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Abstract

In this paper, our main interest is to describe the inelastic behavior of a granular material in the
range of deformation that precedes localization. We do this in the simplest possible way, by ideal-
izing the material as a random array of identical, elastic, frictional spheres and assuming that par-
ticles move with the average strain. The contact force is assumed non-central: the normal component
follows the Hertz’s law, while the tangential component is elastic until frictional-sliding occurs. We
provide an analytical description of this material in triaxial extension and compression at fixed pres-
sure, for both loading and unloading. We obtain expressions for the stress–strain relation, the plastic
strain, the elastic and plastic volume change, the strain hardening and the potential function. We
assume the Mohr–Coulomb criterion for yielding and we obtain an explicit expression between dilat-
ancy and stress in the material.
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1. Introduction

We study qualitative features of a granular material in the regime of deformation before
the onset of localization. We want to focus on the mechanisms associated with the elastic
and inelastic behavior in this range of deformation where it is reasonable to consider the
average small strain response. Our interest is to develop the simplest micro- mechanical
theory that helps us to understand how well-known macroscopic features are linked with
the behavior at particle level. To this end we focus on a typical test for a granular material,
loading and unloading the aggregate in triaxial compression and extension at fixed pres-
sure. We assume that particles move according to the average strain, considering, there-
fore, the simplest possible approach to the problem. Although more accurate theories
have been developed (e.g. Koenders, 1987; Misra and Chang, 1993; Jenkins, 1997; Liao
et al., 1997) that include deviations from average fields, none of them have been employed
to obtain analytical relations in the inelastic regime. Models employing numerical simula-
tion to predict the inelastic behavior of a granular assembly far from its initial state have
been proposed (e.g. Chang and Hicher, 2005; Nicot and Darve, 2006; Nicot et al., 2007).
Continuum-level plasticity models, incorporating a fabric tensor to represent anisotropy
have also been developed for general loading and unloading conditions (e.g. Nemat-Nas-
ser and Zhang, 2002; Zhu et al., 2006a,b). Contributions have been also proposed to
describe localization in granular material with gradient plasticity (e.g. Vardoulakis and
Aifantis, 1991) and a decomposition of the inelastic stretching (e.g. Tsutsumi and Hashig-
uchi, 2005; Hashiguchi and Tsutsumi, 2007).

Here we develop a micro-mechanical approach that provides analytical results associ-
ated with dilatancy, plastic volume change and a plastic potential function. We anticipate
that the analytical model will be justified over the narrow range of deformation in which
elasticity and sliding among particles play the dominant role, rather than deletion and
rearrangement of the particles in the aggregate.

Thornton and Antony (1998) have performed discrete element simulations of frictional,
elastic spheres undergoing triaxial compression at fixed pressure in a periodic cell.
Although their simulation is performed over a wide range of deformation, we concentrate
our attention on loading that precedes the peak in deviatoric stress where the maximum
amount of inter-particle contact sliding occurs. At this point, only approximately 10%
of the average number of contacts per particle have been deleted. Moreover, particles
whose contact have been deleted are those only weakly loaded in the initial isotropic com-
pression. These contacts contribute predominantly to the mean stress and not the devia-
toric stress. The anisotropy in the contact distribution, known as the aggregate fabric,
is relatively small in the range of deformation of interest here.

Therefore, the assumption of only small deviations from an isotropic distribution of
contacts is reasonable for the small strains considered here. Note, even after assuming
an isotropic contact distribution, there is anisotropy of the response at the particle level
as contact displacements and forces will be an explicit function of contact angle with
respect to the principal direction of the applied compression.

In this context, a simplified model will provide qualitative description of the inelastic
material behavior rather than quantitative predictions. In this way, we extend the salient
results obtained by Jenkins and Strack (1993). These include analytical solutions at the
aggregate level for the volume change, stress–strain response, and inelastic strain harden-
ing for monotonic triaxial compression. We extend this work to include unloading and
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reverse loading. Assuming negligible change in the orientational contact distribution, we
derive an expression for the plastic volume change, the yield function based on the
Mohr–Coulomb criterion and the plastic potential function (Nicot and Darve, 2007, have
recently investigated the notion of the flow rule in the case of general loadings, including
the triaxiall test). For the small strains considered here, we anticipate that the dominant
physical mechanisms that contribute to the dilatancy of the granular packing are the con-
tact forces and frictional-sliding.

2. Theory

The granular material is idealized as a random array of identical elastic, frictional,
spheres with diameter D, shear modulus G and Poisson’s ratio m. Jenkins and Strack
(1993) provide analytical expressions for the stress–strain response, the volume change, plas-
tic strain and strain hardening associated with contact sliding caused by monotonic triaxial
compression at fixed pressure. We use part of their results and extend their applicability to
both loading and unloading in axisymmteric extension and compression at fixed pressure.

2.1. Behavior at the particle contact level

2.1.1. Kinematics

Throughout this work, we adopt the same notation used in Jenkins and Strack (1993).
Generally, in the presence of an evolution of the packing, it would be judicious to adopt an
incremental formulation for any model describing inelastic response of the granular
assembly. For sufficiently small deformations, however, where it is a reasonable assump-
tion to consider the geometry of the packing fixed, integrations of incremental expressions
for contact force, displacement and the average stress tensor are shown to be possible (Jen-
kins and Strack, 1993). Therefore, while many microstructurally-based models of inelastic
response are necessarily incremental, the particular model developed by Jenkins and
Strack (1993) with a continuous contact orientation field permits full integration and ana-
lytical expression in terms of total strain.

The displacement u of a contact point relative to the particle center is written in terms of
the average strain E

ui ¼
D
2

Eijaj; ð1Þ

where a is the unit vector directed from the particle center to the contact point. The rect-
angular Cartesian components of a are (sinh cosu, sinh sinu, cosh), where h is the polar
angle from the axis of symmetry and u is the angle about this axis (see Fig. 1).

The normal and tangential components of the contact displacement are, respectively:

d ¼ D
6
ðD� 2cþ 6c cos2 hÞ ð2Þ

and

s ¼ Dc sin h cos heh;

where eh, with components (cosh cosu, cosh sinu, �sinh), is the unit vector in the direc-
tion of increasing h. In the axisymmetric compression and extension, the volume strain D
(taken positive for a decrease in volume) and the shear strain c are, respectively:
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Fig. 1. Schematic representation of the contact direction with the angles h and u.
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D ¼ �ðE33 þ 2E11Þ
and

c ¼ � 1

2
ðE33 � E11Þ:
2.1.2. Contact force

The interaction between the particles is represented by a non-central force F, which is
comprised of a Hertzian normal contact force P, and an elastic frictional-sliding tangential
contact force, T. The particle contact force is then given by

F i ¼ Pai � T i: ð3Þ
For the normal component, the relation between force and normal displacement d is

P ¼ M
6d
D

� �3=2

; ð4Þ

where M ¼ 2GD2=½9
ffiffiffi
3
p
ð1� mÞ�. For the tangential component, we assume an elastic, per-

fectly plastic, bilinear behavior. That is, the tangential response is linear elastic until
T = lP , with l the coefficient of friction, at which point the tangential force remains fixed
and inelastic frictional-sliding occurs. We, therefore, adopt relatively simple models for the
contact forces that are integrated solutions of a more elaborate contact law introduced by
Mindlin and Deresiewicz (1953). An example of a more rigorous interpretation of the con-
tact law has been furnished by Elata et Berryman (1996) and recently by Nicot and Darve
(2005).

At sliding, the tangential elastic displacement reaches its limiting value (Jenkins and
Strack, 1993)
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sel ¼ l̂d; ð5Þ
where l̂ ¼ lð2� mÞ=ð3� 3mÞ. So,

T ¼ Ks for s 6 sel;

lP for s > sel;

�

where K ¼ 25=3G2=3½3ð1� mÞDP �1=3
=ð2� mÞ.

We note that in a triaxial test the tangential displacement is a monotonic function of the
applied strain, while the normal component can increase or decrease during the loading.

2.2. Behavior at the aggregate level

2.2.1. Pressure and volume change

The average stress tensor is represented by (e.g. Love, 1942)

�tij ¼ �
nD
2

Z
X

f ðaÞF iaj dX;

where f(a)dX is the probable number of contacts within the solid angle dX = sinhdhdu
centered at a and n is the number of particles per unit volume. We assume an isotropic
orientation distribution of particle contacts for all loading conditions, f(a) = k/4p, where
k is the coordination number. As before underlined, if we had considered an evolution of
the aggregate during the loading, by including changing in the coordination number and
the orientation of the contacts, we would have incorporated a different expression for f(a)
function of the orientation a and the variation of the average number of contacts. Here
f(a) is assumed to be constant and, therefore, it will not influence the integrations that
we carry out.

In order to phrase the problem in a more compact form we introduce two alternative
parameters b and c such that

b ¼ D� 2c ¼ �3E11

and

c ¼ 6c:

The pressure, defined as the trace of the stress tensor, is

p ¼ � 1

3
�tkk ¼ �

knD
24p

Z
X

P dX:

In the isotropic initial state, in absence of shear strain, with (2) and (4), the integration
leads to

p ¼ � knD
12p

Z 2p

0

Z p=2

0

MD3=2 sin hdhdu ¼ kvM

pD2
D

3
2
0; ð6Þ

where v = npD3/6 is the solid volume fraction and D0 is the associated volume strain. In
case of triaxial test, at fixed pressure,

p ¼ � knD
12p

Z 2p

0

Z p=2

0

Mðbþ c cos2 hÞ3=2 sin hdhdu
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and the result of the integration (Jenkins, 1988), with (6), for triaxial compression (c P 0),
is

8D3=2
0 ¼ ð5bþ 2cÞ

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
p

þ 3b2ffiffiffi
c
p log

ffiffiffi
c
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
pffiffiffiffiffiffi
jbj

p
" #

; ð7Þ

while for triaxial extension (c 6 0) it is

8D3=2
0 ¼ ð5bþ 2cÞ

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
p

þ 3b2ffiffiffiffiffiffi�c
p sin�1

ffiffiffiffiffiffi
�c
b

r� �
: ð8Þ

Eqs. (7) and (8) provide an implicit relation between the normalized volume change D/D0

and the normalized shear strain c/D0 at constant pressure.

2.2.2. Stress–strain relation

We define the aggregate shear stress as

q ¼ � 1

2
ð�t33 ��t11Þ;

where, in particular, we distinguish the contributions to the stress from the normal and
tangential components of the contact force, i.e.,

q ¼ qN þ qT:

Using (3), the component of the shear stress contributed by the normal force is

qN ¼ 3kv

8p2D2

Z
X

P ða2
3 � a2

1ÞdX:

The result of the integration, for b > 0, is given by Jenkins and Strack (1993), in the case of
triaxial compression (c P 0)

qN

p
¼ 3

64D
3
2
0

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
p

c
ð3b2 þ 4bcþ 4c2Þ � 3b2ðbþ 2cÞ

c
3
2

log

ffiffiffi
c
p þ

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
pffiffiffi
b
p

� �� �
; ð9Þ

while in the case of triaxial extension, c 6 0, we obtain

qN

p
¼ 3

64D
3
2
0

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
p

c
ð3b2 þ 4bcþ 4c2Þ � 3b2 ffiffiffiffiffiffi�c

p ðbþ 2cÞ
c2

sin�1

ffiffiffiffiffiffiffi
� c

b

r� �
: ð10Þ

During the loading the contribution of the normal contact force to the aggregate shear
stress remains entirely elastic. In contrast, the contribution of the tangential contact force
exhibits inelasticity once particles begin to slide. Jenkins and Strack (1993) consider an
evolution of contact displacement with the loading and the angle h such that they distin-
guish regions where sliding occurs and regions where the behavior is elastic. They obtain a
critical ratio of b/c associated with the first contact to slip. That is, they determine the limit
of the elastic behavior of the material. Again from (3), the tangential contribution to the
shear stress is

qT

p
¼ 3kv

8p2D2

Z
X
ðT 1a1 � T 3a3ÞdX;

where, in the elastic regime, for c P 0
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qT

p
¼ 27

4D
3
2
0

ð1� mÞ
ð2� mÞ

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
p

48c
ð3b2 þ 4bcþ 4c2Þ � b2ðbþ 2cÞ

16c
3
2

log

ffiffiffi
c
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
pffiffiffi
b
p

� �� �
;

ð11Þ
while for c 6 0

qT

p
¼ 27

4D
3
2
0

ð1� mÞ
ð2� mÞ

ffiffiffiffiffiffiffiffiffiffiffi
bþ c
p

48c
ð3b2 þ 4bcþ 4c2Þ � b2 ffiffiffiffiffiffi�c

p ðbþ 2cÞ
16c2

sin�1

ffiffiffiffiffiffi
�c
b

r� �� �
: ð12Þ

In the closed form inelastic response for qT obtained by Jenkins and Strack (1993) and
shown here in Fig. 2, we note that once sliding begins, the tangential contribution to the
shear stress is relatively constant with continued strain. This is also observed in discrete
simulations (e.g. Thornton and Antony, 1998). Here we do something simpler and assume
that after the first slip occurs the tangential contribution to the shear stress does not
change. We, therefore, employ a bilinear elastic–perfectly plastic behavior for qT. We also
note that in Eqs. (9)–(12) we have normalized the shear stress by the pressure through Eq.
(6). Consequently, these expressions do not depend explicitly on the coordination number,
volume fraction or diameter of the spherical particles. This directly provides relations
between the stress and strain for all triaxial tests when the total strains are normalized
by D0.

2.2.3. Simplified model for inelasticity

When sliding occurs between two contacting particles, the behavior of the aggregate
becomes inelastic. In Jenkins and Strack (1993) the value of the polar angle h for which
sliding first occurs in triaxial compression satisfies the relation cot 2h�c ¼ �l̂. If we restrict
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Fig. 2. Normalized shear stress (q/p) versus normalized shear strain (c/D0). Both triaxial compression and
extension regimes are shown.
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our attention to glass particles with coefficient of friction l = 0.3 and Poisson’s ratio
m = 0.2, then l̂ ¼ lð2� mÞ=ð3� 3mÞ ¼ 0:225. By elementary geometry, we obtain

cos 2h�com �
�l̂ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂2

p ’ �l̂:

Correspondingly, in triaxial extension, starting from a virgin material, cot 2h�ext ¼ l̂, so

cos 2h�ext �
l̂ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l̂2
p ’ l̂:

The subscript com and ext denotes parameters pertaining to triaxial compression and tri-
axial extension, respectively. From Eq. (5) at the onset of sliding in triaxial compression,
b = qc, while for triaxial extension, b ¼ �~qc where, respectively

q � 1� l̂
2l̂

and

~q � 1þ l̂
2l̂

:

From Eqs. (7) and (8), and the above relations between b and c, we obtain the values of
the normalized shear strain and normalized volume strain corresponding to the onset of
sliding. For c P 0,

c�com

D0

¼ 2

3

1

ð5qþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffi
qþ 1
p

þ 3q2 log
1þ

ffiffiffiffiffiffi
qþ1
pffiffi

q
p

� �
2
664

3
775

2
3

¼ 0:08 ð13Þ

and

D�com

D0

¼ 2ð1þ 3qÞ c
�
com

D0

¼ 0:99; ð14Þ

while for c 6 0,

�c�ext

D0

¼ 2

3

1

ð5~qþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffi
~qþ 1
p

þ 3~q2 sin�1
ffiffi
1
~q

q� 	
2
64

3
75

2
3

¼ 0:07; ð15Þ

and

D�ext

D0

¼ �c�ext

D0

ð6~q� 2Þ ¼ 0:99: ð16Þ

We find, therefore, that the elastic regime for an aggregate of glass spheres, after an iso-
tropic compression, is given by

�0:07 6
c
D0

6 0:08: ð17Þ

That is, the aggregate shows an almost symmetric behavior when compressed or extended
from the initial state. Beyond this range of deformation the tangential component of the
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shear stress does not surpass the limiting values reached at c�com=D0 and c�ext=D0. If we take
b = qc in Eq. (11) and b ¼ �~qc in Eq. (12) we obtain the maximum elastic tangential con-
tribution to the shear stress in triaxial compression and extension, respectively. This means
that for each contact we take T = l P* where P* is the limit value that the normal force has
reached, at each orientation, for c�com=D0 (in compression) or c�ext=D0 (in extension).

2.2.4. Plastic deformation via frictional slip: monotonic loading

In the case of monotonic loading, we can define the plastic strain associated with slid-
ing. Particular care must be taken as the derivation of the average strain tensor is involved.
Here, we refer to the work of Bagi (1996) for details of that derivation. We use the final
result in which the average strain tensor is given by (see also Koenders, 1994; Kruyt
and Rothenburg, 1996; Bagi, 2006)

Eij ¼
3

4pD

Z
X
ðuiaj þ ujaiÞdX: ð18Þ

We can distinguish the part of the average strain associated with the normal component
of the contact displacement from that associated with the tangential component

EijðdÞ ¼ �
3

4pD

Z
X

2daiaj dX;

and

EijðsÞ ¼
3

4pD

Z
X
ðsiaj þ sjaiÞdX;

respectively. Within the elastic range, given by (17), the deformation is purely elastic and
the shear strain can be split as

cel ¼ celðdÞ þ celðsÞ;
which coincides with the total shear strain applied. Each contribution to the elastic shear
strain can be evaluated

celðdÞ ¼ � 1

2
½E33ðdÞ � E11ðdÞ�

¼ 1

4p

Z 2p

0

Z p=2

0

ðbþ c cos2 hÞðcos2 h� sin2 h cos2 uÞ sin hdhdu ¼ c
15
;

and

celðsÞ ¼ � 1

2
½E33ðsÞ � E11ðsÞ�

¼ 3c
2p

Z 2p

0

Z p=2

0

ðsin2 h cos2 hþ sin2 h cos2 h cos2 uÞ sin hdhdu ¼ c
10
:

At the limiting values, given by (17) the first particle slip occurs. At this limiting strain we
assume all particles will slide. While this assumption appears rather strong, it is corrobo-
rated by simulations (e.g. Thornton and Antony, 1998) wherein, after a modest amount of
deviatoric strain, the contribution of the tangential contact force to the deviatoric part of
the stress, qT, is nearly constant. While it is true that some contacts will still experience
elastic resistance, mainly those in close proximity to direction of the greatest compressive
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strain, the average behavior still results in nearly constant qT. Therefore, while we admit
that all contacts do not in fact slide, the aggregate behavior can not be distinguished from
that which results when it is assumed that all contacts are sliding, an approximation that
affords us significant simplification in the model development. The crude approximation
introduced for the slip seems, however, to agree reasonably well with predictions by Jen-
kins and Strack (1993). In Appendix A we show the results of the comparison.

As the shear strain c(d) is always elastic, in triaxial compression for c P c�c , the plastic
shear strain contribution is

cp
com ¼ c� cel ¼ c� c

15
� 3

5
c�c ¼

3

5
ðc� c�comÞ; ð19Þ

while in triaxial extension, c 6 c�ext,

cp
ext ¼ c� cel ¼ c� c

15
� 3

5
c�ext ¼

3

5
ðc� c�extÞ: ð20Þ

This linear dependence is illustrated in triaxial compression and extension, respectively, in
Fig. 3.

Within the range of elastic deformation, it is also easy to define the corresponding elas-
tic volume change as

trEij ¼ trEijðdÞ ¼ �D: ð21Þ
We note that this elastic volume change, only function of the normal contact displace-
ment, results from microstructural anisotropy induced in the material by the applied strain
through the contact forces. This dilatancy is not related to frictional-sliding or change in
structure.
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Fig. 3. Normalized plastic shear strain (cp/D0) versus normalized total shear strain (c/D0). Both triaxial
compression and extension regimes are shown.
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2.2.5. Strain hardening

The relevant features of a simple model for inelastic behavior are the yield strain, the
yield stress and the apparent hardening modulus, i.e., slope of the shear stress–shear strain
curve after yield or slip. We seek expressions for the contributions of the normal and tan-
gential contact forces to the shear stress given by (9)–(12), respectively, evaluated at the
yield strains defined by (13)–(16), respectively. The yield shear stress can be written in tri-
axial compression and extension, respectively, as

q�com

p
¼ q�Ncom

p
þ q�Tcom

p

and

q�ext

p
¼ q�Next

p
þ q�Text

p
:

For qN/p the limiting values are

q�Ncom

p
¼ 9

ffiffiffi
6
p

32

ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
ð3q2 þ 4qþ 4Þ � 3q2ðqþ 2Þ log

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ q
pffiffiffi

q
p

� �� �
c�com

D0

� �3
2

¼ 0:148 ð22Þ

and

q�Next

p
¼ 9

ffiffiffi
6
p

32
�

ffiffiffiffiffiffiffiffiffiffiffi
~q� 1

p
ð3~q2 � 4~qþ 4Þ þ 3~q2ð~q� 2Þ sin�1

ffiffiffi
1

~q

s !" #
�c�ext

D0

� �3
2

¼ �0:122;

while for qT/p

q�Tcom

p
¼ 3

ffiffiffi
6
p

8

ffiffiffiffiffiffiffiffiffiffiffi
qþ 1

p
ð3q2 þ 4qþ 4Þ � 3q2ðqþ 2Þ log

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ q
pffiffiffi

q
p

� �� �
c�com

D0

� �3=2

¼ 0:197

ð23Þ
and

q�Text

p
¼ 3

ffiffiffi
6
p

8

ffiffiffiffiffiffiffiffiffiffiffi
1� ~q

p
ð3~q2 � 4~qþ 4Þ � 3~q2ð2� ~qÞ sin�1

ffiffiffi
1

~q

s !" #
�c�ext

D0

� �3=2

¼ �0:163:

Because we assume that qT/p is constant outside the limits (17), only qN/p will vary with
cp. Therefore, in triaxial compression and extension, we derive the relation between qN/p
and cp/D0. We refer to Appendix B for the details. In triaxial compression, from Eqs. (7),
(9), and (19), with c P c�com

8D3=2
0 ¼ 5Dþ 2

5

3
cp þ c�com
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and

qN
com

p
¼ hcom

cp

D0

; ð24Þ

where, again, in case of glass spheres

hcom ’ 3:1: ð25Þ
In the same way, with (8), (10), and (20), in triaxial extension

qN
ext

p
¼ hext

cp

D0

;

where

hext ’ 2:9:

In Fig. 4 we plot the relation between the normalized shear stress and the normalized plas-
tic shear strain, respectively in triaxial compression and extension.

2.2.6. Plastic volume strain: unloading regime

As underlined in Jenkins and Strack (1993), and, indicated in Eq. (21) here, it follows
from the kinematic assumption in (1) that there is not apparently volume change associ-
ated with the tangential part of the displacement. Moreover, during the loading, while it is
possible to define a plastic shear strain associated with sliding, there is not an analogous
expression for the plastic volume change. Nevertheless, because particles slide during the
loading, when we unload we first have an elastic resistance among grains and then a
reverse slip occurs. As consequence the unloading path, in a stress- strain curve, will
not follow the previous loading. We define, therefore, the plastic volume change as the
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Fig. 4. Normalized shear stress (q/p) versus normalized plastic shear strain (cp/D0). Both triaxial compression and
extension regimes are shown.
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amount of volume locked in the material after the material is triaxially compressed and
subsequently unloaded to zero shear stress. Before we provide more details for the defini-
tion of the plastic volume change and in order to obtain a simple analytical expression for
it, we first introduce some simplifications.

From Figs. 2 and 4, it is reasonable to approximate a shear response for which the yield
strains in compression and extension are equal ðc� ¼ �c�ext ¼ c�comÞ and the elastic modulus,
G, and the hardening modulus H of the aggregate are constant. Therefore, for c 6 c�com,

q
p
¼ G

D0

c;

while for c P c�c , using (19),

q
p
¼ G

D0

ðc� cpÞ ¼ G
c�com

D0

þ 2G
5

ðc� c�comÞ
D0

:

Consequently, the hardening modulus is

H ¼ 2

5
G: ð26Þ

With these simplifying assumptions, we first consider the case in which we shear the
material up to a value cmax/D0 with the corresponding shear stress qmax=p 6 2Gc�com=D0.
Upon unloading, the material remains elastic for reverse strain equal to 2c*/D0 after which
reverse slip begins. That is, the elastic region obtained in the virgin state in compression
and extension provides the range of elastic deformation in reverse loading. In Appendix
C, we provide a comparison between an incremental model based upon a more complex
description of contact sliding during loading and unloading and this simplified model.
We note that, within a reasonable approximation, the two models produce results that
are in agreement. That is, the assumption of kinematic rather than isotropic hardening
is borne out by a fully incremental formulation and experimental results (e.g. Tatsuoka
and Ishihara, 1974). It, therefore, seems reasonable to adopt this simplification in this
regime of deformation. In this context the normalized stress, in case of unloading, is

q
p
¼ G

c�

D0

þ H
ðcmax � c�Þ

D0

� G
ðcmax � cÞ

D0

:

If we define cR as the residual shear strain associated with zero total shear stress upon
unloading, then

Gc� þ Hðcmax � c�Þ � Gðcmax � cRÞ ¼ 0:

With Eq. (26) the residual strain associated with the unloaded state is

cR ¼
3

5
ðcmax � c�Þ ¼ cp:

That is, when we unload from qmax=p 6 2Gc�=D0 the residual strain, cR, coincides with the
plastic strain cp accumulated during the previous loading.

If during the loading we reach the value qmax=p P 2Gc�=D0 then the unloading regime
necessary to reaches the zero shear stress will involve reverse slip

q
p
¼ G

c�

D0

þ H
ðcmax � c�Þ

D0

� 2G
c�

D0

� H
ðcmax � 2c� � cÞ

D0
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and, in particular, for the shear stress relaxed to zero, c = cR,

cR ¼
3

2
c�

which is constant, irrespective of the value of qmax/p reached after the limit of 2Gc�=D0.
This simple description of loading and unloading behavior of the material is illustrated
in Fig. 5. The model considers a fixed range of elastic deformation that is obtained in
its virgin state from triaxial compression and extension test.

For the purposes of identifying a simple expression for the plastic volume change, we
now restrict our attention to the case when the normalized shear stress does not exceed
the value 2Gc�=D0. The material will relax to a zero shear stress without experiencing
any reverse slip. This is, in general, not rigorously true, as in the unloading regime, some
particle contacts may, indeed, experience some reverse sliding. Here, however, from the
qualitative point of view and because we are focusing on strains prior to contact deletion,
we restrict our attention to purely elastic unloading of the aggregate to q/p = 0. This cor-
responds directly to unloading from maximum normalized shear stresses that do not
exceed 2Gc�com=D0; then the corresponding residual strain is precisely the accumulated plas-
tic strain in the loading regime and the plastic volume strain in the aggregate is defined as
the volume ‘‘locked” in the material when q/p is relaxed to zero. That is, in this range of
deformation, because we do not have change in structure, the volume strain is only related
to the normal component of the contact displacement, Eq. (21). Thereby, unloading to q/
p = 0, does not correspond to both qN/p = 0 and qT/p = 0 simultaneously. In particular,
qN/p 6¼ 0 implies that from Eq. (2) there are some contacts for which d has not recovered
to its initial value DD0/6.

With c = cp, we write, from Eq. (7)
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Fig. 5. Normalized shear stress (q/p) versus normalized shear strain (c/D0): the aggregate’s residual strain varies
with the starting point for unloading.
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8D3=2
0 ¼ ð5b̂þ 2ĉÞ

ffiffiffiffiffiffiffiffiffiffiffi
b̂þ ĉ

q
þ 3b̂2ffiffiffî

c
p log

ffiffiffî
c
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
b̂þ ĉ

p
ffiffiffî
b

p
" #

ð27Þ

with ĉ = 6cp and b̂ ¼ Dp þ D0 � 2cp (where for cp = 0 we have Dp = 0). For each value of
the strain c P c*, (27) determines a corresponding irreversible amount of plastic volume
strain that will remain in the unloaded state.

2.2.7. Yield function
We have now sufficient information to write the expressions for the yield and potential

functions. In particular for the former, at first yield

q�

p
¼ qN

p
ðc�Þ þ qT

p
ðc�Þ:

Then, using (22) and (23) in the q–p plane,

q� ¼ np ð28Þ
with n = 0.345. Beyond yield, for c P c* and

q ¼ q� þ qN
comðcpÞ;

where cp ¼ 3ðc� c�comÞ=5 and, from Eqs. (24) and (25),

q ¼ nþ hcom
cp

D0

� �
p: ð29Þ

These describe yield lines in the q–p plane that provide the Mohr–Coulomb yield criterion.
In our model, material hardening depends upon the relation between qN/p and cp/D0.

2.2.8. Potential function

It is well-known that granular materials that exhibit dilatancy are described by a non-
associated flow rule. In this case, the yield function is distinct from the potential function.
Our goal is to derive an expression for the potential function starting from the micro-
mechanics in the context of the simple model presented here. The potential function g is
a function of the shear stress q and the pressure p. In the q–p plane, curves with g constant
are obtained by

dg ¼ 0) og
oq

dqþ og
op

dp ¼ 0: ð30Þ

By definition, the direction of the incremental plastic strain is orthogonal to the potential
function. By decomposing the incremental plastic strain into a plastic shear component
and a plastic volume component, we obtain

og
oq
¼ k

dcp

dc

and

og
op
¼ k

dDp

dc
;

where k is a constant. Eq. (30), with the above expressions, becomes
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dcp

dc
dqþ dDp

dc
dp ¼ 0

or, equivalently,

dq
dp
¼ � dDp

dcp
: ð31Þ

This equation provides the relation between dilatancy and stress. Eq. (27) is an implicit
relation between plastic shear strain and plastic volume change. Here we adopt the follow-
ing quadratic fit:

Dp

D0

¼ b
cp

D0

� �2

: ð32Þ

The initial slope is zero; that is, at cp = 0, there is no plastic volume change. We show in
Fig. 6 that this approximation is excellent for b = �0.8.

From Eq. (32), we obtain a much simpler expression for the ratio of the plastic volume
strain increment to the plastic shear strain increment

dDp

dcp
¼ 2b

cp

D0

: ð33Þ

Using Eqs. (29) and (33), we obtain

dDp

dcp
¼ 2b

hc

q
p
� n

� �
:

Therefore, with (31), in the q–p plane, the curves of the potential function are represented by

dq
dp
¼ j1

q
p
þ j2;
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Fig. 6. Normalized plastic volume strain (Dp/D0) versus normalized plastic shear strain (cp/D0): comparison
between analytical solution and a quadratic approximation function with b = � 0.8.
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with j1 = � 2b/hcom and j2 = 2bn/hcom. The integral of these is given by

q ¼ Cpj1 � j2

j1 � 1
p:

In the q–p plane, we can now plot both the yield lines given by the Mohr–Coulomb crite-
rion and the potential function. The shear stress at first yield is q* = np, determining the
constant C

C ¼ nþ j2

j1 � 1

� �
p1�j1 :

The expression for the potential function is then

g � q� nþ j2

j1 � 1

� �
p̂1�j1 pj1 þ j2

j1 � 1
p ¼ 0;

where p̂ is the value of the expression in which the potential function intersects the first
yield line. In Fig. 7, we plot both a family of yield functions and potential functions, in
case of glass spheres, and explicitly label the line that corresponds to the onset of yield-
ing. Below the first yield line (dashed line), given by Eq. (28), the material behaves elas-
tically. Note, the plastic potential curves will pass through the origin and collapse to the
first yield line. This line intersects the potential functions at maximum values where their
slope vanishes, implying that the incremental strain vector is parallel to the q axis. That
is, there is no dilatancy in this virgin state. Each successive yield line is defined for a
given amount of accumulated plastic strain and, therefore, we define for each yield line
one direction for the incremental plastic strain vector. Within the adopted approxima-
tion, it is not the total shear stress, but only its normal contribution that provides the
slope of the yield function. We also see that, beyond first yield, the projection of the
incremental plastic strain vector on the p axis is negative. This implies a negative plastic
volume strain or dilatancy.
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Fig. 7. Family of straight yield lines and potential curves.
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3. Conclusions

We have provided a relatively simple model for the response of a random aggregate of
spherical grains that interact through sustained contact forces in triaxial compression and
extension. The model is a simplified approximation to a complete analytic integration of
the evolving contact forces. The contact displacement between particles is assumed to be
given by the average strain leading to predictions of aggregate shear stress that represent
an upper bound to the real material response. However, in this framework, we derive
closed-form expressions for the yield strain, yield stress, hardening moduli, volume change,
plastic shear and volume strains, yield and potential functions. In particular we have empha-
sized qualitative features of this material from a micro-mechanical point of view, underlining
those aspects that are crucial to understanding the inelastic response of the material.
Acknowledgements

The authors are grateful to Prof. J.T. Jenkins (Cornell University) for his suggestions
and stimulating discussions during the preparation of the manuscript. L. La Ragione
thanks grant from M.I.U.R-COFIN 2005, G.N.F.M. and PST-Regione Puglia.

Appendix A. An approximation for accumulated plastic strain

The aggregate shear stress response is given for both triaxial compression and triaxial
extension by adopting a full integrated expression from Jenkins and Strack (1993). For
both compression and extension, it is observed that the contribution of tangential contact
forces to the aggregate shear stress is, to good approximation, constant beyond first slip,
i.e., yield (see Fig. 2).

The corresponding assumption is that the contribution of the tangential contact dis-
placement to the elastic shear strain is constant after yield and, therefore, a simple expres-
sion for plastic shear strain is obtained (Eqs. (19) and (20)). An illustration of this
simplification for the plastic shear strain is shown in Fig. 8 along with the predictions
of the full integrated model.

The slight increase in the tangential contribution to the aggregate shear stress indicates
that the elastic strain associated with the tangential contact displacement is not exactly
constant after yield. It is this small amount of elastic strain that accounts for the roughly
5% discrepancy between the plastic shear strain predicted by the full integrated model and
the simplification offered here.
Appendix B. A simplified model of strain hardening

For both compression and extension, it is observed that the contribution of tangential
contact forces to the aggregate shear stress is, to a good approximation, constant beyond
first slip, i.e., yield. In addition, the contribution of normal contact forces to the aggregate
shear stress remains purely elastic and, to good approximation, varies linearly with the
normalized strain.

It is then reasonable to re-cast Eq. (9) isolating a term linear in the shear variable c,
giving
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D0

¼ R
c
D0

;

where R, to a good approximation, remains constant (see Fig. 2). For simplicity, we eval-
uate R at first yield, where q is the critical ratio at first slip and c ¼ 6c�c , giving with (13)

R ¼ 9

32

ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
ð3q2 þ 4qþ 4Þ � 3q2ðqþ 2Þ log

1þ
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pffiffiffi

q
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þ 3q2 log
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2
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3
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1=3

ffi 1:85:

Finally, using (19)

qN

p
¼ R

c
D0

¼ R
c�c
D0

þ 5

3

cp

D0

� �
¼ q�Ncom

p
þ 5

3
R

cp

D0

¼ q�Ncom

p
þ 3:08

cp

D0

:

Applying an identical linearization in triaxial extension, results in the expression

qN
ext

p
¼ J

c
D0

;

with
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Giving, with Eq. (20),

qN
ext

p
¼ J

c
D0

¼ qN
ext

p
¼ J

c�ext

D0
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3

cp

D0
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¼ q�Next
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3
J

cp
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¼ q�Next

p
þ 2:9

cp

D0

:

Appendix C. Motivation for a simplified model of unloading

In this work, we have associated the onset of aggregate yielding with this first slip
between particles. Because the yield point is relatively ‘‘sharp” when loading the material
in triaxial compression, associating aggregate yield with a critical ratio of strains b/c, as is
done in Section 2.2.3 is reasonable.

The case of unloading and subsequently reverse loading the aggregate can be carried
out in a manner strictly analogous to the case of monotonic loading considered by Jenkins
and Strack (1993). Using a corresponding reverse slip criterion, further parameterized by
the maximum shear strain on forward loading, the shear stress response can be directly
computed. Upon unloading to reverse yielding, we observe three specific characteristics
of the material response: first, the point of first reverse slip is a function of the amount
of pre-strain prior to reversal; second, the yielding on reverse sliding is more gradual,
i.e., the strain transient of the yielding results in a broadened ‘‘ knee” of the stress–strain
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Fig. 9. Loading and unloading using a reverse slip functional (circles) along with a simplified model (dashed
lines).
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response and third, eventually, the stress strain response saturates to a constant hardening
slope in reverse sliding that is nearly identical to that for forward loading. These charac-
teristic behaviors are illustrated in Fig. 9. If we are interested in only this so-called long
strain asymptotic behavior, the stress response can be approximated as bilinear with con-
stant elastic slopes within an elastic region bounded by the original virgin state of the
material and constant inelastic hardening slopes beyond yield. If one draws these extrap-
olated, straight line segments, the elastic regime, to a very good approximation, appears
bounded by a shear stress difference of 2Gc�com=D0. With this proposed simplification, it
is possible to motivate relatively simple forms for the aggregate inelastic stress response,
the plastic volume change and plastic potential functions.
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