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Among the major recent developments in understanding the structures of objects found

in nature, the notion of fractals occupies an important place. Since the introduction

of the term ‘Fractal’ by Mandelbrot [Fractals: Form, Chance and Dimension, W. H.

Freeman, 1977], a growing number of research papers have been published showing the

fractal character of many systems with different physical properties. A fractal set has a

highly irregular structure while it is union of many smaller copies of itself. The theory

of fractal interpolation has become a powerful tool in applied sciences and engineering

since Barnsley [Constr. Approx. 2, 303-329, 1986] introduced Fractal Interpolation

Function (FIF) using Hutchinson’s operator[Indiana Univ. Math. J. 30, 713-747, 1981]

and certain Iterated Function System (IFS) whose attractor is graph of a continuous

function interpolating a given set of points. FIFs are generally self-affine in nature.

Barnsley et.al. [SIAM J. Math. Anal. 20(5), 1218-1242, 1989] extended the idea of FIF

to produce Hidden-variable FIF which are non-self-affine curves. To simulate curves
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that exhibit partly self-affine and partly non-self-affine nature, Chand and Kapoor [Int.

J. Nonlinear Sci. 3, 15-26, 2007] constructed a Coalescence Hidden-variable Fractal

Interpolation Function (CHFIF) depending on free variables and constrained variables.

A brief review of these basics and existing contributions on fractals related to our work

are given in Chapter 1.

The theory of multiresolution analysis, introduced by Mallat [Trans. Amer. Math. Soc.

315, 69–87, 1989], provides a powerful method to construct wavelets having far reaching

applications in analyzing signals and images. This has led to investigations on multires-

olution analysis of L2(R) based on various suitable functions in several contemporary

researches. Hardin et.al. [J. Approx. Th. 71, 104–120, 1992] investigated multires-

olution analysis of L2(R) based on FIFs. However, multiresolution analysis of L2(R)

based on Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) which

exhibits both self-affine and non-self-affine nature has hitherto remained unexplored.

In the present work, such a multiresolution analysis is accomplished in Chapter 2. The

availability of a larger set of free variables and constrained variables with CHFIF in

multiresolution analysis based on CHFIFs provides more control in reconstruction of

functions in L2(R) than that provided by multiresolution analysis based only on affine

FIFs. In our approach, first the vector space of CHFIFs is introduced and its dimension

is determined. Using this result, Riesz bases of vector subspaces Vk, k ∈ Z, consisting

of certain CHFIFs in L2(R)
⋂

Cb(R) are constructed. The multiresolution analysis of

L2(R) is then carried out in terms of nested sequences of vector subspaces Vk, k ∈ Z.

As a special case, for the vector space of CHFIFs of dimension 4, an orthogonal basis

consisting of dilations and translations of scaling functions, for the vector subspaces

Vk, k ∈ Z, is explicitly constructed in the present chapter. As a natural follow-up,

the orthogonality of these scaling functions is used to construct compactly supported

continuous orthonormal wavelets.
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Although, FIF and CHFIF are important tools in the study of highly uneven curves

arising as seismic fractures, lightening, ECG, etc., they cannot be applied for the study

of highly uneven surfaces such as surfaces of metals, terrains, planets, living organisms,

and many other naturally occurring objects for which the generating function depends

on more than one variable. Chand and Kapoor [Fractals 11(3), 227-288, 2003] con-

structed Coalescence Hidden-variable Fractal Interpolation Surfaces (CHFIS) which,

depending on choices of free variables and constrained variable, exhibit both self-affine

and non-self-affine nature in its various parts. An open problem, as observed in the

above work, is to find the effect of free variables and constrained variables on smooth-

ness and fractal dimension of a CHFIS. In the present work, the contents of Chapter 3

provide a satisfactory solution to this problem. It is shown here that the smoothness

of a CHFIS depends on free variables as well as on Lipschitz exponents of certain bi-

variate polynomials and a CHFIS belongs to a certain class of Lipchitz functions under

appropriate conditions. The results obtained in this chapter are illustrated through

interpolation data generated from certain sample surfaces for which (i) CHFISs are

computationally constructed for various sets of suitably chosen parameter values and

(ii) Lipschitz exponents of constructed CHFISs are computed to visualize their effect

on the resulting smoothness of the simulated surfaces.

It is important to know while conducting experiments in various science and engineering

disciplines as to how the governing CHFIS varies with slight variations in the interpo-

lation data. A contribution is made in this direction in Chapter 4 of the present work

by establishing the stability of CHFIS. Our stability results, first found individually for

perturbations in independent variables, the dependent variable and the hidden variable,

comprise of estimates on errors in approximation of the data generating function by a

CHFIS. These estimates together lead to the estimate on cumulative error in approxi-

mation of the data generating function by a CHFIS, when there are simultaneous per-
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turbations in all of the above variables. Our stability results found here are illustrated

through computational simulations of a data generating sample surface and the surfaces

corresponding to perturbed data obtained by small variations in concerned variables.

The mathematical models and experimental studies show that the estimation of fractal

dimension, having its origin in the works of Kolmogorov [Dokl. Akad. Nauk SSSR

119(5), 861–864, 1958], is a sophisticated tool in the study of natural objects and

structures. The determination of estimates on fractal dimension of surfaces exhibiting

both self-affine and non-self-affine nature is hitherto unexplored. An attempt is made in

the present work in this direction by finding the bounds on fractal dimension of a CHFIS

in first few sections of Chapter 5. These bounds give conditions on free variables so that

the fractal dimension of the constructed CHFIS is close to 3. Also, these bounds give a

range on free variables, confining to which forces the fractal dimension of the constructed

CHFIS to be strictly greater than 2. As a test case, a Tsunami wave surface at a static

moment is considered and the bounds on fractal dimension, found in this chapter, are

computed for the simulated CHFIS to substantiate our results. Another important tool

for the applications of Fractals in real world problems is computation of its Integral

Moments. To facilitate such a computation while generating fractals based on CHFIS,

a recursive formula for integral moments of a CHFIS is obtained in a later section of

this chapter. This recursive formula is then employed to find an explicit representation

of inner product of CHFIS in terms of integrals of certain bivariate polynomials and

free variables, which is likely to be highly useful in the study of multiresolution analysis

and multi-wavelets arising from CHFIS.

Although, deterministic fractals are used to model natural objects, it is often observed

that the nature in fact exhibits local variations at small scales. Barnsley, Hutchinson

and Stenflo [Fractals 13(2), 111–146, 2005] introduced the class of V -variable fractals,

where the integer parameter V controls the number of distinct shapes and forms at
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each level of magnification. However, for a data set arising from nature, a solution of

fractal interpolation problem based on several IFS has not been investigated so far. A

solution to such an interpolation problem is found in Chapter 6 of the present work

by introducing the notion of Super Fractal Interpolation Function (SFIF) based on

multiple IFSs. At each level of iteration, an IFS is chosen randomly, allowing variability

in structure and better geometrical modeling of nature. Further, the integral, the

smoothness and sufficient conditions for differentiability of a SFIF are explored in this

chapter. It is proved here that for a SFIF passing through a given interpolation data,

its integral is also a SFIF, albeit for a different interpolation data. The smoothness of a

SFIF, described in terms of its Lipschitz exponent, is seen to depend on free variables as

well as on the extent of smoothness of certain polynomials. Certain sufficient conditions

for existence of derivatives of a SFIF are also found in this chapter. Further, motivated

by vast applications of classical splines in solutions of various science and engineering

problems, the notion of Cubic Spline SFIF is introduced in the present chapter and its

approximation properties are investigated. The convergence results for Cubic Spline

SFIF found here show that any desired accuracy can be achieved in the approximation

of a regular data generating function and its derivatives by a Cubic Spline SFIF and

its corresponding derivatives respectively.
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