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Mandelbrot [Les objects fractals : forme, hasard et dimension, Flammarion, 1975] intro-
ducedfractals, to describe objects that were too irregular to fit in realm of Euclidean geometry.
Since, then it has turned out to be immensely popular tool for applications in Computer graph-
ics, Physics, Complex Dynamics, Fracture Mechanics, Signal processing, Image processing,
Bio-engineering, Financial series, etc. The fractals arising from Iterated Function System (IFS)
[Proc. R. Soc. Lond. A, 399, 1985, 243-274], possess many interesting features, most notably
self-affinity or non-self-affinity and infinite details regardless of magnification. IFS theory has
provided a major impetus in research and led to a closer understanding of many complex phe-
nomena observed in nature and in several seemingly different areas of sciences and engineering.
M. F. Barnsley [Constr. Approx., 2, 1986, 303-329] introducedFractal Interpolation Functions
(FIF) to generate and classify a large class of fractals through Hutchinson’s operator [Indiana
Univ. Math. J., 30, 1981, 713-747]. FIF are specially suited to describe objects in nature that
display some kind of geometrical complexity under magnification. FIF, in general, are self-affine
in nature and the Hausdorff-Besicovitch dimensions of their graph are non-integers. To approx-
imate non-self-affine patterns found in nature, the hidden variable FIF are constructed by M. F.
Barnsley, et. al [SIAM. J. Math. Anal., 20(5), 1989, 1218-1242] employing projection of vector
valued FIF for generalized interpolation data.

In practical applications of FIF, the interpolation data might be generated simultaneously
from self-affine and non-self-affine functions. Thus, the question that whether it is possible to
construct an IFS that gives both self-affine or non-self-affine FIF simultaneously needs to be
settled. This is achieved in the present work by the construction ofCoalescence FIF. Also, since
the smoothness analysis of non-self-affine FIF arising from IFS theory is still an open problem,
such an analysis is carried out in the present work. The results concerning stability and integral
moment theory of Coalescence Affine FIF are needed due to importance of their applications in
various science and engineering problems. Such results are found in the present work. Stochastic
methods are not generally suitable for constructing fractal surfaces that exactly pass through the
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prescribed data points. Depending on the nature of an object (self-affine or non-self-affine), we
need approximating Fractal Interpolation Surface (FIS) or a hidden variable FIS. In this direction,
an attempt has been made only to construct self-affine bivariate FIS. However, the construction
of non-self-affine bivariate FIS has not been attempted so far. Also, the question whether it
is possible to construct an IFS that gives both self-affine or non-self-affine FIS simultaneously
needs to be investigated. These problems are also addressed to in the present work.

The construction ofCr-FIF that generalize classical splines are constructed by taking succes-
sive integrals of fractal functions. However, the existing construction method involves compli-
cated matrices so that general boundary conditions for spline FIF, similar to those in the construc-
tion of classical splines, can not be specified. In the present work, an attempt is made to construct
Cr-FIF with general boundary conditions by introducing a simpler method. Since classical cu-
bic splines have been applied in variety of problems for over last 40 years and Cubic Spline FIF
is a natural generalization of classical cubic spline, a need of construction of Cubic Spline FIF
through moments and study of convergence results of these are strongly felt. Some convergence
results for Cubic Spline FIF with fixed scaling factors, from equidistant interpolation data have
been found, if the data generating function is of classC4. However, existence and methods of
construction of Cubic Spline FIF through moments under general boundary conditions, are not
known so far. Further, the convergence results of Cubic Spline FIF based on general interpo-
lation data that are generated from a data generating function in the classesC2, C3 or C4 have
also remain uninvestigated. The construction of Cubic Spline FIF through moments and their
convergence properties are studied in detail in this work. Similar to the classical splines, the con-
struction of spline FIF whose certain derivative is also non-self-affine fractal function might turn
out to be of wide use in various science and engineering applications. To this end, Coalescence
Spline FIF are introduced in the present work. The construction of these spline FIF through
moments and their convergence properties are studied in detail in the present work.

The organization of the thesis is as follows:
Chapter 1, being the introduction, consists a brief review of the history, concepts, basic

results and applications concerning IFS, FIF, FIS and spline FIF that are related to the present
work.

The existence, construction, smoothness analysis and fractal dimension of Coalescence FIF
are studied inChapter 2. In Section 2.1, the existence and method of construction of Coalescence
Affine FIF are found for interpolation data inR2. For this purpose, an IFS is constructed in
R3 from a generalized interpolation data with the introduction ofconstrained free variable.It
turns out through the investigations in present work that contrary to the observation of Barnsley
[Fractals Everywhere, Academic Press, 1988], hidden variable FIF is indeed self-affine under
certain conditions. The order of modulus of continuity for a Coalescence FIF is investigated in
Section 2.2 by using the operator approximation technique. The smoothness result for a non-
self-affine FIF is found for the first time here. It is observed that the deterministic construction of
functions having order of modulus of continuity asO(|t|µ(log |t|)n) (n is a non-negative integer
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and0 < µ ≤ 1) is possible through Coalescence FIF. The smoothness results of Gang [Appl-
Math. J. Chinese Univ. Ser. B, 11,1996, 409-428] for self-affine FIF follows as a special case
of the smoothness results are found in the present section. The bounds on fractal dimension of
Coalescence FIF in critical cases are found in Section 2.3. The fractal dimension bounds of Gang
for critical self-affine FIF follow as a particular case of the results of this section. In Section 2.4,
the construction method for Coalescence FIF and the effects of hidden variables on theirs nature
is illustrated through suitable examples.

The stability and integral moment theory of Coalescence Affine FIF are studied inChapter 3.
An auxiliary smoothness result is derived for a Coalescence Affine FIF for generalized interpo-
lation data in Section 3.1. In Section 3.2, the main stability result for Coalescence Affine FIF is
proved by first developing the stability results for co-ordinate wise perturbations in generalized
interpolation data. The result in this section generalizes an earlier result of Feng and Xie [Frac-
tals, 6(3), 1998, 269-273] for equidistant interpolation data. In Section 3.3, the interrelation of
integral moment of Coalescence Affine FIF with its lower order moments, IFS parameters and
integral moments of self-affine fractals is derived. Finally, an explicit expression of inner product
in terms of IFS parameters and integral moments for Coalescence Affine FIF is derived in this
section that was hitherto possible only for self-affine FIF [J. Apprx. Theory, 71, 1992, 104-120].

In Chapter 4, a method of construction forCoalescence Bivariate FISis developed by defin-
ing a suitable vector-valued IFS such that projection of its attractor is the required interpolation
surface that may be self-affine or non-self-affine in nature depending on IFS parameters. In Sec-
tion 4.1, the principle of construction of IFS for bivariate FIS is developed. By introducing the
constrained free variables in Section 4.2, the unknowns for IFS are determined. Further, it is
shown that the above IFS is such that continuity of the generated FIS is maintained at each point.
In Section 4.3, the existence and uniqueness of Coalescence Bivariate FIS are established. Some
of the results in this chapter generalize the results of Xie and Sun [Fractals, 5(4), 1997, 625-634]
obtained for self-affine bivariate FIS. The effects of hidden variables on Coalescence Bivariate
FIS and its roughness factors are illustrated in Section 4.4 with suitably chosen examples.

A simple method of construction for self-affine spline FIF inChapter 5is introduced. Thus,
basic calculus of aC1-fractal function is reviewed in Section 5.1 and a general method for con-
struction of aCr-FIF f2 with all admissible boundary conditions as in classical splines is enun-
ciated by prescribing any combination ofr-values of the derivativesf (k)

2 , k = 1, 2, . . . , r, at
boundary points of the interval[x0, xN ] in Section 5.2. The present construction method, due to
functional relations between the values ofCr-FIF involving end points of the interval, is much
simpler than that of Barnsley and Harrington [J. Approx. Theory, 57, 1989, 14-34], wherein
complicated matrices and particular types of end conditions are employed. Further, the present
approach of construction ofCr-FIF takes care of several queries of Barnsley and Harrington.
The explicit construction of Cubic Spline FIFf2∆(x) throughmomentsis developed in Section
5.3 and the convergence of sequence of Cubic Spline FIF{f2∆k

} to Φ ∈ Cm[x0, xN ],m = 2, 3

or 4 is established on two classes of sequences of uniform or non-uniform meshes in Section 5.4.
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The present results are derived in a much general set up than that of Navascués and Sebastián [
Fractals, 11(1), 2003, 1-7], who found the convergence of Cubic Spline FIF only with fixed scal-
ing factors from equidistant interpolation data when the data generating function is in classC4.
Finally, in Section 5.5, the results in Section 5.3 are illustrated by generating certain examples of
Cubic Spline FIF for a given data and two different sets of vertical scaling factors.

The Coalescence Spline FIF are introduced inChapter 6. In Section 6.1, the calculus of
vector valued fractal functionf is studied and differentiable Coalescence Fractal Functions are
constructed. A general method of construction for Coalescence Spline FIF with all possible
boundary conditions is initiated in Section 6.2. The functional relations of CoalescenceCr-FIF
at the end points of the interval with join-up conditions and interpolation conditions give a system
of equations whose solution determines the coefficients of polynomials in the construction of the
non-diagonal IFS. The advantage of such a construction is that, for a prescribed data and given
boundary conditions, a choice of Coalescence Spline FIF that are self-affine or non-self-affine
can be made according to the need of an experiment by suitably prescribing hidden variables of
Coalescence Spline FIF, free variables, constrained free variables andboundary conditions of the
spline fractal function. In Section 6.3, the construction of Coalescence Cubic Spline FIFf1∆(x)

on a mesh∆ is developed throughmomentsM∗
n = f1

′′

∆(xn), n = 0, 1, 2, . . . , N with any type of
boundary conditions as in classical cubic spline. In Section 6.4, the convergence results of the
sequence of Coalescence Cubic Spline FIF{f1∆k

(x)} to the interpolation data functionΦ(x) on
two classes of sequence of meshes are proved whenΦ(r)(x) is continuous on[x0, xN ] for r = 2, 3

or 4. Finally, some of the examples of Coalescence Cubic Spline FIF are generated in Section
6.5 to illustrate the results of Section 6.3 concerning the effect of hidden variables on the nature
of Coalescence Cubic Spline FIF.


