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The problem of classical interpolation is to find a continuous or a differentiable function

such that the graph of the function contains a given set of data points. In most of the cases,

classical interpolations are about constructing a very smooth function passing through the

given data. However, in several physical experiments like those in the study of cost lines,

mountains, signal processing, image processing, bio-engineering, etc., the data arises from

highly irregular curves and surfaces found in nature and may not be generated from a smooth

function. For efficiently modeling of such a data, Barnsley [Fractal functions and interpola-

tion, Constr. Approx., 2:303-329, 1986] used the notion of Fractal Interpolation Functions

(FIF), based on the work of Hutchinson [Fractals and self-similarity, Indiana Univ. Math.

J., 30:713-747, 1981] and Iterated Function System (IFS) theory. Mandelbrot introduced the

term ‘Fractal’ to describe objects that are too irregular to fit in to the theory of Euclidean

geometry. The objects found in nature such as ferns, coastlines, clouds, etc. have fractal

structure and many mathematical sets like Cantor set, Sirpinski gasket, Peano curve, Koch

snowflake, etc., are now recognized as fractals. These are better represented by the ‘fractal

geometry’, a notion that was first formalized by Mandelbrot [The Fractal Geometry of Na-
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ture, W.H.Fremman and Co., New York, 1982]. The advent of Fractals represents a rebirth

of experimental mathematics, nurtured by computers and enhanced by powerful evidence of

its applications. Fractal Interpolation Functions, in general, represent objects found in nature

that show some kind of self-similarity on magnification and the Fractal dimensions of their

graph are non-integers. To approximate non-self-similar objects found in nature, the hidden

variable FIF are constructed by Barnsley, et. al. [Hidden variable fractal interpolation func-

tions, SIAM. J. Math. Anal., 20(5):1218-1242, 1989], employing projection of vector valued

FIF for generalized interpolation data. In some of the practical applications of FIF, the inter-

polation data might be generated simultaneously from self-similar and non-self-similar func-

tions. To study such data, the notion of Coalescence Fractal Interpolation Function (CFIF)

is introduced [Stability of affine coalescence hidden variable fractal interpolation functions,

Nonlinear Analysis, 68:3757-3770, 2008].

Fractal Interpolation Functions are continuous but are not generally differentiable. How-

ever, Barnsley and Harrington [The calculus of fractal interpolation functions, J. Approx.

Theory, 57:14-34, 1989] proved the existence of differentiable FIF and developed a method

for construction of Cp-FIF. Navascúes and Sebastı́an [Generalization of Hermite functions by

fractal interpolation, J. Approx. Theory, 131:19-29, 2004] constructed a Cp-FIF fα, called

Hermite FIF, for data {(xn, yn,k) ∈ R2; n = 0, 1, . . . , N and k = 0, 1, . . . , p} such that

f
(k)
α (xn) = yn,k. The Hermite FIF interpolates only self-similar data. However, in sev-

eral practical applications, the data is available in terms of functional values at all the nodal

points and the values of certain order derivatives only at the end points of the interval. For the

interpolation of such a data, the concept of Spline FIF and Spline CFIF are introduced [Gen-

eralized cubic Spline fractal interpolation functions, SIAM J. Numer. Anal., 44(2):655-676,

2006].

In several practical applications of FIF, the Hermite FIF is not suitable for efficient sim-
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ulation of a data which is in part self-similar and in part non-self-similar. Thus, there is a

need to construct a Cp-FIF which efficiently simulates such a data. This is achieved in the

present work by the construction of Hermite CFIF. For Hermite FIF and Hermite CFIF, the

data needs to consist of the values of its generating function and the values of its derivatives

up to order p. In certain cases, the given data, at nodal points, consists of values of its gener-

ating function and the values of its even order derivatives up to 2p. To achieve interpolation

of such a data, Lidstone FIF and Lidstone CFIF are introduced in the present work. Further,

in several practical applications, the data is available in terms of functional values at all the

nodal points and the values of even order derivatives only at the end points of the interval. For

the interpolation of such a data, the notions of Lidstone Spline FIF and Lidstone Spline CFIF

are introduced in our work and their existence are proved. Fractal surfaces frequently arise

in nature and several areas of science and engineering problems. Several interpolation meth-

ods for the construction of fractal surfaces are recently developed. However, the Lidstone

Spline interpolation with certain LIdstone boundary conditions of such fractal surfaces is not

considered so far. In the present work, this need is fulfilled by constructing a Cubic Lidstone

Spline Fractal Surface through the introduction of the space of Natural Cubic Lidstone Spline

FIF.

The organization of the thesis is as follows:

Chapter 1, being the introduction, consists of a brief review of history, concepts, basic

definitions that are needed in the context of subsequent chapters.

Chapter 2 starts with the definition, study of existence and a method of construction of

Hermite CFIF for an interpolation data in R2. For this purpose, in Section 2.2, an IFS is

constructed by considering a set of generalized data in R3. The projection of the attractor

of the IFS on R2 gives a Cp-Hermite CFIF, which is self-affine or non-self-affine depending

upon the generalized data. The convergence of Hermite CFIF to data generating function and
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to Classical Hermite interpolation are studied in Section 2.3. In Section 2.4, for a given data

set, a bound on L∞-norm ‖Φ(k)− ~(k)
1ω ‖∞, for k = 1, 2, . . . , p, is obtained for derivatives Φ(k)

of the classical Hermite interpolation function Φ and derivatives ~(k)
1ω of Hermite CFIF ~1ω.

Using this result, bounds on L∞-error, in approximation of derivatives of data generating

function by derivatives of Hermite CFIF, are found. It follows from our results that these

errors are of the order ‖∆‖p−k, for a partition ∆ of the interval corresponding to the data

set. For a data arising from the Bessel function of order zero, the results found in the present

chapter are used in modeling a Hermite CFIF in Section 2.5.

The notion of Lidstone FIF is introduced in Chapter 3. The definition, investigation of

existence and a method of construction of Lidstone FIF for an interpolation data in R2 are

given in Section 3.2,. The convergence of Lidstone FIF to the data generating function and

to the classical Lidstone interpolating polynomial are investigated in Section 3.3. Further, in

this section, a bound on L∞-norm ‖φ(2k)−`
(2k)
α ‖∞, k = 1, 2, . . . , p, is obtained for derivatives

φ(2k) of the classical Lidstone interpolation function φ and derivatives `
(2k)
α of Lidstone FIF `α.

Using these results, bounds on L∞-error, in approximation of derivatives of data generating

function by derivatives of Lidstone FIF, are found. To approximate a data generating func-

tion, whose graph is in-part self similar and in-part non-self similar, by a C2p-fractal function,

the notion of Lidstone Coalescence Fractal Interpolation Function (Lidstone CFIF) is intro-

duced in Section 3.4. In Section 3.5, the convergence of Lidstone CFIF to the data generating

function along with its derivatives is discussed. Finally, certain computational models of

Lidstone FIF and Lidstone CFIF for a data are generated in Section 3.6.

In Chapter 4, Lidstone Spline Fractal Interpolation is introduced. The definition, exis-

tence and construction of Cubic Lidstone Spline FIF, for an interpolation data in R2, are

given in Section 4.2. The convergence of Cubic Lidstone Spline FIF to the data generating

function and to the classical Lidstone Spline interpolating polynomial in L∞-norm are studied
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in Section 4.3. Section 4.4 deals with the definition, existence and construction of Quintic

Lidstone Spline FIF for an interpolation data in R2. The convergence of Quintic Lidstone

Spline FIF to the data generating function and to the classical Lidstone Spline interpolating

polynomial in L∞-norm are investigated in Section 4.5. The results found in this chapter are

computationally modeled for construction of Cubic Lidstone Spline FIF and Quintic Lidstone

Spline FIF for a data, in Section 4.6.

By developing the theory of Lidstone Spline Fractal Surface, the reconstruction of fractal

surfaces found in nature is studied in Chapter 5 . In Section 5.2, the notion of natural cubic

Lidstone Spline FIF is introduced and it is shown that the set of all natural cubic Lidstone

Spline FIF is a linear space. A basis for this space is constructed in this section. Using this

basis, Cubic Lidstone Spline Fractal Interpolation Surface for a given surface data is con-

structed in Section 5.3. An estimate of error in approximation of a data generating function

by a bivariate Cubic Lidstone Spline Fractal Interpolate is found in Section 5.3. Finally, the

results of this chapter are computationally modeled through an example in Section 5.5.

Chapter 6 introduces a new notion of Lidstone Spline CFIF. The definition, study of exis-

tence and a construction method of Cubic Lidstone Spline CFIF, for an interpolation data in

R2 are given in Section 6.2. The convergence of Cubic Lidstone Spline CFIF to the data gen-

erating function and to the classical Lidstone Spline interpolating polynomial in L∞-norm

are investigated in Section 6.3. The definition, existence and construction of Quintic Lid-

stone Spline CFIF for an interpolation data in R2 are given in Section 6.4. The convergence

of Quintic Lidstone Spline FIF to the data generating function and to the classical Lidstone

Spline interpolating polynomial in L∞-norm are studied in Section 6.5. Finally, the construc-

tions of Cubic Lidstone Spline CFIF and Quintic Lidstone Spline CFIF are computationally

modeled for a generalized data and various boundaries conditions, in Section 6.6.


