Effect of Confinement Schemes on In-plane Behavior of URM Walls

Debashis Mukherjee and Durgesh C Rai

Department of Civil Engineering, Indian Institute of Technology Kanpur

Analytical Modeling

FE Discretization

Mixture of different elements:

- Two dimensional plane-stress continuum for masonry.
- Two dimensional linear elements for confinement.
- Frictional contact elements
- Joint elements

Different Confinement Schemes

Confinement Fator (i/t) is ratio of total length of internal grid elements (i) divided by total length of boundary confining elements (t).

Experimental Investigation

Conclusions

- Confining elements distribute crack and result in lesser damage to masonry panel.
- Confinement is more effective in increasing strength of the wall than its stiffness.
- Diagonal members increase strength, stiffness & ductility. Breaking diagonals into discontinuous members reduces strength and stiffness.
- Schemes having single or cross-diagonals exhibit lower strength and higher stiffness.
- Horizontal members introduce preferential plane for sliding and hence reduce the effect of confinement on stiffness and load carrying capacity.
- Horizontal members increase flexibility and overall deformability.

Acknowledgement

The Ministry of Human Resource Development of Government of India, New Delhi provided funds for the research.