate Optimization
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Steepest Descent (Cauchy) Method  siepest deccent (caucny) metnos

From a point x,, a move through « units in direction dy:

f(xi + ady) = f(xk) + alg(x)] " dk + O(a?)
Descent direction dy: For o > 0, [g(xx)]"dx <0
Direction of steepest descent: dy = —gx [or dx = —g/lIgkll]
Minimize

¢(a) = f(xk + ady).
Exact line search:
¢' (k) = [&(xk + axdy)] Tdi = 0

Search direction tangential to the contour surface at (xx + axdy).

Note: Next direction dy11 = —g(xx+1) orthogonal to dy
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Steepest Descent (Cauchy) Method  siepest deccent (caucny) metnos

Steepest descent algorithm

1. Select a starting point xg, set k = 0 and several parameters:
tolerance € on gradient, absolute tolerance €4 on reduction
in function value, relative tolerance €z on reduction in
function value and maximum number of iterations M.

2. If ||lgk|| < eg, STOP. Else dy = —gy/||gx]I-

3. Line search: Obtain aj by minimizing ¢(«) = f(xx + ady),
a > 0. Update xx41 = xi + apdy.

4. If |f(Xk+1) — f(Xk)| <e€a+ €R|f(Xk)|,STOP. Else k — k+ 1.
5. If k > M, STOP. Else go to step 2.

Very good global convergence.

But, why so many “STOPS”?

240,



Mathematical Methods in Engineering and Science Multivariate Optimization 241,

Steepest Descent (Cauchy) Method  siepest deccent (caucny) metnos

Analysis on a quadratic function

For minimizing g(x) = 2x” Ax + b”x, the error function:

E(x) = %(x — ) TAx — x)

2
Convergence ratio: E&iﬁ) < (:Eﬁg;i)

Local convergence is poor.

Importance of steepest descent method
» conceptual understanding
» initial iterations in a completely new problem

> spacer steps in other sophisticated methods

Re-scaling of the problem through change of variables?
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1
Newton's Method

Second order approximation of a function:

Newton's Method

Fx) = Flxe) + 001 0x i)+ 5 0c— i) THO6)(x — xa)
Vanishing of gradient
g(x) ~ g(xk) + Hxi)(x — xk)
gives the iteration formula
Xir1 = Xk — [H(x)] " & (xk)-

Excellent local convergence property!

Caution: Does not have global convergence.

If H(xx) is positive definite then dy = —[H(xx)] 1&g (x«)
is a descent direction.

242,
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Newton's Method

Newton's Method

Modified Newton’s method

» Replace the Hessian by Fy = H(xx) + /.

» Replace full Newton's step by a line search.

Algorithm
1. Select xq, tolerance e and § > 0. Set kK = 0.
2. Evaluate gy = g(x«) and H(x).
Choose 7, find Fx = H(xx) + 7/, solve Fdy, = —gy for dy.
3. Line search: obtain ay to minimize ¢(«) = f(xx + ady).
Update xxt1 = Xk + axdy.

4. Check convergence: If |f(xxr1) — f(xk)| <€, STOP.
Else, k «— k + 1 and go to step 2.
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Hybrid (Levenberg-Marquardt) Method

Multivariate Optimization

Hybrid (Levenberg-Marquardt) Method
Methods of deflected gradients

Xk+1 = Xk — ax[M]gk

> identity matrix in place of My: steepest descent step
> M, = F;l: step of modified Newton's method
» My = [H(xx)]! and o = 1: pure Newton's step

In My = [H(xx) + Ac/] 71, tune parameter \ over iterations.

» Initial value of A: large enough to favour steepest descent
trend

» Improvement in an iteration: X reduced by a factor

» Increase in function value: step rejected and X increased
Opportunism systematized!

Note: Cost of evaluating the Hessian remains a bottleneck.
Useful for problems where Hessian estimates come cheap!

244,
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Least Square Problems

Least Square Problems

Linear least square problem:

y(0) = x101(0) + x202(0) + - - - + x20n(0)

For measured values y(6;) = y;,
e = Zxkqﬁk(@i) —Yi= [¢(9i)]Tx - Yi
k=1

Error vector: e = Ax —y

Last square fit:

s _1 2 _ 1,7
Minimize E = 5 ;e = ;e' e

‘ Pseudoinverse solution and its variants
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Least Square Problems

Least Square Problems

Nonlinear least square problem

For model function in the form
y(@) = f(@,x) = f(97X1>X2> te >Xn)a

square error function

E(x) :—e Te== Ze = Z[f 0:,x) — yil?

Gradient: g(x) = VE(x) = >_,[f(0i,x) — yi]Vf(0;,x) =JTe
Hessian: H(x) = WE(X) =3T3+, e,-g—;f(H,-,x) ~J7)

Combining a modified form \ diag(J7J) 6x = —g(x) of steepest
descent formula with Newton's formula,

Levenberg-Marquardt step: [J7J + A diag(J7J)]ox = —g(x)
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Least Square Problems
Least Square Problems
Levenberg-Marquardt algorithm
1. Select xq, evaluate E(xg). Select tolerance ¢, initial A and its

update factor. Set kK = 0.
2. Evaluate gy and He = J7J + )\ diag(J7J).
Solve Hydx = —gy. Evaluate E(xx + x).
3. 1f |E(xx + 0x) — E(xi)| < ¢, STOP.
4. If E(xx + 0x) < E(xk), then decrease A,

update Xgy1 = Xx + 0x, k «— k+1.
Else increase ).

5. Go to step 2.

Professional procedure for nonlinear least square problems and also
for solving systems of nonlinear equations in the form h(x) = 0.
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Points to note

Least Square Problems

» Simplex method of Nelder and Mead
> Steepest descent method with its global convergence
» Newton's method for fast local convergence

» Levenberg-Marquardt method for equation solving and least
squares

Necessary Exercises: 1,2,3,4,5,6
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N Conjugate Direction Methods
O Utl I ne Quasi-Newton Methods

Closure

Methods of Nonlinear Optimization*
Conjugate Direction Methods
Quasi-Newton Methods
Closure
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Conjugate Direction Methods

Conjugate Direction Methods

Conjugacy of directions:

Two vectors d1 and dy are mutually conjugate with
respect to a symmetric matrix A, if dZ—Adz =0.

Linear independence of conjugate directions:

Conjugate directions with respect to a positive definite
matrix are linearly independent.

Expanding subspace property: In R", with conjugate vectors

{do,d1, -+ ,d,_1} with respect to symmetric positive definite A,
for any xg € R", the sequence {xg,X1,X2,- - ,X,} generated as
g/ di

Xkt1 = Xk + apdy,  with ay = —m>
k

where g, = Axy + b, has the property that

xx minimizes q(x) = xTAx +bTx on the line
Xx_1 + adg_1, as well as on the linear variety xq + By,
where By is the span of dg, dy, - -+, dj_1.



Mathematical Methods in Engineering and Science Methods of Nonlinear Optimization™

ConJ ugate D|rect|on MethOdS Conjugate Direction Methods

Question: How to find a set of n conjugate directions?
Gram-Schmidt procedure is a poor option!
Conjugate gradient method

Starting from dg = —gp,
dii1 = —8kr1 + Brdk
Imposing the condition of conjugacy of dy;1 with dy,

B = ng+1Adk _ ng+1(gk+1 — gk)
dTAd, axd]Ad,

Resulting dy+1 conjugate to all the earlier directions, for
a quadratic problem.

251,



Mathematical Methods in Engineering and Science Methods of Nonlinear Optimization™

Conjugate Direction Methods

Conjugate Direction Methods

Using k in place of k 4+ 1 in the formula for dy1,
di = —8k + Bk—1dk—1

nggk
d[Adk

= g,z—dk = —g,z—gk and oy =

Polak-Ribiere formula:

_ gl 1 (8k+1 — 8k)

B
gzgk

No need to know Al
Further,

gl 1di =0 = gl 18k = Sro1(gl +axd[A)dy_1 = 0.
Fletcher-Reeves formula:

-
_ 8r18k+1

B
nggk

252,
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ConJ ugate D|rect|on MethOdS Conjugate Direction Methods

Extension to general (non-quadratic) functions

» Varying Hessian A: determine the step size by line search.
» After n steps, minimum not attained.

But, g[dk = —g[gk implies guaranteed descent.
Globally convergent, with superlinear rate of convergence.

» What to do after n steps? Restart or continue?

Algorithm

1. Select xo and tolerances €g, ep. Evaluate go = V£ (xo).
2. Set k =0 and dy = —gy.
3. Line search: find ay; update xx11 = Xi + aidy.
4. Evaluate gk+1 = Vf(ka). If ||gk+1|| <e€g, STOP.
5. Find ¢ = W (Polak-Ribiere)

or Bk = gk#ikk“ (Fletcher-Reeves).

k
Obtain ko?l = —8k+1 + Brdk.
dk dit1 _

6. If 1 — Tael Tdeay | < €D reset go = gi+1and go to step 2.

Else, k — k + 1 and go to step 3.
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Conjugate Direction Methods

Conjugate Direction Methods

Powell’s conjugate direction method
For g(x) = TAx +b'x, suppose

X1 = X4 + a1d such that dTgl =0 and
X> = xg + apd such that dTg2 =0.

Then, dTA(x2 —x1) =d” (g2 — g1) = 0.

Parallel subspace property: In R", consider two parallel
linear varieties S = v1 + By and Sy = vy + By, with
Bk = {dl,dz,"' ,dk}, k < n.

If x1 and x5
minimize q(x) = 7—Ax—kb-’—x on 81 and S», respectively,
then xp — x1 is conjugate to dy, dp, ---, dy.

Assumptions imply g1,8> | By and hence

(gz—gl) 1 Bk = d,-TA(Xz—Xl) = d,-T(gz—gl) =0 for i = 1,2,~ . ,k.
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Conjugate Direction Methods o et Methode "%
Algoithm
1. Select xg, € and a set of n linearly independent (preferably

normalized) directions dy, d, - -, d,,; possibly d; = e;.

2. Line search along d,, and update x; = x¢ + ad,; set kK = 1.

3. Line searches along di, do, ---, d, in sequence to obtain

n
Z = X, + Zj:l ajd;.

4. New conjugate direction d =z — x. If ||d|| <€, STOP.

5. Reassign directions dj < d;q for j =1,2,---,(n—1) and

d, =d/|d]|.
(Old d; gets discarded at this step.)

Line search and update xx+1 =z + ad,; set k — k+ 1 and
go to step 3.
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Conjugate Direction Methods e o Methads o

> Xo-X1 and b-zj: x3-z; is conjugate to b-z;.

» b-z1-xp and c-d-zp: c¢-d, d-z; and x»-z, are mutually
conjugate.

Xo

Figure: Schematic of Powell's conjugate direction method

Performance of Powell’'s method approaches that of the
conjugate gradient method!
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Quasi-Newton Methods

Variable metric methods
attempt to construct the inverse Hessian B.

Methods of Nonlinear Optimization™ 257,

Quasi-Newton Methods

Pk =Xk+1 — Xk and  qQx =8k+1 — 8k = dkx =~ Hpg

With n such steps, B = PQ~!: update and construct B, ~ H 1.
Rank one correction: Byy1 = By + akzkz,z—?
Rank two correction:

Bii1 =Bk + akaZZ— + kakWZ_

Davidon-Fletcher-Powell (DFP) method
Select xg, tolerance € and Bg = 1,. For k=10,1,2,---,

» dy = —Bgx.
» Line search for ay; update px = axdy, Xkr1 = Xk + Pk,
dx = 8k+1 — k-

> If ||pkl] <€ or |qk|| <e, STOP.

T T

. PP Braxq, Bk

» Rank two correction: BPFP — B, + BPe _ k=%
k+1 kT plas a/ Bray
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QuaSI-NeWton MethOdS Quasi-Newton Methods

Properties of DFP iterations:
1. If By is symmetric and positive definite, then so is Byy.

2. For quadratic function with positive definite Hessian H,

p,-THpJ-:O for 0<i<j<k,
and ByyiHp;=p; for 0<i<k.

Implications:
1. Positive definiteness of inverse Hessian estimate is never lost.
2. Successive search directions are conjugate directions.
3. With By = I, the algorithm is a conjugate gradient method.
4

. For a quadratic problem, the inverse Hessian gets completely
constructed after n steps.

Variants: Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method and the Broyden family of methods
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Conjugate Direction Methods
Quasi-Newton Methods

Closure
Closure
Table 23.1: Summary of performance of optimization methods
Cauchy Newton Levenberg-Marquardt DFP/BFGS FR/PR Powell
(Steepest (Hybrid) (Quasi-Newton) (Conjugate | (Direction
Descent) (Deflected Gradient) (Variable Metric) | Gradient) Set)
For Quadratic
Problems:
Convergence steps N 1 N n n n?
Indefinite Unknown
Evaluations Nf 2f Nf (n+1)f (n+1)f n’f
Ng 2g Ng (n+1)g (n+1)g
1H NH
Equivalent function
evaluations N@2n+1) | 2n2+2n+1 N(2n?+1) 2n2 +3n+ 1 2n2 +3n+1 n?
Line searches N 0 N or 0 n n n?
Storage Vector Matrix Matrix Matrix Vector Matrix
Performance in
general problems Slow Risky Costly Flexible Good Okay
Practically good for Unknown Good NL Eqn. systems Bad Large Small
start-up functions NL least squares functions problems problems
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Points to note

Closure

» Conjugate directions and the expanding subspace property
» Conjugate gradient method
» Powell-Smith direction set method

» The quasi-Newton concept in professional optimization

Necessary Exercises: 1,2,3
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Outline

Constrained Optimization
Constraints
Optimality Criteria
Sensitivity
Duality*
Structure of Methods: An Overview*

Constrained Optimization
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Constraints

Constrained optimization problem:

Constraints

Minimize  f(x)
subject to gi(x) <0 fori=1,2,---,/, or g(x)<0;
and hj(x)=0 forj=1,2,---,m, or h(x)=0

Conceptually, “minimize f(x), x € Q".

Equality constraints reduce the domain to a surface or a manifold,
possessing a tangent plane at every point.

Gradient of the vector function h(x):

ohT
%
Vh(x) = [Vhi(x) Vha(x) - Vhn(x)] = | 72

ohT
Oxn

related to the usual Jacobian as J4(x) = 8x = [Vh(x)]".
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Constraints

Constraints

Constraint qualification

Vhi(x), Vha(x) etc are linearly independent, i.e. Vh(x) is
full-rank.

If a feasible point xg, with h(x¢) = 0, satisfies the constraint
qualification condition, we call it a regular point.

At a regular feasible point xq, tangent plane
M={y :[Vh(x)]"y =0}
gives the collection of feasible directions.

Equality constraints reduce the dimension of the problem.

Variable elimination?
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Co nst ra | nts Constraints

Active inequality constraints gi(x¢) = O:

included among hj(xo)

for the tangent plane.

Cone of feasible directions:
[Vh(x0)]"d =0 and [Vgi(x0)]'d <0 foricl

where [ is the set of indices of active inequality constraints.
Handling inequality constraints:

» Active set strategy maintains a list of active constraints,
keeps checking at every step for a change of scenario and
updates the list by inclusions and exclusions.

» Slack variable strategy replaces all the inequality constraints

by equality constraints as gj(x) 4+ x,4+; = 0 with the inclusion
of non-negative slack variables (x,).

264,
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Optlmallty Crlterla Optimality Criteria

Suppose x* is a regular point with
> active inequality constraints: g(*)(x) < 0
> inactive constraints: g{)(x) <0
Columns of Vh(x*) and Vg(®(x*): basis for orthogonal
complement of the tangent plane
Basis of the tangent plane: D =[d; dy -+ dg]
Then, [D Vh(x*) Vg (x*)]: basis of R"
Now, —Vf(x*) is a vector in R".
z
~Vf(x*)=[D Vh(x*) Vg@(x)]| A
u(@
with unique z, X and p(2) for a given V£(x*).

What can you say if x* is a solution to the NLP problem?
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Optlmallty Crlterla Optimality Criteria

Components of V7 (x*) in the tangent plane ‘must be"zero.

z=0 =  —VF(x*) = [Vh)A+[Vgl®)(x*)]u?

For inactive constraints, insisting on u() =0,
* * (a) (* (7) /*l'(a)
~VH) = [VhGA -+ V) T | )

or

| VE(x*) + [Vh(x)IA + [Ve(x)]p = 0|

where g(x) = [ g?(x) } and p = [ pt? ]

g)(x) ()
Notice: g@(x*) =0and u) =0 = pig(x*)=0 Vi, or
nlg(x*) =0.

Now, components in g(x) are free to appear in any order.
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Optlmallty Crlterla Optimality Criteria

Finally, what about the feasible directions iri*thecone?
Answer: Negative gradient —Vf( ) can have no component
towards decreasmgg ( ), i.e. u ) > 0, Vi.

Combining it with ,U,E N = 0,

First order necessary conditions or Karusch-Kuhn-Tucker
(KKT) conditions: If x* is a regular point of the constraints and
a solution to the NLP problem, then there exist Lagrange
multiplier vectors, A and pu, such that

Optimality:  V£(x*) + [Vh(x*)]X + [Vg(x )]u 0, n>0;
Feasibility: h(x*) = g(x*) <0;
Complementarity: Tg(x*) =0

Convex programming problem: Convex objective function f(x)
and convex domain (convex gj(x) and linear hj(x)):

‘ KKT conditions are sufficient as well! ‘
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Optlmallty Crlterla Optimality Criteria

Lagrangian function:
L(x, A, p) = F(x) + ATh(x) + " g(x)
Necessary conditions for a stationary point of the Lagrangian:
ViL=0, V,L=0

Second order conditions
Consider curve z(t) in the tangent plane with z(0) = x*.

2
Do) = Svre) 2]

t=0 t=0
= 2(0)"H(x")z(0) + [VF(x")]"2(0) > 0
Similarly, from h;(z(t)) =0,

2(0)THp, (x)2(0) + [Vhi(x)]T2(0) = 0.
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Optlmallty Crlterla Optimality Criteria

Including contributions from all active constraints,

%f(z(t)) _0 = Z(O)THL(X*)Z(O) + [VXL(X*, A,H)]TZ(O) > 0’

2
where H; (x) = % = H(x) + > AjHp (x) + X2, piHg (x).
First order necessary condition makes the second term vanish!

Second order necessary condition:

The Hessian matrix of the Lagrangian function is positive
semi-definite on the tangent plane M.

Sufficient condition: V,L = 0 and H;(x) positive definite on M.

Restriction of the mapping H;(x*) : R” — R" on subspace M?
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Optimality Criteria Optimality Criteria
Take y € M, operate H;(x*) on it, project the image back to M.
Restricted mapping Lyy : M — M
Question: Matrix representation for Ly, of size (n— m) x (n—m)?
Select local orthonormal basis D € R™("=m) for M.
For arbitrary z € R"™™, mapy =Dz € R" as H,y = H;Dz.
Its component along d;: d,-THLDz
Hence, projection back on M:
Lyz = D"H,Dz,
The (n — m) x (n — m) matrix Lyy = DTH;D: the restriction!

Second order necessary/sufficient condition: Ly p.s.d./p.d.
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Sensitivity
Sensitivity
Suppose original objective and constraint functions as
f(x,p), g(x,p) and h(x,p)

By choosing parameters (p), we arrive at x*. Call it x*(p).
Question: How does f(x*(p),p) depend on p?
Total gradients

Tof('(p).p) = Vo' (p)Vuf(x",p) + V,F(x".p).

Veh(x*(p),p) = Vpx'(p)Vxh(x",p) + V,h(x",p) =0,
and similarly for g(x*(p), p).

In view of VL =0, from KKT conditions,

Tof (x(p),P) = Vo (x".p) + [Voh(x".p)IA + [V,(x". p)]1
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Sensitivity

Sensitivity

Sensitivity to constraints
In particular, in a revised problem, with h(x) =c and g(x) <d,
using p = c,

Vof(x*,p) =0, Voh(x*,p) = —I1 and V,g(x",p)=0.

Vef(x*(p),p) = —A

Similarly, using p = d, we get | V4f(x*(p),p) = —p.

Lagrange multipliers A and p signify costs of pulling the minimum
point in order to satisfy the constraints!

» Equality constraint: both sides infeasible, sign of A; identifies
one side or the other of the hypersurface.

» Inequality constraint: one side is feasible, no cost of pulling
from that side, so u; > 0.
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Duality*

Dual problem:
Reformulation of a problem in terms of the Lagrange multipliers.
Suppose x* as a local minimum for the problem

Duality*

Minimize f(x) subject to h(x) =0,
with Lagrange multiplier (vector) A*.
V£(x*) + [Vh(x*)]A* =0

If H (x*) is positive definite (assumption of local duality), then x*
is also a local minimum of

F(x) = f(x) + X* Th(x).
If we vary A around A*, the minimizer of
L(x,A) = f(x) +ATh(x)

varies continuously with A.
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Duality*
Duality*
In the neighbourhood of A*, define the dual furﬁction
®(A) = min L(x, A) = min[f(x) + ATh(x)].

For a pair {x, A}, the dual solution is feasible if and only
if the primal solution is optimal.

Define x(\) as the local minimizer of L(x, A).

d(A) = L(x(A), A) = F(x(A)) + ATh(x(N\))

First derivative:
VO (A) = Vax(A) Vi L(x(X),A) + h(x(A)) = h(x(X))

For a pair {x, A}, the dual solution is optimal if and only
if the primal solution is feasible.
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Duality*
Duality*

Hessian of the dual function:
H(A) = Vax(A)Vh(x(A))
Differentiating VL(x(X),A) = 0, we have
VAx(AHL(x(A), A) + [Vxh(x(X))]" = 0.
Solving for V x(A) and substituting,
Hi(A) = —[Vh(x(A)] T [HL(x(X). A)] 2 V.h(x(A)).
negative definite!

At A", x(A*) =x*, VO(A") = h(x*) =0, Hg(A") is negative
definite and the dual function is maximized.

| O(NT) = L(x*, A7) = £(x") |
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Duality*

. . . . . Duality*
Consolidation (including all constraints) f

» Assuming local convexity, the dual function:
O(A, 1) = min L(x, A, p) = min[f(x) + ATh(x) + " g(x)].

» Constraints on the dual: VL(x, A, ) = 0, optimality of the
primal.

» Corresponding to inequality constraints of the primal problem,
non-negative variables g in the dual problem.

» First order necessary conditons for the dual optimality:
equivalent to the feasibility of the primal problem.

» The dual function is concave globally!

» Under suitable conditions, ®(X*) = L(x*, X*) = f(x*).

» The Lagrangian L(x, A, i) has a saddle point in the combined

space of primal and dual variables: positive curvature along x
directions and negative curvature along A and p directions.
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Structure of Methods: An Overview*

For a problem of n variables, with m active constraifitsgs: An Overview*
nature and dimension of working spaces

Penalty methods (R"): Minimize the penalized function
q(c,x) = f(x) + cP(x).

Example: P(x) = 3|lh(x)||? + 3[max(0, g(x))]>.
Primal methods (R"~"): Work only in feasible domain, restricting

steps to the tangent plane.
Example: Gradient projection method.

Dual methods (R™): Transform the problem to the space of
Lagrange multipliers and maximize the dual.
Example: Augmented Lagrangian method.

Lagrange methods (R™*"): Solve equations appearing in the KKT

conditions directly.
Example: Sequential quadratic programming.
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Points to note

Structure of Methods: An Overview*

» Constraint qualification
» KKT conditions
» Second order conditions

» Basic ideas for solution strategy

Necessary Exercises: 1,2,3,4,5,6
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O tI . Linear Programming
U Ine Quadratic Programming

Linear and Quadratic Programming Problems*
Linear Programming
Quadratic Programming
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Linear Programming

Linear Programming

Standard form of an LP problem:

Minimize f(x) =c'x,
subjectto Ax=b, x>0; with b > 0.

Preprocessing to cast a problem to the standard form

» Maximization: Minimize the negative function.

» Variables of unrestricted sign: Use two variables.

» Inequality constraints: Use slack/surplus variables.

> Negative RHS: Multiply with —1.
Geometry of an LP problem
Infinite domain: does a minimum exist?

v

» Finite convex polytope: existence guaranteed
» Operating with vertices sufficient as a strategy
>

Extension with slack/surplus variables: original solution space
a subspace in the extented space, x > 0 marking the domain

v

Essence of the non-negativity condition of variables

280,
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Linear Programming pinear Programming

The simplex method
Suppose x € RN, b € RM and A € RM*N fyll-rank, with M < N.

II\/IXB + A,XNB = b/

Basic and non-basic variables: xg € RM and xyg € RN-M
Basic feasible solution: xg = b’ > 0 and xyg =0
At every iteration,

» selection of a non-basic variable to enter the basis

» edge of travel selected based on maximum rate of descent
» no qualifier: current vertex is optimal

> selection of a basic variable to leave the basis

» based on the first constraint becoming active along the edge
» no constraint ahead: function is unbounded

> elementary row operations: new basic feasible solution

Two-phase method: Inclusion of a pre-processing phase with
artificial variables to develop a basic feasible solution
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Linear Programming

Linear Programming

General perspective
LP problem:

Minimize f(x,y) =c¢/x+cjy;
subject to  Ayix + Apy =by, Axx+ Axpy <by, y>0.
Lagrangian:
L(x,y, A\, p,v) =c{x+cly
+ AT (A1x + Ay — by) + T (Azix + Ay —bo) — vy
Optimality conditions:
c+AANFAL =0 and v=c+ALA+ALL>0

Substituting back, optimal function value: f* = ~ATb; — ,u,Tb2
Sensitivity to the constraints: % = —\and g—l’: =—u

Dual problem:
maximize ®(A, ) = —b/ X — bl y;

subject to  AJJA+Allu=-c;, ALA+ALu>—c, p>0.

Notice the symmetry between the primal and dual problems.
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Quadratlc Programmlng Quadratic Programming

A quadratic objective function and linear constraints define
a QP problem.

Equations from the KKT conditions: linear!

Lagrange methods are the natural choice!

With equality constraints only,

1
Minimize  f(x) = ExTQx +c'x, subject to Ax =b.

First order necessary conditions:

PESIEN R

Solution of this linear system yields the complete result!

Caution: This coefficient matrix is indefinite.
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Quadratlc Programmlng Quadratic Programming

Active set method

Minimize f(x) = 3xTQx +c'x;
subject to  Ai;x = by,
A2X < b2.

Start the iterative process from a feasible point.
» Construct active set of constraints as Ax = b.
» From the current point xx, with x = x, + d,

Fx) = 50 )T Qe+ d) + €T xk + )

1
= EdZ—Qdk + (c+ ka)Tdk + f(xk)-

» Since gx = Vr(xx) = ¢ + Qxg, subsidiary quadratic program:
minimize %dkTQdk + ngdk subject to Ad, =0.

» Examining solution dy and Lagrange multipliers, decide to
terminate, proceed or revise the active set.
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Quadratlc Programmlng Quadratic Programming

Linear complementary problem (LCP)

Slack variable strategy with inequality constraints
Minimize %XTQX +c'x, subject to Ax <b, x>0.
KKT conditions: With x,y, u, v > 0,

Qx+c+A"p—v = 0,

Ax+y = b,
XTI/:[,LTy = 0.

Denoting

() (5[] e[S 4])

w—Mz=q, w'z=0.

Find mutually complementary non-negative w and z.
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Quadratlc Programmlng Quadratic Programming

If @ >0, then w =q, z =0 is a solution!

Lemke’s method: artificial variable zo withe =[1 1 1 ... 1]T:

lw—- Mz —-ez=q

With zg = max(—gq;),

w=q+ez >0 andz = 0: basic feasible solution

» Evolution of the basis similar to the simplex method.

» Out of a pair of w and z variables, only one can be there in
any basis.

> At every step, one variable is driven out of the basis and its
partner called in.

» The step driving out zy flags termination.

Handling of equality constraints? Very clumsy!!
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POIntS tO nOte Quadratic Programming

» Fundamental issues and general perspective of the linear
programming problem

» The simplex method

» Quadratic programming

» The active set method
» Lemke’s method via the linear complementary problem

Necessary Exercises: 1,2,3,4,5
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Outline

Interpolation and Approximation
Polynomial Interpolation
Piecewise Polynomial Interpolation
Interpolation of Multivariate Functions
A Note on Approximation of Functions
Modelling of Curves and Surfaces*
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Polynomial Interpolation

Polynomial Interpolation

Problem: To develop an analytical representation.of. a.function
from information at discrete data points.
Purpose

» Evaluation at arbitrary points

» Differentiation and/or integration

» Drawing conclusion regarding the trends or nature
Interpolation: one of the ways of function representation

» sampled data are exactly satisfied

Polynomial: a convenient class of basis functions
For yj = f(x;) for i =0,1,2,--- ,nwith xo < x1 < xp < -+ < Xp,

p(x) = ap + a1x + apx? 4 -+ apx".

Find the coefficients such that p(x;) = f(x;) for i =0,1,2,--- | n.

Values of p(x) for x € [xo, x»] interpolate n+ 1 values
of f(x), an outside estimate is extrapolation.
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Polynomial Interpolation

To determine p(x), solve the linear system

1
1
1

1

X0
X1
X2

Xn

a0
ai
an

an

Interpolation and Approximation

Polynomial Interpolation

f(xn)

Vandermonde matrix: invertible, but typically ill-conditioned!

Invertibility means existence and uniqueness of polynomial p(x).

Two polynomials p;(x) and pa(x) matching the function f(x) at

X0y X1, X2, """

, Xn imply

n-th degree polynomial Ap(x) = p1(x) — p2(x) with

n—+ 1 roots!

Ap=0 = pi(x) = p2(x): p(x) is unique.

290,
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Polynomial Interpolation

Polynomial Interpolation

Lagrange interpolation
Basis functions:

L(x) = Hf:o#k(x = X))
Hj:O,j;ék(Xk = X))

(x —x0)(x = x1) -+ - (x = Xp—1) (X = X41) - - (X — Xn)
(xk = x0) (XK — x1) - - (XK — Xk—1) (X — Xk41) - - (X — Xn)
Interpolating polynomial:

p(x) = aglo(x) + a1l1(x) + aala(x) + - - + aply(x)
At the data points, Li(x;) = dik.

Coefficient matrix identity and a; = f(x;).

Lagrange interpolation formula:
p(x) =Y FOx)Li(x) = Lo(x)f(x0)+L1(x)F (x1)++ - -+ Ln(x)F (xn)
k=0

Existence of p(x) is a trivial consequence!
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Polynomial Interpolation Folvnomial Interpolation

Two interpolation formulae
» one costly to determine, but easy to process

» the other trivial to determine, costly to process

Newton interpolation for an intermediate trade-off:
-1
p(x) = o+ ca(x—x)+a(x—xo)(x—x1)+- -+ [[7g (x —xi)
Hermite interpolation
uses derivatives as well as function values.

Data: f(x;), f'(x;), ---, f("=1(x;) at x = x;, for i = 0,1,--- , m:

» At (m+ 1) points, a total of n4+1 =" n; conditions
Limitations of single-polynomial interpolation

With large number of data points, polynomial degree is high.
» Computational cost and numerical imprecision

» Lack of representative nature due to oscillations
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PIECGWISG POlynomIa | I ntel’p0|at|0n Piecewise Polynomial Interpolation

Piecewise linear interpolation
f(X,') — f(X,'_l)

Xi — Xj—1

f(x) = f(xi-1) + (x = xi-1) for x & [xi1,x]

Handy for many uses with dense data. But, not differentiable.
Piecewise cubic interpolation
With function values and derivatives at (n + 1) points,

n cubic Hermite segments

Data for the j-th segment:

fg-1) = fi1, Fxg) =f, Fx1) =F_y and F(x)=F

Interpolating polynomial:

pj(x) = ap + a1x + axx? + azx®
Coefficients ag, a1, a2, a3: linear combinations of f;_1, f;, 15-’_1, f!

Composite function C1 continuous at knot points.
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Piecewise Polynomial Interpolation  rilevis polynomial interpotation
General formulation through normalization.ofiintervals
X =x1+tx—x-1), t€[0,1]
With g(t) = f(x(1)), g'(t) = (x5 — x-1)f"(x(1));
go="fi-1, & =", 8= 04— x-1)f1 and g1 = (xj — x-1)f}.
Cubic polynomial for the j-th segment:
qj(t) = oo + a1t + at? + ast’

Modular expression:

1 1
t t

qj(t) = [ a1 a2 as3] 2| = (g0 &1 & 1] W 2| = GWT
£3 t3

Packaging data, interpolation type and variable terms separately!
Question: How to supply derivatives? And, why?
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PleCGWISG POlynomIa | I ntel’p0|at|0n Piecewise Polynomial Interpolation

Spline interpolation

‘Spline: a drafting tool to draw a smooth curve through key points.

Data: f; = f(x;), for xo < x1 < xp < +++ < Xp.
If ki = f'(x;), then

pj(x) can be determined in terms of fj_1, f;, kji_1, k;
and pji1(x) in terms of f;, fit1, kj, kj+1.

Then, p/'(x;) = p/,1(x;): a linear equation in kj_1, k; and kjt1

From n — 1 interior knot points,

n — 1 linear equations in derivative values ky, ki, -+, kp.

Prescribing kg and k,, a diagonally dominant tridiagonal system!

A spline is a smooth interpolation, with C? continuity.
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Interpolation of Multivariate Functions

Interpolation of Multivariate Functions
Piecewise bilinear interpolation

Data: f(x,y) over a dense rectangular grid
X = X0, X1,X2," " y Xm andy:y07y17y27,,, . Vn

Rectangular domain: {(x,y) : x0 < x < Xm, Yo < ¥ < yn}

For xi_1 < x < x; and yj_1 <y <,
a a 1
d1,0 41,1 y

With data at four corner points, coefficient matrix determined from
[ 1 xi—1 } [ a0,0 4o,1 ] [ 1 1 ] _ [ fictj-1 fi-1j }
1 X aio a1 Yi-1 Y fij—1 fij

Approximation only C° continuous.
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Interpolation of Multivariate Functions

Interpolation of Multivariate Functions

Alternative local formula through reparametrization

H _ X—=Xj—1 _ Y=Y .
With u = ——and v = YY1 denoting

fii1j-1 =800, fij-1 =810, fic1j=2801 and f;;=g11;

bilinear interpolation:

g(u,v) =[1 u [ Zg’z 3(1)71 } [ i } for u,v € [0,1].

Values at four corner points fix the coefficient matrix as
[040,0 040,1}:[ 10Hgo,o g0,1:||:1—1}
a0 Q11 -1 1 g10 81,1 0 1

Concisely, |g(u,v) =UTWTG; ;WV| in which

[ [ 1 -1 | ficrj1 ficny
o-ufv=[o)w=ls A e[ ]
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Interpolation of Multivariate Functions
Interpolation of Multivariate Functions

Piecewise bicubic interpolation

2 . .
Data: f, %, g—; and Baxafy over grid points

With normalizing parameters u and v,

o) of
)or. 58 =y —y-1)%, and
92 f

82 A
5 = (i —xi)(yj — Yi-1)5xa,

In {(x,y) : xic1 < x < xj,yj-1 <y <yj}or{(uv):uvel01]}
g(u,v) =UTW'G; WV,
withU=[1 v v®> &3]", V=[1 v v? V3], and

) gV(Ovo) gv(O, 1)
) &v(1,0) g(1,1)
) 8w (0,0)  guu(
) gUV(]'JO) gUV(

g(0,0) g(o,
g(1,0) g(1
84(0,0) gu(0,
g4(1,0) gu(l,

_ =

)

GiJ::

—



Mathematical Methods in Engineering and Science Interpolation and Approximation
A Note on Approximation of Functions

A Note on Approximation of Functions
A common strategy of function approximation is to

» express a function as a linear combination of a set of basis
functions (which?), and

» determine coefficients based on some criteria (what?).

Criteria:
Interpolatory approximation: Exact agreement with sampled data

Least square approximation: Minimization of a sum (or integral) of
square errors over sampled data

Minimax approximation: Limiting the largest deviation

Basis functions:

polynomials, sinusoids, orthogonal eigenfunctions or
field-specific heuristic choice
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Points to note

Modelling of Curves and Surfaces*

» Lagrange, Newton and Hermite interpolations
» Piecewise polynomial functions and splines

» Bilinear and bicubic interpolation of bivariate functions

Direct extension to vector functions: curves and surfaces!

Necessary Exercises: 1,2,4,6
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Outline

Basic Methods of Numerical Integration
Newton-Cotes Integration Formulae
Richardson Extrapolation and Romberg Integration
Further Issues
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Newton-Cotes Integration Formulae

J= /ab F(x)dx

Divide [a, b] into n sub-intervals with

Newton-Cotes Integration Formulae

a=xg<x1<Xp<--<Xp_1<Xxp=b,

b—a
i

where x; — xj_1 = h =

J=> " hf(x) = hlF(G) + F(3) + -+ F(x3)]
i=1

Taking x* € [xj_1,x;] as x;_1 and x;, we get summations J; and Js.

Asn— oo (ie. h—0), if Jy and J» approach the same
limit, then function f(x) is integrable over interval [a, b].

A rectangular rule or a one-point rule‘
Question: Which point to take as x;7
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Mathematical Methods in Engineering and Science Basic Methoads of Numerical Integration

Newton-Cotes Integration Formulae

Newton-Cotes Integration Formulae

Mid-point rule
Selecting x* as X; = X’%ﬂ’

X; b n
/ f(x)dx ~ hf(%;) and / F(x)dx ~ hY_ f(%
Xi a i=1

Error analysis: From Taylor's series of f(x) about X;,

303,

/X: F(x)dx = /Xxi [f(?q) PR (x — %) + f/’(i;)g 4. } d

i—1
h3 h®

= (%) + 57" (%) + g () +

third order accurate!
Over the entire domain [a, b],

n 2
[ X)dxwhzf P (5) = B AR (b)),

i=1

for £ € [a, b] (from mean value theorem): second order accurate.
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Newton-Cotes Integration Formulae

Newton-Cotes Integration Formulae

Trapezoidal rule
Approximating function f(x) with a linear interpolation,

/X " AG0d R D1 oa) + F(x)]

and
n—1

/bf( )dxwhll xo)—l—fo, + 5 (0x)

Taylor series expansions about the m|d—p0|nt

h h? h3 h*
f i _ f _i _ —f/ = f// f/// flv _
(xim1) =A%) = 2 F(%) + 5 (%) = g (%) + 5o (%)
= h 1(< h2 1 h3 " (- h4 iv
Fx) = F%)+5F/(R) + T () + 3 F" (%) + gea (%) ++--
h m Ko
= [f(xi-1) + (i)l = hf (%) + 5 (%) + %ij(XI) +-

Recall [% f(x)dx = hf(%) + (R 4 g (%) 4
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Newton-Cotes Integration Formulae

Newton-Cotes Integration Formulae

Error estimate of trapezoidal rule

/ " fx)a = Do) + o] = ey — 2 gy +
s Tt P12 Y ag0 VY

Over an extended domain,

b n—1 2
[ o= E{f<x@>+f(xn)}+zf(x,-) (b2 ()
a i=1

‘The same order of accuracy as the mid-point rule! ‘

Different sources of merit

» Mid-point rule: Use of mid-point leads to symmetric
error-cancellation.

» Trapezoidal rule: Use of end-points allows double utilization
of boundary points in adjacent intervals.

How to use both the merits?
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Newton-Cotes Integration Formulae

Newton-Cotes Integration Formulae

Simpson'’s rules

Divide [a, b] into an even number (n = 2m) of intervals.
Fit a quadratic polynomial over a panel of two intervals.
For this panel of length 2h, two estimates:

M(f) = 2hf(x;) and T(f) = h[f(xi—1) + f(xi+1)]

J = M(f)+ w f(x;) + n” FV(x;) +
N 3 7760 '
2h3 1 h5 iv

Simpson's one-third rule (with error estimate):

/:? f(x)dx = g[f(x,'—l) +4f (%) + F(xi1)] = g_ofiv(xi)

Fifth (not fourth) order accurate!

A four-point rule: Simpson’s three-eighth rule
Still higher order rules NOT advisable!
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Richardson Extrapolation and Rombekg. lot@gratiorombes negration

To determine quantity F
> using a step size h, estimate F(h)
» error terms: hP, h9, h" etc (p < g <)
> F =lims_o F(0)7?
» plot F(h), F(ah), F(a?h) (with a < 1) and extrapolate?
F(h) = F+4ch?+O(h7)
F(ah) = F + c(ah)? + O(h%)
(] F(a®h) = F+c(a?h)P +O(h7)
Eliminate ¢ and determine (better estimates of) F:
F(ah) — aPF(h)

2] F(h) = Y = F+ch? + O(h")
F(a2h) — aPF(ah
Fiah) = SERZCHOD e any+ o)
Still better estimate: [¢] Fo(h) = w =F+ O(h")

‘ Richardson extrapolation ‘
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Richardson Extrapolation and Rombekg. lot@gratiorombes negration
Trapezoidal rule for J = fab f(x)dx: p=2,g=4,r=6etc
T(f)=J+ch®+dh* +eh® + -

With o = % half the sum available for successive levels.

Romberg integration
» Trapezoidal rule with h = H: find Ji;.
» With h = H/2, find Ji5.
2
2= (3)" Jnn A4 —Jn
1-(3)° 3
> If |Jpp — J12| is within tolerance, STOP. Accept J = Jp.
» With h = H/4, find Ji3.

Jop =

- Dz — (1) 16Jo3 —
Jo3 = s Jgz = 2B (21) . 22 _ 6J2?i S22
1-(3) >

> If |J33 — Jps| is within tolerance, STOP with J ~ Js3.
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Further Issues

Further Issues

Featured functions: adaptive quadrature

» With prescribed tolerance ¢, assign quota ¢; = % of
error to every interval [x;_1, x;].

» For each interval, find two estimates of the integral and
estimate the error.

» If error estimate is not within quota, then subdivide.

Function as tabulated data
» Only trapezoidal rule applicable?

» Fit a spline over data points and integrate the segments?

Improper integral: Newton-Cotes closed formulae not applicable!
» Open Newton-Cotes formulae

» Gaussian quadrature

Basic Methoads of Numerical Integration
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Points to note

Further Issues

Definition of an integral and integrability
Closed Newton-Cotes formulae and their error estimates
Richardson extrapolation as a general technique

Romberg integration

vV v.v. v Y

Adaptive quadrature

Necessary Exercises: 1,2,3,4
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O tI . Gaussian Quadrature
U Ine Multiple Integrals

Advanced Topics in Numerical Integration*
Gaussian Quadrature
Multiple Integrals
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Gaussian Quadrature Fousdon Quadrature
A typical quadrature formula: a weighted sum > ; w;f;
» f;: function value at i-th sampled point
» w;: corresponding weight
Newton-Cotes formulae:
» Abscissas (x;'s) of sampling prescribed

» Coefficients or weight values determined to eliminate
dominant error terms

Gaussian quadrature rules:
> no prescription of quadrature points
only the ‘number’ of quadrature points prescribed
locations as well as weights contribute to the accuracy criteria
with n integration points, 2n degrees of freedom
can be made exact for polynomials of degree up to 2n—1

best locations: interior points

vV vV v vV Vv Y

open quadrature rules: can handle integrable singularities
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Gaussian Quadrature

Gaussian Quadrature

Gauss-Legendre quadrature

/_11 FO)dx = wif(x1) + wof (x)

Four variables: Insist that it is exact for 1, x, x2 and x3.

1
Wi+ w = / dx = 2,
-1

1
wix] + woxpy = / xdx = 0,

-1

! 2

wix? + woxs = / x2dx = =

—1 3
1

and wix; + waxy = / x3dx = 0.
-1

1 1
N=—xowmEw =S w=w =1 = —m e =
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Gaussian Quadrature

Gaussian Quadrature

Two-point Gauss-Legendre quadrature formula

1
JA F(dx = F(—L) 4+ F(L)
Exact for any cubic polynomial: parallels Simpson’s rule!
Three-point quadrature rule along similar lines:

/_1f(x)dx: gf (—\E) + gf(0)+ gf< g)

A large number of formulae: Consult mathematical handbooks.
For domain of integration [a, b],

x:a+b+b_at and dx:b_a

2 2 2dt

With scaling and relocation,

/ab Fx)dx = 2 ™ /11 Flx(£)]dt
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Gaussian Quadrature

Gaussian Quadrature

General Framework for n-point formula
f(x): a polynomial of degree 2n —1
p(x): Lagrange polynomial through the n quadrature points

f(x) — p(x): a (2n — 1)-degree polynomial having n of its roots at
the quadrature points

Then, with ¢(x) = (x — x1)(x — x2) - - - (x — xp),

f(x) = p(x) = ¢(x)q(x).

Quotient polynomial: g(x) = 3273 o Qix’
Direct integration:

/_11 f(x)dx = /_11 p(x)dx + /_11

How to make the second term vanish?
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Gaussian Quadrature

Gaussian Quadrature

Choose quadrature points x1, x2, -+, X, S0 that ¢(x) is orthogonal
to all polynomials of degree less than n.

Legendre polynomial

Gauss-Legendre quadrature

[

. Choose Pp(x), Legendre polynomial of degree n, as ¢(x).

N

. Take its roots x1, X2, -+, X, as the quadrature points.

w

. Fit Lagrange polynomial of f(x), using these n points.

p(x) = Li(x)f(x1) + La(x)f(x2) + - - + La(x)f (xn)

n

/_11 f(x)dx = /11 p(x)dx = ; f(x;) /_11 Li(x)dx

Weight values: w; = f_ll Li(x)dx, for j=1,2,---,n
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Gaussian Quadrature Fpussion Quadrature

Weight functions in Gaussian quadrature
What is so great about exact integration of polynomials?

Demand something else: generalization

Exact integration of polynomials times function W (x)
Given weight function W/(x) and number (n) of quadrature points,

work out the locations (x;'s) of the n points and the
corresponding weights (w;’s), so that integral

b n
| Weartad =3 wif(o)
a =1

is exact for an arbitrary polynomial f(x) of degree up to
(2n—1).
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Gaussian Quadrature Fpussion Quadrature

A family of orthogonal polynomials with increasing degree:

quadrature points: roots of n-th member of the family.

For different kinds of functions and different domains,
» Gauss-Chebyshev quadrature
» Gauss-Laguerre quadrature
» Gauss-Hermite quadrature

> ...

Several singular functions and infinite domains can be handled.

A very special case:

For W(x) = 1, Gauss-Legendre quadrature!
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MUltIple Integrals Multiple Integrals

b rg(x)
5:/ / f(x,y) dy dx
a Jgi(x)

&(x) b
= F(x):/ f(x,y) dy and 5:/ F(x)dx
&1(x) a

with complete flexibility of individual quadrature methods.
Double integral on rectangular domain

Two-dimensional version of Simpson’s one-third rule:

1 .1
/ / f(x, y)dxdy
1/

= wof(0,0) + wyi[f(—1,0) + £(1,0) + (0, —1) + £(0, 1)]
+ wo[f(—1,-1) + f(—1,1) + f(1,-1) + f(1,1)]

Exact for bicubic functions: wp = 16/9, wy = 4/9 and wr, = 1/9.
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MUItIple Integrals Multiple Integrals

Monte Carlo integration
/= / F(x)dV
Q

» a simple volume V enclosing the domain Q

Requirements:

> a point classification scheme

Generating random points in V/,

[ fx) ifxeq
F(x) = { 0 otherwise .

v N
/zN;F(x,)

Estimate of / (usually) improves with increasing N.
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POIntS tO nOte Multiple Integrals

> Basic strategy of Gauss-Legendre quadrature
» Formulation of a double integral from fundamental principle

» Monte Carlo integration

Necessary Exercises: 2,5,6

321,
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Outline

Numerical Solution of Ordinary Differential Equations
Single-Step Methods
Practical Implementation of Single-Step Methods
Systems of ODE's
Multi-Step Methods*
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S| ngl e—Step M ethods Single-Step Methods

Initial value problem (IVP) of a first order ODE:

d
2= flxy), ylo) =y

To determine: y(x) for x € [a, b] with xp = a.

Numerical solution: Start from the point (xo, yo).

» y1 =y(x1) =y(xo + h) =7
» Found (x1,y1). Repeat up to x = b.

Information at how many points are used at every step?
» Single-step method: Only the current value

» Multi-step method: History of several recent steps

323,
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H Single-Step Methods
Single-Step Methods
Euler’s method

» At (xn, ¥n), evaluate slope % = f(Xn, Yn)-

» For a small step h,

Yn+1 = Yn + hf(Xn, yn)

Repitition of such steps constructs y(x).
First order truncated Taylor's series:

Expected error: O(h?)

Accumulation over steps
Total error: O(h)

Euler's method is a first order method.

Question: Total error = Sum of errors over the steps?
Answer: No, in general.
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S| ngl e—Step M ethods Single-Step Methods

Initial slope for the entire step: is it a good idea?

T
I
I
I
| I
| |
o X X % % X

Figure: Euler's method Figure: Improved Euler's method

Improved Euler’'s method or Heun's method

Ynr1=Yyn+ hf(XnaYn)
Yn+1 =Yn + g[f(xnaYn) + f(Xn—l—l,)_/n—f—l)]

The order of Heun's method is two.
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S| ngl e—Step M ethods Single-Step Methods

Runge-Kutta methods
Second order method:

ki = hf(Xna)/n)a ky = hf(Xn + ah,y, + ﬁkl)
k= W1k1 + W2k2,
and Xp+1 =Xn+h, Ynr1=vn+k

Force agreement up to the second order.
Yn+1
=Yn+ Wlhf(xna)/n) + th[f(x,,,y,,) + ahfx(xna)/n) + ﬂklfy(xna)/n) + -
=JYn + (Wl + Wz)hf(Xm)/n) + h2W2[an(Xnayn) + ﬂf(xmyn)fy(xmyn)] +
From Taylor's series, using y’ = f(x,y) and y” = £, + ff,,

h2
Y(Xn—f—l) =Yn+ hf(XmYn) + ?[fx(XmYn) + f(Xna)/n)ﬂ/(XmYn)] +--

wi +wy =1, aW2:BW2:% = a:ﬂ:ﬁ, wi=1—w
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S| ngl e—Step M ethods Single-Step Methods

With continuous choice of ws,

a family of second order Runge Kutta (RK2) formulae
Popular form of RK2: with choice wy, =1,

ki = hf(xpy¥n)s ko = hf(xa+ B, yn + &)
Xpt+1 = Xp + h, Yn+1 = Yn t+ ko

Fourth order Runge-Kutta method (RK4):

kl = hf(x,,,y,,)

ko = hf(xo + &, ya + %)
ks = hf(xo + B, ya + 2)
ks = hf(xn + h, yn + k3)

k = %(ki + 2ka + 2k3 + k)

Xn+1 :Xn+h> Yn+1 ZYn+k

327,
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Practical Implementation of Single-StepNEEEOAS: singie-step vetnoas

Question: How to decide whether the error’is within tolerance?
Additional estimates:
» handle to monitor the error
» further efficient algorithms
Runge-Kutta method with adaptive step size
In an interval [x,, x, + h,

y,(,i)l = Ypr1+ ch® + higher order terms

Over two steps of size g

h 5
y,(,i)l = Ypt+1 + 2C <§> + higher order terms

Difference of two estimates:

1 2 15
A= yr(1+)1 - yr(1+)1 ~ 1_6Ch5

@ _ O
. 2 16y —
Best available value: y, ; = y,(,Jr)1 -8 = %
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Practical Implementation of Single-StepNEEEOAS: singie-step vetnoas

Evaluation of a step:

A > e: Step size is too large for accuracy.
Subdivide the interval.

A << e: Step size is inefficient!
Start with a large step size.
Keep subdividing intervals whenever A > .

Fast marching over smooth segments and small steps in
zones featured with rapid changes in y(x).

Runge-Kutta-Fehlberg method

With six function values,
An RK4 formula embedded in an RK5 formula

> two independent estimates and an error estimate!

RKF45 in professional implementations
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Systems of ODE's

Methods for a single first order ODE
directly applicable to a first order vector ODE

Systems of ODE's

A typical IVP with an ODE system:

dy _

dx - f(X7Y)7 y(XO) =Yo

An n-th order ODE: convert into a system of first order ODE'’s
Defining state vector z(x) = [y(x) y'(x) --- y= D)7,

work out % to form the state space equation.

Initial condition: z(xp) = [y(x0) y'(x0) --- y("D(x)]”
A system of higher order ODE's with the highest order derivatives
of orders ny, ny, n3, -+, nk

» Cast into the state space form with the state vector of
dimension n=ny +ny +n3z +---+ ny
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Systems of ODE's
Systems of ODE's

State space formulation is directly applicable 'when

the highest order derivatives can be solved explicitly.
The resulting form of the ODE's: normal system of ODE's

Example:

d’x dy\ [ dx\? dx d?y
X _3 el V=2 +a = 0
a2 ~ <dt> <dt> X(dt) gz

d3 d2 3/2
Xyd—té/_y<d—t)2/> +2x+1 = et

dx dy

dt Y dt dr

With three trivial derivatives z{(t) = zp, z4(t) = z4 and z,(t) = z5
and the other two obtained from the given ODE's,

State vector: z(t) = [x

we get the state space equations as 9 = f(t,z).



Mathematical Methods in Engineering and Science Numerical Solution of Ordinary Differential Equations

Multi-Step Methods*

Multi-Step Methods*

Single-step methods: every step a brand new IVP!
Why not try to capture the trend?

A typical multi-step formula:

Yn+1 = Yn+ hlcof (Xnt1, Yns1) + c1f(Xn, ¥n)
+ C2f(Xn—1>yn—1) + C3f(Xn_27yn_2) + .. ]

Determine coefficients by demanding the exactness for leading
polynomial terms.

Explicit methods: ¢y = 0, evaluation easy, but involves
extrapolation.

Implicit methods: ¢g # 0, difficult to evaluate, but better stability.

Predictor-corrector methods
Example: Adams-Bashforth-Moulton method
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Points to note

Multi-Step Methods*

» Euler's and Runge-Kutta methods
» Step size adaptation

» State space formulation of dynamic systems

Necessary Exercises: 1,2,5,6
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Outline

ODE Solutions: Advanced Issues
Stability Analysis
Implicit Methods
Stiff Differential Equations
Boundary Value Problems
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“1: . Stability Analysi
Stability Analysis Dici Methods
Adaptive RK4 is an extremely successful method.

But, its scope has a limitation.

Focus of explicit methods (such as RK) is accuracy and efficiency.
The issue of stabilty is handled indirectly.
Stabilty of explicit methods
For the ODE system y’ = f(x,y), Euler's method gives
Y1 = Yo + F(xa, ya)h + O(h?).
Taylor's series of the actual solution:
Y(xn+1) = ¥(Xn) + F(xa, y(xa))h + O(H?)

Discrepancy or error:
Apyi = Yny1— Y(Xn+1)
= [Yn - Y(Xn)] + [f(Xm Yn) - f(Xm Y(Xn))]h + O(hZ)

f
N [g—y(xn,ynmn] e O(R) ~ (14 hDA,
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Stability Analysis s Vet
‘ Euler's step magnifies the error by a factor (I'+ hJ). ‘

Using J loosely as the representative Jacobian,
App =~ (l + hJ)nAl.
For stability, Ap11 — 0 as n — oo.

Eigenvalues of (1 + hJ) must fall within the unit circle
|z| = 1. By shift theorem, eigenvalues of h) must fall
inside the unit circle with the centre at zg = —1.

—2Re (A)

|A2
Note: Same result for single ODE w’ = Aw, with complex \.
For second order Runge-Kutta method,

h2 2
Ay = [1 + X+ %} A,

1+h\ <1 = h<

Region of stability in the plane of z = hA: ‘1 +z+ 22—2 <1
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Stability Analysis s Vet

3 /\
7
UNSTABLE /
/ |
o}
o o UNSTABLE
Rz N
R T E
/ “
[
|
B ! I
E [ o
|
" A ;
RKa \ \
N,
2t N \
=5 ) 3 5 Bl 0 T p 3

Re()

Figure: Stability regions of explicit methods

Question: What do these stability regions mean with reference to
the system eigenvalues?
Question: How does the step size adaptation of RK4 operate on a
system with eigenvalues on the left half of complex plane?

‘Step size adaptation tackles instability by its symptom!

337,
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ImplICIt MethOdS Implicit Methods

Backward Euler’'s method

Yo+1 = Yn + F(Xnt1,Ynt1)h
Solve it? Is it worth solving?

Apt1 = Ynr1 — Y(Xnt1)
= [yn - y(Xn)] + h[f(Xn_H_, yn—i-l) - f(Xn-i-la y(Xn-l-l))]
= A,+hJ (Xn+17 Yn-l—l)An-i-l

Notice the flip in the form of this equation.

Api1~(1—hd)A,
Stability: eigenvalues of (I — hJ) outside the unit circle |z| =1
2Re (A)
A2
Absolute stability for a stable ODE, i.e. one with Re (A\) <0

lhA—=1/>1 = h>
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Mathematical Methods in Engineering and Science
Implicit Methods

Implicit Methods

STABLE
STABLE

 UNSTABLE -~

im()

STABLE

Re(n)

Figure: Stability region of backward Euler's method

How to solve g(Yn—i—l) =Y¥nt hf(Xn+17 Yn-i-l) —Yn+1 =0 fory,17

Typical Newton's iteration:

k+1 k _ k k
Yoo =y + (= ha) [y” — Y\ + b (Xn+17YE1+)1>}

Semi-implicit Euler’'s method for local solution:

Yor1 = Yo+ h(1 — h3) " (xps1,¥n)
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Stiff Differential Equations
Stiff Differential Equations

Example: IVP of a mass-spring-damper system:

X+cx+kx=0, x(0)=0, x(0)=1
(a) c=3, k=2 x=et—e2
(b) ¢ =49, k =600: x = e 24 — =25t

[ 05 1 15 2 25 3 £ 4 ) 01 o0z 03 04 05 06 07 08 09 1

(a) Caseof c =3, k=2 (b) Case of ¢ =49, k =600

Figure: Solutions of a mass-spring-damper system: ordinary situations
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Stiff Differential Equations

—2t__ ,—300t
(c) ¢ =302, k=600 x = %5z

Stiff Differential Equations

(c) With RK4 (d) With implicit Euler

Figure: Solutions of a mass-spring-damper system: stiff situation

To solve stiff ODE systems,

use implicit method, preferably with explicit Jacobian.
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Boundary Value Problems

Boundary Value Problems
A paradigm shift from the initial value problems

» A ball is thrown with a particular velocity. What trajectory
does the ball follow?

» How to throw a ball such that it hits a particular window at a
neighbouring house after 15 seconds?

Two-point BVP in ODFE’s:

boundary conditions at two values of the independent
variable

Methods of solution
» Shooting method
» Finite difference (relaxation) method

» Finite element method

342,
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Boundary Value Problems

Boundary Value Problems

Shooting method
follows the strategy to adjust trials to hit a target.

Consider the 2-point BVP

y' =f(x,y), gi(y(a)) =0, ga(y(b)) =0,

where g7 € R™, g, € R™ and ny + np = n.

» Parametrize initial state: y(a) = h(p) with p € R™.

» Guess nyp values of p to define IVP

y =f(x,y), y(a) = h(p).

» Solve this IVP for [a, b] and evaluate y(b).
» Define error vector E(p) = g2(y(b)).
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Boundary Value Problems

Boundary Value Problems

Objective: To solve E(p) =0

From current vector p, ny perturbations as p + e;d: Jacobian ‘3—5

Each Newton'’s step: solution of ny + 1 initial value
problems!

» Computational cost

» Convergence not guaranteed (initial guess important)

Merits of shooting method
» Very few parameters to start

» In many cases, it is found quite efficient.
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Boundary Value Problems

Boundary Value Problems

Finite difference (relaxation) method

adopts a global perspective.

1. Discretize domain [a, b]: grid of points
a=x<x3<x<--<xy_1<xy=b.
Function values y(x;): n(N + 1) unknowns

2. Replace the ODE over intervals by finite difference equations.
Considering mid-points, a typical (vector) FDE:

y,-—y,-_l—hf(xi +2X"—1, Yi +2y"—1> —0, fori=1,23,---,N

nN (scalar) equations

3. Assemble additional n equations from boundary conditions.

4. Starting from a guess solution over the grid, solve this system.
(Sparse Jacobian is an advantage.)

Iterative schemes for solution of systems of linear equations.
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Points to note

Boundary Value Problems

» Numerical stability of ODE solution methods
» Computational cost versus better stability of implicit methods

» Multiscale responses leading to stiffness: failure of explicit
methods

» Implicit methods for stiff systems
» Shooting method for two-point boundary value problems

» Relaxation method for boundary value problems

Necessary Exercises: 1,2,3,4,5
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Outline

Existence and Uniqueness [ heory 347,

Existence and Uniqueness Theory
Well-Posedness of Initial Value Problems
Uniqueness Theorems
Extension to ODE Systems
Closure
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Well-Posedness of Initial Value Problefyg sl Ve Provems

Pierre Simon de Laplace (1749-1827):
"We may regard the present state of the
universe as the effect of its past and the
cause of its future. An intellect which at a
certain moment would know all forces that
set nature in motion, and all positions of all
items of which nature is composed, if this
intellect were also vast enough to submit
these data to analysis, it would embrace in a
single formula the movements of the greatest
bodies of the universe and those of the
tiniest atom; for such an intellect nothing
would be uncertain and the future just like
the past would be present before its eves.”’
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Well-Posedness of Initial Value Probldffigeirss of intie! Value Problems

Initial value problem

Y =f(xy), y(x)=y
From (x,y), the trajectory develops according to y’ = f(x, y).

The new point: (x + 0x,y + f(x, y)dx)
The slope now: f(x + dx,y + f(x,y)ox)

Question: Was the old direction of approach valid?
With dx — 0, directions appropriate, if

lim £(x, y) = f(%,y(X)),

i.e. if f(x,y) is continuous.
If f(x,y) = oo, then y’ = 0o and trajectory is vertical.

For the same value of x, several values of y!

y(x) not a function, unless f(x,y) # oo, i.e. f(x,y) is bounded.
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Well-Posedness of Initial Value Problefi& .o ¥=e Frevies

Peano’s theorem: If f(x,y) is continuous @nd:bounded in a
rectangle R = {(x,y) : |x — xo| < h, |y — yo| < k}, with

If(x,y)| < M < o0, then the IVP y' = f(x,y), y(x0) = yo has a
solution y(x) defined in a neighbourhood of xp.

(%%

o Xo-h %o Xgth X o Xg-h * Xoth %

(a) Mh<=k (b) Mh>=k

Figure: Regions containing the trajectories

Guaranteed neighbourhood:

[0 — 0,%0 + 8], where § = min(h, %) > 0
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Well-Posedness of Initial Value Probldffigeirss of intie! Value Problems

Example:

Function f(x,y) = VT_I undefined at (0, 1).

Premises of existence theorem not satisfied.

But, premises here are sufficient, not necessary!

Result inconclusive.

The IVP has solutions: y(x) =1 + cx for all values of c.
The solution is not unique.

Example: y” =|y|, y(0)=0
Existence theorem guarantees a solution.

But, there are two solutions:
y(x) =0 and y(x) = sgn(x) x?/4.
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Well-Posedness of Initial Value Probldffigeirss of intie! Value Problems

Physical system to mathematical model
» Mathematical solution
> Interpretation about the physical system

Meanings of non-uniqueness of a solution
» Mathematical model admits of extraneous solution(s)?

» Physical system itself can exhibit alternative behaviours?

Indeterminacy of the solution
» Mathematical model of the system is not complete.
The initial value problem is not well-posed.

After existence, next important question:

Uniqueness of a solution
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Well-Posedness of Initial Value Probldffigeirss of intie! Value Problems

Continuous dependence on initial condition

Suppose that for IVP y' = f(x,y), y(x0) = yo,

> unique solution: y;(x).
Applying a small perturbation to the initial condition, the new IVP:
y' =f(xy), y(x0)=yo+e

> unique solution: y»(x)

Question: By how much y>(x) differs from y;(x) for x > xo?

Large difference: solution sensitive to initial condition

» Practically unreliable solution

Well-posed IVP:

An initial value problem is said to be well-posed if there
exists a solution to it, the solution is unique and it
depends continuously on the initial conditions.
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UnlqueneSS TheOremS Uniqueness Theorems
Lipschitz condition:
[f(x,y) = f(x,2)| < Lly — 2|
L: finite positive constant (Lipschitz constant)

Theorem: If f(x,y) is a continuous function satisfying a
Lipschitz condition on a strip
S={(x,y):a<x<b,—cx <y < o}, then for any
point (xo, yo) € S, the initial value problem of
y'=1(x,y), y(x0) = yo is well-posed.

Assume y1(x) and y»(x): solutions of the ODE y’ = f(x,y) with
initial conditions y(xp) = (y1)o and y(x0) = (2)o
Consider E(x) = [y1(x) — y2(x)]*.

E'(x) =201 — y2)"1 — y2) = 2051 — y2)[f(x, 1) — f(x, y2)]
Applying Lipschitz condition,
|E'(x)] <2L(y1 — y2)* = 2LE(x).

Need to consider the case of E'(x) > 0 onlv.
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UnlqueneSS TheOremS Uniqueness Theorems
E'(x) *E'(x)

<2l = dx < 2L(x — xo)
E(x) x E(X)

Integrating, E(x) < E(Xo)ezL(x—xo)_

Hence,
y1(x) = y2(x)| < 7 (y1)g — (y2)ol-

Since x € [a, b], e:=%) s finite.

(do = 0l = = a9~ = T

‘continuous dependence of the solution on initial condition ‘

In particular, (y1)o = (y2)o = Yo = y1(x) = y2(x) V x € [a, b].

The initial value problem is well-posed.
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UnlqueneSS TheOremS Uniqueness Theorems
A weaker theorem (hypotheses are stronger):

Picard’s theorem: If f(x,y) and g—; are continuous and
bounded on a rectangle

R={(x,y) :a<x < b,c<y<d}, then for every
(x0,¥0) € R, the IVP y' = f(x,y), y(x0) =yo has a
unique solution in some neighbourhood |x — xp| < h.

From the mean value theorem,

Fx 1) — F(x,y2) = g—;u,o(n — ).

With Lipschitz constant L = sup ‘g—; ,
Lipschitz condition is satisfied ‘lavishly’!

Note: All these theorems give only sufficient conditions!
Hypotheses of Picard’'s theorem = Lipschitz condition =
Well-posedness = Existence and uniqueness
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Extension to ODE Systems

Extension to ODE Systems

For ODE System

d
Z=f(xy). y(0) = o

» Lipschitz condition:

If(x,y) — f(x, 2)|| < Llly — 2]

» Scalar function E(x) generalized as

E(x) = lly1(x) = y2()I” = (y1 — y2) " (y1 — y2)

> Partial derivative 9£ oy f replaced by the Jacobian A = 8y
» Boundedness to be inferred from the boundedness of its norm

With these generalizations, the formulations work as usual.
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Extension to ODE Systems

IVP of linear first order ODE system

Extension to ODE Systems

y =A(x)y +g(x), y(x0)=yo

Rate function: f(x,y) = A(x)y + g(x)
Continuity and boundedness of the coefficient functions
in A(x) and g(x) are sufficient for well-posedness.

An n-th order linear ordinary differential equation
Y 4P )y 4Py ()2 e+ Py (x)y +Pa(x)y = R(x)

State vector: z=1[y y' y" .- y(n—l)]T
With zj = z3, 2} = z3, - -+, z,,_; = z, and Zz], from the ODE,

> state space equation in the form 2’ = A(x)z + g(x)

Continuity and boundedness of P1(x), Pa(x),- -+ , Pn(x)
and R(x) guarantees well-posedness.
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Closure

Closure
A practical by-product of existence and uniqueness results:

» important results concerning the solutions

A sizeable segment of current research: ill-posed problems
» Dynamics of some nonlinear systems
» Chaos: sensitive dependence on initial conditions

For boundary value problems,

No general criteria for existence and uniqueness

Note: Taking clue from the shooting method, a BVP in ODE's
can be visualized as a complicated root-finding problem!

Multiple solutions or non-existence of solution is no surprise.
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Points to note

Closure

» For a solution of initial value problems, questions of existence,
uniqueness and continuous dependence on initial condition are
of crucial importance.

» These issues pertain to aspects of practical relevance
regarding a physical system and its dynamic simulation

» Lipschitz condition is the tightest (available) criterion for
deciding these questions regarding well-posedness

Necessary Exercises: 1,2
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Outline

First Order Ordinary Differential Equations
Formation of Differential Equations and Their Solutions
Separation of Variables
ODE's with Rational Slope Functions
Some Special ODE'’s
Exact Differential Equations and Reduction to the Exact Form
First Order Linear (Leibnitz) ODE and Associated Forms
Orthogonal Trajectories
Modelling and Simulation
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Formation of Differential Equations alf@:'T h&fr:Sottitiomns ="

A differential equation represents a class of functions:

Example: y(x) = cxk
With % = ckxk~1 and % = ck(k —1)xk=2,

LYY
dx?2 dx dx

A compact ‘intrinsic’ description.

Important terms
» Order and degree of differential equations

» Homogeneous and non-homogeneous ODE's

Solution of a differential equation

» general, particular and singular solutions
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Separation of Variables

First Order Ordinary Ditferential Equations 363,

Separation of Variables

ODE form with separable variables:

v flay) = =500 or i)y = olxax

Solution as quadrature:

/w(y)dy = /qb(x)dx +c.

Separation of variables through substitution
Example:

y' = glax+ By +7)
Substitute v = ax + By + y to arrive at

d d
d—i=a+ﬁg(V)$X=/ a

o+ fg(v) e



Mathematical Methods in Engineering and Science First Order Ordinary Ditferential Equations

ODE's with Rational Slope Functions
ODE's with Rational Slope Functions
I _ fl(va)
f2(X7 y)
If fi and f, are homogeneous functions of n-th degree, then
substitution y = ux separates variables x and wu.

dy _ ¢1(y/x) du  ¢1(u)  dx )
—— =T = Utx,— = = —=_—_T'22"7  du
dx  ¢o(y/x) dx  ¢o(u) x  ¢1(u) — ugo(u)
For y/ = 254249 coordinate shift
dy dY
_ _ r_ 9y _dr
XEX D Y=Yl = T WX

produces
dY . aiX+bY + (alh + b1k + C1)

dX  aX + b Y + (ash+ bk + )
Choose h and k such that

arh+ bik+c =0=ah+ bk + c.

If the svstem is inconsistent then substitute 7y = 2-x - b>v_

364,
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Some Special ODE's

First Order Ordinary Ditferential Equations

Some Special ODE'’s
Clairaut’s equation

y=x/"+f(y)
Substitute p = y’ and differentiate:

B dp ., \dp dp 1N
p=ptx+flp) = L Ix+f(p)]=0

% = 0 means y' = p = m (constant)
» family of straight lines y = mx 4 f(m) as general solution

Singular solution:
x=—f'(p) and y="f(p)—pf'(p)

Singular solution is the envelope of the family of straight
lines that constitute the general solution.
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Some Special ODE's
Second order ODE’s with the function gt dppéaring
explicitly
f(x,y',y") =0
Substitute y’ = p and solve f(x, p, p’) = 0 for p(x).
Second order ODE’s with independent variable not appearing

explicitly
f(y,y.y")=0
Use y’ = p and
dp dpdy dp dp
"
= — = —— = L f ) =
< dyd—Pa = (y7p,pdy) 0

Solve for p(y).
Resulting equation solved through a quadrature as
dy

dy
&:P(Y) = X:XO‘F/W-

366,
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Exact Differential Equations and Redu¢tion ta the Exact For

MdX + Ndy an exact differential nC Exact Differential Equations and Reduction to the E>
O o¢ oM™ TN
M=2" and N=— P e 200
ox " oy’ b dy  Ox

M(x,y)dx + N(x,y)dy = 0 is an exact ODE if %—"y” = 8—’;’
. ) 9
With M(X,y) = 8_2 and N(X,y) — 8_?i’
96 0o

g, =0 = do=0.

‘ Solution: ¢(x,y) = ¢ ‘

Working rule:

b1(x,y) = / M(x,y)dxtgi(y) and da(x.y) = / N(x,y)dy+g2(x)

Degerming gi(y) aand 82(x) frgm P1(x,y) = pa(x,y) = é(x,y).
If 8—"} # 2 but oy (FM) = g(FN)?

‘ F: Integrating factor‘
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First Order Linear (Leibnitz) ODE and:Associated Forms

General first order linear ODE:
First Order Linear (Leibnitz) ODE and Associated Fc

L Py = Q)

‘ Leibnitz equation ‘

For integrating factor F(x),

FOOZ + FOOPG)y = S [F(] = & = FOOP().

Separating variables,

/dF / X)dx = InF:/P(X)dx.

Integrating factor: F(x) = el P(x)dx

yef P(x)dx _ / Q(x)ef P(x)dxdx +C
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First Order Linear (Leibnitz) ODE and:Associated Forms

Bernoulli’s equation
First Order Linear (Leibnitz) ODE and Associated Fc

Y POy = QU
Substitution: z = yl=k 2 = (1 k)y‘k% gives
dz
ot (1 - k)P(x)z = (1 - k)Q(x),

in the Leibnitz form.
Riccati equation

y' = a(x) + b(x)y + c(x)y?
If one solution y;(x) is known, then propose y(x) = y1(x) + z(x).
yi(x) +2'(x) = a(x) + b(x)[y1(x) + 2(x)] + c(x)lyz(x) + z(x)]?
Since y}(x) = a(x) + b(x)(x) + )P,
2'(x) = [b(x) + 2c(x)y1(x)]2(x) + c(x)[z(x)]*,

in the form of Bernoulli’s equation.
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Orthogonal Trajectories

In xy-plane, one-parameter equation ¢(x,y ) =0

Orthogonal Trajectories

a family of curves

Differential equation of the family of curves:

dy
2 _f
dX l(va)

Slope of curves orthogonal to ¢(x, y,c) = 0:

dy 1

& B _fl(X>Y)

Solving this ODE, another family of curves ¢(x,y, k) = 0.

‘ Orthogonal trajectories ‘

If ¢(x,y,c) = 0 represents the potential lines (contours),
then (x,y, k) = 0 will represent the streamlines!
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Points to note

Meaning and solution of ODE's
Separating variables
Exact ODE'’s and integrating factors

Linear (Leibnitz) equations

vV v.v. v Y

Orthogonal families of curves

Necessary Exercises: 1,3,5,7

First Order Ordinary Ditferential Equations

Modelling and Simulation

371,
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Outline

Second Order Linear Homogeneous ODE's
Introduction
Homogeneous Equations with Constant Coefficients
Euler-Cauchy Equation
Theory of the Homogeneous Equations
Basis for Solutions
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I ntrod u Ct|o n Introduction

Second order ODE:
f(x,y,y',y")=0

Special case of a linear (non-homogeneous) ODE:
y'+ P(x)y + Q(x)y = R(x)
Non-homogeneous linear ODE with constant coefficients:
y" +ay’ + by = R(x)
For R(x) = 0, linear homogeneous differential equation
y'+ P(x)y'+ Q(x)y =0
and linear homogeneous ODE with constant coefficients

y"+ay' + by =0

373,
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Homogeneous Equations with ConstahfoCoefficient S coeticens

y'+ay+by=0
Assume
y=e™ = y =xeMandy’ =\
Substitution: (A2 + a\ + b)e™ =0
Auxiliary equation:
N 4+aX+b=0
Solve for A1 and \»:
Solutions: e** and e*?*
Three cases

> Real and distinct (a® > 4b): A1 # o

y(x) = cy1(x) + caya(x) = c1e™* + et
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Homogeneous Equations with ConstahfoCoefficient S coeticens

> Real and equal (a2 =4b): A\ =X =)= -3

only solution in hand: y; = e™

Method to develop another solution?

Ax

» Verify that y» = xe™* is another solution.

y(x) = ayi(x) + caya(x) = (a1 + cox)e™

» Complex conjugate (a® < 4b): Ao =—3+iw
y(x) — Cle(—§+iw)x+c2e(—%—iw)x

ax .. ..
e” 2 [ci(coswx + isinwx) + ca(cos wx — isinwx)]

= e 2[Acoswx + Bsinwx],

withA=c + ¢, B= i(Cl — C2).
> A third form: y(x) = Ce™% cos(wx — )
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Euler-Cauchy Equation

Euler-Cauchy Equation

x%y" + axy' + by =0

Substituting y = x*, auxiliary (or indicial) equation:

kK +(a—-1k+b=0

1. Roots real and distinct [(a — 1) > 4b]:

y(x) = ax + px

ki # ko.

2. Roots real and equal [(a — 1)2 = 4b]: ki = kp = k = — 2L,

y(x) = (a1 + e Inx)x*

3. Roots complex conjugate [(a — 1)? < 4b]:

k1’2 = — =5 :|: .

376,

y(x) = x_%l[A cos(vInx)+Bsin(vInx)] = T COS(V Inx—a).

Alternative approach: substitution

X
x=e' = t=Inx, — =e'=x and
dt

t
& = ;, etc.
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Theory of the Homogeneous Equatiori$

Theory of the Homogeneous Equations

y'+P(x)y + Q(x)y =0
Well-posedness of its IVP:

The initial value problem of the ODE, with arbitrary
initial conditions y(xo) = Yo, y'(x0) = Y1, has a unique
solution, as long as P(x) and Q(x) are continuous in the
interval under question.

At least two linearly independent solutions:
> yi(x): IVP with initial conditions y(xp) =1, y'(x0) =0
> yo(x): IVP with initial conditions y(xp) =0, y'(x0) =1
ayi(x)+ay(x)=0 = a=c=0

At most two linearly independent solutions?
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Theory of the Homogeneous Equatiori$

. . hi f the H E i
Wronskian of two solutions y(x) and yy(x)i ko o oseneens Fauations

yi oy
oy
Solutions y; and y» are linearly dependent, if and only if 3 xg
such that W([y1(xo), y2(x0)] = 0.
> Wlyi(x0),y2(x0)] =0 = W[yi(x),y2(x)] = 0 Vx.

> Wyi(xa),y2(x1)] # 0 = Wlyi(x),y2(x)] # 0 Vx, and y1(x)
and y»(x) are linearly independent solutions.

W(y1,y2) = = y1ys — yovi

Complete solution:

If y1(x) and y»(x) are two linearly independent solutions,
then the general solution is

y(x) = ayi(x) + ey (x).

No third linearly independent solution. No singular solution.
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Theory of the Homogeneous Equatiori$

Theory of the H&mogeneous Equations
Fortidfy/1-

If y1(x) and y»(x) are linearly dependent, then y=
W(y1,y2) = y1ys — yoy1 = yalky1) — (kvi)y1 =0

In particular, ‘ Wy1(x0), y2(x0)] = 0‘
Conversely, if there is a value xg, where

wintolntl =| 0 i3 =0

then for
[ y1(x0) y2(xo) } [ a } 0
yi(x0) y(x) | | @ ’

coefficient matrix is singular.
a

. ] and frame y(x) = c1y1 + cy», satisfying
2

Choose non-zero [

IVP y" + Py'+ Qy =0, y(x) =0, y'(x0) =0.

Therefore, y(x) =0 = ‘yl and y» are linearly dependent.
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Theory of the Homogeneous Equatiori$

Theory of the Homogeneous Equations

Pick a candidate solution Y'(x), choose a point xp, evaluate
functions y1, v», Y and their derivatives at that point, frame

[yl(xo) ¥2(x0) } [ G ] _ [ Y (%) ]

(%) y(x) | [ G Y'(x0)

and ask for solution [ G ]
G

Unique solution for C;, C;. Hence, particular solution
Y (x) = G(x) + Gya(x)
is the “unique” solution of the IVP
Y'+ Py +Qy =0, y(x) = Y(x0), y'(x) = Y'(x)

But, that is the candidate function Y(x)! Hence, Y (x) = y*(x).
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Basis for Solutions

Second Order Linear Homogeneous ODE's

For completely describing the solutions, we need: solutions

two linearly independent solutions.

No guaranteed procedure to identify two basis members!

If one solution y;(x) is available, then to find another?
Reduction of order

Assume the second solution as

y2(x) = u(x)y1(x)

and determine u(x) such that y»(x) satisfies the ODE.

U'yr 420’y + uy) + P(u'yr + uyy) + Quy; = 0

= U'y1 +2u'y; + Pd'y; + u(yy + Py; + Qy1) = 0.

Since y; + Py; + Qy1 = 0, we have

vid” + (2y; + Py1)u’ =0
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Basis for Solutions
DEnOting U, = U, U, + (2% —+ P)U — (. Basis for Solutions

Rearrangement and integration of the reduced equation:

d d
au 12 | pdx=0 = Uy?el P = C =1 (choose).
U "
Then,
ul — U ]' e deX
i
Integrating,

—f ded
u(x) = /yl e X,

and

1
y(x) = Y1(X)/ —ze_fpdxdx.
Yi

Note: The factor u(x) is never constant!
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Basis for Solutions

Function space perspective: By e o
Operator ‘D’ means differentiation, operates on an infinite
dimensional function space as a linear transformation.
» It maps all constant functions to zero.
» It has a one-dimensional null space.

Second derivative or D? is an operator that has a two-dimensional
null space, ¢; + cx, with basis {1, x}.
Examples of composite operators

» (D + a) has a null space ce™?*.

» (xD + a) has a null space cx™2.

A second order linear operator D? + P(x)D + Q(x) possesses a
two-dimensional null space.
» Solution of [D? + P(x)D + Q(x)]y = 0: description of the
null space, or a basis for it..

» Analogous to solution of Ax = 0, i.e. development of a basis
for Null(A).
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Points to note

Basis for Solutions

Second order linear homogeneous ODE's
Wronskian and related results
Solution basis

Reduction of order

vV v.v. v Y

Null space of a differential operator

Necessary Exercises: 1,2,3,7,8
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Outline

Second Order Linear Non-Homogeneous ODE's
Linear ODE’s and Their Solutions
Method of Undetermined Coefficients
Method of Variation of Parameters
Closure

385,
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Second Order Linear Non-Homogeneous ODE's

Llnear ODE’S and Thelr SOlUtIOnS Linear ODE’s and Their Solutions

The Complete Analogy

Table: Linear systems and mappings: algebraic and differential

386,

In ordinary vector space

In infinite-dimensional function space

Ax =b

Y'"+Py'+ Q=R

The system is consistent.

P(x), Q(x), R(x) are continuous.

A solution x*

A solution y,(x)

Alternative solution: X

Alternative solution: y(x)

X — x* satisfies Ax =0,
is in null space of A.

y(x) — yp(x) satisfies y” + Py’ + Qy = 0,
is in null space of D? + P(x)D + Q(x).

Complete solution:
x = X"+ . ci(xg)i

Complete solution:
yp(x) 4+ > ciyi(x)

Methodology:
Find null space of A

Find x* and compose.

i.e. basis members (xg);.

Methodology:
Find null space of D? + P(x)D + Q(x)
i.e. basis members y;(x).
Find yp(x) and compose.
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Llnear ODE’S and Thelr SOlUtIOﬂS Linear ODE’s and Their Solutions

Procedure to solve y” + P(x)y’ + Q(x)y ='R(x)
1. First, solve the corresponding homogeneous equation, obtain a
basis with two solutions and construct

yh(x) = ayi(x) + coya(x).

2. Next, find one particular solution y,(x) of the NHE and
compose the complete solution

y(x) = yn(x) + yp(x) = cy1(x) + caya(x) + yp(x).

3. If some initial or boundary conditions are known, they can be
imposed now to determine ¢; and cp.
Caution: If y; and y» are two solutions of the NHE, then
do not expect cjy1 + oy to satisfy the equation.
Implication of linearity or superposition:

With zero initial conditions, if y; and y» are responses
due to inputs Ri(x) and Ry(x), respectively, then the
response due to input ciR1 + Ry is ciyr + o yo.



Mathematical Methods in Engineering and Science Second Order Linear Non-Homogeneous ODE's

Method of Undetermined CoefficientSummod of nicermined cociicients

y" +ay’ + by = R(x)

» What kind of function to propose as y,(x) if R(x) = x"7?

» And what if R(x) = e**?

> If R(x) = x" + e, i.e. in the form kyRyi(x) + kaRa(x)?
The principle of superposition (linearity)

Table: Candidate solutions for linear non-homogeneous ODE's

388,

RHS function R(x)

Candidate solution y,(x)

Pn(x)

gn(x)

eAX

keAx

COSwWX Or Sinwx

ki coswx + ko sinwx

AX

e coswx or e sinwx

ki e coswx + kpe™ sinwx

pn(X)eAX

Gn (X) e)‘X

pn(x) coswx or pp(x)sinwx

gn(x) cos wx + ry(x) sin wx

pn(x)e* coswx or pp(x)e™ sinwx

qn(x)e™ coswx + rp(x)eM sinwx




Mathematical Methods in Engineering and Science Second Order Linear Non-Homogeneous ODE's 389,

Method of Undetermined CoefficientSummod of nicermined cociicients

Example:

(a) y// - 6y’ 4 5y — e3x

(b) y// _ 5y/ + 6y — e3X

(C) y// o 6y’ 4 9y — e3x
In each case, the first official proposal: y, = ke3x
(a) y(x) = c1&* + e — ¥ /4
(b) y(x) = cr1e® + e+ xe¥
(c) y(x) = c1e® + oxe¥>+ ix2e3
Modification rule

» If the candidate function (ke)‘X, ki coswx + ko sinwx or
k1™ coswx + koe* sinwx) is a solution of the corresponding
HE; with A\, +iw or A= jw (respectively) satisfying the
auxiliary equation; then modify it by multiplying with x.

> In the case of A being a double root, i.e. both e** and xe**
being solutions of the HE, choose y, = kx?e?.
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Method of Variation of Parameters

Method of Variation of Parameters

Solution of the HE:

yh(x) = ayi(x) + cy2(x),

in which ¢; and ¢ are constant ‘parameters’.

For solution of the NHE,

how about ‘variable parameters’?
Propose
Yp(x) = u1(x)y1(x) + v2(x)y2(x)
and force yp(x) to satisfy the ODE.

A single second order ODE in ui(x) and up(x).
We need one more condition to fix them.

390,
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Method of Variation of Parameters

From y, = u1y1 + woy»,

Method of Variation of Parameters

I

Yp = thyr + u1y] + upys + toys.

Condition | ujy1 + uhy>» =0 |gives

I

Yp = t1y] + tays.

Differentiating,

Yp = Uiyl + Upys + unyy + oy
Substitution into the ODE:
uhy1+uaysturyy +uys +P(x)(u1y1+u2ys)+ Q(x) (ury1+uzy2) = R(x)
Rearranging,

uyi+usystur(yr +P(x)y1 +Q(x)y1)+u2(ys +P(x)ya+Q(x)y2) = R(x).

As y1 and y, satisfy the associated HE, | ujy] + ubys = R(x)
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Method of Variation of Parameters

Method of Variation of Parameters

yi oy u | _ [0
i vl R

Since Wronskian is non-zero, this system has unique solution

u’:—ﬂ and u':M
! w 27w

Direct quadrature:

N y2(x)R(x)
Wy1(x), y2(x)]

y1(x)R(x)
Wy1(x), y2(x)]

dx and w(x) =

Ul(X) =

In contrast to the method of undetermined multipliers,
variation of parameters is general. It is applicable for all
continuous functions as P(x), Q(x) and R(x).

dx
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Mathematical Methods in Engineering and Science Second Order Linear Non-Homogeneous ODE's

Points to note

Closure

» Function space perspective of linear ODE's
» Method of undetermined coefficients

» Method of variation of parameters

Necessary Exercises: 1,3,5,6
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Outline

Higher Order Linear ODE's 394,

Higher Order Linear ODE’s
Theory of Linear ODE's
Homogeneous Equations with Constant Coefficients
Non-Homogeneous Equations
Euler-Cauchy Equation of Higher Order
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Mathematical Methods in Engineering and Science
Theory of Linear ODE's

Theory of Linear ODE's

Y4 P )y Py(x)y "2 4+ Pa 1 ()Y +Pa(x)y = R(x)

General solution: y(x) = yn(x) + yp(x), where

> yp(x): a particular solution
» yn(x): general solution of corresponding HE

Y 4Py (x)y D 4Py (x)y T2t Py (x)y +Pa(x)y =
» Yn(X)

o

For the HE, suppose we have n solutions y;(x), y2(x), - -
Assemble the state vectors in matrix

[ »n yo oo Yo oo
1 Yo ot Ya
/! /! /!
Y =| A ¥
—1 —1 —1
I ATV S

Wronskian:
W(y17)’27 Tt 7}’n) = det[Y(X)]
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Theory of Linear ODE's [heory of Linear ODF

> If solutions y1(x), y2(x), - -+, ya(x) of HE are linearly
dependent, then for a non-zero k € R",

S ki) =0 = Y kyP(x)=0 forj=1,2,3,--,(n—1)
i=1 i=1

= [;(X)]k =0 = [Y(x)] is singular
= Wn(x),y2(x), -+, ya(x)] = 0.

» If Wronskian is zero at x = xp, then Y(xp) is singular and a
non-zero k € Null[Y (x)] gives >/, kiyi(x) = 0, implying
y1(x), y2(x), - -+, ya(x) to be linearly dependent.

» Zero Wronskian at some x = xg implies zero Wronskian
everywhere. Non-zero Wronskian at some x = x; ensures
non-zero Wronskian everywhere and the corrseponding
solutions as linearly independent.

» With n linearly independent solutions y1(x), y2(x), - -+, ya(x)
of the HE, we have its general solution y,(x) = >"7_; ¢iyi(x),
acting as the complementary function for the NHE.
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Homogeneous Equations with ConstarfCosfficient S coeticens

Y a2y 4y b ey gy ay =0

With trial solution y = e, the auxiliary equation:

AN+ a A" a2 4. 48, A 4a,=0

Construction of the basis:
1. For every simple real root A =, €7* is a solution.

2. For every simple pair of complex roots A = u + iw,
e* coswx and e**sinwx are linearly independent solutions.
3. For every real root A = v of multiplicity r; €7, xe?*, x%e7*,
-, x™1e7* are all linearly independent solutions.
4. For every complex pair of roots A = u + iw of multiplicity r;
eM* coswx, e* sinwx, xe** coswx, xe**sinwx, - - -,
x"LelX coswx, x"Lel¥ sinwx are the required solutions.
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Non-Homogeneous Equations

Non-Homogeneous Equations

Method of undetermined coefficients
y( 4+ a1y 4 2y (72 a1y + agy = R(x)

Extension of the second order case
Method of variation of parameters
n
Yo(x) = D uilx)yi(x)

i=1

Imposed condition Derivative

S uly() =0 = v = S0 u(yi(x)

2 ui(x)yi(x) =0 = yp( ) = Z,-—l ui(x)yf' (x)
=

S0 u )y (x) =0 ‘" 1(x> S i)y P (x)
Finally, y§"”(x) = S0 ul()y " D (x) + 20y wi(x)y” (x)

:»Z Gy x Z ) [y 4 Py s Pay| = RO
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Non-Homogeneous Equations

Non-Homogeneous Equations

Since each y;(x) is a solution of the HE,

S ux)y" V(%) = R(x).

i=1

Assembling all conditions on u’(x) together,

[Y ()lu'(x) = enR(x).

1_ adjyY
Since Y~ = Jet(Y)"

u'(x) = det[\l( o) [adj Y (x)]enR(x) = 5/(&))

Using cofactors of elements from last row only,
Wi(x)
1) = T R0
with W;(x) = Wronskian evaluated with e, in place of i-th column.

ui(x) = 7W(WX 5)(X) dx

~

[last column of ad}]

u

399,

Y (x)].
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Points to note

Euler-Cauchy Equation of Higher Order

» Wronskian for a higher order ODE
» General theory of linear ODE's
» Variation for parameters for n-th order ODE

Necessary Exercises: 1,3,4

400,
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Outline

Laplace Transforms
Introduction
Basic Properties and Results
Application to Differential Equations
Handling Discontinuities
Convolution
Advanced Issues



Mathematical Methods in Engineering and Science Laplace Transforms

Introduction

Introduction

Classical perspective
» Entire differential equation is known in advance.
» Go for a complete solution first.

» Afterwards, use the initial (or other) conditions.

A practical situation
» You have a plant
> intrinsic dynamic model as well as the starting conditions.

» You may drive the plant with different kinds of inputs on
different occasions.

Implication
» Left-hand side of the ODE and the initial conditions are
known a priori.
» Right-hand side, R(x), changes from task to task.

402,
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IntrOdUCtlon Introduction
Another question: What if R(x) is not continuous?
» When power is switched on or off, what happens?

» If there is a sudden voltage fluctuation, what happens to the
equipment connected to the power line?

Or, does “anything” happen in the immediate future?
“Something” certainly happens. The IVP has a solution!

Laplace transforms provide a tool to find the solution, in
spite of the discontinuity of R(x).

Integral transform:

b
TIF(O](s) = / K(s, t)F(t)dt

s: frequency variable
K(s,t): kernel of the transform

Note: T[f(t)] is a function of s, not t.
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Introduction

Introduction

With kernel function K(s,t) = e, and limitsca =0, b = o0,
Laplace transform

00 b
F(s) = L{f(t)} :/0 e Stf(t)dt = Jim /0 e Stf(t)dt

— 00

When this integral exists, f(t) has its Laplace transform.

Sufficient condition:
» f(t) is piecewise continuous, and

> it is of exponential order, i.e. |f(t)] < Me for some (finite)
M and c.

Inverse Laplace transform:

f(t) = L7HF(s)}

404,
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Basic Properties and Results Batic Properties and Results
Linearity:
L{af(t) + bg(t)} = aL{f(t)} + bL{g(t)}
First shifting property or the frequency shifting rule:
L{e*f(t)} = F(s — a)

Laplace transforms of some elementary functions:

o) —st ] °° 1
L1) = / e_Stdt:[e ] —_
0 —S 0 S

e8] e St 1 [° 1
L(t) = / e *'tdt = [t ] +—/ e Stdt = =,
0 —S |o S Jo S

n!

L(t") = prasy (for positive integer n),
Ma+1) +
L(ta) = Saﬁ (for ac R )
1

s—a

405,
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BaSIC Propertles and ReSU|tS Basic Properties and Results
S . w
L(COSWI’) = m, L(Sln wt) = m,
S . a
L(COSh at) = m, L(smh at) = m,
S—u . w
L(e" coswt) = ———— L(eMtsinwt) = —————.
(st = e rer NI

Laplace transform of derivative:
L) = [ e
0
= [ tF(D)]T + s / e tF(t)dt = sL{F(t)} — £(0)
0

Using this process recursively,
L{FM ()} = s"L{F(t)} — sV F(0) = s F/(0) —- - . — F"=1)(0).

For integral g(t) = [, f(t)dt, g(0) =0, and
L{g'(t)} = sL{g(t)} —g(0) = sL{g(t)} = L{g(t)} = ;L{f(t)}.
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Application to Differential Equations

Application to Differential Equations
Example:
Initial value problem of a linear constant coefficient ODE

y" +ay' + by = r(t), y(0) =Ko, y'(0) = Ky
Laplace transforms of both sides of the ODE:
s?Y(s) = sy(0) —y'(0) + alsY(s) — y(0)] + bY(s) = R(s)
= (s°+as+b)Y(s) = (s+a)Ko + K1 + R(5)
A differential equation in y(t) has been converted to an
algebraic equation in Y (s).
Transfer function: ratio of Laplace transform of output function
y(t) to that of input function r(t), with zero initial conditions
Y(s) 1
Qs) = R(s) s2+as+b
Y(s) = [(s + a)Ko + Ki]Q(s) + Q(s)R(s)
Solution of the given IVP: y(t) = L=1{Y(s)}

(in this case)
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Handling Discontinuities

Unit step function

wen-{

Its Laplace transform:

L{u(t—a)} = / e u

For input f(t

f(t—a)u(t—a)= { f(t—a) if

has its Laplace transform as

L{f(t—a)u(t—a)} =

Laplace Transforms

Handling Discontinuities

t<a
t>a

a (e} e—as
—a)dt = /O~dt+/ e Stdt =
0 a S

) with a time delay,

0 if t<a

t>a

/ e *'f(t — a)dt
a

/ h e S f(1)dr = e L{f(t)}.
0

‘ Second shifting property or the time shifting rule‘
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Laplace Transforms

Handling Discontinuities

Handling Discontinuities

Define
fult — a) 1/k if a<t<a+k
K\t —a = .
0 otherwise
1 1
= —u(ft—a)——u(t—a—k
Lu(t—a) — et~ 2 k)
u(t-a) Y fu(t-a) y f (-2) 5 (t-a)
1 1 1- 1
[} a t [s] a [atk t 0| a atk t 0| a
-1
Y L
k‘ -Lut-ak)
(a) Unit step function (b) Composition (c) Functionf, (d) Dirac’ss - function

Figure: Step and impulse functions

and note that its integral

0 at+k 1
I, = / fi(t — a)dt = / —dt = 1.
0 a k

does not depend on k.
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Handling Discontinuities

Handling Discontinuities

In the limit,
t—a) = ilno fi(t — a)

o if t=a

or, o(t—a) = { 0 otherwise and /0 o(t — a)dt = 1.

‘ Unit impulse function or Dirac’s delta function‘

Lot —a)) = fim [L{u(t — 2)} — L{u(t — 2 K))]

e—3s _ e—(a+k)s
= lim =e
k—0 ks

—as

Through step and impulse functions, Laplace transform
method can handle IVP’s with discontinuous inputs.
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Convolution
A generalized product of two functions

Convolution

h(t) = £(£) + g(t) = /Ot F(r)g(t — ) dr

Laplace transform of the convolution:

/ / g(t—7)drdt = /OOO f(7) /TOO e 'g(t—7)dtdr

t=1 t=t1
T / T i

0 t 0 t
e ——

(a) Original order (b) Changed ord

Figure: Region of integration for L{h(t)}
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Convolution

Convolution

Through substitution t' =t — T,

H(s) = / T)/ <) g(¢) it dr

- /0 f(r)e " [/Ooo e 'g(t)) dt’] dr

| H(s) = F(s)G(s) |
Convolution theorem:
Laplace transform of the convolution integral of two
functions is given by the product of the Laplace
transforms of the two functions.

Utilities:
» To invert Q(s)R(s), one can convolute y(t) = q(t) * r(t).

» In solving some integral equation.
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Points to note

Advanced lIssues

» A paradigm shift in solution of IVP's
» Handling discontinuous input functions
» Extension to ODE systems

» The idea of integral transforms

Necessary Exercises: 1,2,4
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Outline

ODE Systems
Fundamental ldeas
Linear Homogeneous Systems with Constant Coefficients
Linear Non-Homogeneous Systems
Nonlinear Systems



Mathematical Methods in Engineering and Science ODE 5Systems 415,

Fu ndamental Ideas Fundamental Ideas

y = f(t,y)
Solution: a vector function y = h(t)
Autonomous system: y' = f(y)
» Points in y-space where f(y) = 0:

equilibrium points or critical points
System of linear ODE's:
y =A(t)y +g(t)

» autonomous systems if A and g are constant
» homogeneous systems if g(t) =0

» homogeneous constant coefficient systems if A is constant
and g(t) =0
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Fundamental ldeas

Fundamental Ideas

For a homogeneous system,

> Wronskian: W(y1,y2,¥3,-,¥n) = y1 ¥2 ¥3 == ¥nl

If Wronskian is non-zero, then
» Fundamental matrix: Y(t) =[y1 y2 y3 - - ¥,

giving a basis.

General solution:

ORDILORIVOL
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Linear Homogeneous Systems with Cafistant. L oeffigients. con.

y' = Ay
Non-degenerate case: matrix A non-singular
» Origin (y = 0) is the unique equilibrium point.
Attempt y = xeM = y = Ixe't.

Substitution: AxeM = \xeM =

If A is diagonalizable,

A

» n linearly independent solutions y; = x;e*i* corresponding to n

eigenpairs
If A is not diagonalizable?

All x;e*it together will not complete the basis.

Try y = xte#'? Substitution leads to
xelt + pxtett = Axte'' = xe"' =0 = x=0.

Absurd!
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Linear Homogeneous Systems with Cafistant. L oeffigients. con.

Try a linearly independent solution in the form
y = xtelt + uett.

Linear independence here has two implications: in
function space AND in ordinary vector space!

Substitution:
xeMt + uxtelt + puett = Axtett + Auet = (A — ul)u = x

Solve for u, the generalized eigenvector of A.
For Jordan blocks of larger sizes,

1
y1 = xe't| yo = xte"' furett, y3 = Ext2e“t—|—u1te“t+uQe“t etc.

Jordan canonical form (JCF) of A provides a set of basis
functions to describe the complete solution of the ODE
system.
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Linear Non-Homogeneous Systems

Linear Non-Homogeneous Systems

y = Ay +g(t)

Complementary function:

ya(t) = civi(t) = V(D)
i=1
Complete solution:

y(t) = yn(t) +yp(t)

We need to develop one particular solution y,.

Method of undetermined coefficients
Based on g(t), select candidate function Gi(t) and propose

yp = Z uk Gk(t)7
k

vector coefficients (uy) to be determined by substitution.

419,
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Linear Non-Homogeneous Systems

Linear Non-Homogeneous Systems
Method of diagonalization
If A is a diagonalizable constant matrix, with X-1AX =D,

changing variables to z = Xy, such thaty = Xz,

Xz = AXz+g(t) = 2 = X" 'AXz+X'g(t) = Dz+h(t) (say).

Single decoupled Leibnitz equations
zp = dizi + hi(t), k=1,2,3,---  n;
leading to individual solutions

zi(t) = cxedkt + edkt/e_dkthk(t)dt.

After assembling z(t), we reconstruct y = Xz.

420,
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Linear Non-Homogeneous Systems

Linear Non-Homogeneous Systems
Method of variation of parameters
If we can supply a basis Y(t) of the complementary function yu(t),
then we propose

yp(t) = [Y(t)]u(t)
Substitution leads to

Yu+Iu =A)u +g.
Since Y =AY,
W =g, or, v =[)] g
Complete solution:

y(£) = yh +yp = Ve + V] / V] gdt

This method is completely general.
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Points to note

Nonlinear Systems

» Theory of ODE's in terms of vector functions
» Methods to find

» complementary functions in the case of constant coefficients
» particular solutions for all cases

Necessary Exercises: 1

422,
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Outline

Stability of Dynamic Systems
Second Order Linear Systems
Nonlinear Dynamic Systems
Lyapunov Stability Analysis

423,
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Second Order Llnear SyStemS Second Order Linear Systems

A system of two first order linear differential equations:

yi = auy +any
Y, = any1+any
or, y =Ay
Phase: a pair of values of y; and y»
Phase plane: plane of y; and y»
Trajectory: a curve showing the evolution of the system for a
particular initial value problem

Phase portrait: all trajectories together showing the complete
picture of the behaviour of the dynamic system

Allowing only isolated equilibrium points,
» matrix A is non-singular: origin is the only equilibrium point.
Eigenvalues of A:

AN — (a11 + axn)A + (11822 — a12a01) = 0
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Second Order Linear Systems

Characteristic equation:

A —pA+g=0,

Stability of Dynamic Systems
Second Order Linear Systems

with p = (a11 + a2) = A1 + A2 and g = aj1a2 — azan = A2

Discriminant D = p? — 4q and

p P2
1,2 5 5 q

Solution (for diagonalizable A):

y = clxle)‘lt + oxse

Solution for deficient A:

p, VD
2 2
Aot

= cxeM+ c(txy + u)e”
=y = axe+ c(xy + /\u)e)‘t + Mtoxie

At
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Second Order Linear Systems

Second Order Linear Systems Nonlinear Dynamic Systems

Lyapunov Stability Analysis

Y2 Y2 Y2
/KT\ : g yl W Y1
(a) Saddle point (b) Centre (c) Spiral
Y2
Y ]

(d) Improper node (e) Proper node (f) Degenerate not

Figure: Neighbourhood of critical points
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Second Order Linear Systems

Stability of Dynamic Systems

Second Order Linear Systems

Table: Critical points of linear systems

427,

Type Sub-type | Eigenvalues Position in p-g chart | Stability
Saddle pt real, opposite signs g<a0 unstable
Centre pure imaginary g>0,p=0 stable
Spiral complex, both g>0,p#0 stable
non-zero components | D = p?> —4q < 0 if p<O0,
Node real, same sign g>0,p#0,D>0 unstable
improper unequal in magnitude | D >0 if p>0
proper equal, diagonalizable | D=0
degenerate | equal, deficient D=0
. a _ %
spiral c spiral s
{
node e & o2 node
0 p
saddle point
[unsfablg

Figure: Zones of critical points in p-g chart
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NOﬂ | | near Dyn am |C SyStemS Nonlinear Dynamic Systems

Phase plane analysis
» Determine all the critical points.

» Linearize the ODE system around each of them as

y' = J(yo)(y — ¥o)-

» With z =y — yp, analyze each neighbourhood from 2’ = Jz.

» Assemble outcomes of local phase plane analyses.

‘Features’ of a dynamic system are typically captured by
its critical points and their neighbourhoods.

Limit cycles

» isolated closed trajectories (only in nonlinear systems)

Systems with arbitrary dimension of state space?



Mathematical Methods in Engineering and Science Stability of Dynamic Systems

Lyapunov Stability Analysis

Lyapunov Stability Analysis
Important terms
Stability: If yg is a critical point of the dynamic system
y' = f(y) and for every e > 0, 3¢ > 0 such that

lly(to) —yoll <0 = ly(t) —yol <e Vt> to,

then yq is a stable critical point. If, further,
y(t) — yo as t — oo, then yy is said to be
asymptotically stable.

Positive definite function: A function V(y), with V(0) =0, is
called positive definite if

V(y) >0Vy #0.

Lyapunov function: A positive definite function V(y), having
continuous g—)\,/,, with a negative semi-definite rate of
change

V' =[VV(y)]"f(y).

429,
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Lyapunov Stability Analysis

Lyapunov Stability Analysis

Lyapunov's stability criteria:

Theorem: For a system y' = f(y) with the origin as a
critical point, if there exists a Lyapunov function V(y),
then the system is stable at the origin, i.e. the origin is a
stable critical point.

Further, if V'(y) is negative definite, then it is
asymptotically stable.

A generalization of the notion of total energy: negativity of its rate
correspond to trajectories tending to decrease this ‘energy’.

Note: Lyapunov's method becomes particularly important when a
linearized model allows no analysis or when its results are suspect.

Caution: It is a one-way criterion only!
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Points to note

Lyapunov Stability Analysis

Analysis of second order systems
Classification of critical points
Nonlinear systems and local linearization
Phase plane analysis

Examples in physics, engineering, economics,
biological and social systems

v

Lyapunov's method of stability analysis

Necessary Exercises: 1,2,3,4,5
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Outline

Series Solutions and Special Functions
Power Series Method
Frobenius’ Method
Special Functions Defined as Integrals
Special Functions Arising as Solutions of ODE’s
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Power Series Method Power Series Method

Methods to solve an ODE in terms of eleméntary functions:
> restricted in scope

Theory allows study of the properties of solutions!

When elementary methods fail,
» gain knowledge about solutions through properties, and
» for actual evaluation develop infinite series.

Power series:

o
y(x) = Z anx" = ap + a1x + apx® 4+ a3x + agxt + asx® + - -
n=0
or in powers of (x — xp).
A simple exercise:
Try developing power series solutions in the above form

and study their properties for differential equations

7

y'+y=0 and 4x%y" =y.
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Power Series Method Power Series Method

Y+ P(x)y'+ Q(x)y =0
If P(x) and Q(x) are analytic at a point x = xg,
i.e. if they possess convergent series expansions in powers
of (x — xp) with some radius of convergence R,
then the solution is analytic at xp, and a power series solution
y(x) = a0+ a1(x — xo0) + a2(x — X())2 + az(x — X())3 + -

is convergent at least for |[x — xp| < R.

For xp = 0 (without loss of generality), suppose

o

’D(X) = ZPan:po+p1X+p2X2+p3x3_|_...7
n=0
o

Q(X) = anX":qo+q1x+q2x2+q3x3+...7
n=0

and assume y(x) = Y 2% a,x".
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Power Series Method Power Series Method
Differentiation of y(x) = >_7",anx" as

(o] [ee]

Y'(x) = (n+1)apx" and y"(x) =Y (n+2)(n+1)apox"
n=0 n=0
leads to
[o¢] o0 [o¢] n
P(X)y/ = anxn [Z(n + 1)a,,+1x” = Z Z pn—k(k + 1)ak+1x”
n=0 n=0 n=0 k=0
[o¢] o o n
Q(x)y = Z qnx" [Z anx"] = Z Z Gn—karx"
n=0 n=0 n=0 k=0

n n
(n + 2)(/7 + 1)a,,+2 + Z Pn—k(k + 1)ak+1 + Z Gn—kax| x" =C
k=0 k=0

-3

n=0

Recursion formula:

1 n
R B E——— k+1)pa— n—
any2 (n+2)(n+1);[( + 1)pn—kak+1 + Gn—kak]
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FI’ObenIUS' MethOd Frobenius’ Method

For the ODE y” + P(x)y’ + Q(x)y =0, a point x = xg is
ordinary point if P(x) and Q(x) are analytic at x = xg: power
series solution is analytic
singular point if any of the two is non-analytic (singular) at x = x
» regular singularity: (x — xo)P(x) and
(x — x0)?>Q(x) are analytic at the point
» irregular singularity

The case of regular singularity

For xo = 0, with P(x) = 2% and Q(x) = <%

X X

x%y" 4+ xb(x)y’ + c(x)y = 0

in which b(x) and c¢(x) are analytic at the origin.
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FI’ObenIUS' MethOd Frobenius’ Method

Working steps:

1.
2.
3.

Assume the solution in the form y(x) = x" > "2 5 anx”.
Differentiate to get the series expansions for y’(x) and y”(x).

Substitute these series for y(x), y’(x) and y”(x) into the
given ODE and collect coefficients of x", x" 1, x"+2 etc.

Equate the coefficient of x" to zero to obtain an equation in
the index r, called the indicial equation as

r(r—1)+ bor + co = 0;

allowing ag to become arbitrary.

For each solution r, equate other coefficients to obtain a;, ao,
as etc in terms of ag.

Note: The need is to develop two solutions.
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Special Functions Defined as Integrals

Special Functions Defined as Integrals

Gamma function: T'(n) = [7° e *x""!dx, convergent for n > 0.
Recurrence relation (1) =1, T'(n+1) = nl(n)
allows extension of the definition for the entire real
line except for zero and negative integers.

['(n+ 1) = n! for non-negative integers.
(A generalization of the factorial function.)

Beta function: B(m,n) = [} x™ (1 — x)" ldx =
2f7r/2 2m— 19cos2” 1«9 df; m,n> 0.

B(m,n) = B(n,m); B(m,n)= rr(FnL(n"))

Error function: erf (x) = % Iy e
(Area under the normal or Gaussian distribution)
. . . i X t
Sine integral function: Si(x) = [, $2tdt.
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Special Functions Arising as Solutions 6fODE"s

Special Functions Arising as Solutions of ODE's
In the study of some important problems in physics,

some variable-coefficient ODE’s appear recurrently,

defying analytical solution!

Series solutions =- properties and connections
= further problems = further solutions =

Table: Special functions of mathematical physics

Name of the ODE Form of the ODE Resulting functions
Legendre's equation 1 =x%)y" —2xy" + k(k+1)y =0 Legendre functions
Legendre polynomials
Airy’s equation e kzxy =0 Airy functions
Chebyshev's equation 1=y —xy/ + K2y =0 Chebyshev polynomials
Hermite's equation vy —2xy" +2ky =0 Hermite functions
Hermite polynomials
Bessel's equation 2y 4 xy + (X2 — KBy =0 Bessel functions
Neumann functions
Hankel functions
Gauss's hypergeometric x(1 = x)y” +c—(a+b+1)x]y’ —aby =0 Hypergeometric function
equation
Laguerre's equation xy"' + (1L —x)y’ +ky =0 Laguerre polynomials
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Special Functions Arising as Solutions 6fODE"s

Special Functions Arising as Solutions of ODE's

Legendre’s equation

(1—x2)y" —2xy' + k(k+1)y =0
P(x) = —13’;2 and Q(x) = kil::%) are analytic at x = 0 with
radius of convergence R = 1.

x = 0 is an ordinary point and a power series solution
y(x) =302 anx" is convergent at least for |x| < 1.

Apply power series method:

k(k+1
a2 = —%307
k+2) (k-1
n o DY,
k — n)(k 1
and apyo = —( n)(k +n+ )a,, for n > 2.

(n+2)(n+1)

Solution: y(x) = agy1(x) + a1y2(x)
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Special Functions Arising as Solutions 6fODE"s

Special Functions Arising as Solutions of ODE's

Legendre functions

nx) = 1- k(k; D2y k(k—2)(k44|r D(k+3) o
ya(x) = x—(k_lgﬂx%r( —1)(k - 32(|k+2)(k+4) 5

Special significance: non-negative integral values of k
For each k=0,1,2,3,---

one of the series terminates at the term containing x*.

Polynomial solution: valid for the entire real line!

Recurrence relation in reverse:

k(k—1)

k2= "ok — 1)
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Special Functions Arising as Solutions 6fODE"s

Special Functions Arising as Solutions of ODE's

Legendre polynomial
(2k—=1)(2k—3)---3-1

Choosing ay = . ,
Pu(x) = (2k — 1)(2kk!— 3)---3-1
i |k K1) p K(k=D)(k=2)(k—3) a0 _
2(2k — 1) 2-4(2k —1)(2k — 3)

This choice of ay ensures Py(1) = 1 and implies P(—1) = (—1)k.
Initial Legendre polynomials:

Po(X) = 1,
Pi(x) = x,

1
Palx) = 5(3: 1),
1
P3(x) = 5(5X3 — 3x),
1
Pa(x) = 5(35x4 — 30x2 + 3) etc.
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Special Functions Arising as

Series Solutions and Special Functions

Solutions 6£,0DE"s

Special Functions Defined as Integrals

443,

Special Functions Arising as Solutions of ODE's

08

0.6

04

0.2

Pn(x)
o

All roots of a Legendre polynomial are real and they lie in [—1,1].

. . . .
P00
P,)
P30
P,(x)

H P5() /

s P,

i i i ; ; i i i

1 08 -06 -04 -02 0 02 04 06 08

Orthogonality?

Figure: Legendre polynomials
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Special Functions Arising as Solutions 6fODE"s
Special Functions Arising as Solutions of ODE's

Bessel’s equation

X2y// —|—xy' + (X2 _ k2)y =0

x = 0 is a regular singular point.
Frobenius’ method: carrying out the early steps,

(r2—k2)aox’+[(r+1)2—k2]a1xr+1+z[a,,,2+{r2—k2+n(n—|—2r)}a,,]xr+" =0
n=2

Indicial equation: r> —k*>=0= r=+k
With r =k, (r+1)>—k*#0 = a;=0and

an—2

=—— " f > 2.
an n(n+ 2r) orm=
Odd coefficients are zero and
4o a0

dy =

- = tC.
202k +2) T 2 42k 1 2)(2k + &) °F
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Special Functions Arising as Solutions 6fODE"s
Special Functions Arising as Solutions of ODE's
Bessel functions:

Selecting ag = ) and using n = 2m,

1
2FT (k+1
(=1)"

T2k 2mmiT(k+ m+1)

am

Bessel function of the first kind of order k:

00 Xk+2m (—1)m (%)k+2m

Jk(x) = Z(_l)m2k+2mm!r(k F—— - Z miT (k +m+1)

When k is not an integer, J_x(x) completes the basis.

For integer k, J_j(x) = (—1)¥Jx(x), linearly dependent!
Reduction of order can be used to find another solution.
Bessel function of the second kind or Neumann function
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Points to note

Special Functions Arising as Solutions of ODE's

Solution in power series
Ordinary points and singularities
Definition of special functions

Legendre polynomials

vV v.v. v Y

Bessel functions

Necessary Exercises: 2,3,4,5
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Sturm-Liouville Theory
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Preliminary ldeas

Preliminary Ideas

A simple boundary value problem:
y'+2y =0, y(0)=0, y(r)=0
General solution of the ODE:
y(x) = asin(xv/2) + bcos(xV/2)

Condition y(0) =0 = b= 0. Hence, y(x) = asin(xv/2).
Then, y(7) =0 = a=0. Only solution is y(x) = 0.

Now, consider the BVP

y"+4y =0, y(0)=0, y(m)=0.

The same steps give y(x) = asin(2x), with arbitrary value of a.

Infinite number of non-trivial solutions!
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Preliminary ldeas

Preliminary Ideas

Boundary value problems as eigenvalue problems
Explore the possible solutions of the BVP

y'+ky =0, y(0)=0, y(r)=0.

» With k < 0, no hope for a non-trivial solution. Consider

k=1v2>0.
» Solutions: y = asin(vx), only for specific values of v (or k):
v=0,41,42,43,---; i.e. k=0,1,4,9,---
Question:

» For what values of k (eigenvalues), does the given BVP
possess non-trivial solutions, and
» what are the corresponding solutions (eigenfunctions), up to
arbitrary scalar multiples?
Analogous to the algebraic eigenvalue problem Av = \v!
Analogy of a Hermitian matrix: self-adjoint differential operator.
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Preliminary ldeas
Consider the ODE y” + P(x)y’ + Q(x)y = 0.
Question:
Is it possible to find functions F(x) and G(x) such that

Preliminary Ideas

FOy" + FO)P(x)y" + F(x)Q(x)y
gets reduced to the derivative of F(x)y' + G(x)y?
Comparing with
IRy + Gx)y] = Fy" + [F/() + Gl + G(x)y,
F'(x)+ G(x) = F(x)P(x) and G'(x) = F(x)Q(x).
Elimination of G(x):
F'(x) = POOF'(x) + [Q(x) = P'(x)]F(x) = 0

This is the adjoint of the original ODE.
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Preliminary ldeas
The adjoint ODE
» The adjoint of the ODE y” + P(x)y’ + Q(x)y =0 is

Preliminary Ideas

F" + PlF/ + @Q1F =0,

where Pi = —P and Q; = Q — P'.
» Then, the adjoint of F”/ + P1F' + @Q1F =0'is

" + P2 + Qup =0,

where P, = —P; = P and
Q=Q-P=Q-P - (-P)=Q
The adjoint of the adjoint of a second order linear
homogeneous equation is the original equation itself.

» When is an ODE its own adjoint?
» y" + P(x)y’ + Q(x)y = 0 is self-adjoint only in the trivial case
of P(x) = 0.
» What about F(x)y” + F(x)P(x)y’ + F(x)Q(x)y = 07
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Prellmlnary Ideas Preliminary Ideas

Second order self-adjoint ODE
Question: What is the adjoint of Fy” + FPy' + FQy = 0?
Rephrased question: What is the ODE that ¢(x) has to satisfy if

OFY" + OFPY + 6FQy = 0 [6Fy + £()y]?
Comparing terms,

I (0F) +£(x) = 9P and €(x) = 0FQ.
Eliminating £(x), we have &5 (¢F) + ¢FQ = &(¢FP).

Fo" +2F ¢ + F'¢+ FQp = FP¢' + (FP)'¢
= F¢" + (2F — FP)¢' + [F" — (FP)' + FQ] ¢ =0

This is the same as the original ODE, when | F'(x) = F(x)P(x)
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Prellmlnary Ideas Preliminary Ideas

Casting a given ODE into the self-adjoint form:

Equation y" 4+ P(x)y’ + Q(x)y = 0 is converted to the

self-adjoint form through the multiplication of
F(x) = el P,

General form of self-adjoint equations:

ZIFGYT+ Ry =0

Working rules:

» To determine whether a given ODE is in the self-adjoint form,
check whether the coefficient of y’ is the derivative of the
coefficient of y”.

» To convert an ODE into the self-adjoint form, first obtain the
equation in normal form by dividing with the coefficient of y”.
If the coefficient of y’ now is P(x), then next multiply the
resulting equation with el Pdx.
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Stu I’m-LIOUVI | |e PI’OblemS Sturm-Liouville Problems

Sturm-Liouville equation

[r()y'T + [a(x) + Ap(x)ly =0,

where p, g, r and r’ are continuous on [a, b], with p(x) > 0 on
[a, b] and r(x) > 0 on (a, b).
With different boundary conditions,
Regular S-L problem:
ary(a) + axy’'(a) =0 and byy(b) + bay'(b) =0,
vectors [a; ao]” and [by by]T being non-zero.
Periodic S-L problem: With r(a) = r(b),
y(a) = y(b) and y'(a) = y'(b).
Singular S-L problem: If r(a) = 0, no boundary condition is
needed at x = a. If r(b) = 0, no boundary condition
is needed at x = b.
(We just look for bounded solutions over [a, b].)
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St urm- LIO UVI | |e P ro b | ems Sturm-Liouville Problems
Orthogonality of eigenfunctions

Theorem: If y,(x) and yn(x) are eigenfunctions
(solutions) of a Sturm-Liouville problem corresponding to
distinct eigenvalues A\, and \, respectively, then

b
s yn) = / P(x)Ym(x)yn(x)dx = 0,

i.e. they are orthogonal with respect to the weight
function p(x).

From the hypothesis,
(ry,’n)’ + (q + )\mp))/m =0 = (q + )\mp)YmYn = _(ryr/n)/Yn
(ry,’7)/—|— (q+)\np)Yn =0 = (q‘i')\np)YmYn = —(f)/,/,)/ym
Subtracting,
Am = An)pymyn = (v0) Ym + (V)i — (rvm)yn — (rv}) ¥
/
= [r(YmyYn — Ynym)] -
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Sturm-Liouville Problems
Integrating both sides,

b
O = An) / P(X)ym(X)yn(x)dx
= H(B)Ym(B)Y(B) — ya(B)Y(B)] — (@) ym(2)¥4(2) — ya(@)yi(a)]

> In a regular S-L problem, from the boundary condition at
x = a, the homogeneous system
[ ym(a)  ym(a) } [ a1

yn(a) yn(a) | | 2

Therefore, ym(2)74(a) — ya(a)y}y(a) = 0.
Similarly, ym(b)yn(b) — yn(b)ym(b) = 0.

» In a singular S-L problem, zero value of r(x) at a boundary
makes the corresponding term vanish even without a BC.

» In a periodic S-L problem, the two terms cancel out together.

Since Ay # Ap, in all cases,

b
/a P()Ym(X)ya(x)x = 0.

Sturm-Liouville Problems

0 .. )
= 0 has non-trivial solutions.
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St urm- L 1OUVI | |e P ro b | ems Sturm-Liouville Problems

Example: Legendre polynomials over [—1,1]
Legendre's equation

%[(1 —x°)y]+k(k+1)y =0

is self-adjoint and defines a singular Sturm Liouville problem over
[—1,1] with p(x) =1, q(x) =0, r(x) =1 — x? and A = k(k + 1).

1
(m—n)(m+n+1) /_1 Pon(x)Pn(x)dx = [(1=x?)(PmP,—PnP.)] 1 =0

From orthogonal decompositions 1 = Py(x), x = Pi(x),

1 1 2 1
X = §(3X2—1)+§ :§P2(X)+§P0(X)v
1 3 2 3
x3 = §(5X3 —3x) + g% = EP3(X) + gPl(x),
8 4 1
4 — R _ _ .
= 3 Pa(x) + 7Pz(x) + 5Po(x) ete;

Pk(x) is orthogonal to all polynomials of degree less than k.
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Sturm-Liouville Problems Sturm-Liouville Problems
Real eigenvalues
Eigenvalues of a Sturm-Liouville problem are real.

Let eigenvalue A = p + iv and eigenfunction y(x) = u(x) + iv(x).
Substitution leads to

[r(d" + V)] + g+ (u+ iv)p](u+ iv) = 0.
Separation of real and imaginary parts:
[rd') + (g + pp)u —vpv =0 = vpv® = [r/]'v+ (q + pp)uv
V'] + (qg+pp)v +vpu=0 = vpu’=—[rv']'u—(q+ pp)uv
Adding together,

vp(u?+v?) =[] v+ [V — [V — [ u = — [r(w/ — vu')}/

Integration and application of boundary conditions leads to
b
v / p()[t2(x) + v2(x)]dx = .

‘I/:Oand)\:,u‘
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Eigenfunction Expansions

Eigenfunction Expansions

Eigenfunctions of Sturm-Liouville problems:

convenient and powerful instruments to represent and
manipulate fairly general classes of functions

{Yo0,y1,¥2,y3, -+ }: a family of continuous functions over [a, b],
mutually orthogonal with respect to p(x).

Representation of a function f(x) on [a, b]:

F(x) =D amym(x) = aoyo(x) + ary1(x) + azy2(x) + asys(x) + - -
m=0

‘ Generalized Fourier series ‘
Analogous to the representation of a vector as a linear combination
of a set of mutually orthogonal vectors.

Question: How to determine the coefficients (a,)?
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Eigenfunction Expansions

Eigenfunction Expansions

Inner product:

b
(Fym) = / p(x)F (x)yn(x)dx

b >
_ / S [2mp()Ym(x)ya(dx = 3 am(ym vn) = aallyal?

||yn||_ }/na)/n \// yn

f
Fourier coefficients: a, = hy’y”
n

Normalized eigenfunctions:

where

. )’m(x)
Pm0) = TG

Generalized Fourier series (in orthonormal basis):

= Z Cm®m(x) = codo(x)+ c1¢1(x) + cada(x) + c383(x) +
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Eigenfunction Expansions

Eigenfunction Expansions

In terms of a finite number of members of the family {¢x(x)},

N
O (x) = ) ambm(x) = aogo(x)+a1d1(x)+o2da(x)+ - +andn(x).
m=0

Error

b N 2
E= ”f - ¢NH2 = / p(X) [f(x) - Z am¢m(x)] dx
a m=0

Error is minimized when

b N
gf = / 2p(x) [f (x) - Zamebm(x)] [~ 6n(x)]dx = 0
n a o

b b
= [ anp(diae = [ plf)s (e

best approximation in the mean or least square approximation
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Eigenfunction Expansions

Eigenfunction Expansions

Using the Fourier coefficients, error

— (F, ) 2chf¢n Z 2(ns 6n) = 1P~ 2Zc+ZC
N
E=|fP-) >0
n=0

Bessel’s inequality:

N b
S = [ par()ds
n=0 a
Partial sum
k
= Z am¢m(x)
m=0

Question: Does the sequence of {s,} converge?
Answer: The bound in Bessel's inequality ensures convergence.
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Eigenfunction Expansions

Eigenfunction Expansions

Question: Does it converge to ?

b
kh—>n;o/a p(x)[sk(x) — f(x)]?dx = 0?

Answer: Depends on the basis used.
Convergence in the mean or mean-square convergence:

An orthonormal set of functions {¢x(x)} on an interval
a < x < b is said to be complete in a class of functions,
or to form a basis for it, if the corresponding generalized
Fourier series for a function converges in the mean to the
function, for every function belonging to that class.

y . H . oo 2 _ 2
Parseval’s identity: >~ c; = ||f||
Eigenfunction expansion: generalized Fourier series in terms of
eigenfunctions of a Sturm-Liouville problem

» convergent for continuous functions with piecewise continuous
derivatives, i.e. they form a basis for this class.
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Points to note

Eigenfunction Expansions

Eigenvalue problems in ODE’s
Self-adjoint differential operators
Sturm-Liouville problems

Orthogonal eigenfunctions

vV v.v. v Y

Eigenfunction expansions

Necessary Exercises: 1,2,4,5
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Basic Theory of Fourier Series
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Fourier Series and Integrals
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Basic Theory of Fourier Series
With g(x) = 0 and p(x) = r(x) = 1, periodic S-L problem:

Y+ Ay =0, y(-L)=y(L), y'(-L)=y'(L)

Eigenfunctions 1, cos L, sin L, cos 27er, sin 27er,

constitute an orthogonal basis for representing functions.
For a periodic function f(x) of period 2L, we propose

Basic Theory of Fourier Series

[ee]
nmx . nNTXx
f(x) =ao + z:l (ancos - + b, sin T)
n=

and determine the Fourier coefficients from Euler formulae

1 L
ap = ﬂ f(X)dxj
1 [t Lot
am = I /_L f(x) cos ?dx and b, = T /_L F(x) sin mzrxdx.

Question: Does the series converge?
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Bas|c Theory Of Fourler SerleS Basic Theory of Fourier Series

Dirichlet’s conditions:
If f(x) and its derivative are piecewise continuous on
[—L, L] and are periodic with a period 2L, then the series
converges to the mean % of one-sided limits, at
all points.

‘ Fourier series ‘
Note: The interval of integration can be [xg, xo + 2L] for any xp.

» It is valid to integrate the Fourier series term by term.

» The Fourier series uniformly converges to f(x) over an
interval on which f(x) is continuous. At a jump discontinuity,
convergence to % is not uniform. Mismatch peak

shifts with inclusion of more terms (Gibb's phenomenon).

» Term-by-term differentiation of the Fourier series at a point
requires f(x) to be smooth at that point.
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Mathematical Methods in Engineering and Science
Basic Theory of Fourier Series

Basic Theory of Fourier Series
Multiplying the Fourier series with f(x),

nmx
F2(x )—aofx)+2[an cosT+b f(x)smT

Parseval’s identity:

= a3+ - Za +b2)—i/ £2(x)dx

The Fourier series representation is complete.
» A periodic function f(x) is composed of its mean value and
several sinusoidal components, or harmonics.
» Fourier coefficients are corresponding amplitudes.
» Parseval's identity is simply a statement on energy balance!

Bessel’s inequality
A 1
2 2y < L iF 2
> @+ < o)l

1
3(2) + 5
n=1
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EXtenSIonS |n Appl |Cat|0n Extensions in Application

Original spirit of Fouries series
> representation of periodic functions over (—o0, 00).
Question: What about a function f(x) defined only on [—L, L]?
Answer: Extend the function as
F(x)=f(x) for —L<x<L, and F(x+2L)= F(x).

Fourier series of F(x) acts as the Fourier series representation of
f(x) in its own domain.
In Euler formulae, notice that b,,, = 0 for an even function.

The Fourier series of an even function is a Fourier
cosine series

x)—ao—I—Za,,cos—,

where ag = %foL f(x)dx and a,= %fOL f(x) cos "> dx.

Similarly, for an odd function, Fourier sine series.
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EXtenSIonS |n Appl |Cat|0n Extensions in Application

Over [0, L], sometimes we need a series of sine terms only, or
cosine terms only!

) f(x)

(a) Function over(L ) (b) Even periodic extension

f{x)

(c) Odd periodic extension

Figure: Periodic extensions for cosine and sine series
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EXtenSIonS n Appl |Cat|0n Extensions in Application
Half-range expansions

» For Fourier cosine series of a function f(x) over [0, L], even
periodic extension:

[ f(x) for 0<x<IL, B
fe(x) = { f—x) for —L<x<0, and fo(x+2L) = f(x)

» For Fourier sine series of a function f(x) over [0, L], odd
periodic extension:

| f(x) for 0<x<UL, _
o) = { —f(—x) for —L<x<0, and  f(x+2L) = £(x)
To develop the Fourier series of a function, which is available as a
set of tabulated values or a black-box library routine,
integrals in the Euler formulae are evaluated numerically.
Important: Fourier series representation is richer and more

powerful compared to interpolatory or least square approximation
in many contexts.
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Fourier Integrals

Fourier Integrals
Question: How to apply the idea of Fourier series to a
non-periodic function over an infinite domain?
Answer: Magnify a single period to an infinite length.

Fourier series of function f;(x) of period 2L:

fri(x) =ao+ Z(an oS ppx + by sin ppx),
n=1

I77T

where p, = ZF is the frequency of the n-th harmonic.

Inserting the expressions for the Fourier coefficients,

1 L
fi(x) = o | fL(x)dx

L L
Z[cospn / fL(v)cosp,,vdv—i-sinp,,x/ fL(v)sinppvdv| Ap,

where Ap = ppy1—pn = T.
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Fourier Integrals

Fourier Integrals

In the limit (if it exists), as L — oo, Ap — 0,

1 ] o] o
f(x) = —/ [cospx/ f(v)cos pv dv + sin px/ f(v)sin pv dv} dr
0

T —00 —0o0

Fourier integral of f(x):
1) = [ 1A(p) cos pe + B(p)sin pl
0

where amplitude functions

A(p) = —/OO f(v)cospvdv and B(p) = %/OO f(v)sin pv dv

T J_co —00

are defined for a continuous frequency variable p.

/ / v) cos p(x — v)dv dp.

In phase angle form,
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Fourier Integrals

i Fourier Integrals
e—19

in the phase angle form,

2 / / [elp(x v) + e—/p X—v ]dV dp.
T

With substitution p = —q,

/ / e P=V)dy dp = / / f(v)e1=")dv dg.

Complex form of Fourier integral

1 o0 o i o0 )
:%/ / f(v)e’P(X_")dvdp:/ C(p)e'”dp,

in which the complex Fourier integral coefficient is

Using cosf =

C(p) = %/ f(v)e P dv.
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Points to note

Fourier Integrals

» Fourier series arising out of a Sturm-Liouville problem
» A versatile tool for function representation

» Fourier integral as the limiting case of Fourier series

Necessary Exercises: 1,3,6,8
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Fourier Transforms
Definition and Fundamental Properties
Important Results on Fourier Transforms
Discrete Fourier Transform

Fourier Transforms
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Defl n|t|on and Fundamenta| Propertié)gﬁnition and Fundamental Properties

Complex form of the Fourier integral:

t)—\/%/ [\/%/ F(v)e ’W"dv] " iy

Composition of an infinite number of functions in the
iwt . . . .
form \6/—27 over a continuous distribution of frequency w.

Fourier transform: Amplitude of a frequency component:

F(f) = f(w) t)e Midt

1 o0
= — f
V 27'(' \/;oo (
Function of the frequency variable.

Inverse Fourier transform
1

FYF) = (1) = E/_OO F(w)e™ dw

recovers the original function.
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Defl n|t|on and Fundamenta| Propertié)gfinition and Fundamental Properties

Example: Fourier transform of f(t) =17
Let us find out the inverse Fourier transform of f(w) = kd(w).

k
t) = ké(w)e™ dw = —
fB) = \/ / Vo
F(1) = v2mé(w)
Linearity of Fourier transforms:

Flafi(t) + 6h(t)} = ah(w) + Bh(w)

Scaling:

F{f(at)} = %? (g) and F1 {IA‘ (g)} = |a|f(at)

Shifting rules:

F{f(t—to)} e._"WtO]-'{f(t)}
FHIw—wo)} = eMiFLi(w))
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Important Results on Fourier Transforfiisn: Resis on Fourier Transtorms

Fourier transform of the derivative of a function:

If £(t) is continuous in every interval and f'(t) is piecewise
continuous, [ |f(t)|dt converges and f(t) approaches zero as
t — +oo, then

FIF} = o= / F(t)e ™ dt

1 oo 1 o0 .
= —— [f(t)e ™ — —/ —iw)f(t)e "tdt
T e~ | (imr(e)
= iwf(w).
Alternatively, differentiating the inverse Fourier transform,

trn = £ e

E /_ ¥ [F(w)e™ | dw = F~ {iw(w)}.
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Important Results on Fourier Transforfiisn: Resis on Fourier Transtorms

Under appropriate premises,

A~

F{"(t)} = (iw)?*F(w) = —w?F(w).

In general, F{f("(t)} = (iw)"F(w).
Fourier transform of an integral:

If f(t) is piecewise continuous on every interval,
[ |f(t)|dt converges and f(0) = 0, then

f{/_; f(T)dT} _ %?(W).

Derivative of a Fourier transform (with respect to the frequency

variable):
n

?(W)7

Fley =i

Wn

if £(t) is piecewise continuous and [ [t"f(t)|dt converges.
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Important Results on Fourier Transforfiisn: reuts on Fouier Transtorms

Convolution of two functions:

o0

h(t):f(t)*g(t):/ F(r)g(t — 7)dr

—00

- J%?/i /_Z f(r)g(t — 7)e ™ drdt
_ sz /oo f(r)e ™7 [/OO g(t— T)e_iw(t_T)dt:| dr
- /_Z f(r)e ™ [\/_/ g(t")e ™t dt} dr

Convolution theorem for Fourier transforms:

h(w) = vorf(w)g(w)
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Important Results on Fourier Transforfiisn: Resis on Fourier Transtorms

Conjugate of the Fourier transform:

(W)= = / et dt

Inner product of F(w) and &(w):

| Fwawde = [~ [ red aww
= / £ t)[\/_/ ’Wtdw} dt
S RGO

Parseval’s identity: For g(t) = f(t) in the above,

| liwipaw = [ rceypet.

equating the total energy content of the frequency spectrum of a
wave or a signal to the total energy flow over time.
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Discrete Fourier Transform

Discrete Fourier Transform

Consider a signal f(t) from actual measurement or sampling.
We want to analyze its amplitude spectrum (versus frequency).

For the FT, how to evaluate the integral over (—oo, 0)?
Windowing: Sample the signal f(t) over a finite interval.

A window function:

() = 1 fora<t<b
W)=Y 0 otherwise

Actual processing takes place on the windowed function 7(t)g(t).

Next question: Do we need to evaluate the amplitude for all
w € (—00,00)7
Most useful signals are particularly rich only in their own
characteristic frequency bands.

Decide on an expected frequency band, say [—w,, w.].
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Discrete Fourier Transform

Discrete Fourier Transform

Time step for sampling?
With N sampling over [a, b),

weA <,

data being collected at t = a,a+ A,a+2A,--- ;a+ (N — 1)A,
with NA = b — a.

Nyquist critical frequency ‘

Note the duality.

» Decision of sampling rate A determines the band of frequency
content that can be accommodated.

» Decision of the interval [a, b) dictates how finely the
frequency spectrum can be developed.
Shannon’s sampling theorem

A band-limited signal can be reconstructed from a finite
number of samples.
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Discrete Fourier Transform

Discrete Fourier Transform

With discrete data at t,y = kA for k =0,1,2,3,--- /N —1,

f(w) = \/% [mﬂ fi(t),

where m; = e WA and [mj’-‘] is an N x N matrix.
A similar discrete version of inverse Fourier transform.

Reconstruction: a trigonometric interpolation of sampled data.

» Structure of Fourier and inverse Fourier transforms reduces the
problem with a system of linear equations [O(N3) operations]
to that of a matrix-vector multiplication [O(N?) operations].

» Structure of matrix [mﬂ with patterns of redundancies,

opens up a trick to reduce it further to O(N log N) operations.

Cooley-Tuckey algorithm:
fast Fourier transform (FFT) ‘

485,
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Discrete Fourier Transform : _
DFT representation reliable only if the incor[r)1lsicr;eée Fsoiug?;raTIrari];fo;%ally
band-limited in the interval [—w, w].
Frequencies beyond [—w¢, w,] distort the spectrum near w = £w,

by folding back.
Detection: a posteriori

Bandpass filtering: If we expect a signal having components only
in certain frequency bands and want to get rid of unwanted noise
frequencies,

for every band [wy, wo] of our interest, we define window
function ¢p(w) with intervals [—wa, —w1] and [w1, wa].

Windowed Fourier transform ¢(w)f(w) filters out frequency
components outside this band.
For recovery,

convolve raw signal f(t) with IFT ¢(t) of ¢(w).
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Points to note

Discrete Fourier Transform

» Fourier transform as amplitude function in Fourier integral

» Basic operational tools in Fourier and inverse Fourier
transforms

» Conceptual notions of discrete Fourier transform (DFT)

Necessary Exercises: 1,3,6

487,
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Approximation with Chebyshev polynomials
Minimax Polynomial Approximation

Minimax Approximation™
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Approximation with Chebyshev polyné#ii3

1t'§n with Chebyshev polynomials

Chebyshev polynomials:
Polynomial solutions of the singular Sturm-Liouville problem

n2

i P

/
(1-x2)y" —xy' +n’y =0 or [ 1—x2y/} +

over —1 < x <1, with T,(1) =1 for all n.

Closed-form expressions:

Ta(x) = cos(ncos™! x),

or,

To(x) =1, Ti(x) =x, Ta(x) =2x> =1, T3(x) =4x> —3x, ---;
with the three-term recurrence relation

Tir1(x) = 2xTi(x) — Ti—1(x).
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Approximation with Chebyshev polyndHiiats) i e rouromet

Immediate observations

>

Coefficients in a Chebyshev polynomial are integers. In
particular, the leading coefficient of T,(x) is 277 1.

For even n, Tp(x) is an even function, while for odd n it is an
odd function.

Ta(1) =1, Th(—=1) =(=1)" and | Tp(x)] <1 for —1 < x < 1.
Zeros of a Chebyshev polynomial T,(x) are real and lie inside
the interval [—1, 1] at locations x = cos (2k 1) for
k=1,23,---,n

These locations are also called Chebyshev accuracy points.
Further, zeros of T,(x) are interlaced by those of T,11(x).
Extrema of T,(x) are of magnitude equal to unity, alternate in

sign and occur at x = cos’%r for k=0,1,2,3,--- ,n.
Orthogonality and norms:
1 0 if m#n
T 9
Ty [ ¢ minso and
-1 1-x2 T if m=n=0.
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Approximation with Chebyshev polyné#ii3

T30

Figure: Extrema and zeros of T3(x) Figure: Contrast: Pg(x) and Tg(x)
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Minimax Approximation™

1t'§n with Chebyshev polynomials

Being cosines and polynomials at the same time, Chebyshev

polynomials possess a wide variety of interesting properties!

Most striking property:

equal-ripple oscillations, leading to minimax property
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Approximation with Chebyshev polyné#ii3

1t'§n with Chebyshev polynomials

Minimax property
Theorem: Among all polynomials p,(x) of degree n > 0
with the leading coefficient equal to unity, 21=" T,(x)
deviates least from zero in [—1,1]. That is,

> 1—n — 1—n'
_{ngaxxgllpn(X)l__{ngaXx§1|2 Ta(x)| =2

If there exists a monic polynomial p,(x) of degree n such that

1—n
_max _[pa(x)] <2777,

then at (n 4+ 1) locations of alternating extrema of 217" T,(x), the
polynomial
Gn(x) = 217" Ta(x) = pu(x)
will have the same sign as 217" T,,(x).
With alternating signs at (n + 1) locations in sequence, g,(x) will

have n intervening zeros, even though it is a polynomial of degree
at most (n — 1);: CONTRADICTION!
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Approximation with Chebyshev polyndHiiats) i e rouromet
Chebyshev series
f(X) = aog To(X) + a1 Tl(X) + ao T2(X) + a3 T3(X) +

with coefficients

1 [ f(x)To(x) 2 [t f( ) Th(x)
ag = — 7dxandan—— dx forn=1,2,3,--
0 —1 V1—x2 V1—x2
A truncated series >, _ ax Tk(x):
Chebyshev economization

Leading error term a1 Th41(x) deviates least from zero over
[—1,1] and is qualitatively similar to the error function.

Question: How to develop a Chebyshev series approximation?
Find out so many Chebyshev polynomials and evaluate coefficients?
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Approximation with Chebyshev polyndHiiats) i e rouromet

For approximating f(t) over [a, b], scale the variable as

t = 25b + b2ay with x € [-1,1].

Remark: The economized series Y ,_4 ax Tx(x) gives minimax
deviation of the leading error term ap41 Tpi1(x).

Assuming apt1 Tp1(Xx) to be the error, at the zeros of T,y1(x),
the error will be ‘officially’ zero, i.e.

> akTil(x) = f(t(x)),
k=0

where xp, x1, X2, - -+, X, are the roots of T,11(x).

Recall: Values of an n-th degree polynomial at n+ 1
points uniquely fix the entire polynomial.

Interpolation of these n+ 1 values leads to the same polynomial!

Chebyshev-Lagrange approximation
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Minimax Polynomial Approximation irime peynomial Approdmation

Situations in which minimax approximation is desirable:

» Develop the approximation once and keep it for use in future.
Requirement: Uniform quality control over the entire domain
Minimax approximation:

deviation limited by the constant amplitude of ripple

Chebyshev’s minimax theorem

Theorem: Of all polynomials of degree up to n, p(x) is
the minimax polynomial approximation of f(x), i.e. it
minimizes

max [f(x) — p(x)],
if and only if there are n+ 2 points x; such that

a<x1<x<x3<--<Xpp2 < b,

where the difference f(x) — p(x) takes its extreme values
of the same magnitude and alternating signs.
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Minimax Polynomial Approximation irime peynomial Approdmation

Utilize any gap to reduce the deviation at the other extrema with
values at the bound.

Y]
d

Figure: Schematic of an approximation that is not minimax
Construction of the minimax polynomial: Remez algorithm

Note: In the light of this theorem and algorithm, examine how
Tht1(x) is qualitatively similar to the complete error function!
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POI ntS tO nOte Minimax Polynomial Approximation

» Unique features of Chebyshev polynomials
» The equal-ripple and minimax properties
» Chebyshev series and Chebyshev-Lagrange approximation

» Fundamental ideas of general minimax approximation

Necessary Exercises: 2,3,4
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Outline

Partial Differential Equations
Introduction
Hyperbolic Equations
Parabolic Equations
Elliptic Equations
Two-Dimensional Wave Equation
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Introd UCtIOﬂ Introduction
Quasi-linear second order PDE’s
82 u 82 u 82 u

o2 T2y T ayr = Floy o)

hyperbolic if b> — ac > 0, modelling phenomena which evolve in
time perpetually and do not approach a steady state
parabolic if b? — ac =0, modelling phenomena which evolve in
time in a transient manner, approaching steady state
elliptic if b> — ac < 0, modelling steady-state configurations,
without evolution in time
If F(x,y,u,ux,u,)=0,

second order linear homogeneous differential equation

Principle of superposition: A linear combination of different
solutions is also a solution.
Solutions are often in the form of infinite series.
» Solution techniques in PDE’s typically attack the boundary
value problem directly.
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I ntrod u Ct|o n Introduction

Initial and boundary conditions
Time and space variables are qualitatively different.

» Conditions in time: typically initial conditions.
For second order PDE’s, u and u; over the entire space
domain: Cauchy conditions

» Time is a single variable and is decoupled from the space
variables.

» Conditions in space: typically boundary conditions.
For u(t, x,y), boundary conditions over the entire curve in the
x-y plane that encloses the domain. For second order PDE'’s,
» Dirichlet condition: value of the function

» Neumann condition: derivative normal to the boundary
» Mixed (Robin) condition

Dirichlet, Neumann and Cauchy problems

500,
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Introduction

Method of separation of variables
For u(x,y), propose a solution in the form

u(x,y) = X(x)Y(y)

Introduction

and substitute
ux = XY, uy = XY, ue = X"Y, uy = XY, 0, =XY"
to cast the equation into the form
S0, X, X, X") = 0y, Y, Y, Y").

If the manoeuvre succeeds then, x and y being independent
variables, it implies

o0, X, X, X"y =y, Y, Y, Y") = k.

Nature of the separation constant k is decided based on the
context, resulting ODE's are solved in consistency with the
boundary conditions and assembled to construct u(x, y).
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Hypel’bOhC Equatlons Hyperbolic Equations
Transverse vibrations of a string
u / ‘6450
P
y#j
.
Q
P
o — X L X

Figure: Transverse vibration of a stretched string

Small deflection and slope: cosf =~ 1, sinf ~ 0 ~ tanf

Horizontal (longitudinal) forces on PQ balance.
From Newton's second law, vertical (transverse) deflection u(x, t):
0%u

Tsin(6 + 60) — T sinf = péxﬁ
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Hypel’bOhC Equatlons Hyperbolic Equations

J

In the limit, as x — 0, PDE of transverse vibration:

Under the assumptions, denoting c? = %,

ou

2
5X8u_C2 u|  Ou
o Ox

otz | ox

0%u ,0%u
— =" —
ot? 0x?

‘ one-dimensional wave equation ‘

Boundary conditions (in this case): u(0,t) = u(L,t) =0

Initial configuration and initial velocity:
u(x,0) = f(x) and wu(x,0) = g(x)

Cauchy problem: Determine u(x,t) for 0 < x <L, t > 0.
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Hypel’bOhC Equatlons Hyperbolic Equations

Solution by separation of variables

Ut = C e, u(0,t) = u(L,t) =0, u(x,0) = f(x), u(x,0) = g(x)
Assuming

u(x, 1) = X(x) (o),
and substituting sy = XT” and uy = X" T, variables are
separated as

T _ X_// _ _p2

AT X ’

The PDE splits into two ODE'’s
X"+ p?X =0 and T"+c2p®T =0.

Eigenvalues of BVP X" + p2X =0, X(0) = X(L)=0are p=
and eigenfunctions

X,,(x):sinpx:sinnil_x for n=1,2,3,--- .

Second ODE: T”+ X2T =0, with A\, = <%
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Hypel’bOhC Equatlons Hyperbolic Equations
Corresponding solution:
Ta(t) = Apcos Apt + By sin Apt
Then, for n=1,2,3,---,
. . nmx
un(x,t) = Xn(x) Th(t) = (Ancos Apt + Bpsin Apt)sin 5

satisfies the PDE and the boundary conditions.

Since the PDE and the BC's are homogeneous, by superposition,

= nmx
t) = Apcos Apt 4+ Bpsin Apt]sin —.
u(x,t) Z[ cos Apt + Bpsin Apt]sin T

n=1

Question: How to determine coefficients A, and B,?

Answer: By imposing the initial conditions.

505,
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Hypel’bOhC Equatlons Hyperbolic Equations
Initial conditions: Fourier sine series of f(x) and.g{x)

nmx

u(x,0)= f(x) = ZA,,sin e
n=1

ur(x,0) = g(x) = Z)\,,Bn sin nLLX
n=1

Hence, coefficients:
L

2 [t 2
A,,:Z/O f(x)sinnLLde and Bn:% A g(x)sinnLLde

Related problems:
» Different boundary conditions: other kinds of series
» Long wire: infinite domain, continuous frequencies and
solution from Fourier integrals
Alternative: Reduce the problem using Fourier transforms.
» General wave equation in 3-d: uy = c>V2u
» Membrane equation: s = c?(Uyx + uyy)
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Hypel’bOhC Equatlons Hyperbolic Equations

D’Alembert’s solution of the wave equation

Method of characteristics

Canonical form

By coordinate transformation from (x, y) to (£,n), with
U(&;m) = ulx(&n), y(&n)l.

hyperbolic equation: Uz, = ®

parabolic equation: Uge = ®

elliptic equation: Uge + Uy, = ®

in which ®(&,7n, U, Ug, Uy) is free from second derivatives.

For a hyperbolic equation, entire domain becomes a network of £-n
coordinate curves, known as characteristic curves,

along which decoupled solutions can be tracked!
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Hypel’bOhC Equatlons Hyperbolic Equations
For a hyperbolic equation in the form

82u 0%u 0%u

2b—— —

2ox2 T Poxay T ay2

roots of am? + 2bm + ¢ are

= F(X7.y7 U, UX7Uy)7

—b++Vb% - ac

a

my2 =
real and distinct.
Coordinate transformation
E=y+mx, n=y+ mx

leads to Ug,, = ®(&, 7, U, Ug, Uy).
For the BVP

Ut = e, u(0,t) = u(L,t) =0, u(x,0) = f(x), u:(x,0) = g(x),
canonical coordinate transformation:

1 1
§=x—ct g=xtct, with x=3(E+n), t=o-(n-¢).
C
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Hypel’bOhC Equatlons Hyperbolic Equations
Substitution of derivatives

Uy = Ugfx + UnT]X = Ug + U’? = Uy = Ugg + 2U§77 + Unn
up = Ugle + Upne = —cUe + cUyy = up = P Uge — 26* Ugyy + 2 Uy

into the PDE uy = c?u, gives

C2(U££ —2Ugy + Upy) = C2(U€£ + 2Ugy + Upp).

Canonical form: Ug, =0

Integration:

e = | Ueyin +0(6) = 0©

= Ue.n) = / BE)DE + Hn) = A(E) + )

D’Alembert’s solution: u(x,t) = fi(x — ct) + fo(x + ct)
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Hypel’bOhC Equatlons Hyperbolic Equations
Physical insight from D’Alembert’s solution:
fi(x — ct): a progressive wave in forward direction with speed ¢

Reflection at boundary:

in a manner depending upon the boundary condition
Reflected wave f(x + ct): another progressive wave, this one in
backward direction with speed ¢

Superposition of two waves: complete solution (response)

cnm

Note: Components of the earlier solution: with A\, = <&,

L
cos)\,,tsinnLLX = % [sin n—ZT(x— ct) + sin n%(x—i—ct)}
. . nmx 1 nm nm
sin )\,,tsmT i [cos T(X_ ct) — cos T(X—Fct)}

510,
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Parabolic Equations

Parabolic Equations

Heat conduction equation or diffusion equation:

% = c?V2u
One-dimensional heat (diffusion) equation:

Uy = C2UXX

Heat conduction in a finite bar: For a thin bar of length L with
end-points at zero temperature,

ur = Cug, u(0,t)=u(L,t) =0, u(x,0)=Ff(x).
Assumption u(x,t) = X(x)T(t) leads to

T/ X// 5

XT'=X'T = 5=="=—
¢ 2T x P

giving rise to two ODE's as

X" +p’X=0 and T'+c2p?’T =0.
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Parabolic Equations

Parabolic Equations
BVP in the space coordinate X" + p?X = 0,0 :X(0).=.X(L).= 0

has solutions
nmwx

Xn(x) =sin -
With A, = <%, the ODE in T(t) has the corresponding solutions
To(t) = Ape 0t

By superposition,
. nmx _)\2
u(x,t) = ZA,, sin——e nt
coefficients being determined from initial condition as

u(x,0) ZA sin X

a Fourier sine series.
As t — 0o, u(x,t) — 0 (steady state)
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Parabolic Equations

Parabolic Equations

Non-homogeneous boundary conditions:
U = Cly, u(0,t) =up, u(L,t)=uw, u(x,0)=rf(x).
For ui # up, with u(x, t) = X(x)T(t), BC's do not separate!
Assume
u(x,t) = U(x, t) + uss(x),

where component ug(x), steady-state temperature (distribution),
does not enter the differential equation.
up» — U

L

Ul (x) =0, us(0)=u1, uss(L)=ur = uss(x)=u1+

X
Substituting into the BVP,
Ur = PUs, U(0,t) = U(L,t) =0, U(x,0) = f(x)— uss(x).

Final solution:
ad nmx
. —_\2
u(x, t) = E 1 By sin e Mt g (%),
-

B, being coefficients of Fourier sine series of f(x) — uss(x).
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Parabolic Equations

Parabolic Equations

Heat conduction in an infinite wire

Ur = Uy, u(x,0) = f(x)

In place of 2%, now we have continuous frequency p.
Solution as superposition of all frequencies:

u(x, t) = / up(x, t)dp = / [A(p) cos px-+B(p) sin px]e ™ P*tdp
0 0
Initial condition
u(x,0) = f(x) = / [A(p) cos px + B(p) sin px]dp
0

gives the Fourier integral of f(x) and amplitude functions

Alp) = — /00 f(v)cospvdv and B(p)= 1 /OO f(v)sinpvdv.

T J_—oco T J—c0
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Parabolic Equations

Parabolic Equations

Solution using Fourier transforms

U = i, u(x,0) = f(x)

Using derivative formula of Fourier transforms,

~

Flue) = A(iw)*F(u) = % = —c*w?,

since variables x and t are independent.
Initial value problem in @i(w, t):

ou
ot
. A ~ _ 2,2
Solution: &(w, t) = f(w)e W't
Inverse Fourier transform gives solution of the original problem as

U(X, t) = f_l{i\l(W, t)} = %/ ?(W)e—czwzteiwxdw

= —c2w?, #(0) = f(w)

1 o o0
= u(x,t) = ;/ f(v)/ cos(wx — Wv)e_c2w2tdw dv.
e 0

515,
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Elliptic Equations
Heat flow in a plate: two-dimensional heat eqliatisn"
ou 5 (0%u  d%u
ot ox2  0y?
Steady-state temperature distribution:

o, Fu_
ox2  Qy?

‘ Laplace's equation ‘
Steady-state heat flow in a rectangular plate:

U +uy, =0, u(0,y) =u(a,y) = u(x,0) =0, u(x,b) = f(x);

a Dirichlet problem over the domain 0 < x < a,0<y < b.
Proposal u(x,y) = X(x)Y(y) leads to

X// Y//
X'Y+XY"'=0 = = =—-—=-p°

X Y
Separated ODE's:
X"+ p?X=0 and Y’ —p?Y =0

516,
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Elliptic Equations

From BVP X" 4 p?X =0, X(0) = X(a) =10'5 - %X,{%) = sin 22
Corresponding solution of Y” — p?Y = 0:

Yn(y) = Apcosh mrTy + By, sinh mrTy
Condition Y(0) =0 = A,=0, and
nmx nmy

un(x,y) = Bysin " sinh -

The complete solution:
n
u(x,y) = ZB sm—5| nh Y

The last boundary condition u(x, b) = f(x) fixes the coefficients
from the Fourier sine series of f(x).

Note: In the example, BC's on three sides were homogeneous.
How did it help? What if there are more non-homogeneous BC's?

517,
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Elliptic Equations
Elliptic Equations
Steady-state heat flow with internal heat generation

V2U = ¢(X>Y)

‘ Poisson’s equation ‘

Separation of variables impossible!

Consider function u(x, y) as

u(x,y) = un(x,y) + up(x, y)

Sequence of steps
» one particular solution uy(x,y) that may or may not satisfy
some or all of the boundary conditions

» solution of the corresponding homogeneous equation, namely
U + Uy, = 0 for up(x,y)
» such that u = uj, + u, satisfies all the boundary conditions

518,
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Two-Dimensional Wave Equation

Transverse vibration of a rectangular mémbiranie! Vave Equation

Pu_ (P P
otz ox2 ~ 0y?

A Cauchy problem of the membrane:

U = C2(UXX + Uyy); U(X,y,O) = f(Xay)7 ut(X7y7O) = g(Xay);

u(0,y,t) =u(a,y,t) = u(x,0,t) = u(x,b,t) = 0.

Separate the time variable from the space variables:

Fot Fy T
u(x,y.t) = F(x,y)T(t) = 200

= _)2
F c2T

Helmholtz equation:

Fux + Fyy + N°F =0

519,
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Two-Dimensional Wave Equation

ASSUming F(X, y) = X(X) Y(y), Two-Dimensional Wave Equation
XU YAENY o
X y "

= X"+ 12X =0 and Y"+12Y =0,

such that A = /pu2 + v2.
With BC's X(0) = X(a) = 0 and Y(0) = Y(b) =0,

and  Y,(y) =sin nmy.

mmx
Xm(x) =si
(x) = sin b

Corresponding values of A are

o = () ()

with solutions of T” + c2)\2T =0 as

Trmn(t) = Amn €OS CAmnt + Bmnsin cAmnt.

520,
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Two-Dimensional Wave Equation
Composing Xpn(x), Ya(y) and Tpmn(t) and superpeshiigiae Equation

mmx . nmy
sin ——,

b

u(x,y, t) = Z Z[Amn €os CAmnt+Bmn sin cAmnt] sin

m=1 n=1

coefficients being determined from the double Fourier series

fix,y) = Z Z Apmnsin X sin _m;y
m=1 n=1 a
S mnrx . nm
and g(x,y) = Z Z CcAmnBmn sin sin Ty
a
m=1 n=1

BVP’s modelled in polar coordinates
For domains of circular symmetry, important in many practical
systems, the BVP is conveniently modelled in polar coordinates,

the separation of variables quite often producing

» Bessel's equation, in cylindrical coordinates, and
» legendre’s equation in spherical coordinates
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Points to note

Two-Dimensional Wave Equation

PDE's in physically relevant contexts
Initial and boundary conditions

Separation of variables

Examples of boundary value problems with hyperbolic,
parabolic and elliptic equations

» Modelling, solution and interpretation

vV v Vv yvw

v

Cascaded application of separation of variables for problems
with more than two independent variables

Necessary Exercises: 1,2,4,7,9,10

9522,
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Outline

Analytic Functions
Analyticity of Complex Functions
Conformal Mapping
Potential Theory
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Analyticity of Complex Functions

Analyticity of Complex Functions

Function f of a complex variable z

gives a rule to associate a unique complex number
W = u-+iv toevery z= x4+ iy in a set.

Limit: If f(z) is defined in a neighbourhood of zy (except possibly
at zp itself) and 3/ € C such that V e >0, 3 ¢ > 0 such that

0<|z—2z| <d=If(z) =] <k,

then
I = lim f(2).

Z—2Z)
Crucial difference from real functions: z can approach z in all
possible manners in the complex plane.
Definition of the limit is more restrictive.
Continuity: lim,_,, f(z) = f(z)
Continuity in a domain D: continuity at every point in D

524,
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Analyticity of Complex Functions pnaicity of Complex Functions

Derivative of a complex function:

f(z) — f(20) _ fim f(zo+ 6z) — f(z0)

z—29 Z— 29 6z—0 0z

When this limit exists, function f(z) is said to be differentiable.

Extremely restrictive definition!

Analytic function
A function f(z) is called analytic in a domain D if it is
defined and differentiable at all points in D.
Points to be settled later:
» Derivative of an analytic function is also analytic.

» An analytic function possesses derivatives of all orders.

A great qualitative difference between functions of a real variable
and those of a complex variable!

925,
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Analyticity of Complex Functions

Analyticity of Complex Functions

Cauchy-Riemann conditions
If f(z) = u(x,y) + iv(x,y) is analytic then
du+idv
fl(z) =

ox 6y—>0 Ox + idy
along all paths of approach for §z = §x + idy — 0 or x,dy — 0.

Py dz = idy
Zy
PA 3z =dx

o 5 X o X

y

Figure: Paths approaching z Figure: Paths in C-R equations

Two expressions for the derivative:
8u 8v ov 8u
f(z) = =i
8x dy 8y
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Analyticity of Complex Functions

Analyticity of Complex Functions

Cauchy-Riemann equations or conditions

du __ Ov Qu _ _ 9v
ox = oy and

Jdy Ox
are necessary for analyticity.
Question: Do the C-R conditions imply analyticity?
Consider u(x, y) and v(x,y) having continuous first order partial
derivatives that satisfy the Cauchy-Riemann conditions.
By mean value theorem,

Su = u(x-+ 0y -+ 3y) — ulx,y) = B (. 0) + 8y (et )
with x; = x + &£dx,y1 = y + &0y for some £ € [0,1]; and

ov ov
ov = v(x +0x,y + dy) — v(x, Y)—5X8 (X2,Y2)+5y8y(><2>)/2)

with xo = x + ndx, y» = y + ndy for some n € [0, 1].
Then,

ou ov ov 0
of = 5X8 (x1,y1) + l5y8y(X2,)/2)] +i [5)(8 (x2,¥2) — 15)/8—;(X1>Y1)
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Analyticity of Complex Functions pnaicity of Complex Functions

Using C-R conditions 2 8 = % and 8“ = _%,
. odu . ou Ou
of = (5x+:(5y)a(x1,)/1)+15y [8 (%2, y2) — (1,y1)

ov 0 0
(<3x+15y)8 (x1,y1) + idx 8V( x2,Y2) — V( 1>Y1)

LA du v
57 Ix X1, Y1 I@x X1, Y1

Ox [Ov v Oy [Ou Ou ]

57 [a(xzam) - a(xla)/l):| Tiss _a(XZa)Q) - 5()(17)’1)_

Since ‘g—ﬂ, ‘;—y

o) au v ou v
"ox dy Oy’

Cauchy-Riemann conditions are necessary and sufficient
for function w = f(z) = u(x,y) + iv(x, y) to be analytic.
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Analyticity of Complex Functions

Analyticity of Complex Functions

Harmonic function

Differentiating C-R equatlons = 8X and a“ =

- T 9x’

82u_ 5?v 82u_ 5?v d%u 9?v d%u B 9?v

0x2 ~ 0xdy’ 9y2  dydx’ dydx 0Oy? 9xdy = Ox?

L Pu Pu Py P
ox2  Oy? T Ox2  Oy?’

Real and imaginary components of an analytic functions
are harmonic functions.
Conjugate harmonic function of u(x, y): v(x,y)

Families of curves u(x,y) = ¢ and v(x, y) = k are mutually
orthogonal, except possibly at points where f/(z) = 0.

Question: If u(x,y) is given, then how to develop the complete
analytic function w = f(z) = u(x,y) + iv(x, y)?

9529,
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Conformal Mapplng Conformal Mapping

Function: mapping of elements in domain to their images in range
Depiction of a complex variable requires a plane with two axes.
Mapping of a complex function w = f(z) is shown in two planes.
Example: mapping of a rectangle under transformation w = e

EY -05 o 05 1 15 2 1 05 05 1 15 2 25 3 35

(a) The z-plane (b) The w-plane

Figure: Mapping corresponding to function w = e*

530,
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Conformal Mapplng Conformal Mapping

Conformal mapping: a mapping that preserves the angle between
any two directions in magnitude and sense.
Verify: w = e® defines a conformal mapping.
Through relative orientations of curves at the points of
intersection, ‘local’ shape of a figure is preserved.

Take curve z(t),z(0) = zg and image w(t) = f[z(t)], wo = f(20)-
For analytic f(z), w(0) = f'(z)z(0), implying
[w(0)| = |f'(z0)] |2(0)| and argw(0) = arg f'(z) + arg z(0).
For several curves through zj,
image curves pass through wy and all of them turn by the

same angle arg f'(zo).

Cautions
» f’(z) varies from point to point. Different scaling and turning
effects take place at different points. ‘Global’ shape changes.
» For f’(z) = 0, argument is undefined and conformality is lost.
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Conformal Mapping

Analytic Functions
Conformal Mapping

An analytic function defines a conformal mapping except
at its critical points where its derivative vanishes.

Except at critical points, an analytic function is invertible.

We can establish an inverse of any conformal mapping.

Examples
» Linear function w = az + b (for a # 0)
» Linear fractional transformation
_az+b
oz +d’
» Other elementary functions like z", e” etc
Special significance of conformal mappings:

ad — bc #0

A harmonic function ¢(u, v) in the w-plane is also a
harmonic function, in the form ¢(x,y) in the z-plane, as
long as the two planes are related through a conformal
mapping.

932,
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Potential Theory

Potential Theory
Riemann mapping theorem: Let D be a simply connected
domain in the z-plane bounded by a closed curve C. Then there
exists a conformal mapping that gives a one-to-one correspondence
between D and the unit disc |w| < 1 as well as between C and the
unit circle |w| = 1, bounding the unit disc.

Application to boundary value problems

» First, establish a conformal mapping between the given
domain and a domain of simple geometry.

» Next, solve the BVP in this simple domain.
» Finally, using the inverse of the conformal mapping, construct
the solution for the given domain.

Example: Dirichlet problem with Poisson's integral formula

) 2 2_ 42 ci®
f(refe) — 1 /(; (R )f(R )

2 R2 — 2Rr cos(f — ¢) +

r2 d¢

9533,
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Potential Theory
Potential Theory
Two-dimensional potential flow

» Velocity potential ¢(x,y) gives velocity components V, = %
and V, = W

» A streamline is a curve in the flow field, the tangent to which
at any point is along the local velocity vector.

» Stream function 1(x, y) remains constant along a streamline.

> 1(x,y) is the conjugate harmonic function of ¢(x,y).

» Complex potential function ®(z) = ¢(x,y) + i(x, y) defines
the flow.

If a flow field encounters a solid boundary of a complicated shape,

transform the boundary conformally to a simple boundary

to facilitate the study of the flow pattern.

534,
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Points to note

Potential Theory

» Analytic functions and Cauchy-Riemann conditions
» Conformality of analytic functions

» Applications in solving BVP's and flow description

Necessary Exercises: 1,2,3,4,7,9

9535,
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Outline

Integrals in the Complex Plane
Line Integral
Cauchy’s Integral Theorem
Cauchy's Integral Formula

Integrals in the Complex Plane

536,
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LI ne I ntegl’a | Line Integral

For w = f(z) = u(x,y) + iv(x,y), over a smooth curve C,

/Cf(z)dz:/c(u+iv)(dx+idy)Z/C(UdX—VdY)+i/C(VdX+“dy)'

Extension to piecewise smooth curves is obvious.

With parametrization, for z = z(t),a < t < b, with z(t) # 0,

/C F(z)dz = / e (0)2()dt.

Over a simple closed curve, contour integral: ¢, f(z)dz
Example: fc z"dz for integer n, around circle z = pe'®

2
Z"dZ — ipn+1 ei(n+1)9d9 _ 0 for n ;é —]_7
c 0 2wi for n= —1.

The M-L inequality: If C is a curve of finite length L and
|f(z)] < M on C, then

[ @] < [ 1) ozl < m [ ezl = ma.
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Ca UChy,S I ntegral Theorem Cauchy's Integral Theorem

» C is a simple closed curve in a simply connected domain D.
» Function f(z) = u+ iv is analytic in D.

Contour integral ¢ f(z)dz =
If f'(z) is continuous, then by Green's theorem in the plane,

from - [ (55-5g) v | (32 ) oo

where R is the region enclosed by C.
From C-R conditions, $c f(z)dz = 0.

Proof by Goursat: without the hypotheS|s of continuity of f/(z)

Cauchy-Goursat theorem

If f( ) is analytic in a simply connected domain D, then
fc z)dz = 0 for every simple closed curve C in D.

Importance of Goursat’s contribution:
» continuity of f'(z) appears as consequence!
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Ca UChy,S I ntegral Theorem Cauchy's Integral Theorem

Principle of path independence
Two points z; and z on the close curve C
» two open paths C; and & from z; to z
Cauchy’s theorem on C, comprising of (7 in the forward direction
and G in the reverse direction:

/C1 f(Z)dZ—/C2 f(z)dz:O:>/ZlZ2 f(z)dz:/C1 f(z)dz:/c2 f(z)dz

For an analytic function f(z) in a simply connected
domain D, f: f(z)dz is independent of the path and
depends only on the end-points, as long as the path is
completely contained in D.

Consequence: Definition of the function

F@) = [ reae

0

What does the formulation suggest?



Mathematical Methods in Engineering and Science Integrals in the Complex Plane 540,

Ca UChy,S I ntegral Theorem Cauchy's Integral Theorem

Indefinite integral
Question: Is F(z) analytic? Is F'(z) = f(z)?

Pty = [ o o] -0

z+6z
=3 B UG RO)

f is continuous = Ve, 30 such that [ —z| < d = |f(§) —f(2)] <€

Choosing 6z < 6,
€ z+0z

F(z+0z) — F(z)
—f
5y (2)
If f(z) is analytic in a simply connected domain D, then
there exists an analytic function F(z) in D such that

F'(z) = f(z) and /22 f(z)dz = F(z2) — F(z1).

21
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Ca UChy,S I ntegral Theorem Cauchy's Integral Theorem

Principle of deformation of paths

f(z) analytic everywhere other
than isolated points s;, s, S3

/C f(z)dz = /C f(2)dz = /C 3 f(z)dz

*
Not so for path C*. Figure: Path deformation

The line integral remains unaltered through a continuous
deformation of the path of integration with fixed
end-points, as long as the sweep of the deformation
includes no point where the integrand is non-analytic.
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Ca UChy,S I ntegral Theorem Cauchy's Integral Theorem

Cauchy’s theorem in multiply connected domain
‘ C

@

Figure: Contour for multiply connected domain

f Atz ferae— o e~ f reraz=o

If () is analytic in a region bounded by the contour C
as the outer boundary and non-overlapping contours (1,
Gy, @3, -+, C, as inner boundaries, then

fc F(z)dz ; fc )
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Cauchy’s Integral Formula
Cauchy's Integral Formula

f(z): analytic function in a simply connected domain D

For zg € D and simple closed curve C in D,

j{ ﬂdz = 2mif(zp).
C

Z— 2y

Consider C as a circle with centre at zy and radius p,

with no loss of generality (why?).

j{c%dz _ f(zo)j{c - iZZO +]{C f(zi - ;fzo)dz

From continuity of f(z), 30 such that for any e,

f(2) ~ f(z0) |
Z— 2

€
R

|z — 20| < = |f(z) — f(z0)] <€ and ‘ p

with p < . From M-L inequality, the second integral vanishes.
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Cauchy’s Integral Formula

Cauchy's Integral Formula

Direct applications

» Evaluation of contour integral:

» If g(z) is analytic on the contour and in the enclosed region,
the Cauchy’s theorem implies §. g(z)dz = 0.

» If the contour encloses a singularity at zp, then Cauchy's
formula supplies a non-zero contribution to the integral, if
f(z) = g(z)(z — z) is analytic.

» Evaluation of function at a point: If finding the integral on
the left-hand-side is relatively simple, then we use it to
evaluate f(zp).

Significant in the solution of boundary value
problems!

Example: Poisson's integral formula

L (R )u(R.9)
J &

u(r,0) = 2 R? — 2Rr cos(f — ¢) + r?

for the Dirichlet problem over a circular disc.



Mathematical Methods in Engineering and Science Integrals in the Complex Plane 545,

Cauchy’s Integral Formula

Cauchy's Integral Formula
Poisson’s integral formula
Taking zp = re’® and z = Re’® (with r < R) in Cauchy's formula,

: T f(Re'?)
2mif(re®) = | —————(iRe'®)d
wif (re'”) /0 it — e:e(' e'?)d¢.

How to get rid of imaginary quantities from the expression?
. 2 .
Develop a complement. With R— in place of r,

2T f(Rel¢) 2 Re/qb) )
— Re'® s a—i0 )
0 /0 s g (7€) = / e ) e )ds

Subtracting,

2 ip —if
. Re re

f(Re'® : : . | d
/0 (Re') [Re’¢ — rel? + Re—i¢ — re—i? ¢
2r 2 2 i
R f(R
= I/ ( r) ( © ) d(b
0
1 (R? — r?)f(Re'?)

(Rei® — rei?)(Re~i® — re—i?)
27
f(re'?) = — do.
= f(re”) 277/0 R? — 2Rr cos(f — ¢) + r? ¢

2mif(re?) = i
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Cauchy’s Integral Formula

Cauchy's Integral Formula

Cauchy's integral formula evaluates contour integral of g(z),

if the contour encloses a point zy where g(z) is
non-analytic but g(z)(z — zo) is analytic.

2

If g(z)(z — zp) is also non-analytic, but g(z)(z — zp)* is analytic?

f(z0) = ij{cﬂdz,

2mi zZ— 2
M) = o
f'(20) = 22_7r|/ C%Cﬁ,
(" (z0) ; n Lydz

% C (Z - Zo)n+1 '
The formal expressions can be established through differentiation
under the integral sign.
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Cauchy’s Integral Formula

Cauchy's Integral Formula

A =k
C

0z 2midz z—zo—5z_z—zo

1 f(z)dz
o 2mi j{C (z— 20— 0z)(z — 20)

:%%c%Jrﬁj{cf(z)[(2—20—;2)(2—20)_(2—120)2}&
L S 1) fe
e (

T2 Je(z—2)2 2 z—2zp—0z)(z — zp)?

[y

If |f(z)] < Mon C, Lis path length and dy = min |z — z],

f(z)dz ML|éz|
6zj{c (z— 20— 02)(z — 29)?

2
d(do — [62[)

An analytic function possesses derivatives of all orders at

every point in its domain.

— 0 as 6z — 0.

Analyticity implies much more than mere differentiability!
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Points to note

Cauchy's Integral Formula

Concept of line integral in complex plane
Cauchy’s integral theorem
Consequences of analyticity

Cauchy'’s integral formula

vV v.v. v Y

Derivatives of arbitrary order for analytic functions

Necessary Exercises: 1,2,5,7

5438,
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Outline

Singularities of Complex Functions 549,

Singularities of Complex Functions
Series Representations of Complex Functions
Zeros and Singularities
Residues
Evaluation of Real Integrals
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Series Representations of Complex FuifEtiaiig: s o compex fonctirs

Taylor’s series of function f(z), analytic in a neighbourhood of zp:

f(z) = Z an(z—zo)" = ao—|—31(Z—Zo)—|-32(Z—Zo)2+a3(2—20)3+' Ty
n=0
with coefficients

1 1 f(w)dw
— Mgy = — ¢ 7T
= () 27i j{c (w — o)1’

where C is a circle with centre at z.

Form of the series and coefficients: similar to real functions
The series representation is convergent within a disc
|z — zg| < R, where radius of convergence R is the
distance of the nearest singularity from zy.

Note: No valid power series representation around Zzp, i.e. in
powers of (z — zp), if f(z) is not analytic at zp

Question: In that case, what about a series representation that
includes negative powers of (z — zp) as well?
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Series Representations of Complex FuifEtiaiig: s o compex fonctirs

Laurent’s series: If f(z) is analytic on circles (i (outer) and G,
(inner) with centre at zp, and in the annulus in between, then

o0

f2)= ) an(z—2)"=) bnlz—2)"+)_ %;
m=0 m=1 (Z ZO)

with coefficients
1 7{ f(w)dw
= o c (w— z)ntl’
1 f(w)dw 1 1
= b W= 2 F(w)(w — 20)™ L dw;
o, b 5 %C (W — 2T c %C (w)(w —29)™ “dw

27

the contour C lying in the annulus and enclosing C;.
Validity of this series representation: in annular region obtained by
growing C; and shrinking G, till f(z) ceases to be analytic.

Observation: If f(z) is analytic inside G, as well, then ¢, = 0 and
Laurent’s series reduces to Taylor's series.
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Series Representations of Complex FuifEtiaiig: s o compex fonctirs

Proof of Laurent’s series
Cauchy’s integral formula for any point z in the annulus,

)= f fee L f flde

27 w—2z 27 w—2z

Organization of the series:

1 1

w—z (w = 20)[1 = (z = 20) /(W — 20)]
1 1

w—z (z — 20)[1 — (W — 20)/(z — 20)]

Figure: The annulus

Using the expression for the sum of a geometric series,

2 ne1_ 1—-4" 2 -1, 9"
I+g+q°+ - +q" = =14+q+q°+ - -+q" "+
1—gq 1—gq 1—gq
We use g = Z=2 for integral over (; and q = 7=2* over C;.
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Series Representations of Complex FuifEtiaiig: s o compex fonctirs

Proof of Laurent’s series (contd)

Using g = =2,

1 1 zZ — Z z— 7))t z—2\" 1
= + °2+-~+( o), .

w—z w-—2z (w-—2z) (w — zg)" w—2zy) w-—2z

1 f(w)dw
—j{ L :ao+al(Z—Zo)+'"+an_1(Z—Zo)"_1+T,,,
2ri Jo, w—2z

with coefficients as required and

T, = - (Z_Z°> W)
G

27i w—2z) wW—2z
Similarly, with g = %=2,
1 f(w)dw
- 7{ L =a_1(z— Zo)_1 +tasn(z—20) "+ Top,
2ri Jo, w—2z

with appropriate coefficients and the remainder term

T o= — (W_Z°>n W) g,
2mi Jeo \z—2 ) z—w
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Series Representations of Complex FuifEtiaiig: s o compex fonctirs

Convergence of Laurent’s series

n—1
f(z) = Z ak(z — 20)" + To+ T-n,
k=—n
where T, = i <Z — Zo) f(w) dw
2ni Jeo \w—20) w—z
and T, — i <W—zo) f(w)d
2ri Job\z2—20) z—w
» f(w) is bounded
z— zo

Use M-L |nequa||ty to show that
remainder terms T, and T_, approach zero as n — c.
Remark: For actually developing Taylor's or Laurent's series of a

function, algebraic manipulation of known facts are employed quite
often, rather than evaluating so many contour integrals!
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ZerOS and SIﬂgUlarltleS Zeros and Singularities

Zeros of an analytic function: points where the function vanishes
If, at a point zg,

a function f(z) vanishes along with first m — 1 of its
derivatives, but f(™(zq) # 0;

then zj is a zero of f(z) of order m, giving the Taylor's series as

f(z) = (z — 20)"g(2)-

An isolated zero has a neighbourhood containing no other zero.

For an analytic function, not identically zero, every point
has a neighbourhood free of zeros of the function, except
possibly for that point itself. In particular, zeros of such
an analytic function are always isolated.

Implication: If f(z) has a zero in every neighbourhood around
zp then it cannot be analytic at zp, unless it is the zero function
[i.e. f(z) = 0 everywhere].

953,



Mathematical Methods in Engineering and Science Singularities of Complex Functions

ZerOS and SIﬂgUlarltleS Zeros and Singularities

Entire function: A function which is analytic everywhere
Examples: z" (for positive integer n), €7, sin z etc.

The Taylor's series of an entire function has an infinite
radius of convergence.

Singularities: points where a function ceases to be analytic

Removable singularity: If f(z) is not defined at zy, but has a limit.
Example: f(z) = % at z=0.

Pole: If f(z) has a Laurent's series around zg, with a finite
number of terms with negative powers. If a, = 0 for
n< —m, but a_,, #0, then z is a pole of order m,
lim,_,,(z — z9)™f(z) being a non-zero finite number.
A simple pole: a pole of order one.

Essential singularity: A singularity which is neither a removable
singularity nor a pole. If the function has a Laurent's
series, then it has infinite terms with negative
powers. Example: f(z) = e'/# at z=0.

9556,
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ZerOS and SIﬂgUlarltleS Zeros and Singularities

Zeros and poles: complementary to each other

» Poles are necessarily isolated singularities.
» A zero of f(z) of order m is a pole of ﬁ of the same order
and vice versa.
> If f(z) has a zero of order m at zy where g(z) has a pole of
the same order, then f(z)g(z) is either analytic at zy or has a
removable singularity there.
» Argument theorem:
If f(z) is analytic inside and on a simple closed
curve C except for a finite number of poles inside
and f(z) # 0 on C, then

1)
2ri Jc f(2)

dz=N - P,

where N and P are total numbers of zeros and poles
inside C respectively, counting multiplicities (orders).
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Residues
i i , A Residues i
Term by term integration of Laurent’s series:* §f (Z)dz'="2mia_;
H . _ _ 1
Residue: P}%Sf(z) =a_1 =55 $f(2)dz

If f(z) has a pole (of order m) at zp, then

(z—20)7f(2) = Y an(z — 20)™*"
is analytic at zp, and
dmt o~ (m+n)! 1
—l(z — 20)"f(2)] = an(z — 20)""
dzm—1 ng_:l (n+1)!
1 ) dm—l

= ) = = gy i, gl - )"

Residue theorem: If (z) is analytic inside and on simple closed
curve C, with singularities at z1, z, z3, - -+, z, inside C; then

k
7{ f(z)dz = 27rizf{2?8f(z).
¢ =1

9558,
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Evaluation of Real Integrals

Evaluation of Real Integrals

General strategy
» Identify the required integral as a contour integral of a
complex function, or a part thereof.
» |If the domain of integration is infinite, then extend the
contour infinitely, without enclosing new singularities.

Example:
27

I = ¢(cos 8,sin 6)db
0
With z = €/ and dz = izd#,

=~ fofp (D)5 (D] £

where C is the unit circle centred at the origin.
Denoting poles falling inside the unit circle C as pj,

| = 27ri2f;)e,sf(z).
. J
J

9559,
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Evaluation of Real Integrals

Evaluation of Real Integrals

Example: For real rational function f(x),

| = /_ Z F(x)dx,

denominator of f(x) being of degree two higher than numerator.

Consider contour C enclosing semi-circular region |z| < R,y > 0,
large enough to enclose all singularities above the x-axis.

%Cf(z)dz:/_’; f(x)dx+/5f(z)dz

For finite M, |f(z)| < % on C

/S f(z)dz

| = / f(x)dx = 277[2%951((2) as R — 0.
—~ Pj

— o0

M R_ ™™
S gTh =% Figure: The contour
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Evaluation of Real Integrals

Evaluation of Real Integrals

Example: Fourier integral coefficients

A(s) = / f(x)cossxdx and B(s)= / f(x) sin sx dx
Consider ~
I = A(s) + iB(s) = / f(x)e™ dx.

Similar to the previous case,

. R . .
%f(z)e'szdz:/ f(x)e'sxdx—l—/f(z)e’szdz.
C

-R S
As |e?| = ™| |e™| = |e™¥| < 1 for y > 0, we have
; M M
/Sf(z)e’szdz < ﬁﬂ’R = %,

which yields, as R — oo,
| = 2WIZPI~)§S[f(z)eiSZ].
J
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Points to note

Evaluation of Real Integrals

» Taylor's series and Laurent’s series
» Zeros and poles of analytic functions
» Residue theorem

» Evaluation of real integrals through contour integration of
suitable complex functions

Necessary Exercises: 1,2,3,5,8,9,10
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Outline

Variational Calculus*
Introduction
Euler’'s Equation
Direct Methods

Variational Calculus™
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Introduction

Introduction

Consider a particle moving on a smooth surface z = ¥(q1, q2).

With position r = [q1(t) q2(t) ¥(q1(t), g2(t))]” on the surface
and 6r = [0q1 6go (V20)7dq] " in the tangent plane, length of the
path from q; = q(t;) to qr = q(tr) is

T T2 o T 2] 1/2
1= [lorl = [ iee = [ a3+ a3+ (vuTap] e
t; t;

For shortest path or geodesic, minimize the path length /.
Question: What are the variables of the problem?
Answer: The entire curve or function q(t).

Variational problem:
Optimization of a function of functions, i.e. a functional.
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Introduction

Introduction

Functionals and their extremization
Suppose that a candidate curve is represented as a sequence of

points q; = q(t;) at time instants

ti=t<hi <bh<tz < - <ty <ty=tr.

Geodesic problem: a multivariate optimization problem with the
2(N — 1) variables in {q;,1 <j < N —1}.

With N — oo, we obtain the actual function.
First order necessary condition: Functional is stationary with
respect to arbitrary small variations in {q;}.

[Equivalent to vanishing of the gradient]

This gives equations for the stationary points.

Here, these equations are differential equations!
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Introduction

Examples of variational problems

Geodesic path: Minimize | = fab ¥ (t)| dt

Minimal surface of revolution: Minimize
S = [2nyds =2m faby\/l + y"2dx

The brachistochrone problem: To find the curve along which the
descent is fastest. .
Minimize T = [ & = fab %dx

Fermat's principle: Light takes the fastest path.

.. N us /X/2+y/2+z/2
. . Minimize T = ful Wdu
Isoperimetric problem: Largest area in the plane enclosed by a

closed curve of given perimeter. By extension,
extremize a functional under one or more equality
constraints.

Hamilton's principle of least action: Evolution of a dynamic
system through the minimization of the action

tH tr
s:/ Ldt:/ (K — P)dt
t1 t1

Introduction
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EUler,S Equatlon Euler's Equation

Find out a function y(x), that will make the functional

e = [ " o y(x), ¥ ()] dx

1

stationary, with boundary conditions y(x;) = y1 and y(x2) = y».
Consider variation dy(x) with dy(x1) = dy(x2) = 0 and consistent

variation dy’(x).
2 [ Of of
ol :/ <—5y + —5y/> dx
x \Oy dy’
Integration of the second term by parts:

° of 2 9f d OF 1 [ d of
—0y'dx = — —(dy)dx = [—5}/] —/ ——dy dx
x OY x Oy dx ay’ «  dx oy’

X1 1

With dy(x1) = dy(x2) = 0, the first term vanishes identically, and

2 [of d of
I:/ [————] dy dx.
x LOy dx Oy
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EUler,S Equatlon Euler's Equation

For 6/ to vanish for arbitrary dy(x),

d of _ of _
dx oy’ dy —

Functions involving higher order derivatives

X2
G = [ F (e ) o

1

with prescribed boundary values for y,y’,y", -, y("=1)
B of of of _, of - (m
<5/_/X1 [a—éy F(S +6 0y +---+ay(n)5y dx

Working rule: Starting from the last term, integrate one term at
a time by parts, using consistency of variations and BC's.
Euler's equation:

of d8f+d28f ()n”af

Oy dxdy  dx2dy” dx" 9y(n) ’

an ODE of order 2n. in general.
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EUler,S Equatlon Euler's Equation

Functionals of a vector function

Ir(8)] = /tQ F(t v, F)dt

t1

In terms of partial gradients % and %.

2l raf\T A

v (oF\T of\T 1% e d (or\T

2 7of  dof]’

Euler's equation: a system of second order ODE's

d of Of d of Of .
EE_E_O or Ea_'r,-_a_r;_o for each /.
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EUler,S Equatlon Euler's Equation

Functionals of functions of several variables

u(x, y)] = /D / F(X, v, u, ty, uy)dx dy

, s . 0 Of o of of _
Euler’'s equation: -5/~ + Dy ou, o0 — 0

Moving boundaries
Revision of the basic case: allowing non-zero dy(x1), dy(x2)
At an end-point, g—;/éy has to vanish for arbitrary dy(x).

of

By vanishes at the boundary.

Euler boundary condition or natural boundary condition ‘

Equality constraints and isoperimetric problems

Minimize | = fx)? f(x,y,y")dx subject to J = [ g(x,y,y")dx = Jo.
In another level of generalization, constraint ¢(x,y,y’) = 0.
Operate with f*(x,y, ¥, A\) = f(x,y,y’) + \(x)g(x,y,y’).
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Direct Methods

Finite difference method
With given boundary values y(a) and y(b),

Direct Methods

b
()] = / .y (), y' (x)]dx

> Represent y(x) by its values over x; = a + ih with
i=0,1,2,--- /N, where b— a= Nh.

» Approximate the functional by

N

I[y(X)] ~ ¢(Y1>Y2>Y3>‘ o >yN—1) = Z f()_(h)_/iv}_/i/)hv
i=1

where X = Xi+§i71v Vi = )’i+%/f71 and }—/’/ — )’i—’};ifl
» Minimize ¢(y1,y2,y3, - ,yn—1) With respect to y;;
for example, by solvmg 8 =0 for all i.

Exercise: Show that =0is equwalent to Euler’'s equation.
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Direct Methods

Direct Methods

Rayleigh-Ritz method
In terms of a set of basis functions, express the solution as

N
y(x) = ZaiWi(X)~

Represent functional /[y(x)] as a multivariate function ¢(c).
Optimize ¢(ax) to determine «;'s.

Note: As N — oo, the numerical solution approaches exactitude.
For a particular tolerance, one can truncate appropriately.

Observation: With these direct methods, no need to reduce the
variational (optimization) problem to Euler's equation!

Question: Is it possible to reformulate a BVP as a variational
problem and then use a direct method?
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Direct Methods

The inverse problem: From

b N N
Iy(x)] = ¢(ax) = / f <X,Za,-w,-(x), Za;w{(x)) dx,
a i=1 i=1
9¢p b | of
oG
Integrating the second term by parts and using w;(a) = w;(b) =0,

06 P [&
Do R [; oz,w,] w;(x)dx,

a

Direct Methods

tgz
P:j

N / of dl N / ’
s iwi | wi(x) + B_y’ X,Za;wi,z:a,'wf w; (x)| dx.
i=1 i=1

i=1 i=1

where Ry| = g—; - %g_)f/ = 0 is the Euler's equation of the

variational problem.
Def.: R[z(x)]: residual of the differential equation R[y] =0
operated over the function z(x)

Residual of the Euler’s equation of a variational problem
operated upon the solution obtained by Rayleigh-Ritz
method is orthogonal to basis functions w;(x).
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Direct Methods

Galerkin method

Question: What if we cannot find a ‘corresponding’ variational
problem for the differential equation?

Answer: Work with the residual directly and demand

b
/a R[z(x)]wi(x)dx = 0.

Freedom to choose two different families of functions as basis
functions 1;(x) and trial functions w;(x):

Direct Methods

b
/R Zajwj(x) w;i(x)dx =0

A singular case of the Galerkin method:
delta functions, at discrete points, as trial functions
Satisfaction of the differential equation exactly at the chosen

points, known as collocation points:
‘ Collocation method
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Direct Methods

Direct Methods
Finite element methods

» discretization of the domain into elements of simple geometry
» basis functions of low order polynomials with local scope

» design of basis functions so as to achieve enough order of
continuity or smoothness across element boundaries

> piecewise continuous/smooth basis functions for entire
domain, with a built-in sparse structure

» some weighted residual method to frame the algebraic
equations

» solution gives coefficients which are actually the nodal values

Suitability of finite element analysis in software environments
» effectiveness and efficiency

» neatness and modularity
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Points to note

Direct Methods

Optimization with respect to a function
Concept of a functional
Euler's equation

Rayleigh-Ritz and Galerkin methods

vV v . v v Y

Optimization and equation-solving in the infinite-dimensional
function space: practical methods and connections

Necessary Exercises: 1,2,4,5
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Outline

Epilogue
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Epilogue

Source for further information:
http://home.iitk.ac.in/~ dasgupta/MathBook

Destination for feedback:
dasgupta@iitk.ac.in

Some general courses in immediate continuation
Advanced Mathematical Methods

v

Scientific Computing

Advanced Numerical Analysis
Optimization

Advanced Differential Equations
Partial Differential Equations
Finite Element Methods

vV v v v v Y
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Epilogue

Some specialized courses in immediate continuation

>

vV vV vV VvV vV v VY

Linear Algebra and Matrix Theory
Approximation Theory

Variational Calculus and Optimal Control
Advanced Mathematical Physics
Geometric Modelling

Computational Geometry

Computer Graphics

Signal Processing

Image Processing
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