Aluminium Shear-Link for Seismic Energy Dissipation

Experimental Investigation 24 specimens of three panel aspect ratios and three

web depth-to-thickness ratio were tested to obtain

key parameters for design of web panel and stiffeners

Durgesh C Rai, Department of Civil Engineering, Indian Institute of Technology Kanpur

Shear-Yielding of Aluminium

- Ductile with large shearing strains (up to 10%) without buckling or tearing.
- Low yield strength allows thicker web reducing the problem of web buckling
- Shear deformation maximizes material participation in plastic deformation
- Can be used to enhance energy dissipation potential of conventional structural systems

Hysteretic Response

- First yielding at 0.2% strain and stress at 20% strain is 2.6 times the yield stress. No buckling until 10% strain
- Stable response even after buckling due to tension field action formed with the help of transverse stiffeners

Shear-Link Braced Frame System

Shear-link braced

damage to primary

members, decreases

in reduced non-

structural damage

Introduction

shear Stress (MPa)

Out-of-plane web deformation can be controlled by laterally confining shear web using rubber pads

Some Applications

Shear-Link Truss Moment Frames

- Strong column weak girder due to links yielding in vertical shear due to lateral loads, inelastic activities pedominately in links and moment hinging in truss chords for a collapse mechanism.
- Significant energy dissipation in comparison to conventional X-Diagonal STMFs

Design Characteristics

Conclusions

- Aluminium shear-links have very ductile shear-yielding and can dissipate large amount of energy effectively and reliably even at large strains (up to 20% shear strain)
- They have excellent strain-hardening behaviour which helps in avoiding excessive concentration of plastic deformations
- Systems equipped with shear-links showed significant reduction in (i) seismic energy input, (ii) Base shear, (iii) Storey drift
- Shear-links can be easily replaced after extreme earthquakes and can be deployed in existing structures for seismic strengthening

Research Team

Saikat Banerjee, Sachin Jain, Gunturi V S K Prasad Benjamin J Wallace and staff of structural engineering laboratory at IIT Kanpur

Acknowledgement Funding was provided by the Ministry of Human Resource

Development (MHRD) of Government of India, New Delhi

Time History Response (Northridge)

