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Contact of a Rigid Cylindrical Punch
with an Adhesive Elastic Layer

RAVI DALMEYA1, ISHAN SHARMA1, CHANDRASHEKHAR
UPADHYAY2, and AKASH ANAND3

1Mechanics Group, Department of Mechanical Engineering, Indian Institute of

Technology Kanpur, Kanpur, Uttar Pradesh, India
2Department of Aerospace Engineering, Indian Institute of Technology Kanpur,

Kanpur, Uttar Pradesh, India
3Department of Mathematics and Statistics, Indian Institute of Technology Kanpur,

Kanpur, Uttar Pradesh, India

We investigate the contact of a cylindrical punch with an adhesive
elastic layer or film bonded to a rigid substrate. The classical
assumption of Hertzian contact are coupled with tools of fracture
mechanics to resolve the contact problem. The contact edge’s singu-
larity is resolved by introducing a Dugdale-Barenblatt model for
the adhesive zone extending in front of the contact region. Exact
governing equations so obtained are solved by a semi-analytical
technique employing Chebyshev polynomials. We also extend the
useful JKR approximation to the indentation of elastic layers as a
particular case of our general solution.

KEYWORDS Adhesion; Contact mechanics; Dugdale model;
Elastic layers; Hertz contact; JKR approximation

1. INTRODUCTION

With increased emphasis on manufacturing adhesives, providing protective
coating, etc., the interest in thin films continues to grow. The mechanical
properties of such elastic layers are not as easy to obtain as those of bulk
materials, as the analysis of the various indentation tests is complicated.
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Semi-analytical techniques have been developed to investigate the
indentation of a cylindrical punch on an elastic layer by several authors,
e.g., [1–4]), etc.; see [5, Sec. 6.5] for a more complete survey. More recently,
the axi-symmetric indentation of coated elastic materials was considered with
the help of Chebyshev polynomials by [6], and by [7] via a self-consistent
numerical scheme. Similarly, it became necessary to analyze indentation tests
of adhesive elastic layers. Several authors have provided an extension of the
popular JKR approximation of [8] to adhesive layers, and these include [9] who
employed finite element calculations to appropriately modify the JKR theory,
[10] who carried out an energy analysis in the spirit of the original paper of [8]
while employing an approximate axi-symmetric contact pressure distribution
obtained for incompressible films in [11]. At the same time [12], employed their
self-consistent numerical scheme to extend to elastic layers the fracture mech-
anics approach utilized by [13] to unify the analysis of adhesive contact of
same-sized spheres. This latter problem has also been analyzed by [14]. Here,
we present a semi-analytical scheme that allows for a simple, transparent, and
more straightforward computation of the adhesive contact of a rigid punch to
an adhesive elastic layer resting on a substrate. For brevity, we will restrict
ourselves to the case when the layer is bonded to a rigid substrate; neither
of these are restrictive assumptions. Furthermore, while we consider a two-
dimensional scenario, extension to an axi-symmetric case is immediate.

In indentation problems, a primary aim is to relate the total applied
indenting force to the contact area and the indenter’s displacement in terms
of the system’s mechanical properties. To achieve this, the surface displace-
ments are related to the surface tractions via an integral equation; cf. Section
3.1. It is hoped that the solution of this integral equation, along with the
requirement that the contact pressure add up to the applied far-field force,
will provide us with a unique solution to the contact pressure distribution,
from which other relevant parameters may be obtained. However, the sol-
ution to the aforementioned integral equation includes a pressure distri-
bution that, while integrable over the contact area, becomes unbounded at
the contact’s boundary. Thus, in addition to balancing the total applied force,
a closure condition is required to address this singularity. For example, as
discussed in Section 4.2 of [15], the general solution for the contact pressure
in the Hertz problem has finite and infinite parts regulated by unknown con-
stants p0 and p00. A unique solution for smooth and non-adhesive spheres is
only obtained when the contact pressure is presumed to vanish at the contact
zone’s edges, as in this case we expect the boundary stresses to be continu-
ous across the contact zone. Similarly, for adhesive and soft elastic spheres [8],
retain the singular part of the contact pressure field, but prescribe the extra
condition that the system’s total potential energy, composed of elastic and
surface energies, is minimized; this is now termed the JKR approximation.
Analogously, assuming that the contact zone remains unchanged for hard
adhesive spheres, [16] were able to obtain a unique answer for the contact
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pressure distribution; this became the DMT approximation. A detailed
discussion of the latter two approximate approaches was provided by [13],
who also managed to unite these two apparently divergent viewpoints.

Maugis [13] considered the indentation of an adhesive elastic half-space
by a rigid punch, noting that this is equivalent to the contact of two same-sized
adhesive elastic spheres. To this end [13], appealed to the physical analogy
between contact problems and crack closure=opening analyses in fracture
mechanics. In fracture mechanics, a cohesive zone is often introduced to
relieve the unphysical infinite stress concentration predicted at crack tips by
linear elastic fracture mechanics; see e.g., [17, p. 486]. This stress concentration
is regulated by an unknown stress intensity factor. Within the cohesive zone
the stress state may be estimated by one of several available cohesive zone
models. A simple example is the Dugdale-Barenblatt model that fixes the
stress at a constant level taken to be the material’s yield stress. Unfortunately,
doing so also introduces an extra unknown in the form of the cohesive zone’s
extent. This, in turn, is found by invoking the additional requirement that at
the crack tip the stress be finite. Finally, the requirement that energy released
due to crack opening=closing equals the resulting increase=decrease in sur-
face energy provides the equilibrated crack’s length. Analogously [13],
described the adhesive interaction between the punch and the half-space in
terms of an ‘‘adhesive zone’’ of unknown extent that relieved the pressure’s
singularity obtained in the JKR approximation mentioned above. We will
denote such models as adhesive zone models. The adhesive stresses were
fixed at a known constant strength following the Dugdale-Barenblatt pre-
scription. Finiteness of the contact pressure at the contact’s boundary pro-
vided the adhesive zone’s size, while the balance between the strain energy
increase due to a growing contact and the accompanying decrease in surface
energy allowed an estimate of the contact region’s extent. Maugis [13] demon-
strated that JKR and DMT approximations are contained within this more gen-
eral framework. In particular, when the adhesive zone’s size decreases to zero
while the adhesive strength increases to infinity, we obtain the JKR approxi-
mation, while the limit of an infinite adhesive zone but vanishing adhesive
strength coincides with the DMT approximation.

2. PROBLEM STATEMENT

The situation is shown in Fig. 1, where a rigid cylindrical punch of radius, R,
is impressed upon an elastic and adhesive thin layer of thickness, h. A force,
P, acts on the punch, leading to a vertical displacement, d, and contact over
the region, [�a, a]. The thin layer’s material is characterized by a Poisson’s
ratio, n, and Young’s modulus, E. We assume that all approximations of
Hertzian analysis hold, viz., the contact zone’s size, a<<R, the vertical
displacement, d<<R, etc. Finally, the ratio h=a of the layer’s height to the
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contact area, though quite small, cannot be arbitrarily small. This is because
of technical difficulties in carrying out the approximate analysis of Sec. 3, and
we will discuss this in a later section.

Outside the contact zone, adhesive forces act between the rigid punch
and the elastic layer. These forces are assumed to act within a small adhesive
zone of length, d (see Fig. 1), and are characterized by a constant strength,
r0. This is, thus, a Dugdale-Barenblatt type model of the adhesive interaction.
More complicated models such as the double-Hertz model ([18]), or one
based on the Lennard-Jones potential are also possible, but we do not expect
that this will introduce exceptional changes commensurate with the
increased complexity.

3. ANALYSIS

3.1. Governing Integral Equations

We will carry out a linear elastic analysis and, in keeping with Hertz’s original
assumption, we will reduce our contact problem to a mixed boundary-value
problem for an elastic layer. From Fig. 1, we find the boundary conditions:

At the substrate’s interface; i:e:; y ¼ 0: u ¼ 0; v ¼ 0 ð1aÞ

On the layer’s surface; i:e:; y ¼ h: rxy ¼ 0;

jxj > c: ryy ¼ 0,

a < jxj < c: ryy ¼ r0
jxj < c: v ¼ �dþ x2=2R;

8><>: ð1bÞ

FIGURE 1 Indentation of a cylindrical punch into an adhesive elastic layer. The adhesive
zone along with the Dugdale-Barenblatt model is shown.
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where c¼aþd locates the adhesive zone’s edge. We immediately observe
the mixed nature of the boundary conditions at y¼h, where the normal
stress is known outside the contact zone, while within that zone the layer
must deform to accommodate the rigid punch’s profile. We approximate
the punch’s cylindrical shape by the parabola y¼�dþ x2=2R with its apex
at x¼ y¼ 0. This is reasonable as long as d<<R.

The equations of elasticity that must be satisfied are the Navier
equations ([5], Sec. 1.10):

2ð1� nÞ
1� 2n

@2u

@x2
þ @2u

@y2
þ 1

1� 2n
@2v

@x@y
¼ 0 ð2aÞ

and

2ð1� nÞ
1� 2n

@2v

@x2
þ @2v

@y2
þ 1

1� 2n
@2u

@x@y
¼ 0 ð2bÞ

where we have assumed plane strain conditions as is appropriate for the
contact of cylinders. The displacements u and v may be solved in terms of
the unknown pressure p(x)1 in the contact zone jxj<a by taking a Fourier
transform in the x-direction of Eq. (2) and boundary conditions Eq. (1). Here
we are interested in relating the known displacement boundary condition
in jxj<a to the contact pressure, p(x), therein. To this end, we will utilize
integral transforms, see, e.g., [19]. We first find in Fourier space the vertical
surface displacement, i.e., V(a, y)jy¼h:

V ðaÞ ¼ 2ePPðaÞ
E�a

2j sinh 2ah� 4ah
2j cosh 2ahþ 4a2h2 þ 1þ j2

; ð3Þ

where a is the Fourier transform variable, j¼ 3–4n, E� ¼ E=(1� n2), and

ePPðaÞ ¼ � 1

2p

Z 1

�1
ryyðt;hÞeiatdt ð4Þ

is the Fourier transform of the normal pressure on the elastic layer’s upper
surface. Taking the inverse Fourier transform of Eq. (3) and employing Eq.
(4), we obtain the surface vertical displacement

vðx; yÞjy¼h ¼ vðxÞ ¼ � 1

pE�

Z 1

�1

2j sinh 2ah� 4ah
2j cos 2ahþ 4a2h2 þ 1þ j2

e�iax

a
da

Z 1

�1
ryyðt; hÞeiatdt:

1Typically in contact mechanics the pressure on a surface is the negative of the normal
stress acting on that surface. Thus, p(x) ¼�ryyjy¼h.
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Changing the order of integration and recognizing from Eq. (1b) that ryy(t, h)
vanishes for jtj> c and equals r0 in the cohesive zone a< jtj< c, the above
equation may be written as

vðxÞ ¼ 2

pE� r0

Z �a

�c

Kðt � xÞdt �
Z a

�a

pðtÞKðt � xÞdt þ r0

Z c

a

Kðt � xÞdt
� �

;

where, as mentioned before, p(t) is the unknown contact pressure, and the
kernel

KðsÞ ¼
Z 1

0

2j sinh 2gh� 4gh
2j cosh 2ghþ 4g2h2 þ 1þ j2

cos sg
g

dg: ð5Þ

The equation for the surface displacement may be rewritten as

vðxÞ ¼ 2

pE� r0

Z c

a

fKðt � xÞ þ Kðt þ xÞgdt �
Z a

�a

pðtÞKðt � xÞdt
� �

; ð6Þ

after a change of variables and noting that K is a symmetric function. Restrict-
ing x to [�a, a], so that the boundary condition in Eq. (1b) applies, we find
that

�dþ x2

2R
¼ 2

pE� r0

Z c

a

fKðt � xÞ þ Kðt þ xÞgdt �
Z a

�a

pðtÞKðt � xÞdt
� �

;

� a � x � a: ð7Þ

If c was known, then so would be the integral over the adhesive zone [a, c] in
the equation above, which will then represent an integral equation for the
unknown contact pressure distribution, p(x), with singular kernel, K, given
by Eq. (5).

As mentioned in the Introduction, we require enough closure equations
to obtain a unique solution for the pressure distribution, p(x), from the inte-
gral Eq. (7). The first of these notes simply that the total force applied on the
punch balances the interaction with the elastic layer, i.e.,

P ¼
Z a

�a

pðxÞdx � 2r0ðc� aÞ: ð8Þ

Next, we recall that a reason to explicitly introduce an adhesive zone outside
the contact region, in contrast to, say, the energy method of [8], was to relieve
the stress singularity at the contact edge. Therefore, we must have

lim
x!a�

pðxÞ ¼ pðaÞ is finite; i:e:; jpðaÞj < 1;

where we have written p(a) for what should technically be p(a�). However,
because we restrict the nomenclature p(x) for the pressure distribution within
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the contact zone, this, in a sense, is consistent. An equivalent, but more use-
ful rephrasing of the above finiteness condition, at least in the context of our
computation, is to require continuity of normal stress at x¼a, i.e.,

lim
x!a�

pðxÞ ¼ �r0 ð9Þ

if the vertical surface traction is discontinuous at the contact edge, the contact
pressure cannot be finite. Finally, the last closure condition requires that the
strain energy release rate balance the surface energy, i.e.,

r0dc ¼ w; ð10Þ

where w is the work of adhesion, a material property, and the air gap

dc ¼
c2

2R
� d� vðcÞ ð11Þ

is the vertical distance of the punch’s profile from the deformed layer’s sur-
face at the adhesive zone’s edge, i.e., at x¼ c. In fracture mechanics, this is
termed the crack opening displacement; see also Fig. 1. Employing
expression (6) at x¼ c, we find

vðcÞ ¼ 2

pE� r0

Z c

a

fKðt � cÞ þ Kðt þ cÞgdt �
Z a

�a

pðtÞKðt � cÞdt
� �

; ð12Þ

while setting x¼ 0 in Eq. (7) yields

d ¼ � 2

pE� 2r0

Z c

a

KðtÞdt �
Z a

�a

pðtÞKðtÞdt
� �

: ð13Þ

We now have all the relevant equations in place and proceed to
non-dimensionalization.

3.2. Non-Dimensionalization

We follow [13] to introduce the dimensionless variables

D ¼ d
K2

p2w2R

� �1=3

; A ¼ a
K

pwR2

� �1=3

; k ¼ 2r0
R

pwK2

� �1=3

;

P ¼ P

pw
and H ¼ h

R
;

ð14Þ

where K¼ A4E
�=3, along with the internal scalings

n; s; c1f g ¼ x

a
;
t

a
;
c

a

n o
; u ¼ pa

pw
; m ¼ pw

RK

� �1=3

and c ¼ H

mA
: ð15Þ

Rigid Cylindrical Punch on Adhesive Elastic Layer 7
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We also rewrite Eq. (5) as

KðsÞ ¼
Z 1

0

AðxÞ
x

cos sx dx ð16Þ

in terms of

AðxÞ ¼ 2j sinh 2x� 4x
2j cosh 2xþ 4x2 þ 1þ j2

: ð17Þ

Employing the above in the equations developed in the previous section, we
obtain the following four coupled non-dimensional equations:

n2A2

2
� D ¼ 4kA

3p
fJ ð1ÞðnÞ þ J ð1Þð�nÞg

� 8m

3p

Z 1

�1

uðsÞK s� n
c

� �
ds; for � 1 � n � 1

ð18aÞ

P ¼
Z 1

�1

uðsÞds� kA
m

ðc1 � 1Þ; ð18bÞ

lim
n!1�

uðnÞ ¼ uð1Þ ¼ � kA
2m

ð18cÞ

and

1 ¼ pk
2

c21A
2

2
� D� V ðc1Þ

� �
; ð18dÞ

where, we define

J ðaÞðnÞ ¼
Z c1

a
K s� n

c

� �
ds ¼ c

Z 1

0

AðxÞ
x2

ðsin v2x� sin v1xÞdx; ð19Þ

with v2¼ (c1� n)=c and v1¼ (a� n)=c, and note that the non-
dimensionalized vertical displacements at the contact edge and the center-
line are, respectively,

V ðc1Þ ¼
4

3p
kAfJ ð1Þðc1Þ þ J ð1Þð�c1Þg � 2m

Z 1

�1

uðsÞK s� c1
c

� �
ds

� �
ð20aÞ

and

D ¼ � 8

3p
kA

Z c1

1

K s
c

� �
ds�m

Z 1

�1

uðsÞK s
c

� �
ds

� �
ð20bÞ

8 R. Dalmeya et al.
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Given the system’s material and geometric properties as captured by the
parameter m, the above set of equations are to be solved for the unknown
pressure distribution, u, and the adhesive zone’s extent, c1. They will also
provide relations between the center-line’s vertical displacement, D, the
contact region’s size, A, and the applied total force, P.

3.3. Solution

We will seek to solve the set of Eqs. (18) approximately. To this end, we will
expand the unknown u in terms of a finite number of Chebyshev polyno-
mials. These latter polynomials are chosen for their remarkable properties;
see e.g., [20] or [21]. It will then be possible to express Eqs. (18a), (18c),
and (18d) as a set of non-linear algebraic equations in terms of the unknown
coefficients in u’s expansion, A, D, and c1; note P

0
s absence in these three

equations. The total applied force, P, will be found directly from Eq.
(18b). We observe that we obtain a set of non-linear equations because of
the presence of an adhesive zone. In the absence of adhesion, i.e., in the
Hertz problem, this technique yields a linear algebraic system, see, e.g., [5].
In fact, linearity persists even in the JKR approximation as we demonstrate
in a later section. Reference [5] further notes that employing only the first
six even Chebyshev polynomials yields very acceptable answers. This pro-
cedure will require us to evaluate the singular kernel, K, given by Eq. (5)
that, due to its complexity, may only be done numerically. To accomplish
this successfully, it is necessary to first isolate K0s singular part and estimate
its contribution separately. This is done below.

In the sequel, we will often take recourse to numerical quadrature. To
this end, we note two schemes. The Gauss-Laguerre method is useful for
integration of exponentially decaying integrands over infinite domains, and
yields the approximation

Z 1

0

f ðxÞe�xdx �
Xn
l¼1

Wlf ðxlÞ; ð21Þ

where f(x) is any function increasing at most polynomially at infinity, xl is
the lth-root of the nth-order Laguerre polynomial Ln(x), andWl are associated
weights; see, e.g., [22, p. 457]. In our computations, we take n¼ 64. Another
numerical method that will be employed frequently is the Gauss-Chebyshev
quadrature scheme under which

Z 1

�1

f ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds � p
M þ 1

XMþ1

k¼1

f ðskÞ; ð22Þ

Rigid Cylindrical Punch on Adhesive Elastic Layer 9
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where f(s) is a piecewise continuous function and

sk ¼ cos
ð2k � 1Þ
ðM þ 1Þ

p
2

� �
ð23Þ

are the roots of the Chebyshey polynomial TMþ2(s); see, e.g., [21, p. 180].
We will also need a nonlinear root-finding algorithm. Of the several

available, we employ a bisection method because of its ease of implemen-
tation, specifically, the fact that derivatives are not required for updating
the target root’s value. While a good description is available in, say, [22,
p. 62], a short summary of the algorithm is provided next. Suppose we wish
to solve f(x)¼ 0, then we proceed as follows:

1. We choose an interval of uncertainty, say [a, b], such that f(a) and f(b) are
of opposite signs. If f is continuous, we are ensured that at least one root
will lie within [a1, a2].

2. Choose a3¼ (a1þa2)=2.
3. Redefine the uncertainty interval as [a1, a3] or [a3, a2] depending on

whether f(a3)’s sign is the same as f(a2) or f(a1), respectively.
4. Continue for either a specified number of iterations, or till some accuracy

criterion is met. We employ the former choice here.

We note that the bisection method works best when there is only one root
within the interval of uncertainty, and care is needed to ensure this.

For future use we also note the orthogonality property of Chebyshev
polynomials Z 1

�1

TmðsÞTnðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds ¼
p for m ¼ n ¼ 0
p=2 for m ¼ n 6¼ 0
0 for m 6¼ n:

8<: ð24Þ

Finally, a comment on our solution’s range of applicability. As [5] notes on
p. 267, in the case of the non-adhesive contact of a rigid punch with an elastic
layer, the present method breaks down when the layers are extremely thin.
In our case this corresponds to H< 0.07. The reason for this breakdown lies
in the inadequacy of a series of Chebyshev polynomials to approximate the
pressure distribution for infinitesimally thin films.

3.3.1. Discretization and Computation

We approximate the unknown non-dimensionalized pressure distribution,
u(n), as

uðnÞ � � kA
2m

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p XN
i¼0

b2iT2iðnÞ for � 1 � n � 1: ð25Þ

10 R. Dalmeya et al.
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The inverse square-root is made explicit in order to capture singular solutions
such as the JKR approximation, and also to aid in applying the orthogonality
property listed at the previous section’s end. Furthermore, the leading con-
stant term is included to better handle the continuity requirement [Eq.
(18c)]. Finally, we have appealed to the punch’s symmetry to retain only
the even Chebyshev polynomials T0, T2, . . . , T2N. We will now substitute
the above expansion for u into Eq. (18) to obtain algebraic equations in
terms of b2i;D;P; c1 and A. This will constitute an approximate solution to
our problem. For Eq. (18c), we find for �1� n� 1:

A2

4
� D

� �
T0ðnÞ þ

A2

4
T2ðnÞ ¼

4kA
3p

fJ ð0ÞðnÞ þ J ð0Þð�nÞg

� 8m

3p

XN
i¼0

b2i

Z 1

�1

T2iðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p K s� n
c

� �
ds;

where on the left hand side we have expanded n2A2=2�D in terms of
Chebyshev polynomials, while on the right side we have employed evenness
of T2j and K to note thatZ 1

�1

K s� n
c

� �
ds ¼

Z 1

0

K s� n
c

� �
dsþ

Z 1

0

K sþ n
c

� �
ds;

so that the term stemming from the constant part of u in Eq. (25) adds to
J ð1ÞðnÞ þ J ð1Þð�nÞ yielding J ð0ÞðnÞ þ J ð0Þð�nÞ. The integral equation above

is finally multiplied by T2jðnÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
, with j¼ 0, . . . , N, and integrated over

[�1, 1] to find the Nþ 1 equations

A2

4
� D

� �
p ¼ 8kA

3p
eJJ 0 �

8m

3p

XN
i¼0

b2i eKKi0; for j ¼ 0;

A2

4

p
2
¼ 8kA

3p
eJJ 1 �

8m

3p

XN
i¼0

b2i eKKi1; for j ¼ 1;

ð26Þ

and

0 ¼ 8kA
3p

eJJ j �
8m

3p

XN
i¼0

b2i eKKij ; for j ¼ 2; . . . ;N ;

where we have employed the fact that, because T2i(n)¼ T2i(�n),Z 1

�1

T2iðnÞfJ ð0ÞðnÞ þ J ð0Þð�nÞgdn ¼ 2

Z 1

�1

T2iðnÞJ ð0ÞðnÞdn

Rigid Cylindrical Punch on Adhesive Elastic Layer 11
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and defined the projections

eJJ j ¼
Z 1

�1

T2jðnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p J ð0ÞðnÞdn ð27aÞ

and

eKKij ¼
Z 1

�1

Z 1

�1

T2jðnÞT2iðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p K s� n
c

� �
ds dn ð27bÞ

of J ð0ÞðnÞ and K½ðs� nÞ=c� onto single and double Chebyshev series,
respectively. However, in order to compute these projections we need to
isolate any singularities that K may have.

We note from Eq. (17) that, as x!1, AðxÞ ! 1 and, consequently,
from Eq. (16), K would have had a logarithmic singularity at infinity but
for the cosine term’s increasingly fast oscillations as x grows. Nevertheless,
K0s value is dominated by A0s asymptotic behavior for large x. We extract
this singularity by adding and subtracting from AðxÞ the term 1� exp(�
qx), where q> 0. Note that the exponential term is introduced to allow
the resulting cosine transform to exist; any positive and finite q may be
employed. Utilizing the Fourier cosine transform tables [23, p. 1118], we then
write

KðsÞ ¼ � ln jsj þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ q2

p
þ
Z 1

0

1

x
fAðxÞ � 1þ e�qxg cos sxdx ¼:

� ln jsj þ FðsÞ; ð28Þ

where the integral contained in F is now a regular Fourier cosine transform
and, though still analytically intractable, is easily evaluated numerically for
any q> 1 by, say, the Gauss-Laguerre scheme mentioned previously. This
yields

FðsÞ � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ q2

p
þ
Xn
l¼1

Wle
xlfAðxlÞ � 1þ e�qxlg cos sxl

xl
: ð29Þ

From the nature of K0s singularity, we observe that J ð0Þ is not singular for
0� n� 1, so that eJJ j is easily found by Gauss-Chebyshev quadrature:

eJJ j �
1

M þ 1

XM
k¼1

T2jðnkÞJ ð0ÞðnkÞ; ð30Þ

where nk are the roots of TMþ2(n) and given by Eq. (23), while J ð0ÞðnkÞ
are obtained after setting a¼ 0 in Eq. (19) and applying Gauss-Laguerre

12 R. Dalmeya et al.
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quadrature:

J ð0ÞðnkÞ � c
Xn
l¼1

Wle
xlfAðxlÞ � 1þ e�qxlg sinðc1 � nkÞxl þ sin nkxl

x2
l

: ð31Þ

Evaluating Kij is trickier because of the presence of the logarithmic
singularity in Eq. (28). Noting from [5, problem 8 on p. 69] or [24] thatZ 1

�1

T2iðsÞ lnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p s� n
c

���� ����ds ¼ pT2iðnÞ=2i if i � 1
�p lnð2cÞ if i ¼ 0

	
and invoking Eq. (24) allows us to write

eKKij ¼ eFF ij þ
p2=4j if i ¼ j � 1
p2 lnð2cÞ if i ¼ j ¼ 0
0 if i 6¼ j,

8<: ð32Þ

where repeated Guass-Chebyshev quadrature yields

eFF ij ¼
p2

ðM þ 1Þ2
XMþ1

l¼1

XMþ1

k¼1

T2jðnlÞT2iðskÞF
sk � nl

c

� �
ð33Þ

with sk and nl being the kth and lth roots of TMþ1, respectively, and F may be
evaluated from Eq. (29) with s¼ (sk� nl)=c. We finally rewrite Eq. (26) as

D ¼ A2

4
� 8kA

3p2
eJJ 0 þ

8m

3p2
XN
i¼0

b2i eKKi0; for j ¼ 0 ð34aÞ

XN
i¼0

b2i eKKi1 ¼
kA
m

eJJ 1 �
3p2A2

64m
; for j ¼ 1 ð34bÞ

and

XN
i¼0

b2i eKKij ¼
kA
m

eJJ j ; for j ¼ 2; . . . ;N ; ð34cÞ

with eJJ j and eKKij found from Eqs. (30) and (32), respectively. The above set of
equations is the appropriate discretization of the integral Eq. (18a).

Similarly, utilizing Eq. (24) form¼n¼ 0, the discretization of Eq. (18b) is

P ¼ pb0 �
kA
m

c1: ð35Þ

Rigid Cylindrical Punch on Adhesive Elastic Layer 13
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The continuity requirement [Eq. (18c)] is satisfied if we enforce

XN
i¼1

b2i ¼ b0 þ b2 þ . . .þ b2N ¼ 0: ð36Þ

Finally, the energy balance [Eq. (18c)] is rewritten as

pk
2

c21A
2

2
� D� V ðc1Þ

� �
� 1 ¼ 0 ð37Þ

with D given by Eq. (34a) and

V ðc1Þ ¼
4kA
3p

f eJJ ð0Þðc1Þ þ eJJ ð0Þð�c1Þg �
8m

3p

XN
i¼0

b2i eKKiðc1Þ; ð38Þ

where, with sk given by Eq. (23), K½ðs� c1Þ=c�0s projection onto a Chebyshev
basis are

eKKiðc1Þ ¼
Z 1

�1

T2iðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p K s� c1
c

� �
ds � p

M þ 1

XMþ1

k¼1

T2iðskÞK
sk � c1

c

� �
:

We note that we can alternatively employ a discretized version of Eq. (20b) to
obtain D.

For any fixed contact region size, A, Eqs. (34)–(37) represent Nþ 4
equations for the Nþ 4 unknowns b2i;D;P, and c1. Further, we note that
Eq. (35) for P is decoupled from the rest, in the sense that if c1 and b0 were
known P can be found. At the same time, if we assume c1 to be known, the
Nþ 2 Eqs. (34) are simply linear algebraic equations for the coefficients b2i.
The choice of c1 is to be regulated by the satisfaction of Eq. (37) once D is
obtained from Eq. (34a). Our solution algorithm based on the bisection
method described earlier is as follows:

1. Fix A. Assume an interval of uncertainty for c1. For our choice of para-
meters, we typically employed [1.01, 100].

2. Solve Eqs. (34b)–(34c) and Eq. (36) for the b2i.
3. Compute D from Eq. (34a).
4. Employ the error in satisfying Eq. (37) to update the uncertainty interval.
5. Repeat for a specified number of iterations. We employ 20 iterations.
6. Employ the final values of c1 and b2i to compute P from Eq. (35) and stop.

In passing, note that we have only computed b2i;D;P, and c1 by fixing A as it
is the most convenient solution procedure. There is no experimental expedi-
ency for this choice.

14 R. Dalmeya et al.
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4. RESULTS

Rather than proceeding directly to the results of the full problem, we will first
put forward results for the Hertzian indentation of an elastic layer and for
adhesive indentation investigated within the JKR approximation. While the
former set of results are included mostly for completeness and to build con-
fidence in our computations, the latter results are new. All through, we set
the parameter m¼ 0.0168, which, e.g., corresponds to an adhesive elastic
layer with w¼ 0.02 J, E¼ 0.083MPa, and n¼ 0.4, and an indenter with
R¼ 10 cm. Furthermore, we approximate the contact pressure distribution,
u, by the first six even Chebyshev polynomials, i.e., N¼ 6.

4.1. Elastic Non-Adhesive Contact: Hertz Problem

In the case of Hertzian contact, adhesion is absent and there is no adhesive
zone. Thus, c1¼ 1 and the energy balance [Eq. (10)] is redundant. For any
value of A, we solve for the b2i from Eqs. (34b) and (34c). This yields the con-
tact pressure distribution, u. The thus computed b2i are employed to obtain D
from Eq. (34a) and P from Eq. (35). The results2 are shown in Figs. 2–5 for
various elastic layer thicknesses H. Also shown by a line with dots are the
solutions obtained for a two-dimensional half-space, i.e., H¼1, in which
case the exact non-dimensional solutions are

uðnÞ ¼ 3A2

8m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ð39aÞ

P ¼ 3pA2

16m
ð39bÞ

and

D ¼ A2

4
2 ln

2d

a

� �
� n
1� n

	 

ð39cÞ

where d locates a reference point below the indenter’s apex. The first two
equations above are standard, see, e.g., [25, p. 55], but a comment is in order
regarding D’s expression. It is well known that displacements are not
obtained accurately in two-dimensional half-space problems, and, in fact,

2In Hertzian contact, w¼ r0¼ 0. This would indicate that the non-dimensionalization
introduced in Sec. 3.2 breaks down. However, rather than introducing new
non-dimensionalization, we will, in the case of Hertzian contact, regard w employed in
Eqs. (14) and (15) as an arbitrary scale and not as the work of adhesion.
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display logarithmic growth as we move away from where forces are applied
towards infinity, thereby making St. Venant’s principle inapplicable. In two
dimensions, the contacting bodies’ finite geometry and the nature of their
supports must be taken into account, and we refer the interested reader to
the discussion in [15, Sec. 5.6]. Page 131 [15] provides the displacement, D,
of the center line relative to a point at a finite distance, d, away as given
above, which does indeed display logarithmic growth as d!1. When com-
paring our results for elastic layers with large H against solutions for a
half-space, we will select d¼H in D’s formula. Note that the match will only
be approximate, because, in contrast to the elastic layer, the displacement in
a half-space at a point a distance H below the indenter’s apex does not
vanish.

We observe from Fig. 2 that the pressure distributions reduce continu-
ously in magnitude. Similarly, from Fig. 3 we see that the applied load, P,
required to achieve the same contact region size, A, increases with decreas-
ing layer thickness, H. The same is the case, if the control parameter was the
center-line’s vertical displacement, D; see Fig. 4. Similarly, in Fig. 5, the same
P leads to greater D as the layer’s thickness grows. These are expected beha-
viors, as the effective rigidity of the combined layer and rigid substrate sys-
tem increases as the layer becomes thinner. Finally, as H! 10, there is
little to distinguish the system from an infinite half-space.

FIGURE 2 Indentation of a non-adhesive cylindrical punch on an elastic layer. Variation of
the non-dimensionalized pressure distribution, u, within the contact region for A¼ 10. Several
values of the layer’s thickness, H, are investigated and the associated curves are appropriately
indicated.

16 R. Dalmeya et al.
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FIGURE 3 Indentation of a non-adhesive cylindrical punch on an elastic layer. Variation of
the contact region’s non-dimensionalized size, A, is shown as a function of the scaled total
force, P. Several values of the layer’s thickness, H, are investigated and the associated curves
are appropriately indicated.

FIGURE 4 Variation of the contact region’s non-dimensionalized size, A, with the center-line’s
scaled vertical displacement, D; cf. caption of Fig. 3.

Rigid Cylindrical Punch on Adhesive Elastic Layer 17
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4.2. Adhesive Contact: JKR Approximation

As mentioned earlier, the JKR approximation models adhesion by allowing
the possibility of tensile stresses in the contact edge’s vicinity. Furthermore,
because adhesive interaction is precluded outside the contact region, the
contact pressure distribution is found to be singular at the contact’s edge.
In this case, as [13] shows, the energy balance [Eq. (10)] reduces to the
familiar Griffith’s criterion in fracture mechanics ([17]), i.e.,

K2
I

2E� ¼ w;

where

KI ¼ � lim
x!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pða� xÞ

p
pðxÞ

is the stress intensity factor that measures the intensity of the square root
singularity at the contact’s edge. Combining and non-dimensionalizing the
above two equations, and observing the contact pressure distribution u’s
expansion [Eq. (25)], we find the relation

XN
i¼0

b2i ¼ �
ffiffiffiffiffiffi
6A

p

2pm
ð40Þ

FIGURE 5 Variation of the non-dimensionalized center-line’s vertical displacement, D, with
the scaled total force, P; cf. caption of Fig. 3.

18 R. Dalmeya et al.
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that replaces the requirement [Eq. (36)]. Note that the non-vanishing negative
right side above ensures that the contact pressure distribution is tensile near
the contact’s edge, and increases to infinity as the edge is approached. This
singular feature is the primary drawback of the JKR approximation, and moti-
vates the more physical model introduced by [13] and employed in the
current work, cf., Section 4.3.

The contact pressure distribution and the total contact force estimated
by the JKR approximation for the adhesive contact of a cylinder on a
half-space are, respectively,

uðnÞ ¼ 3A2

8m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
�

ffiffiffiffiffiffi
6A

p

2pm
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p ð41aÞ

and

P ¼ 3pA2

16m
�

ffiffiffiffiffiffi
6A

p

2m
: ð41bÞ

The above exact results are represented by lines with black dots in Figs. 6
and 7 that display the contact pressure distribution and the relation between

FIGURE 6 Indentation of an adhesive cylindrical punch on an elastic layer: JKR approxi-
mation. Variation of the non-dimensionalized pressure distribution, u, within the contact
region for A¼ 10. Several values of the layer’s thickness, H, are investigated and the associated
curves are appropriately indicated.
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the contact region’s size, A, and total load, P, respectively. The inset in Fig. 7
shows the behavior over smaller contact areas. We observe from Fig. 6
that in keeping with the discussion in the previous paragraph, the pressure
becomes tensile near the contact edge, and grows unboundedly as the
edge is approached. Furthermore, from Fig. 7 we note that due to the pres-
ence of adhesive interaction, a negative P is required to detach the punch.
Similarly, contact is initiated even while P vanishes. However, as the inset in
Fig. 7 suggests, the pull-off force changes little with the layer’s thickness.
We also observe that as H! 10 we recover the half-space (H!1 ) JKR sol-
ution. Finally, we also plot in Figs. 8 and 9 the variation of A with the
center-line’s vertical displacement, D, and of D with the total load, P,
respectively.

4.3. Adhesive Contact: Adhesive Zone Model

We return finally to our original model, wherein singularities in the
contact pressure are removed by the physical mechanism of an adhesive
zone extending beyond the contact region. The analytical expressions
for the contact pressure distribution and the total load in the case of a
half-space (H!1) while including an adhesive zone may be

FIGURE 7 Indentation of an adhesive cylindrical punch on an elastic layer: JKR approxi-
mation. Variation of the contact region’s non-dimensionalized size, A, with the scaled total
force P. Several values of the layer’s thickness, H, are investigated and the associated curves
are appropriately indicated.

20 R. Dalmeya et al.

D
ow

nl
oa

de
d 

by
 [

In
di

an
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
K

an
pu

r]
 a

t 1
0:

56
 1

6 
D

ec
em

be
r 

20
11

 



FIGURE 8 Variation of the contact region’s non-dimensionalized size, A, with the center-line’s
scaled vertical displacement, D; cf. caption of Fig. 7.

FIGURE 9 Variation of the non-dimensionalized center-line’s vertical displacement, D, with
the scaled total force, P; cf. caption of Fig. 7.
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obtained [26]. We find that

uðnÞ ¼ 3A2

8m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
� Ak
pm

tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � 1

1� n2

s
ð42aÞ

and

P ¼ 3pA2

16m
� Ak

m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � 1

q
; ð42bÞ

where the adhesive zone’s extent, c1, is obtained by the solution of a pair of
nonlinear algebraic equations; [26, Eqs. (22) and (23)]. However, rather than
seek a solution to these latter two equations when comparing our results for
large H with the formulae above, we employ the adhesive zone lengths, c1,
as computed by us. This may lead to slight errors, and indeed it does, in the
case when k is large, as then the adhesive zone’s length, d1, is small
(see Fig. 17), so that small relative differences in computing c1 leads to
comparatively greater errors.

The pressure profiles for A¼ 3 are shown in Fig. 10. It is confirmed that
the pressure is continuous at the contact edge. We also note that the pressure

FIGURE 10 Indentation of an adhesive cylindrical punch on an elastic layer: Adhesive zone
model. Variation of the non-dimensionalized pressure distribution, u, within the contact
region for A¼ 3. Two extreme values of the layer’s thickness, H, are investigated, along with
four different choices of k (color figure available online).
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become tensile (negative) near the contact edge and increases sharply until it
saturates at the adhesive stress’ value of �kA=2m. As k increases, the
adhesive zone decreases, but the adhesive stress level increases, so that in

FIGURE 11 Indentation of an adhesive cylindrical punch on an elastic layer for various k’s.
Variation of the contact region’s non-dimensionalized size, A, is shown as a function of the
scaled total force, P. Several values of the layer’s thickness, H, are investigated and the asso-
ciated curves are appropriately indicated.
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the limit k!1, we have infinite adhesive stresses spread over a vanishingly
small adhesive zone; cf. Fig. 17. We also observe that, as before, the thinner
layer is stiffer, so that the pressure is greater. Predictions given above for
the case of a half-space are represented by black dots for the four choices
of k. As expected, for all choices of the adhesive strength, k, there is very

FIGURE 12 Variation of the contact region’s non-dimensionalized size, A, with the
center-line’s scaled vertical displacement, D; cf. caption of Fig. 11.
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close match when H¼ 10. The slight mismatch when k¼ 3 is for reasons
noted previously.

We next explore relationships between the three focal parameters, the
contact region’s size, A, the total load, P, and the center-line’s displacement,
D, for various values of the elastic layer’s thickness, H, and adhesive strength,
k. Figures 11–16 report the results. Figure 11 plots the variation of the contact

FIGURE 13 Variation of the non-dimensionalized center-line’s vertical displacement, D, with
the scaled total force, P; cf. caption of Fig. 11.
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region’s size, A, against the total load, P, for various layer thicknesses, H.
Three different values of the adhesive strength, k, are investigated. Also
shown by a black dotted line is the JKR approximation for a half-space,

FIGURE 14 Indentation of an adhesive cylindrical punch on an elastic layer for various
adhesive strengths, k. Variation of the contact region’s non-dimensionalized size, A, is shown
as a function of the scaled total force, P. Several values of the adhesion parameter, k, are
investigated and the associated curves are appropriately indicated.
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i.e., a layer of infinite thickness. Finally, the analytical result for a half-space
listed above is shown by large gray-filled circles. We see that the JKR
approximation matches the curve due to H¼ 10 very closely at the high k

FIGURE 15 Variation of the contact region’s non-dimensionalized size, A, with the
center-line’s scaled vertical displacement, D; cf. caption of Fig. 14.
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of 3. As expected, the match deteriorates as k decreases. Similarly, the exact
formulae for an adhesive zone model in the case of a half-space agrees very
well with our computed results when H! 10. Again, the match is slightly off
when k¼ 3 for reasons mentioned above.

Figures 12 and 13 plot variation of A with center-line displacement D,
and D against the total pressure, P, at various H for three different k’s. We
observe that at a fixed D, smaller contact regions are obtained when the
adhesive strength, k, is lower. Similarly, larger pull-off forces=displacements
ements are required when k is large.

FIGURE 16 Variation of the non-dimensionalized center-line’s vertical displacement, D, with
the scaled total force, P; cf. caption of Fig. 14.
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Figures 14–16 contrasts the A� P, A�D, and D� P relationships at sev-
eral different adhesive strengths for three different layer thicknesses. In
Fig. 14, we also show by a dashed gray line at each of the three H the results
obtained in the previous section by extending the JKR approximation to
layers. Again, this extended JKR approximation matches well at large k.

Finally, Fig. 17 displays the variation of the adhesive zone’s length,
d1¼ (c�a)=a with the contact region’s size, A, for several values of the
adhesive strength, k. The layer’s thickness is kept fixed at H¼ 0.1; it is seen
that for a fixed k, d1 hardly changes if H is varied. We observe that the
adhesive zone sharply increases in length relative to the contact region when
A! 0. This is simply an indication of the fact that the adhesive interaction
exists even when the punch touches the layer’s surface at only a point,
i.e., A¼ 0. Also, for a fixed A, d1 increases with decreasing k. This is easily
understood by recalling that k is the ratio of the adhesive stress, r0, to the
layer’s stiffness, K, see [14]. Thus, when k is small, the layer is too stiff to
deform and contact the punch due to the tensile stress, r0, alone, thereby
resulting in a non-contact interaction over a greater area, i.e., a bigger
adhesive zone, d1. In contrast, for larger k, the adhesive strength is strong
enough to deform the relatively more compliant layer over almost the
entirety of the adhesive zone and bring it in contact with the punch’s profile,

FIGURE 17 Variation of the scaled adhesive zone, c1, with the contact region’s
non-dimensionalized size, A, as a function of the adhesive strength, k.
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leading to a much smaller d1. In the limit of k!1 , d1! 0, which is the JKR
approximation.

5. CONCLUSIONS

In this work, we have extended to the case of two-dimensional indentation
of a rigid cylindrical punch into an adhesive elastic layer the adhesive zone
model pioneered by [13] for axisymmetric contact of an adhesive elastic
half-space. We followed a semi-analytical approach employing Chebyshev
polynomials. The Hertzian theory and the JKR approximation were obtained
as natural corollaries of our computations. An extremely good match with
available exact analyses was demonstrated. The current approach is
extremely simple to implement and may also be immediately extended to
axi-symmetric contact and=or flexible substrates. The current method works
well for thin layers with H¼h=a� 0.07. For even thinner layers, in the case
of non-adhesive contact, it has been possible to employ the Wiener-Hopf
technique to obtain answers; see [4]. We are currently working on adapting
that approach to an adhesive zone model for indentation of adhesive thin
layers.
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