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Theorem 1.3.7 ( [9]). If for a transcendental entire f(z) there is an unbounded invariant 

component of the Fatou set, then f(z) must be of growth greater than (~, 0). 

Theorem 1.3.8 ( [9]). If a transcendental entire function f(z) is of generalized (a, a)­

order p with a (x) = log x, and 1 < p < 3, then every component of the Fatou set of f (z) 

is bounded. 

Theorem 1.3.9 ( [9]). If f(z) is a transcendental entire function of growth not greater 

than (~, 0), then the Fatou set F(J) has no completely invariant component. 

There is a close correlation between the order of an entire funct ion and the number of 

asymptotic values of the function. It is well known that the asymptotic values of an entire 

function playa vital role in the dynamics. In 1907, Denjoy [24] conjectured that an entire 

function of order p can have at most 2p asymptotic values. The conjecture was proved by 

in affirmative by Ahlfors, in 1932. Thus, we have the following Denjoy-Ahlfors Theorem. 

Theorem 1.3.10 ( [1]). If an entire function is of order p then it has atmost 2p different 

asymptotic values. 

1.4 Present work 

Motivation 

The chaotic dynamics and fractals have become quite popular in recent years due to its 

wide ranging application in engineering problems. The complex analytic dynamics is an 

intricate and fascinating area of dynamical systems in which deterministic fractals appear 

often as a chaotic sets. During the last decade there has been a renewed interest in the 

dynamics of analytic functions due to the beautiful computer graphics related to it. 

The central objects studied in complex analytic dynamics of a function are its Julia 

set and Fatou set. There are two basic approaches in the study of dynamics of a function. 
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The first one is to investigate the iterative behaviour of an individual function, while the 

second one is the study of the iterative behaviour changes due to slight perturbations in the 

function. In the latter approach, which has received considerable attention during recent 

years, the simplest (but sufficiently intricate) case being that of a family of functions that 

depends on one parameter. 

The dynamics of an entire transcendental function is much more interesting than the 

dynamics of a polynomial, since in the case of an entire transcendental function substan­

tial hyperbolicity occurs in dynamics. The Julia set of a polynomial is always bounded. 

But, it is obvious from Picard's theorem that the Julia set of an entire transcendental 

function is unbounded, so that its Fatou set no longer forms a neighborhood of 00. In the 

dynamics of polynomials, the basin of attraction of any finite attracting periodic point is 

bounded. But, in the dynamics of entire transcendental functions, the basins of attraction 

of finite attracting periodic points may become unbounded. The Julia sets of certain entire 

transcendental functions are often Cantor bouquets giving beautiful examples of fractals. 

Devaney and Durkin [33] observed the burst nature in the Julia set of the exponential 

function. If 0 < A < (lie), the chaotic region for the function Aexp(z) is a nowhere dense 

set entirely contained in the right half plane, while if A > (lie) the chaotic region is the 

entire complex plane. This phenomena is referred to as explosion (or chaotic burst) in 

the Julia sets of functions in one parameter family of functions £ = {A exp (z) : A > O}. 

Devaney [25, 28] observed similar explosion in the Julia sets of functions in the family 

C = {i A cos z : A > O}. This kind of explosion in the chaotic set does not occur in the 

dynamics of a polynomial. Further, certain new types of stable domains like a wandering 

domain [8] and a domain at infinity [42] exist for transcendental entire functions but are 

not found for polynomials. 

In the dynamics of entire functions, the dynamics of polynomials and dynamics of 

certain classes of transcendental entire functions are hitherto studied by taking advantage 
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of the presence of finitely many critical values and asymptotic values of their functions. 

The dynamical behaviour of critically finite (i. e., having only finitely many critical values 

and asymptotic values) entire transcendental functions share many of the properties of 

polynomials and rational functions; for instance, these functions do not have wandering 

domains. Exploiting the critical finiteness, Devaney and coworkers studied exhaustively 

the dynamics of some of the most interesting periodic entire transcendental functions like 

).ez , ). sin z and), cos z. However, the dynamics of non-critically finite entire functions has 

not been explored so far, probably because of non-applicability of Sullivan's theorem (c.r. 

Theorem 1.1.6) to these functions. Also, the presence of infinitely many critical values 

and the behaviour of the orbits of critical values make it difficult to study the dynamics of 

non-critically finite entire functions. In the present work an effort is made in this direction. 

The non-critically finite entire functions considered here for the study are obtained 

as numerators or denominators of certain separately convergent continued fractions and 

include entire functions like (e Z - 1) / z, sinh z / z, the modified Bessel function 10 (z) of order 

zero. 

Organization 

The present work is organized into six chapters; Chapter 1 being the Introduction. gives a 

brief review of the basic theory and results relevant to our study in the subsequent chapters. 

Chapter 2 

In Chapter 2, the growth of the entire functions arising as the numerator and the denom­

inator of a separately convergent continued fraction is studied. Let K ( Fn Z ), 
n = 1 1 +Gn z 

Fn =1= 0, n 2: 1 be a general T-fraction satisfying the conditions L~l IFni < 00 and 

L~=lIGnl < 00. Let An(z) and Bn(z) denote respectively the numerator and the de­

nominator of the nth approximant of the general T-fraction and limn-+oo An(z) = A(z), 

limn-+oo Bn(z) = B(z) uniformly on compact subsets of C. In the present chapter, the 
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growth of the entire functions A( z) and B (z) is studied by investigating the influence of 

the elements Fn and Gn of a general T-fraction on the order of A(z) and B(z). In Sec­

tion 2.1, It is proved that if Fn and Gn tend to zero sufficiently rapidly then the entire 

functions A(z) and B(z) are of order zero. This result generalizes a result of Thran [98] 

obtained for a regular C-fraction n ~ 1 (F~ Z) . An attempt to find the influence of the 

elements of a general T-fraction on the generalized (a, a)- order of its numerator and de­

nominator is made in Section 2.2. It is seen that our results do give significant information 

about the comparison of growth of B(z) (or A(z)) even for regular C-fractions in the situa­

tions where the relevant result of Thron [98] does not give any nontrivial information. The 

results pertaining to generalized (a, a)- order of A(z) and B(z) are used in Chapter 3 to 

study the dynamics of certain entire transcendental functions of slow growth. The results 

concerning influence of the elements of a general T-fraction on the generalized (a, /3)- order 

of A(z) and B(z) are found in Section 2.3 and one of our results in this section, giving a 

sufficient condition on the elements Fn, Gn that forces the numerator (or denominator) ofa 

general T -fraction to have generalized (a, (3)- order not less than a prespecified constant, 

generalizes a result of Maillet [70]. Finally, since even entire functions can not be obtained 

as a denominator ( or numerator) of a separately convergent general T -fraction, a new type 

of continued fraction, called modified general T-fraction, is introduced in Section 2.4 and 

the growth of the numerator and the denominator of such a modified general T-fraction 

when they are slow growth, is studied. 

Chapter 3 

Chapter 3 is devoted to the study of the dynamics of slow growth entire functions arising as 

the numerator A(z) and the denominator B(z) of separately convergent general T-fractions 

laving generalized (a, a)- order J.L with a(x) = logx and 2 < J.L < 3. For this purpose, one 

larameter families A = {A,x(z) = AA(z) : A > O} and B = {B,x(z) = AB{z) : A > O} are 
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considered. In Section 3.2, the dynamics of A). E A, A > 0, is studied. In particular, the 

nature ofthe fixed points of A).(z) on the positiYe real line is investigated and the dynamics 

of A). (x) for x 2: 0 is described. Further, in this section, the dynamics of A).(z) for z E C 

is described for the three different cases, viz, 0 < A < AA' A = AA and A > AA where 

AA = AI(O)' In all the three cases, we obtain computationally useful characterization of the 

Julia set of A,,(z) as the closure of the set of points with orbits escaping to infinity under 

iteration of A).. Such a characterization was hitherto known only for critically finite entire 

transcendental functions [37J. In Section 3.3, firstly, the nature of the fixed points of B).(z) 

and the dynamics of B).(z) on the positive real line are investigated. Next, a description 

of the basin of attraction (c.f. Theorem 1.1.7) of the real attracting fixed point a>. of the 

entire function B).(z) is found for ° < A < AB = B1lx.); x· being the unique positive real 

root of the equation B(x) - xB'(x) = 0. Similarly, a description of the parabolic domain 

(c.f. Theorem 1.1. 7) corresponding to the rationally indifferent fixed point x· of B). (z) is 

found for A = AB. Finally, in this section, the dynamics of B).(z) for z E C is described for 

all the three different cases, viz, 0 < A < AB, ). = AB and A > AB and, analogous to that 

of A>.(z), a computationally useful characterization of the Julia set of B).(z) is obtained. 

Finally, in Section 3.4, the characterizations of the Julia sets of A). (z) and B). (z), obtained 

in Sections 3.2 and 3.3, are applied to computationally generate the pictures of the Julia 

sets of A). E A and B). E B for different values of ).. 

Chapter 4 

Let fez) = (e Z -l)/z be the non-critically finite entire function arising as the denominator 

of the separately convergent general T-fraction K ( z{(;(+ 1) ))) . In Chapter 4, 
n=l 1- z n+1 

the dynamics of the entire function f).(z) = Af(z), A > 0 is studied. Let K, = {J>.(z) = 

Af(z) : A > O} be one parameter family of functions. In Section 4.2, some of the basic 

properties of the function f -. 1C ... p.re developed. Section 4.3 contains the study of the 
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dynamics of I>. E JtC on the real line. In this section, it is shown that bifurcation in 

the dynamics of I>.(x) occurs at A = A* (:::::= 0.64761) where A* = (X*)2 j(ex • - 1) and 

x* is the unique positive real root of the equation eX (2 - x) - 2 = O. That is, if the 

parameter value crosses the value A*, then a sudden dramatic change in the dynamics of 

I>.(x) occurs. In Section 4.4, the dynamics of f>,.(z) for z E C and 0 < A < A* is studied. 

For this case, we prove two different characterizations for the Julia set of I>. (z) . The first 

characterization gives the Julia set .7(1).) for 0 < A < A* as the closure of the set of 

escaping points; while the second characterization, describes it as the complement of the 

basin of attraction of an attracting real fixed point of I>.(z). Further. in this section, it 

is found that, under a certain condition, the Julia set of f>,.(z) , 0 < A < A* , is a nowhere 

dense subset of the right half plane. In Section 4.5, the dynamical behaviour of I>.(z) for 

A> A* is described. We prove that the Julia set of f>..(z) for A > A* contains the entire 

real line. The characterization of the Julia set of f>. (z) as the closure of the set of escaping 

points, analogous to the first characterization in Section 4.4 is obtained in this case also. In 

Section 4.6, the characterizations of the Julia set of I>. (z), obtained in Sections 4.4 and 4.5, 

are applied to computationally generate the pictures of the Julia set of f>,.(z) for different 

values of A. Finally, the results of our investigations on the dynamics of the non-critically 

finite entire function I>. E JtC are compared with those of Devaney [26, 31], Devaney and 

Durkin [33] , Devaney and Krych [36] , Devaney and Tangerman [37] and Misiurewicz [75] 

obtained for the dynamics of the critically finite entire functions E),(z) = A eZ • 

Chapter 5 

In Chapter 5, the dynamics of the entire function h),(z) = Ah(z) where A is a non-zero 

real parameter and h( z) = sinh z / z is an even non-critically finite entire function arising 

as a limit function of the sequence of denominators of the approximants of the modified 

general T-fraction K . is studied. Let 1£ = {h,\(z) = Ah(z) : 00 (-z2 j ((2n)(2n + 1)) ) 
n = 1 1 + (Z2 j(2n)(2n + 1)) 
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A E R \ {O}}. Section 5.2 is devoted to the results on some of the basic properties of 

h>. E ti. In Section 5.3, the dynamics of h>.(x) for x E R is described. In this section, 

it is shown that there exists a critical parameter value A ** > 0 such that bifurcation in 

the dynamics of J>.(x) , x E R occurs at IAI = A**(~ 1.104). The critical parameter A** 

is given by A ** = (x**)2/sinh x** and x'" is the unique positive real root of the equation 

tanh x = x/2. The dynamics of h>.(z) for Z E C and 0 < IAI < A** is studied in Section 5.4. 

For this case, two different characterizations for the Julia set of h>.(z) are obtained. The 

first characterization gives the Julia set .:r(h>.) for 0 < IAI < X" as the closure of the set 

of escaping points; while the second characterization, describes it as the complement of 

the basin of attraction of an attracting real fixed point of h>.(z). Further, in this section, it 

is found that, under a certain condition, the Julia set of h>.(z), 0 < 1).1 < AU is a nowhere 

dense subset of the complex plane. In Section 5.5, the dynamical behaviour of h>.(z) for 

z E C and IAI > A** is described. We prove that the Julia set of h>.(z) for IAI > A** 

contains all the real points and the purely imaginary points of the complex plane. The 

characterization of the Julia set of h>.(z) as the closure of the set of escaping points is 

obtained in this case. In Section 5.6, the characterizations of the Julia set obtained in 

Sections 5.4 and 5.5, are applied to computationally generate the pictures of the Julia 

set of h>.(z) for various values of A. Further, the results obtained in this chapter for the 

. dynamics of h>. E ti are compared with those of Devaney and Durkin [33] obtained for the 

dynamics of critically finite even entire function C>.(z) = Ai cos z, A E R \ {O} and, finally, 

a comparison is made in this section between the results on the dynamics of f>. E K and 

h>. E ti, A > 0, as found in Chapter 4 and in the present chapter. 

Chapter 6 

In Chapter 6, a class of non-critically finite entire functions is introduced and it is proved 

that explosion occurs in the Julia sets of functions in one parameter family generated from 
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each function in this class. Let F be the class of functions J(z) satisfying (i) J(z) is an 

entire function having order p with (1/2) ~ p < 1, (ii) J(z) has only negative real zeros 

in the complex plane, (iii) IJ( -x)1 ~ 1(0) = 1, for all x > 0 and (iv) limx-too 1( -x) = 0; 

and 9 be the class of functions defined by 9 = {g{z) = J(Z2) : 1 E F}. In the present 

chapter, the dynamics of g).(z) = >.g(z), >. E R \ {O}, for a function 9 E g, is studied. 

Let S == {g).(z) : >. E R \ {O}}. Section 6.2 describes the bifurcation in the dynamics 

of functions g). E S for x E R. It is shown that there exists a critcal parameter ).; > 0 

such that bifurcation in the dynamics of functions in S for x E R occurs at 1).1 = ).;. 
In Section 6.3, the dynamics of g). E S for z E C is described and the chaotic burst in 

the Julia sets of functions in the family S is exhibited. It is shown that the Fatou set 

of g).(z) is an unbounded proper subset of the complex plane when 0 < 1>'1 ~ ).; and 

consequently Julia set of g).(z) is also unbounded proper subset of the complex plane for 

this case, while the Julia set of g).(z) is the extended complex plane when 1).1 > >.;. Finally, 

certain interesting examples of the family S, viz, (i) I = {'xfo(z) : >. E R \ {O}}, where 

fo Egis the well known modified Bessel function of zero order arising as the denominator 

of the separately convergent modified general T-fraction K (-Z2 ;;~n);2) and (ii) 
n = 1 1 + z 2n 

Mk == {>.G2k (Z) : G2k (Z) = F2k (iz)/F2k (0), ). E R \ {O}}, where G2k E 9 with fi.xed 

k = 1,2, ... and F2k (Z) = Jooo e- t2k cos zt dt, are given and the picture of the Julia set of 

functions in the family T is computationally generated for various values of >.. 
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