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Abstract

Many new small moons of the giant planets have been discovered recently. In paral-
lel, satellites of several asteroids, e.g., Ida, have been found. Strikingly, a majority of
these new-found planetary moons are estimated to have very low densities, which,
along with their hypothesized accretionary origins, suggests a rubble internal struc-
ture. This, coupled to the fact that many asteroids are also thought to be particle
aggregates held together principally by self-gravity, motivates the present investiga-
tion into the possible ellipsoidal shapes that a rubble-pile satellite may achieve as
it orbits an aspherical primary. Conversely, knowledge of the shape will constrain
the granular aggregate’s orbit - the closer it gets to a primary, both primary’s tidal
effect and the satellite’s spin are greater. We will assume that the primary body
is sufficiently massive so as not to be influenced by the satellite. However, we will
incorporate the primary’s possible ellipsoidal shape, e.g., flattening at its poles in
the case of a planet, and the proloidal shape of asteroids. In this, the present inves-
tigation is an extension of the first classical Darwin problem to granular aggregates.

General equations defining an ellipsoidal rubble pile’s equilibrium about an el-
lipsoidal primary are developed. They are then utilized to scrutinize the possible
granular nature of small inner moons of the giant planets. It is found that most
satellites satisfy constraints necessary to exist as equilibrated granular aggregates.
Objects like Naiad, Metis and Adrastea appear to violate these limits, but in do-
ing so, provide clues to their internal density and/or structure. We also recover
the Roche limit for a granular satellite of a spherical primary, and employ it to
study the Martian satellites, Phobos and Deimos, as well as to make contact with
earlier work of Davidsson (Icarus 149 [2001], 375). The satellite’s interior will be
modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield crite-
rion. This rheology is a reasonable first model for rubble piles. We will employ an
approximate volume-averaging procedure that is based on the classical method of
moments, and is an extension of the virial method (S. Chandrasekhar, Ellipsoidal
Figures of Equilibrium, Yale U. Press [1969]) to granular solid bodies.
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1 Introduction

Roche (1847) first considered the problem of finding the equilibrium shape
of a fluid satellite of a spherical planet, identifying ellipsoidal equilibrium
shapes now known as the Roche ellipsoids. Later, Darwin (1906) introduced a
non-trivial generalization of the Roche problem: the characterization of equi-
librium shapes of two tidally interacting fluid bodies that rotate about each
other on circular orbits. Chandrasekhar (1969) showed that, at least in the
case of fluids, there are only two possible scenarios in which such ellipsoidal
equilibrium shapes may be found. The first is when the aspherical primary is
massive enough to warrant neglecting the tidal effects due to the satellite. In
the other case, both objects are congruent, i.e., with the same shape, mass
and in a symmetric orientation. Indeed, Darwin (1906) himself had empha-
sized this dichotomy. We will refer to this natural classification as the first
and second Darwin problems, whose solution, for an inviscid fluid, yields the
Darwin sequence of ellipsoids (Chandrasekhar 1969).

Recently, several small inner moons of the giant planets have been discovered.
Their estimated low densities, often lower than or comparable to water’s, sug-
gests that these objects may be either granular aggregates, or highly porous
cellular “honeycomb”-like structures. While the former, in the absence of co-
hesion, has no tensile strength and is held together only by its own gravity, the
latter is able to withstand a certain amount of tension. It is, however, believed
that these newly uncovered satellites may have formed via an accretionary
process either from ring particles, as in the case of Saturn’s moons (Porco
et al. 2007), or from the debris left over from some past catastrophic event,
e.g., Neptune’s capture of Triton (Banfield and Murray 1992). There is thus
a need to generalize the first of the two classical Darwin problems introduced
above to rubble-pile satellites of oblate planets. In fact, the finding of asteroidal
satellites, many of which are suspected particle aggregates, strongly suggests
the need to consider also elongated triaxial primaries. The general scenario is
displayed in Fig. 1.

Rubble piles, while much weaker than coherent structures, are able to sustain
shear stresses due to internal friction. This allows a range of stable satellite
shapes to be possible at a given planetary distance. Conversely, for a given
shape, the satellite’s orbits on which it may persist in equilibrium are not nec-
essarily unique. In the sequel, we will obtain general equations that describe
the equilibrium landscape of a triaxial-ellipsoidal, tidally-locked, rubble-pile
satellite on a circular orbit around a triaxial-ellipsoidal primary. The formula-
tion will then be specialized to investigate the moons of the giant planets. In
Sec. 5, the Roche limit for a granular aggregate, i.e., the critical distance at
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Fig. 1. The general configuration of an ellipsoidal satellite of an ellipsoidal primary.
The unit vector êR locates the satellite with respect to the primary’s center.

which a rubble-pile satellite may orbit a spherical planet, will also be obtained
as a special case and will then be employed to study the two satellites of Mars.
Recently, Holsapple and Michel (2006, 2008) have considered the Roche limit
for solid bodies, employing the static version of Signorini’s theory of stress
means (Truesdell and Toupin 1960, p. 574). We compare briefly with their
results in Sec. 5.2.

We will employ a volume-averaging procedure that is really a generalization
of Chandrasekhar’s (1969) virial method to the statics, and dynamics, of solid
objects. Previously, this volume-averaging procedure has been employed to
investigate tidal disruption during planetary flybys (Sharma 2004, Sharma et
al. 2006), equilibrium shapes and dynamical passage into them for asteroids in
pure spin (Sharma et al. 2005a, 2005b, 2008), and the Roche limit for rubble
piles (Sharma et al. 2005b, Burns et al. 2007). A good match with available
computational and analytical results was achieved. In fact, in the case of rubble
piles in pure spin, the equilibrium landscape obtained from volume-averaging
matched perfectly Holsapple’s (2001) exact results that were based on rigorous
limit analysis (Chen and Han 1988) often employed in rigid-plasticity.

We develop the governing equations next.

2 Volume-averaging

In this section, we present the main equations obtained from an application of
the volume-averaging procedure. More details about derivations may be found
in Chandrasekhar (1969), Sharma et al. (2006), or Sharma et al. (2008).
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In case of a tidally interacting satellite, there are principal-axes coordinate sys-
tems associated with both the satellite and the primary. No particular system
is better suited to evaluate all quantities that will appear below. In addition,
many different relative orientations of the primary and the satellite are possi-
ble. Thus, it is advantageous to follow a coordinate-independent tensor-based
approach. We will develop general equations, applicable to all primary-satellite
configurations, as far as possible, and only specialize to a particular primary-
satellite configuration at the very end. We offer a very short primer on tensors
and operations with them in Appendix A. More information may be obtained
from Knowles (1998). The reader should also refer to Appendix A for notations
followed in this paper.

We now proceed to the governing equations.

2.1 Governing equations

We consider a finite-sized satellite in motion about a primary also of finite
spatial extent. Much work has been done on the dynamical problem of relative
equilibria in the two finite rigid-body problem, and we refer the interested
reader to Kinoshita (1972), and more recently to Scheeres (2006). Indeed, the
two finite rigid-body problem will be relevant when extending the present work
to the equilibrium shapes in a binary system consisting of comparable masses,
i.e., the second Darwin problem introduced in Sec. 1. In this paper, we focus
on the first Darwin problem, wherein the primary is much more massive than
the satellite. Thus, we neglect the motion of the primary’s center of mass. We
also make the further assumption that the satellite moves around the primary
at a much faster rate than the primary around the Sun.

The stress σ inside a deformable body, such as a satellite, may be obtained
by solving the Navier equation (see, e.g., Fung 1965)

∇ · σ + ρb = ρ
(
ẍ + R̈

)
, (1)

where ρ is the density, b the body force and x the location of a material point
with respect to the satellite’s center of mass, and R locates the satellite’s mov-
ing mass center with respect to the primary’s fixed center of mass (see Fig. 1).
To solve the above partial differential equation, one must provide appropriate
boundary conditions, and compatibility equations that incorporate the mate-
rial’s constitutive behavior. Note that, within the approximations introduced
in the preceding paragraph, ẍ + R̈ is the total acceleration of a material point
and ẍ is the acceleration relative to the satellite’s mass center. The body force
includes in our case the tidal effects of the primary on the satellite, and of
the satellite’s internal gravity on itself. Except in the simplest of geometries,
loading conditions, rheologies and small deformations, solving for the exact
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stresses is often analytically intractable, and even computationally very in-
volved. Considering the intricate constitutive nature of planetary bodies, the
utility of undertaking such an exercise is also moot. Instead we follow an
approximate method here.

Volume-averaging begins by making systematic approximations to the body’s
actual time-varying deformation field in terms of a finite number of only tem-
porally dependent variables. Equations governing these variables are then ob-
tained by taking an appropriate order moment of the linear momentum bal-
ance equation (1) above. For example, the first moment, and the one utilized
in this work, is obtained by integrating the tensor product (A.2) of each quan-
tity in (1) with the position vector x over the body’s volume V . This has the
advantage of converting the governing coupled non-linear partial differential
equations into a set of ordinary differential equations, easily integrated by a
Runge-Kutta time-marching algorithm. The disadvantage is that our solutions
are valid on a global, rather than local, scale. The volume-averaging procedure
is reminiscent of the Galerkin projection frequently employed in finite element
analysis (e.g., Belytschko et al. 2000), and, in fact, an exact equivalence may
be demonstrated.

Here we consider the simplest non-trivial such kinematic assumption suitable
to the problem at hand; a deformation that is homogeneous when viewed in a
non-rotating coordinate system with its origin at the ellipsoidal satellite’s mass
center. We assume that the ellipsoidal satellite is homogeneous, so that its mass
and geometric centers coincide. Physically, this kinematic assumption enforces
the condition that, in this coordinate system that orbits the primary along
with the satellite, but does not rotate with the latter, an initially ellipsoidal
shape deforms only into another ellipsoid. As noted earlier (Sharma et al.
2008), homogeneous kinematics were shown to yield physically meaningful
results in the case of spinning fluid masses by Chandrasekhar (1969). Further
motivation is provided by the fact that spinning elastic ellipsoids, and also
tidally-stressed elastic ellipsoids, deform into ellipsoids (Love 1946, Murray
and Dermott 1999).

With the above kinematic assumption, the original position x0 of a mass point
with respect to the satellite’s center of mass may now be related to its future
location x by

x = F · x0, (2)

in terms of the deformation gradient tensor F that depends only on time, and
not on the spatial coordinates. Thus, F incorporates the nine independent
temporal variables that we assume approximate the ellipsoid’s actual defor-
mation. These variables roughly correspond to three stretches, three shears
and three rotations. For a rigid body, F is a rotation tensor. Rather than
developing equations for the components of F , as Sharma et al. (2006, 2008)
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did, we first introduce the velocity gradient

L = Ḟ · F−1, (3)

so that the kinematic law (2) may be replaced by its equivalent incremental
form

ẋ = L · x. (4)

Like F , L is also independent of x, depending only on time.

As indicated above, a sufficient number of equations for the components of
L are obtained by taking the first moment of (1), invoking the divergence
theorem to transform volume integrals, employing (3) to represent the veloc-
ities ẋ and accelerations ẍ in terms of the position vector x and L, and finally
assuming a traction-free (force-free) surface. The resulting volume-averaged
evolution equation for L is(

L̇ + L2
)
· I = M T − σV, (5)

where σ is now the average stress (1/V )
∫
V σdV ,

I =
∫
V
ρx⊗ xdV (6)

is the inertia tensor, and

M =
∫
V

x⊗ ρbdV (7)

is the moment tensor due to the body forces b. In the development above,
the term

∫
V x ⊗ R̈ ρdV =

∫
V x ρdV ⊗ R̈ vanished because the satellite’s center

of mass is at x = 0. We note that under the assumption of homogeneous
kinematics, the deformation and velocity gradients are constant throughout
the body. Therefore the stresses too are independent of x, as they typically
depend only on F and L. Consequently, the average stress σ equals the actual
stress σ, and we subsequently drop the overbar on σ.

The inertia tensor’s evolution may be followed by first differentiating (6) while
conserving mass, and then invoking (4) and (6) to obtain

İ = L · I + (I · L)T . (8)

Equations (3), (5) and (8) govern the motion of a homogeneously deforming
ellipsoid under the action of only the body forces b, once a constitutive law
relating the stress σ to the body’s deformation is specified.

In general, the velocity gradient incorporates both the strain (or stretching)
rate and the spin rate. The latter rate measures the local angular velocity in
a deformable medium, and is usually distinct from the rotation rate of the
body’s principal axes. When the object is rigid, the strain rate vanishes and
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the local spin rate coincides with the principal axes’ rotation rate. Thus in (5)
we set L = W , the anti-symmetric tensor associated with the rigid body’s
angular velocity (see (A.9)), to obtain(

Ẇ + W 2
)
· I = M T − σV. (9)

The three Euler equations (Greenwood 1988) governing a rigid body’s dynam-
ics are recovered from the nine equations of (9) by taking its anti-symmetric
part, and noting that σ is symmetric. The remaining six equations yield the
exact average stress inside the rigid body. Note that while it is impossible to
define a point-wise stress field in a rigid body, an average stress is well-defined
and exactly obtainable, as is done above.

In the present analysis, we are concerned with tidally-locked equilibrium con-
figurations of an ellipsoidal satellite on a circular orbit. Thus, the spin tensor
W associated with the satellite’s rotation rate equals the satellite’s fixed or-
bital angular velocity. A constant W is achieved when the torque given by
the anti-symmetric part of M vanishes, and the object spins about an axis of
principal inertia. Under these conditions, W and I commute and W 2 · I is
symmetric. Setting Ẇ to zero in (9), and rewriting slightly, we find

σ =
1

V

(
M T −W 2 · I

)
, (10)

which is a volume-averaged balance between “centrifugal” stresses due to the
satellite’s rotation, stresses due to the body force as given by the body force
moment tensor M , and the satellite’s internal strength. The above balance,
along with a suitable failure law, will help put constraints on a satellite’s
equilibrium shapes for a given spin and orbit size, as we illustrate below. We
emphasize that the above equation is valid for all ellipsoidal satellites and
primaries, with the only requirement being that the former be tidally locked
and on circular orbit about the latter. To address satellites that are not tidally
locked and/or on elliptic orbits, we will have to retain the term Ẇ in the above
equation.

To obtain σ from (10), we require both M and W . Because we consider
tidally-locked satellites, W will be obtained from the satellite’s orbital motion
in Sec. 2.4. We first calculate the body-force moment tensor M . Recall that
in our case the body force is due both to the satellite’s internal gravity and
also the tidal stresses introduced by the primary. Thus, we may write

M = M G + M Q, (11)

where M G is the moment tensor due to internal gravity, and M Q, the quadrupole
moment tensor, is the moment tensor due to tidal influence of the primary.
The expressions developed in the following two subsections are applicable to
all mutually interacting triaxial-ellipsoidal objects on possibly elliptical orbits.
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A cautionary comment is in order here. Consider finding at a point within
the satellite the total body force per unit mass due to both the finite-sized
satellite and the primary. This body force at this point may be derived, as
we do, by adding to the internal gravity force of the satellite, the external
gravitational attraction of the primary. It may also be obtained by taking
the gradient of the total gravitational potential at that point of each body.
The total gravitational potential at a satellite’s internal point is the sum of
the satellite’s internal potential and the primary’s external potential. It is
important to note that we are not attempting to find the mutual potential
of two finite-sized objects. This latter potential has been computed by many
authors, see, e.g., Werner and Scheeres 2005; Ashenberg 2005, and is of interest
when calculating the total energy of the system, which, however, is not the
aim here.

2.2 Gravitational moment tensor

M G was derived in Sharma et al. (2006), and is

M G = −2πρGI ·A, (12)

where G is the gravitational constant and the gravitational shape tensor A
describes the influence of the satellite’s ellipsoidal shape on its internal gravity
(Chandrasekhar 1969; Sharma et al. 2006). The symmetric tensor A depends
only on the axes ratios α = a2/a1 and β = a3/a1, and is completely known
for any given ellipsoidal satellite. Moreover, like I , it is diagonalized in the
satellite’s principal-axes coordinate system. Thus, I and A commute. Relevant
formulae for the components of A for general ellipsoidal shapes are available
(Sharma et al. 2008, Sec. 2.4). We repeat them here for convenience. In its
principal-axes coordinate system, for an oblate spheroidal satellite (1 = α >
β), we have

A1 = A2 = − β2

1− β2
+

β

(1− β2)3/2
sin−1

√
1− β2, (13)

while for prolate objects (1 > α = β),

A2 = A3 =
1

1− β2
− β2

2(1− β2)3/2
ln

(
1 +
√

1− β2

1−
√

1− β2

)
, (14)

and finally for truly triaxial-ellipsoidal satellites (1 > α > β)

A1 =
2αβ

(1− α2)
√

1− β2
(F (r, s)− E(r, s)) (15a)

and A3 =
2αβ

(α2 − β2)
√

1− β2

(
α

β

√
1− β2 − E(r, s)

)
, (15b)
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Fig. 2. An ellipsoidal satellite of an ellipsoidal primary. A general configuration
showing the quantities involved in the calculation of Sec. 2.3. The figure is not to
scale.

where F and E are elliptic integrals of the first and second kinds (Abramowitz
and Stegun 1965), respectively, with the argument r =

√
1− β2 and parameter

s =
√

(1− α2)/(1− β2). In each case, we provide only two of the Ai, as the

third component may be calculated from the relation (Chandrasekhar 1969)

A1 + A2 + A3 = 2. (16)

2.3 Quadrupole moment tensor

Sharma et al. (2006) calculate M Q due to a spherical primary. We follow a
similar path to develop a formula valid for a triaxial-ellipsoidal primary. The
calculation is complicated by the fact that there are many possible relative
orientations of the primary and the satellite. Thus, the components of vectors
and tensors depend on whether we view them in the primary’s (P ) or the
satellite’s (S) principal-axes coordinate system. In keeping with the notation
employed in Appendix A, we will use primes (′) to denote vector and tensor
components in P . Other quantities relevant to the primary, such as the density
ρ′, will be similarly labeled. We will proceed by outlining a general formulation,
though in Secs. 4 and 5 the final formulae will be specialized to configurations
of immediate interest.

Consider the geometry shown in Fig. 2. Employing the theorem on the external
force field of a triaxial body (Chandrasekhar 1969, p. 48), we obtain the body
force for a unit mass (i.e., the acceleration) located at X (= RêR + x) to be

bQ =
dF

dm
= −2πρ′GB · X, (17)
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where the symmetric tidal shape tensor B depends only on a′i and X, and
captures the effect of the primary’s triaxiality on its gravitational field. B is
diagonalized in P , so that from (A.8) we may write, B = Σ3

i=1B
′
iê
′
i⊗ê′i in terms

of B ’s components B′i in the system ê′i. On the other hand, in S, the symmetric
B in general has its full set of six componentsBij, i.e., B = Bij êi⊗êj. Formulae
may be developed for the components B′i for triaxial ellipsoids by appealing
to their integral definitions (Chandrasekhar 1969),

B′i =
∫ ∞
λ′

a′1a
′
2a
′
3 du

∆′(a′2i + u)
, (18)

where ∆′ =
√

(a′21 + u)(a′22 + u)(a′23 + u), and the above integral’s lower limit
λ′ is the ellipsoidal coordinate of the point x′, i.e., the greatest solution of the
equation

X ′21
a′21 + λ′

+
X ′22

a′22 + λ′
+

X ′23
a′23 + λ′

= 1. (19)

Thus, because xi and X ′i are related, λ′ is a function of xi. Note also that the
B′i depend on x only through λ′. Sections 4 reports B′i for oblate primaries.
Knowing the rotation tensor T fixing the satellite’s orientation relative to the
primary, we can extract Bij from B′i via the formula (A.11b).

Substituting (17) in (7), we have

M Q = −2πρ′G
(∫

V
x⊗ x ·BρdV +

∫
V

x⊗RêR ·BρdV
)
, (20)

where we have employed the fact that X = x +RêR, the formula a⊗ (C · b) =
a⊗ b ·C T for vectors a and b and tensor C , and the symmetry of B .

As for a spherical primary in Sharma et al. (2006), because B depends on x
through λ′, in order to compute M Q we will expand B about its value at the
satellite’s center, i.e., x = 0, retaining terms only up to O(x2

i /R
2). This seems

reasonable, as for most practical problems the satellite is much smaller than
its separation from the primary. We therefore approximate the components
Bij of B in the satellite’s principal axes system êi as

Bij ≈ B
(0)
ij +B

(1)
ijk

xk
R

+B
(2)
ijkl

xkxl
R2

, (21)

where the coefficients on the right hand side are obtained by appropriately
expanding the formulae for Bij. Introducing the notation B(1) and B(2) for
the third and fourth order tensors in the above expansion, respectively, and
following Sec. 2.4, we have the coordinate-independent representation

B ≈ B (0) + B(1) · x

R
+ B(2) :

x⊗ x

R2
. (22)

Because B is symmetric, so too are the tensors B (0), B(1) and B(2) in their first
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two arguments, i.e., B
(0)
ij = B

(0)
ji , B

(1)
ijk = B

(1)
jik and B

(2)
ijkl = B

(2)
jikl. Employing the

above expansion in (20) we find that

M Q = −2πρ′G
[∫
V

x⊗ x ·B (0)ρdV +
∫
V

x⊗RêR ·
(
B(1) · x

R

)
ρdV

]
,

where we have appealed to the definition of the satellite’s center of mass, and
symmetry arguments to set the integrals with an odd number of x’s to zero.
Note that B(2) does not play a role in the above equation. Following standard
tensor manipulation introduced in Appendix A, we simplify the above equation
to recover the basis-independent formula

M Q = −2πρ′GI ·
[
B (0) +

(
êR ·B(1)

)T ]
. (23)

Recall that êR · B(1) is a second-order tensor. We note that while I is diago-
nalized in the principal axes system of the satellite, B , and so consequently,
B (0) and B(1) are diagonal when viewed in P . It is helpful to specialize the
above expression to the case of a spherical primary of radius a′. Then, B (0)

and B(1) are

B (0) =
2

3

a′3

R3
1 and B(1) = −2

a′3

R3
1 ⊗ êR, (24)

and we obtain for a′1 = a′2 = a′3 = a′,

M spherical
Q = −G4πa′3

3R3
ρ′I · [1 − 3êR ⊗ êR] .

as obtained earlier by Sharma et al. (2006).

In order to employ the formula (23) profitably, we must develop expressions
for B (0) and B(1). To this end we first calculate the B′i by integrating (18).
From these, B ’s components in S, the Bij, are obtained by appealing to the
rotation tensor that relates the satellite’s and primary’s coordinate systems
S and P , respectively. The Bij are then expanded about the satellite’s center
x = 0 to yield the tensors B (0) and B(1). This process will become clear in Sec.
4 when we investigate a particular satellite-primary configuration.

2.4 Orbital motion

The satellite’s orbital motion is governed by the primary’s gravitational attrac-
tion. The total external gravitational force acting on the satellite is obtained
by integrating (17),

F =
∫
V

dF

dm
dm =

∫
V

bQρdV = −2πρ′G
∫
V
B · XρdV.
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Setting X = RêR + x, expanding B according to (22), substituting into the
above and integrating as in the previous section, we arrive at

F = −2πρ′G
[
mB (0) ·RêR +

1

R
B(1) : I +

1

R

(
B(2) : I

)
· êR

]
,

with m being the satellite’s mass. As it follows its circular orbit around the
massive primary, the satellite’s centripetal acceleration must be sustained by
êR · F, so that we obtain the orbital angular velocity as

ω2 = 2πρ′GêR ·
[
B (0) · êR +

1

mR2

(
B(1) + êR · B(2)

)
: I
]
, (25)

where we have employed the symmetry of B(2) in its first two indices to simplify
the above expression. In the above, we have again neglected the satellite’s effect
on the primary, taking the latter to be essentially fixed. In future applications
to binary systems, where the components are often of comparable masses,
it will be necessary to include also the primary’s motion. We note that, this
time, the tensors B (0), B(1) and B(2) are required. For a tidally-locked satellite,
the orbital angular velocity equals its rotation rate, so that once ω is known
from the above, the spin tensor W associated with the rotation rate may be
constructed.

In the above formula, the first term is what would result if we assumed that all
the satellite’s mass were located at its center. The next two terms bring in the
effect of the satellite’s distributed mass on its orbital motion. Typically, this
is a weak perturbation, as evinced by the presence of R2 in the denominator,
and we comment on its magnitude in the next subsection.

2.5 Non-dimensionalization

Collecting together (10), (12) and (23) we arrive at

σ =
1

V

[
−2πρGA · I − 2πρ′G

(
B (0) + êR ·B(1)

)
· I −W 2 · I

]
,

which provides the average stress in a tidally-locked triaxial satellite located
on a circular orbit by êR with respect to a triaxial primary. The first term
on the right is the average stress due to the satellite’s internal gravity, the
second is the average tidal stress introduced by the primary, while the last
is the average “centrifugal” stress. We non-dimensionalize the above equation
by rescaling time by 1/

√
2πρG, and the stress by (3/20π)(2πρGm)(4π/3V )1/3,

where ρ, V and m are the satellite’s density, volume and mass, respectively.
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We obtain

σ = −(αβ)−2/3

[
W 2 + A +

1

η

(
B (0) + êR ·B(1)

)]
·Q , (26)

where α and β are the satellite’s axes ratios, η = ρ/ρ′ is the ratio of the satel-
lite’s to the primary’s density, W and σ now represent the non-dimensional
spin and average stress tensors, respectively, and Q is a non-dimensional ten-
sor derived from the inertia tensor. In S, Q takes the form

[Q ] =


1 0 0

0 α2 0

0 0 β2

 , (27)

where, recall from Appendix A that square brackets denote evaluation of a
tensor in a coordinate system, in this case the satellite’s.

Similarly, we non-dimensionalize (25) to obtain

ω2 =
1

η
êR ·

B (0) · êR +
1

5q′2

(
κα′β′

ηαβ

)2/3 (
B(1) + êR · B(2)

)
: Q

 , (28)

where now ω is the scaled orbital angular velocity that equals a tidally-locked
satellite’s spin, κ = m/m′ is the ratio of the satellite’s to the primary’s mass,
and q′ = R/a′1 is the scaled orbital radius. In the present application we have
assumed that the primary is much more massive than the satellite, i.e., κ� 1,
and consequently we drop the corrective second-order terms, to obtain

ω2 ≈ 1

η
êR ·B (0) · êR. (29)

Note that the scaled orbit size q′ may yet be an O(1) quantity. We empha-
size that the above formula, through B (0), retains the effect of the primary’s
ellipsoidal nature on the satellite’s orbital motion; dropping the second-order
terms in (28) is equivalent to neglecting the effect of the secondary’s dis-
tributed mass.

Finally, we again make contact to the case of a spherical primary by setting
a′1 = a′2 = a′3 = a′. Using (24) in the above equation to find

ω2 ≈ 1

η
êR ·

2

3

a′3

R3
1 · êR =

2

3

ρ′

ρ

a′3

R3
,

the expected (approximate) formula for the non-dimensional orbital angular
velocity of a satellite on a circular orbit about a massive spherical primary.
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2.6 Coordinate system

In a tidally-locked configuration, we orient the satellite’s longest principal axis
ê1 to point away from the primary (see, e.g., Fig. 3). The principal axis ê3 is
taken to be normal to the orbital plane. This fixes the satellite’s principal axes
system S. We will evaluate both (26) and (29) in S. The form of the tensor
Q in S is given above in (27). The gravitational shape tensor A is diagonal
in S, i.e.,

[A] =


A1 0 0

0 A2 0

0 0 A3

 , (30)

where, depending on the satellite’s shape, A1, A2 and A3 are given by either of
(13), (14), or (15), along with (16). The non-dimensional spin tensor becomes

[W ] =


0 −W3 0

W3 0 0

0 0 0

 , (31)

where, because the satellite is tidally locked,

W 2
3 = ω2 ≈ 1

η
êR ·B (0) · êR (32)

after substituting for ω from (29). We have neglected any “roll” about the
axis that points towards the primary. Note that W3 depends on the primary’s
orientation with respect to the satellite and simplified expressions for it will be
obtained separately for the two cases considered later. The tidal shape tensor
B ’s matrix and so also those of B (0), B(1) and B(2), similarly depend on the
orientation of the primary’s principal axes system P , and will be derived for
the example configuration in Sec. 4. Finally, the stress tensor’s components in
S will be taken to be σij.

The exact volume-averaged stresses in a tidally-locked, triaxial-ellipsoidal satel-
lite as it moves in a circular orbit about a triaxial ellipsoidal primary are given
by (26). However, these stresses cannot take arbitrary values for rubble piles
that yield under high-enough shear stresses. The next section introduces a
yield criterion for such granular aggregates that will help put bounds on the
possible shape and density that a rubble-pile satellite at a distance q′ from a
primary may achieve before it disrupts.
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3 Rheology

Cohesionless rubble piles/granular aggregates (think of a gravel pile) are pri-
marily characterized by their inability to withstand tensile stress and also
their non-zero, but finite, resistance to shear stresses. This ability to support
shear stresses is traced to both the usual interfacial friction due to particle
interaction, as well as a geometric friction due to interlocking of finite-sized
constituents. Because of its frictional roots, the shear resistance of rubble
piles depends on internal pressure. It is further noticed that granular mate-
rials when compressively loaded, suffer minimal deformation until a critical
load is reached, beyond which they deform rapidly. Keeping these features in
mind, it is quite common to model granular aggregates, in the first instance,
as rigid perfectly-plastic materials with an appropriate pressure-dependent
yield criterion; see, e.g., Schaeffer (1987). Because here we are concerned with
only equilibrium shapes, and not dynamical behavior post-yield, we will only
introduce yield criteria relevant for a granular aggregate and not model the
aggregate’s behavior after it yields. More complete discussions of modeling
granular materials as rigid perfectly-plastic materials, addressing also their
post-yield flow, are provided in Sharma (2004) and Sharma et al. (2008).

Pressure-dependent yield criteria appropriate for granular materials are pro-
vided by both the Mohr-Coulomb and the Drucker-Prager failure laws (Chen
and Han 1988). The Mohr-Coulomb yield criterion is stated in terms of the
extreme principal stresses

σmax − kMCσmin ≤ 0, (33)

where kMC is related to the internal friction angle φF by

kMC =
1 + sinφF
1− sinφF

. (34)

Here, we prefer to employ the Drucker-Prager yield criterion as its smoothness
facilitates numerical calculations, though a brief comparison with the results
of a Mohr-Coulomb material is provided in Sec. 6.2. To formulate the Drucker-
Prager failure rule we define the pressure p

p = −1

3
tr σ, (35)

where ‘tr’ denotes the trace of the tensor, and the deviatoric stress s

s = σ + p1. (36)

The Drucker-Prager yield condition can then be written as

|s|2 ≤ k2p2, (37)
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where |s| indicates the magnitude of the deviatoric stress as given by

|s|2 = sijsij,

applying the summation convention, and

k =
2
√

6 sinφF
3− sinφF

, (38)

defined so that the Drucker-Prager yield surface is the outer envelope of the
Mohr-Coulomb yield surface corresponding to the same friction angle φF . As
the friction angle lies between 0o and 90o, 0 > k >

√
6. Finally, in terms of

the three principal stresses σi, the definition above for |s| may be put into the
illuminating form

|s|2 =
1

3

[
(σ2 − σ3)

2 + (σ3 − σ1)
2 + (σ1 − σ2)

2
]

=
2

3

(
τ 2
1 + τ 2

2 + τ 2
3

)
, (39)

where τi = (σj − σk)/2, (i 6= j 6= k) are the principal shear stresses at a
point. Thus, |s| may be thought of as a measure of the “total” local shear
stress. Thus, the Drucker-Prager yield criterion (37), along with (38), puts a
limit on the allowable local shear stresses in terms of the local pressure and
the internal friction angle. This interpretation will be found useful when we
explore the yielding modes of tidally-locked satellites later.

4 Example: Satellites of oblate primaries

We now commence to explore the equilibrium landscape of rubble-pile satel-
lites. So far we have at most assumed that the tidally-locked satellite follows
a circular path around an ellipsoidal primary. For clarity, we will now restrict
ourselves to the geometry shown in Fig. 3, viz., an oblate primary with the
triaxial-ellipsoidal satellite’s orbit lying in the primary’s equatorial plane. Re-
call that for a tidally-locked configuration to be stable, the satellite’s long-axis
a1 must point towards the primary. This configuration is of immediate impor-
tance for planetary satellites.

The average value of the stresses evaluated in S within a tidally-locked el-
lipsoidal satellite on a circular orbit is obtained from (26) along with (27),
(30), (15) (or (13), or (14)), (31) and (32). In addition, we require expressions
for the tensors B (0) and B(1) in the satellite’s principal coordinate system.
These two tensors are obtained according to the prescription outlined in the
last paragraph of Sec. 2.3, and will be apparent in the following section. Note
that because we have used the approximate expression (32) for W3 rather than

(28), we will not require B(2). The stresses finally obtained, along with the yield
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Fig. 3. An ellipsoidal satellite of an oblate primary. The axes ê′i of P and êi of S
coincide. The orbital plane is normal to ê3. The unit vector êR, parallel to ê1, locates
the satellite with respect to the primary’s center.

criterion (37), will help generate bounds that delineate a rubble-pile satellite’s
equilibrium landscape as a function of its shape, the primary’s shape, their
relative density, and the orbit’s size. Recall that in a tidally-locked scenario,
the latter is linked to the satellite’s spin via (32).

In Fig. 3, the primary is an oblate ellipsoid, possibly a planet, with a′1 = a′2 >
a′3, and the ellipsoidal satellite (a1 > a2 > a3) is located a distance R along the
primary’s ê′1 axis, with its long-axis a1 pointing towards the primary. Both the
primary’s and the satellite’s third axes are taken to be normal to the orbital
plane. With these choices, Fig. 3 shows that ê′i and êi are the same, and the
rotation tensor T relating P and S is simply an identity tensor, i.e.,

T = 1 . (40)

We also see that êR = ê1. We are now in a position to obtain B (0) and B(1).

4.1 B (0) and B(1)

The components B′i for an oblate primary, i.e., a′1 = a′2 > a′3, are found after
integrating (18) to be

B′1 =B′2 =
a′21 a

′
3

p′32

π
2
− p′2

√
a′23 + λ′

a′21 + λ′
− tan−1

√
a′23 + λ′

p′2

 (41a)

and B′3 =−2a′21 a
′
3

p′32

π
2
− p′2

1√
a′23 + λ′

− tan−1

√
a′23 + λ′

p′2

 , (41b)
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where p′2 =
√
a′21 − a′23 , and the ellipsoidal coordinate λ′ is given by (19). Note

that upon dividing by a′31 we can express (41) in terms of the scaled orbital
radius q (= R/a′1) and the primary’s axes ratio β′ (= a′3/a

′
1). Employing (40)

with the tensor coordinate transformation formulae (A.11b), we obtain

Bij = B′iδij (no sum), (42)

i.e., because P and S are identical, so too are B ’s components in them.

We next solve (19) approximately to find λ′ at a point X = x +Rê1 within the
satellite. To this end we note from Fig. 3 (or, equivalently (40) and (A.11a))
that xi = x′i. To order x2

i /R
2, we obtain

λ′ = λ′(x) ≈ λ′0 +R2

{
2
x1

R
+

1

R2

(
x2

1 + x2
2 +

R2

R2 − p′22
x2

3

)}
, (43)

where
λ′0 = R2 − a′21 (44)

is the value of λ′ at the satellite’s center, i.e., at x = 0. We substitute the
above approximation into the formulae for Bij obtained from (42) and (41),
and expand up to O(x2

i /R
2) to find an expression similar to (21). This yields

the components of the tensors B (0), B(1) and B(2) in S, the satellite’s coordinate
system. In particular, B (0) is diagonal with B

(0)
ii = B′i|λ′=λ′

0
, so that (41) yields

B
(0)
11 = B

(0)
22 =

β′

(1− β′2)3/2

π
2
−
q′o

√
(1− β′2)
q′2

− tan−1 q′o√
1− β′2

 (45a)

≈ 2

3

β′

q′3
+

1

5

β′(1− β′2)
q′5

+
3

28

β′(1− β′2)2

q′7
...

and B
(0)
33 = − 2β′

(1− β′2)3/2

(
π

2
−
√

1− β′2
q′o

− tan−1 q′o√
1− β′2

)
, (45b)

≈ 2

3

β′

q′3
+

3

5

β′(1− β′2)
q′5

+
15

28

β′(1− β′2)2

q′7
...

where we have chosen to express quantities in terms of the primary’s axes ratio
β′, the satellite’s scaled orbital radius q′, and q′2o = q′2 + β′2− 1. Similarly, the
only non-zero components of B(1) are

B
(1)
111 = B

(1)
221 = − 2β′

q′2q′o
≈ −2

β′

q′3
− β′(1− β′2)

q′5
− 3

4

β′(1− β′)2

q′7
+ ... (46a)

and B
(1)
331 = −2β′

q′3o
≈ −2

β′

q′3
− 3

β′(1− β′2)
q′5

− 15

4

β′(1− β′)2

q′7
+ ... . (46b)

In the above, we have provided expansions in orders of 1/q′ to illustrate that
the oblateness β′ enters linearly at the first order. For β′ ≈ 1 and/or large
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enough q′’s, as is the case with most known planetary satellite systems, re-
taining only the first terms is found sufficient (see Sec. 5). This simplification

prompts the introduction of an equivalent distance q′ = q′ (η/β′)1/3 that, in
the leading-order approximation, absorbs the effect of the density ratio η and
the primary’s axes ratio β′. However, in Sec. 4.3, we will investigate the equi-
librium landscape while employing the exact expressions for B

(0)
ij and B

(1)
ijk

provided above. In this case, q′ does not capture the effects of η and β′ in
their entirety, but because it does do so to first order, we will express results
in terms of q′ rather than q′.

4.2 The spin W3

With êR = ê1, from (32), we obtain

W 2
3 =

1

η
B

(0)
11 , (47)

with B
(0)
11 , given by (45a), capturing the effect of the primary’s asphericity.

4.3 Equilibrium landscape

We proceed to explore the equilibrium of an oblate primary’s rubble-pile satel-
lite, as shown in Fig. 3. To this end, we utilize (26) to express the average
stresses within the satellite in its principal axes system êi. We find

σ1 = −
{
−W 2

3 + A1 +
1

η

(
B

(0)
11 +B

(1)
111

)}
(αβ)−2/3,

σ2 = −α2

(
−W 2

3 + A2 +
1

η
B

(0)
11

)
(αβ)−2/3

and σ3 = −β2

(
A3 +

1

η
B

(0)
33

)
(αβ)−2/3,

where η = ρ/ρ′ is the density ratio, α and β the satellite’s axes ratios, and the
expressions for Ai are given by appropriate formulae in Sec. 2.2, while those
of B

(0)
ij and B

(1)
ijk by (45) and (46), respectively. The primary’s oblateness β′

and the size of the satellite’s orbit q′ (or, equivalently, q′) affect the stresses

through the terms B
(0)
11 , B

(0)
33 and B

(1)
111. On substituting for W3 from (47), the
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above expressions simplify further to become

σ1 = −
(
A1 +

1

η
B

(1)
111

)
(αβ)−2/3, (49a)

σ2 = −α2A2(αβ)−2/3 (49b)

and σ3 = −β2

(
A3 +

1

η
B

(0)
33

)
(αβ)−2/3. (49c)

The stresses above must satisfy the Drucker-Prager yield criterion (37) in order
for the satellite to exist in equilibrium. At equilibrium, equality holds in (37),
thereby providing a relationship between the satellite’s axes ratios α and β, its
internal friction angle φF , the equivalent orbit size q′, the primary’s oblateness
β′, and the density ratio η. The satellite’s equilibrium is thus governed by
several variables. The aim is to identify the limits placed on the satellite’s
orbital radius q′ by the remaining five parameters φF , α, β, β

′ and η. This
is a high-dimensional and complicated relationship, and we will explore it
graphically by taking appropriate two-dimensional sections.

We first fix the primary’s oblateness β′ at 0.8 and the density ratio η to 0.5. The
satellite is thus half as dense as the primary. With these choices, q′ ≈ 1.17 q′.
The critical equivalent orbital radius q′ is now regulated only by the satellite’s
shape in terms of its axes ratios α and β, and the internal friction angle φF .
At any given φF , the set of q′, α and β that ensure the satellite’s equilibrium,
i.e., produce (average) stresses that do not violate the yield criterion, define
a three-dimensional region in α − β − q′ space. Different φF yield different
regions. For each friction angle, the critical surfaces delineating the associated
region, provide us with limits on q′ given the satellites α and β. Conversely,
knowing the orbit’s size q′ constrains the satellite’s α and β. The critical sur-
faces themselves are obtained by assuming equality in the yield criterion (37).
We probe this three-dimensional region via planes obtained by either fixing α,
or relating α to β. Thus, each such two-dimensional section, henceforth called
an α-section, corresponds to a class of self-similar ellipsoidal satellites. Five
such planar sections corresponding to α = 0.5 and 0.75, and to oblate (α = 1),
prolate (α = β) and average-triaxial (α = (1 + β)/2) ellipsoids are shown in
Figs. 4 and 5. We discuss them next. We reiterate that while exploring the
α− β − q′ space, β′ = 0.8 and η = 0.5.

In the α-sections of Figs. 4 and 5, the critical surfaces corresponding to a
friction angle φF now appear as curves. On these curves, q′ is related only
to β, and this relationship may be obtained from the yield criterion (37)
at equality. These curves help define regions in β − q′ space within which a
satellite can survive as a rubble pile, provided its internal friction is at least
as great as that due to the defining curve’s associated φF . Thus, for example,
a satellite with α = 0.5 and a friction value of φF = 20o may only exist
in equilibrium within the shaded region of Fig. 4(a). We also see that the
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Fig. 4. The equilibrium landscape in β − q′ space as viewed on the sections α = 0.5
and 0.75. The number next to a critical curve is the associated friction angle φF .
The primary’s oblateness β′ = 0.8 and the density ratio η = 2. The axis ratio β’s
upper limit is set by the inequality β 6 α. The Darwin ellipsoid at φF = 0o is
indicated by a ‘+’ symbol.

equilibrium region for any φF encloses those of all smaller friction angles. This
simply reflects that increasing internal friction allows the body to withstand
greater shear stresses. An important consequence of this is that constraints
reflected by equilibrium landscapes such as Figs. 4 and 5 impose necessary,
but not sufficient, requirements on the satellite to persist in equilibrium. This,
for example, means that any satellite with given physical and orbital data will
require an internal friction at least as great as the φF corresponding to the
critical curve that passes through its location in β − q′ space.

In both the α-sections shown in Fig. 4, we see that the allowed regions become
increasingly smaller as the friction angle decreases, reducing ultimately to
a point when φF becomes zero. This is indicated by a ‘+’ symbol. Recall
that φF = 0o corresponds to inviscid fluids, so that this point is, in fact, the
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(b) Prolate satellite with α = β
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(c) Triaxial satellites with α = (1 + β)/2

Fig. 5. Continued from Fig. 4. The equilibrium landscape in β−q′ space as viewed on
sections corresponding to oblate, prolate and average-triaxial-ellipsoidal satellites.
For these shapes, there is no solution at φF = 0o. See also Fig. 4’s caption.
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intersection of the first Darwin sequence of ellipsoids (Chandraskhar 1969)
with the planes α = 0.5 or α = 0.75. In contrast, note from Fig. 5 that
oblate, prolate, or average-triaxial (α = (1+β)/2), inviscid tidally-locked, fluid
ellipsoids do not exist. To be completely precise, the Darwin sequence obtained
here is for a primary whose oblateness β′ is taken fixed and not necessarily
related to any spin that the primary may itself have. In the Darwin problem,
as considered by Chandrasekhar (1969), the primary was a fluid Maclaurin
spheroid. But, because the focus here is on the satellite’s equilibrium, we
will not belabor this distinction, and instead label the solution obtained for
φF = 0o, when it exists, as a Darwin ellipsoid.

For the α-sections displayed in Fig. 4, the equilibrium regions are closed at
low friction angles. This is not the case at higher φF ’s, or for any friction value
for the oblate/prolate/average-triaxial shapes considered in Fig. 5. Typically,
for any φF , at a fixed axes ratio β, there is both a lower and an upper limit to
the size of a rubble-pile satellite’s orbit. Comparing Figs. 4(a) - 5(c), we also
see that for any φF , the β-range over which the upper limit exists, reduces
with increasing α; the equilibrium regions for the oblate case in Fig. 5(a) have
almost no upper bounds. Physically, the lower bound corresponds to failure
driven by increased tidal and centrifugal stresses. Closer to the primary, both
these forces increase due to stronger tidal interaction with the primary and a
higher rotation rate. Thus, we identify this failure mode as tidal disruption.
This mode has close analogy with the upper rotational disruption curve that
occurs in the equilibrium landscape of rubble piles in pure spin (Sharma et
al. 2008). The upper bound, on the other hand, is associated with the body’s
inability to withstand its own gravity. We term this as gravitational collapse.
At distances far away from the primary, tidal and centrifugal forces reduce.
The latter, because the satellite is assumed to be spin-locked. In such condi-
tions, internal gravity comes to dominate, and may cause yielding. This upper
bound should be compared with the lower critical curve for spinning rubble
piles (Sharma et al. 2008).

Equilibrium regions such as shown in Figs. 4 and 5 are useful to put bounds
on the satellite’s physical parameters such as shape or internal structure. As a
first illustration, consider a satellite with α = 0.75 and β = 0.4 moving on an
orbit with q′ = 2.57 about an oblate primary with β′ = 0.8 and η = 0.5. Such
an object may be located on the section of Fig. 4(b), as shown by the filled
circle. We see that this body lies outside the φF = 10o curve but within the
region where rubble piles with an internal friction of φF = 20o may survive.
This allows us to conclude that the satellite in question must be composed
of a material with a friction angle greater than 10o. This could be a rubble
pile, as such aggregates typically have φF ≈ 30o (Nedderman 1992, p. 25,
Table 3.1). Conversely, if a body’s orbit were known, and we were confident
about the object being a rubble pile, we could employ sections such as those
in Figs. 4 and 5 to constrain its shape. For example, assuming that φF = 30o
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is appropriate for granular aggregates, we may conclude from Fig. 5(b) that
a tidally-locked rubble pile at a distance q′ = 1.71 from an oblate primary
with β′ = 0.8 and η = 0.5, can be a prolate ellipsoid with α = β > 0.69.
This is indicated by an open circle in Fig. 5(b). Any smaller β would place
the satellite outside the φF = 30o curve, contradicting our assumption about
the maximum shear strength of granular aggregates. Finally, if one of the axes
ratios were known, a similar analysis may be carried out to constrain the other
ratio.

Next, we explore how the satellite’s equilibrium landscape is affected by the
primary’s oblateness β′. To this end, we restrict the satellite to be either a
prolate (α = β) or an average-triaxial (α = (1+β)/2) ellipsoid, and also fix the
density ratio η at 0.5. Figure 6 plots the critical curves corresponding to several
friction angles for β′ equalling 1, 0.8, 0.6 and 0.4. The value β′ = 1 corresponds
to a spherical primary, in which case the first Darwin problem reduces to
the Roche problem (see Sec. 5). The arrows in Fig. 6 indicate directions of
increasing β′. It is seen that the equilibrium region in β − q′ space remains
essentially unchanged, especially at low friction angles. This is due to our
employing the equivalent distance q′ = q′ (η/β′)1/3, which to first order absorbs
the effects of both density ratio η and the primary’s oblateness β′. That the
critical curves do not coincide, but in fact move downwards as the primary
becomes “flatter”, i.e., β′ lessens, is due to our employing exact formulae for
B

(0)
ij and B

(1)
ijk; see (45) and (46). Because q′ ∝ R/a′1β

′1/3 ∝ R (ρ′/m′)1/3, we
conclude that, in physical space, the critical distance beyond which a satellite
with fixed axes ratio β may exist increases as the primary flattens, as long as
m′ and ρ′ remain fixed. This may be traced directly to the fact that, for the
same mass and density, a flatter primary’s in-plane tidal influence persists for
greater distances.

The effect of β′ will have important consequences for satellite systems with
significant ring mass, or satellites of flattened asteroids/planets. Typically,
though, asteroids tend to be prolate or triaxial rather than oblate, in which
case the calculations above need to reworked for prolate/triaxial primaries, in
a manner similar to that of an oblate central body.

Finally, we investigate the impact of changing the density ratio η = ρ/ρ′. This
time, we consider only a prolate satellite. The results are shown in Fig. 7(a).
The density ratio varies as 0.5, 1, 1.5 and 2, i.e., from a situation where the
satellite is half as dense as the primary, to one where it is twice as dense.
Both ends of this spectrum are of physical interest. The primary’s oblateness
β′ was fixed at 0.8, and four friction angles for each η were considered. The
arrows in Fig. 7(a) indicate directions of increasing η. We have truncated crit-
ical curves that fell below q′ = 1.1. We again observe that in β − q′ space,
the allowed equilibrium region remains almost unaltered. This, as mentioned
earlier, is a reflection of the fact that q′ absorbs the leading order effect of η
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Fig. 6. Variation of the equilibrium landscape with the primary’s oblateness β′. The
equilibrium landscapes are for sections corresponding to prolate and average-triaxi-
al-ellipsoidal satellites. Four values of β′ are explored: 0.4, 0.6 0.8 and 1. The arrows
indicate increasing β′. Several friction angles φF are investigated as indicated.
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variations. In physical space, because q′ ∝ q′/η1/3, the equilibrium region for
any φF moves further away from the primary as η decreases, as is borne out
by Fig. 7(b) where we plot the critical curves in β− q′ space. This behavior is
understood easily by recognizing that lower η corresponds to greater primary
mass, or, correspondingly lower satellite density. While the former circum-
stance increases the disruptive tidal effect of the primary, the latter reduces
the self-gravitational forces that hold the rubble-pile satellite together. Thus,
to persist in equilibrium, a granular aggregate has to move further away from
a denser primary. Conversely, a denser satellite, with greater self-gravity, can
come closer to its primary.

4.4 Discussion

Above, we obtained critical bounds on the equivalent orbital radius q′ of a
tidally-locked rubble-pile ellipsoidal satellite as it moves on a circular path
about an oblate primary. Equivalently, the satellite’s orbit and internal strength
constrained its shape. Employing stresses from (49) in conjunction with the
Drucker-Prager yield criterion (37), we generated limits for q′ as a function
of the satellite’s internal friction φF , its shape α and β, the primary’s oblate-
ness β′, and the density ratio η of the primary to the satellite. We explored
this high-dimensional dependency via appropriate two-dimensional planes (α-
sections) that correspond to self-similar ellipsoidal shapes of the satellite. After
fixing β′ and η, on any α-section, the friction angle φF identifies a region in
β − q′ space within which a rubble-pile with at least that much φF may exist
in equilibrium. This region, except for φF = 90o, had both lower and upper
limits. At φF = 90o, the upper limit moved to infinity. Both these bounds
were understood in terms of the interplay between the debilitating tidal and
centrifugal stresses and the fortifying self-gravity, and tracing the source of
high shear stresses at failure. Analogies were drawn with previous equilibrium
analysis for a rubble pile in pure spin (Sharma et al. 2008). We also saw how
these equilibrium landscapes help constrain an object’s physical and orbital
parameters. Finally, the effect of varying the primary’s oblateness and chang-
ing the density ratio was also noted. Typically, with decreasing β′ and/or η,
the allowed equilibrium region moves away from the primary. For the same
mass, a more flattened planet, i.e., with lower β′, has greater disruptive tidal
influence. Similarly, low-density objects tend to disrupt more easily, as tidal
effects then dominate the self-gravity holding the satellite together.

As mentioned in the Introduction, volume-averaging, in the case of cohesion-
less rubble piles in pure spin (Sharma et al. 2008), precisely matched the
exact results of Holsapple (2001) that were in turn based on the method of
limit analysis (Chen and Han 1988). Here too, we predict that the constraints
on q′ obtained above by volume-averaging will be the same as those from limit
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analysis. Indeed, this is the case for the Roche problem discussed in Sec. 5.
However, caution must be exercised, because as mentioned in Sharma et al.
(2008), there is no known fundamental reason for this coincidence between
a volume-averaged approach and limit analysis. It is also unclear when and
under what conditions will the outcomes of these two methods agree. In fact,
if the granular aggregate had a small amount of cohesion, the conclusions of
limit analysis and volume-averaging will differ. However, recently Holsapple
(2008) has shown that yield predictions predicated on average stresses are an
upper bound to the exact results of limit analysis for rigid-plastic materials,
i.e., if a rigid-plastic object yields on average, it will definitely yield.

Finally, because no satellite or primary is a perfect ellipsoid, in order profitably
to utilize the constraints obtained above, it is necessary to note the effect of
surface irregularities. Deviations in the shape of both these bodies from their
best-fit ellipsoids will introduce perturbations in the stress field obtained by
otherwise approximating these bodies as ellipsoids. If the unevenness is on a
scale larger than the constitutive particle size of the granular aggregate, then
the perturbation in the stress field will locally violate the yield criterion. Thus,
for a rubble-pile satellite modeled as above to survive, it is necessary that the
model problem employing nominal 1 ellipsoids for both the satellite and the
primary satisfy the conditions for equilibrium obtained above. In other words,
for a satellite to exist as a rubble pile with some internal friction angle φF ,
a viable necessary condition is for its associated ellipsoidal shapes to satisfy
the bounds associated with an appropriately smoothened primary and that
φF (and that ellipsoidal shape).

We now proceed to two applications of the theory developed above. We first
specialize to the important case of a spherical primary to recover a gener-
alization appropriate for granular aggregates of the classical Roche problem,
and employ it to investigate the two moons of Mars. In the process, we will
also make contact with previous work in this area, and also results due to the
alternate Mohr-Coulomb yield criterion. Satisfactory results in this simpler
case will engender confidence in our more general development, which is then
employed to investigate suspected rubble-pile satellites of the giant planets,
explicitly accounting for the primary’s flattening.

5 Application: The Roche problem

In the special case when the primary is a sphere, we recover the classical Roche
problem adapted to solid bodies. More precisely, we obtain limits on the orbits
that a rubble-pile satellite of a spherical planet may occupy depending on its

1 Obtained by smoothing irregularities over several particle lengths
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internal friction. For a spherical planet, we set β′ = 1 in (45) and (46) and

substitute for B
(1)
111 and B

(0)
33 in (49) to obtain the average stresses as

σ1 = −
(
A1 −

2

q′3

)
(αβ)−2/3, (50a)

σ2 = −α2A2(αβ)−2/3 (50b)

and σ3 = −β2

(
A3 +

2

3q′3

)
(αβ)−2/3, (50c)

where now q′ = q′η1/3 is the equivalent distance, and we recall that the ex-
pressions for Ai are given in Sec. 2.2. Employing the above stresses with the
Drucker-Prager yield criterion as before, we obtain regions in shape (β) –
equivalent distance (q′) space wherein a tidally-locked rubble-pile satellite of
a spherical planet may exist in equilibrium.

Figure 8 displays the results for an oblate satellite, wherein α = 1 andA1 = A2.
We see that a fluid oblate satellite cannot exist, and this is consistent with
Roche’s result (see Chandrasekhar 1969). As the friction angle increases, the
region within which a satellite with a given axes ratio β may exist as a rubble
pile increases. We note that even when consisting of a material with infinite
friction, i.e., φF = 90o, an oblate satellite will fail if it gets close enough to
the planet. Note that when the friction angle is 90o, an object can only fail in
tension. This case will be revisited in Sec. 5.2.

At any given axes ratio β and friction angle φF , there is typically only a lower
limit to how close the satellite may come. Exceptions occur over a small β-
range at lower friction angles, e.g., for 0.58 6 β 6 0.62 at φF = 10o. As
before, falling below the lower value for q′ corresponds to yielding due to high
shear stresses from increased tidal interaction. Crossing the upper limit, when
it exists, indicates an inability of the object to sustain its self-gravitational
stresses.

Equilibrium landscapes for other combinations of axes ratios α and β may be
similarly constructed and explored. We employ one such selection to investi-
gate the moons of Mars next.

5.1 Mars

The red planet Mars is nearly spherical (β′ = 0.99) and has two satellites,
Phobos and Deimos. There are suggestions, based on their physical proper-
ties such as density, albedo, color and reflectivity that are similar to C-type
asteroids, that both these moons are captured asteroids. Burns (1992), how-
ever, notes that the calculated histories of orbital evolution of these moons
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Fig. 8. The equilibrium landscape of a spherical primary’s rubble-pile oblate satel-
lite. Curves correspond to various friction angles φF , as shown by adjacent numbers.

provides contradictory evidence to the effect that these moons in fact origi-
nated in circum-Martian orbit. Nevertheless, for the moment, we will proceed
with the assumption that the low density and high porosity of these objects
reflects a granular interior. Table 1 lists orbital and physical parameters for
these two Martian satellites obtained from NASA’s Solar System Dynamics
website (http://ssd.jpl.nasa.gov) and Duxbury and Callahan (1989).

Table 1
Satellites of Mars. For Mars, ρ′ = 3934 kg m−3 and β′ ≈ 1. The satellite’s axes
ratios α and β, along with its scaled and equivalent distances from Mars, q′ and q′

respectively, non-dimensional spin rate W3 and orbital period P (in days) are given.
W3 is obtained from q′ after assuming the satellite to be tidally locked; see Eq. (47).

Satellite α β q′ η = ρ/ρ′ q′ = q′η1/3 W3 P (d)

Phobos 0.83 0.70 2.76 0.48 2.16 0.257 0.319
Deimos 0.83 0.72 6.91 0.38 4.98 0.073 1.262

Both Phobos and Deimos have roughly the same axes ratio α, so we may locate
these two Martian satellites on the same α = 0.83 α-section after setting β′ = 1
for Mars. Figure 9 shows the results in β − q′ space.

We see from Fig. 9 that Deimos lies just outside the φF = 5o critical curve,
while Phobos lies very nearly on the φF = 10o equilibrium boundary. Thus,
both satellites are well within the φF = 30o equilibrium bounds appropriate
for most granular aggregates. However, as Phobos moves closer to Mars at the
rate of about 4 meters per century (see, e.g., Shor 1975), in about 2000 years
its q′ will reduce to 1.54. This corresponds to nearly two Martian radii. At this
stage, a granular Phobos will cross the φF = 40o equilibrium curve and may
begin to disrupt. It is interesting to note that Dobrovolskis (1982), modeling
Phobos as a linear-elastic solid with a yield criterion analogous to the one
employed here, predicts a similar critical distance from Mars for Phobos to
begin to shed material. We discuss Dobrovolskis’ work further in the next
section. We also note that the disruption time scale obtained above is a rough
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estimate; the actual time may well be shorter as Phobos accelerates as it
moves closer to Mars. Finally, compared to Phobos, Deimos is much more
conveniently placed to survive as a rubble pile.

We next compare the results for the Roche problem with answers due to a
different choice of the yield criterion, and also make contact with previous
research.

5.2 Alternate yield criteria and previous work

In Sec. 3 we discussed the Mohr-Coulomb failure law as an alternative to the
Drucker-Prager yield criterion. Because both these yield criteria are exten-
sively employed in geophysical research (Chen and Han 1988), we provide a
quick comparison between their predictions. In Fig. 10 we juxtapose the equi-
librium landscape for a tidally-locked prolate rubble pile in orbit about a spher-
ical planet as obtained from both the Mohr-Coulomb and the Drucker-Prager
yield criteria. We see that the equilibrium landscape due to the Mohr-Coulomb
failure law is contained within that of the Drucker-Prager yield criterion. This
feature was also noted for the case of a granular aggregate in pure spin by
Sharma et al. (2008). A consequence is that objects that are suspected not to
be rubble piles when tested with a Mohr-Coulomb criterion, may be perfectly
acceptable when examined as Drucker-Prager materials. As mentioned earlier,
Sharma et al. (2006) have noted that numerical simulations suggest that the
Drucker-Prager yield criterion may be better suited for granular aggregates.
Hence, we preferred the Drucker-Prager criterion in this work.

The Mohr-Coulomb yield criterion provides an important point of contact
with the earlier work of Davidsson (2001). He found the Roche limit for solid
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axi-symmetric objects in orbit about a spherical primary by assuming first
a failure plane within the satellite. Parts of the object on either side of this
failure plane were treated as separate entities that interact across this plane.
Stresses were calculated by dividing the net interaction force by the plane’s
area. Davidsson (2001) assumed that the object failed when the stress nor-
mal to the failure plane surpassed the constituent material’s tensile strength.
Amongst all possible planes, the critical failure plane was that plane across
which the interaction stress first became zero. This method of stress analysis
is reminiscent of basic engineering mechanics, and is often useful for obtain-
ing first estimates. It neglects local variations of stress, and instead works
with stress averages over larger cross-sections. In the case of prolate ellipsoids,
Davidsson (2001) found the critical failure plane to be the symmetry plane
perpendicular to the long axis that itself points towards the primary. Assum-
ing that the satellite has no tensile strength, Davdisson’s (2001) results may
be put into the following form:

q′D =
(

4π

ε

)1/3

,
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where q′D is the closest a satellite may to a planet before failing, and

ε =
4πf

(f 2 − 1)3/2
ln
(
f +

√
f 2 − 1

)
− 4π

f 2 − 1
,

with f = 1/β. Thus, the above generates the equilibrium curve q′D(β), and all
objects that have q′ > q′D will, according to Davidsson (2001), exist in equilib-
rium. For comparison, in Fig. 11 we plot Davidsson’s (2001) results along with
ours for a material with φF = 90o employing both the Mohr-Coulomb and the
Drucker-Prager yield criteria. It is seen that Davidsson’s (2001) results ex-
actly match ours for a Mohr-Coulomb material with an internal friction angle
of φF = 90o. Recall that φF = 90o corresponds to infinite frictional resistance,
i.e., the body can support any amount of shear stress and will fail only when
any one of the principal averaged stresses first becomes tensile. This match
thus offers a more rigorous support of Davidsson’s (2001) results: Davidsson’s
(2001) analysis precisely corresponds to seeking yielding of a Mohr-Coulomb
material with infinite shear resistance in a volume-averaged sense. Recalling
that volume-averaging gives exactly the same results as limit analysis for a
cohesion-less material puts the work of Davidsson (2001) on a very firm foun-
dation. It should be noted that coincidence with Davidsson (2001) is, however,
not reason enough to prefer one yield criterion over the other when investi-
gating granular aggregates. We are interested in employing the yield criterion
that is best suited for rubble-piles, and as we saw above, Davidsson’s (2001)
analysis is applicable only to solid bodies with no tensile strength.

In the context of Davidsson’s (2001) work, it is important to mention that
several other researchers have investigated the Roche limit for coherent solid
bodies. These include Aggarwal and Oberbeck (1974) and Dobrovolskis (1982,
1990). In these, the stresses within the satellite were derived after modeling
the satellite as a linear-elastic body. Aggarwal and Oberbeck (1974) assumed
an isotropic, incompressible, homogeneous and spherical satellite. Dobrovol-
skis (1982) introduced a novel procedure to analyze the linear-elastic response
of triaxial objects, and applied his results to investigate the internal stresses
of Phobos; see also Sec. 5.1. Retaining the satellite’s triaxiality, Dobrovolskis
(1990) extended his previous calculation to also allow for compressibility, but
ultimately specialized his results to a spherical satellite. A thorough overview
and comparison is available in Davidsson (1999). We remind the reader that
the present work focuses on rubble-piles, so that a linear-elastic analysis will
not be appropriate. Only in the limit of infinite internal friction (perfect in-
terlocking), the case considered above, does a rubble pile respond like – in
the sense of the above-cited works – a coherent solid object with zero tensile
strength. We note that Dobrovolskis (1982, 1990) himself acknowledges the
different behavior of granular geophysical materials when he introduces for
them a general criterion due to Navier (Dobrovolskis 1982, p. 143, Eq. 28; Do-
brovolskis 1990, p. 28, Eq. 6), similar in form to the Mohr-Coulomb criterion.
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Fig. 11. Equilibrium curve for a prolate satellite due to Davidsson (2001), compared
with those due to the Mohr-Coulomb and Drucker-Prager criteria at a friction angle
φF = 90o.

However, the stresses he employs are still obtained from a linear-elastic analy-
sis. In passing, we note that it is possible, within the present volume-averaging
framework, to consider a linear-elastic satellite, thereby making explicit con-
tact with the results of Aggarwal and Oberbeck (1974) and Dobrovolskis (1982,
1990).

A Roche limit suitable for rubble piles was first obtained by Sharma et al.
(2005a) to investigate the possible granular nature of Jupiter’s satellite Amalt-
hea. Sharma et al. (2006) further used this Roche limit to explain results ob-
tained from their own tidal disruption calculations. To this end, dynamical
effects of tidal torques due to misaligned satellites were retained. Recall, that
the tidal torques and the accompanying angular acceleration vanish whenever
the satellite’s principal axis points towards the primary. Burns et al. (2007)
provided a unified treatment to both these dynamical aspects of the Roche
problem. Later, Holsapple and Michel (2006, 2008) extensively studied the
Roche problem for solid satellites about spherical primaries. They employed a
static version of Signorini’s theory of stress means (Truesdell and Toupin 1960,
p. 574) that at the lowest order of approximation, in statics coincides with the
approach employed here. Consequently, for the Roche problem our results and
those of Holsapple and Michel (2006, 2008) match. A more detailed compar-
ison between the two techniques is given by Sharma et al. (2008). Holsapple
and Michel (2006, 2008) investigated several possible tidally-locked orienta-
tions of the satellite with respect to the primary. Internal cohesion was also
considered. However, because the satellite was always aligned with a symme-
try axis pointing to the primary, tidal torques played no role. Theirs was a
static calculation. In fact, except for Sharma et al. (2006), all calculations ne-
glect the effect of tidal torques and angular acceleration on the Roche limit,
preferring to align the satellite suitably so as to negate tidal torques. A satel-
lite’s rotation rate is, however, seldom constant, changing as a result of tidal
torques, elliptic and/or inclined orbits, etc.; an analysis of the consequences
of this misalignment may well be meaningful. This may accomplished in a
straightforward manner by a dynamical version of the present calculation.
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6 Application: The giant planets

The inner satellites of the giant planets Neptune, Uranus, Saturn and Jupiter
are widely suspected to have rubble interiors both due to their relatively
low densities, and their suspected accretionary origins; see, e.g., Burns et al.
(2004), Porco et al. (2006), or Banfield and Murray (1992). Tables 2 - 5 list
relevant data for these satellites. Employing the equilibrium landscape of Sec.
4 for rubble-pile satellites of oblate primaries, we now proceed to test whether
these objects can exist as granular aggregates held together by self-gravity
alone.

In Sec. 4, we saw that the equilibrium of a tidally-locked rubble-pile satellite
is governed by its shape (α and β), the planet’s oblateness β′, the distance
q′ between them and the density ratio η = ρ/ρ′. Thus, even within the same
planetary satellite system, because the ratio η may be different, several plots
will be required. This may be avoided by retaining only the first term in
the expansion given in (45) and (46) for the coefficients B

(0)
ij and B

(1)
ijk, and

then absorbing both η and β′ into q′ to define the equivalent distance q′ =
q′(η/β′)1/3. The error introduced by this truncation will be of the order of
(1 − β′2)/q′2, a small quantity; this is about 4% for Pan, Saturn’s innermost
satellite. Indeed, with this approximation we find the stresses from (49) to be

σ1 = −
(
A1 −

2

q′3

)
(αβ)−2/3, (51a)

σ2 = −α2A2(αβ)−2/3 (51b)

and σ3 = −β2

(
A3 +

2

3q′3

)
(αβ)−2/3, (51c)

where, again, the Ai depend on the satellite’s shape (see Sec. 2.2), and the
stresses must not violate the yield criterion (37). Because both β′ and η are
absent from the above equations, the equilibrium landscape of all tidally-
locked satellites may be analyzed on the basis of only their shape (α and β),
and their equivalent distance q′ = q′(η/β′)(1/3).

6.1 Satellite data

Neptune

Of Neptune’s thirteen satellites, the six inner ones, Naiad, Thalassa, Despina,
Galatea, Larissa and Proteus are believed to have accreted from the de-
bris resulting from Triton’s capture by Neptune (Banfield and Murray 1992).
Except for Galatea, whose density was estimated by Porco (1991) to be a
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low 750 kg m−3, little is known about the density of the remaining satel-
lites. We shall assume their densities to be 1200 kg m−3 – the average of
Galatea’s and Neptune’s densities. The shapes of these satellites were taken
from Karkoschka (2003), while their orbital specifications are from Jacobson
and Owen (2004). Because of large errors in computing the satellite’s semi-
major axes (see Karkoschka 2003, Table 1), the axes ratios α and β are com-
puted only to the first decimal place in Table 2. Neptune itself is an oblate
body with density of 1600 kg m−3 and axes ratio β′ = a′3/a

′
1 = 0.98.

Table 2
Satellites of Neptune. For Neptune, ρ′ = 1600 kg m−3 and β′ = 0.98. Data for
the six innermost moons are displayed. See also Table 1’s caption.

Satellite α β q′ η = ρ/ρ′ q′ = q′ (η/β′)1/3 W3 P (d)

Naiad 0.6 0.5 1.95 0.73 1.95 0.348 0.294
Thalassa 0.9 0.5 2.02 0.73 1.83 0.329 0.311
Despina 0.8 0.7 2.12 0.73 1.92 0.307 0.335
Galatea 0.9 0.7 2.50 0.46 1.94 0.303 0.429
Larissa 0.9 0.8 2.97 0.73 2.69 0.185 0.555

Proteus 0.9 0.9 4.75 0.73 4.31 0.091 1.122

Uranus

Uranus’ satellites number 23. Of these, we consider the possibility of the thir-
teen small inner moons to be rubble piles. This is in concordance with the ob-
servation of Thomas et al. (1989) that the compositions of these small satellites
are similar to those of neighboring ring particles, suggesting an accretionary
origin. Data for these are displayed in Table 3. Karkoschka (2001) provides
information for the shapes of all except Cupid and Mab. However, only a2/a1

is reported, and we assume that β = a3/a1 = a2/a1 = α, i.e., these objects
are proloidal in shape. For Cupid and Mab, Showalter and Lissauer (2006)
estimate their mean radii to be 9 and 12 km, respectively, and also update
Perdita’s size to 13 km. Showalter and Lissauer (2006) provide orbital data for
Cupid, Perdita and Mab, while Jacobson (1998) furnishes q′ for the remaining
moons. As in the case of Neptunian satellites, there are large errors in the
satellite’s computed shape, and this uncertainty (from Karkoschka 2001, Ta-
ble V) is noted for most moons in Table 3 explicitly. There are no available
estimates for the densities of these objects, and we take their densities to be
equal to that of Uranus’ 1270 kg m−3.

Saturn

Saturn has 60 named moons. Of these, we select the fourteen small inner
satellites listed in Table 4 as candidate rubble piles. The satellites are arranged

36



Table 3
Satellites of Uranus. For Uranus, ρ′ = 1270kg m−3 and β′ = 0.977. Data for the
inner thirteen satellites are displayed. We assume all satellites to have α = β and
ρ = ρ′, so that η = 1 and q′ = q′/β′1/3. See also Table 1’s caption.

Satellite α = β q′ q′ = q′/β′1/3 W3 P (d)

Cordelia 0.7± 0.2 1.95 1.97 0.298 0.335
Ophelia 0.7± 0.3 2.10 2.12 0.265 0.376
Bianca 0.7± 0.2 2.31 2.33 0.229 0.435

Cressida 0.8± 0.3 2.42 2.44 0.215 0.464
Desdemona 0.6± 0.2 2.45 2.47 0.211 0.474

Juliet 0.5± 0.1 2.52 2.54 0.202 0.493
Portia 0.8± 0.1 2.59 2.61 0.194 0.513

Rosalind 1 > 0.8 2.74 2.76 0.179 0.558
Cupid 1 2.91 2.93 0.163 0.618

Belinda 0.5± 0.1 2.94 2.96 0.160 0.624
Perdita 1 2.99 3.01 0.156 0.638
Puck 1 > 0.93 3.36 3.39 0.131 0.762
Mab 1 3.82 3.85 0.108 0.923

in order of increasing distance q′ from Saturn. Possible accretionary origins of
these satellites has been explored earlier by Porco et al. (2007). Here we revisit
this possibility in light of the equilibrium theory developed above for rubble-
pile satellites. The best-fit ellipsoidal shapes of all except Janus, Epimetheus,
Anthe and Methone have been provided by Porco et al. (2007). For Janus and
Epimetheus, we take the semi-major axes to be 100, 95 and 76 kms., and 63, 55
and 51 kms., respectively 2 . Anthe and Methone are assumed to be spherical
with mean radii of 1.8 km (Cooper et al. 2008) and 3 km (Porco et al. 2005),
respectively. Densities of only Pan, Atlas, Prometheus, Pandora, Janus and
Epimetheus have been estimated using their Gm values provided by Jacobson
et al. (2008). For the remaining objects we assign arbitrarily a density of 1000
kg m−3. The orbital data of Telesto, Calypso and Helene is given by Porco et
al. (2007), for Anthe by Cooper et al. (2008), and for the remaining satellites
by Jacobson et al. (2008).

6.1.1 Jupiter

Only the four inner moons of the bountiful 63 satellites of Jupiter are sus-
pected accreted granular aggregates on nearly equatorial orbits. In the past,
Richardson et al. (2005) have explored Amalthea’s rubble-pile nature by a n-
body code. The relevant data for these four objects are given in Table 5. The
satellites’ shapes are taken from Thomas et al. (1998). The orbital data for
Amalthea and Thebe are from the recent work of Cooper et al. (2006), while
those for Metis and Adrastea have been given earlier by Burns et al. (2004).
The density of only Amalthea has been estimated at a low 857 ± 99 kg m−3

2 P. C. Thomas, private communication
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Table 4
Satellites of Saturn. For Saturn, ρ′ = 690 kg m−3 and β′ = 0.902. Data for the
fourteen inner satellites are displayed. See also Table 1’s caption.

Satellite α β q′ η = ρ/ρ′ q′ = q′ (η/β′)1/3 W3 P (d)

Pan 0.9 0.6 2.22 0.6 1.93 0.306 0.575
Daphnis 1 0.7 2.26 0.5 1.85 0.325 0.594

Atlas 0.9 0.4 2.28 0.67 2.07 0.276 0.602
Prometheus 0.6 0.5 2.31 0.68 2.11 0.268 0.613

Pandora 0.8 0.6 2.35 0.73 2.19 0.253 0.629
Epimetheus 0.9 0.8 2.51 1.00 2.6 0.195 0.694

Janus 1 0.8 2.51 0.92 2.52 0.204 0.695
Methone 1 1 3.22 1.45 3.77 0.111 1.010

Anthe 1 1 3.28 1.45 3.84 0.109 1.037
Pallene 0.8 0.7 3.52 1.45 4.12 0.097 1.154
Telesto 0.7 0.7 4.89 1.45 5.73 0.060 1.888
Calypso 0.8 0.4 4.89 1.45 5.73 0.060 1.888

Polydeuces 0.8 0.7 6.26 2.17 8.39 0.034 2.737
Helene 1 0.6 6.26 1.45 7.33 0.041 2.737

by Anderson et al. (2005). For the three remaining satellites, we arbitrarily
assign a density of 860 kg m−3 to match Amalthea’s.

Table 5
Satellites of Jupiter. For Jupiter, ρ′ = 1300 kg m−3 and β′ = 0.935. Data for the
four inner moons are displayed. See also Table 1’s caption.

Satellite α β q′ η = ρ/ρ′ q′ = q′ (η/β′)1/3 W3 P (d)

Metis 0.7 0.6 1.79 0.65 1.59 0.412 0.295
Adrastea 0.8 0.7 1.80 0.65 1.59 0.407 0.298
Amalthea 0.6 0.5 2.54 0.65 2.24 0.244 0.498

Thebe 0.8 0.7 3.10 0.65 2.75 0.180 0.675

6.2 Locations

We explore the existence of the above satellites as possible rubble piles by
locating them on appropriate α-sections (see Sec. 4) of the three-dimensional
shape–distance α−β−q′ equilibrium region. Because not all the above moons
are self-similar, several such α-sections will be required. In particular, the
planar sections, α = 1, α = 0.9, α = 0.8, α = 0.7, α = 0.6 and α = β are
found sufficient. This is accomplished in Figs. 12(a) - 14 that we discuss in
the next section. The satellites of Neptune, Saturn and Jupiter are dealt with
simultaneously, while Uranus’ prolate moons are collected on a separate plot.
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Fig. 12. The inner moons of Neptune, Saturn and Jupiter shown on planar sections
of the three-dimensional α − β − q′ space obtained by suitable specifications of α.
Curves correspond to particular choices of the friction angle φF , as indicated by the
adjacent numbers. Where it exists, the Darwin ellipsoid associated with φF = 0o is
indicated by a ‘+’ symbol. In both figures, the abscissa’s upper limit is set by the
requirement β 6 α.
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Fig. 13. The plot of the inner moons of Neptune, Saturn and Jupiter continued from
Fig. 12. See also Fig. 12’s caption.
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Fig. 14. The thirteen small inner moons of Uranus shown on the α-section α = β of
the three-dimensional α−β− q′ space. The error bars depict the uncertainty in the
axes ratio listed in Table 3. Curves correspond to particular choices of the friction
angle φF , as indicated by the adjacent numbers.

6.3 Discussion

Neptune

We see from Figs. 13(a) and 12(b) that Galatea, Larissa, Proteus and Despina,
all lie within the φF = 20o curves. This means that they require an internal
friction of at most 20o. Of course, the friction can be higher, as the equilibrium
curves provide only a necessary requirement on internal strength. Nevertheless,
these bodies appear not to violate the constraint φF ≈ 30o true for most
granular aggregates like soils (see, e.g., Nedderman 1992). Proteus, strikingly,
appears to have relaxed to a shape appropriate for a fluid object, as indicated
by its proximity to the Darwin ellipsoid in Fig. 13(a). From the same figure,
we observe that Thalassa resides between the φF = 20o and φF = 30o curves,
which also is supportive of a rubble-pile hypothesis.

The moon Naiad, in Fig. 13(c), lies outside the φF = 30o equilibrium curve.
Thus, if indeed Naiad is a rubble pile, it may be dangerously close to dis-
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ruption. Orbital perturbations that bring Naiad closer to Neptune may well
cause the satellite to lose material. At the same time, a friction angle greater
than 30o may be too high for a rubble-pile given Naiad’s assumed density
of 1200 kg m−3. This is because the internal frictional resistance of granu-
lar aggregates is due both to particle inter-locking and to their superficial
sliding. The former geometric source of friction is typically dominant, but de-
creases with lowering density. Thus, if Naiad’s actual density was any lower,
say equal to water’s, the resulting smaller q′ = 1.66 would push Naiad be-
yond the φF = 40o curve, making Naiad’s existence as a rubble pile highly
suspect. Several other possibilities also suggest themselves. An obvious reso-
lution is that Naiad’s density is higher; a density equal to Neptune’s 1600 kg
m−3 raises Naiad’s q′ to 1.96 from its present value of 1.77, putting it comfort-
ably within the φF = 20o equilibrium region. However, too high a density may
cast doubt over Naiad’s genesis by an accumulation of ring/debris particles.
Another likelihood is that Naiad to some degree is a coherent structure. This
structure may be a reflection of welding that might have taken place between
Naiad’s assembled constituents due to gravitational pressure. Coherence could
also be a signature of the fact that Naiad may not even be a rubble pile, but
a cellular honeycomb-like structure with large micro-porosity but also some
tensile strength. Of course, the latter interpretation would again be contrary
to Naiad’s suspected accretionary origins. Inter-particle cohesion is another
factor that helps an object sustain higher shear stresses. However, because
cohesion depends on particle size and their packing density, it may not be
significant at planetary sizes and/or a density of 1200 kg m−3.

Uranus

Here, because the satellites’ shapes are all assumed proloidal or spherical, we
require only the planar section α = β to represent them together. This is done
in Fig. 14, where we also show the uncertainty in the satellite’s shape. We
see that except for Cordelia, Ophelia and Belinda, all other moons require a
maximum internal friction of 5o to survive as rubble piles. Amongst the rather
elongated moons Belinda, Juliet and Desdemona, the latter two are positioned
rather delicately within the narrow portion of the φF = 3o equilibrium region.
Interestingly, even after Juliet’s uncertainty in shape is accounted for, it still
remains within the φF = 3o limits. This seems to suggest that Desdemona,
and more so Juliet, may possibly have low resistance to shear stresses. Bianca,
Cressida and Rosalind cluster near the lower φF = 5o stability curve. Thus,
if we assume that these objects too were unable to support any significant
shear stress, they may tidally disintegrate if they moved any closer to Uranus.
Ophelia lies close to the lower φF = 10o curve, while Cordelia is below that
curve, revealing that these two objects may well have some internal friction.
Note that the left end of the error bar takes both Ophelia and Cressida close
to the lower φF = 20o bound. Cigar-like Belinda lies between the φF = 5o
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and φF = 10o curves. Spread in its location due shape uncertainties still
keep it within this region. Finally, if Belinda’s density were about 1900 kg
m−3 rather than the assumed 1270 kg m−3, Belinda would require enough
frictional strength to prevent gravitational collapse. Recall that crossing the
upper bounding curve represents inability of the body to sustain its internal
gravity. For a more careful analysis of Uranus’ moons, much more information
about their shapes and densities would be required.

Saturn

From Figs. 12 and 13 we observe that all of Saturn’s inner moons fall within the
equilibrium curves corresponding to a friction angle of 20o. This is encouraging,
as it supports the hypothesis that these low-density objects formed through
an accretion of ring particles around an initial seed mass (Porco et al. 2007).
Atlas, Pan and Daphnis appear to be the only satellites that have utilized their
increased internal shear resistance to explore equilibrium regions accessible
to rubble piles. In fact, other than Atlas, Pan, Calypso and Daphnis, the
remaining ten moons all lie inside the φF = 10o curve. This lack of spread
could suggest weak internal friction in Saturn’s moons correlated, perhaps, to
their low densities; cf. our discussion on Naiad above.

It is instructive to note that if we neglected Saturn’s oblateness, Prometheus in
Fig. 13(c), in keeping with behavior noted in Fig. 6, would lie well outside the
φF = 10o curve. Similarly, Atlas in Fig. 13(a) would be outside the φF = 20o

equilibrium region, not within.

Jupiter

Thebe in Fig. 12(b) lies within the φF = 3o equilibrium curve, very close to
the shape achieved by a fluid ellipsoid at equilibrium, though this does not
necessarily imply that Thebe’s interior is fluid-like in nature. Amalthea, with
a calculated density of 857 kg m−3, is shown in Fig. 13(c) to require material
with an internal friction angle slightly more than 5o to support itself. This
contributes to the hypothesis that this low-density satellite of Jupiter may in
fact be a granular aggregate. In fact, at Amalthea’s low density, we do note
expect it to satisfy high frictional requirements.

Fig. 12(b) shows Adrastea to fall between the φF = 30o and φF = 40o equi-
librium limits. This is very similar to the Neptunian Naiad in Fig. 13(c),
except that Adrastea’s assumed density is much lower than Naiad’s. Because
the equilibrium curves for the higher friction angles bunch up at higher axes
ratios β, slight errors in the satellite’s density can drastically influence inter-
nal structure hypotheses. Thus, if we allowed for an error of about ±10% in
Adrastea’s assumed density, we would obtain either 900 kg m−3 or 750 kg m−3
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as its density. The former density would yield a q′ ≈ 1.64, locating Adrastea
on the φF = 30o equilibrium curve, thereby lending some support to any pro-
posed rubble-pile model. However, 30o may yet be too high a friction angle
notwithstanding Adrastea’s suggested higher density of 900 kg m−3, and this
indicates that Adrastea’s density is even greater. In contrast, the lower den-
sity of 750 kg m−3 is equivalent to a q′ of about 1.53 which pushes Adrastea
outside the φF = 40o curve, and thereby makes Adrastea’s existence as an in-
coherent, cohesion-less rubble pile extremely uncertain. Similar analyses may
be performed for errors in a satellite’s orbital radius q′, though these tend to
be much better constrained.

In Fig. 13(b), Metis lies beyond even the φF = 40o curve. Recalling that gran-
ular aggregates, especially ones with Metis’ low density, seldom have friction
angles beyond 40o, this strongly suggests that Metis’ density is in fact higher
than its neighbors; recall that q′ ∼ ρ1/3. This would be in keeping with the
predictions of Thomas et al. (1998), who based on a study of craters on Metis
suggested ρ = 1500 kg m−3. At this density, Metis’ q′ equals 1.92, placing it
well within the φF = 20o curve, a far more appropriate location for a granular
Metis. There may also be present some degree of coherence and/or cellular
structure and/or inter-particle cohesion; cf., our discussion for Naiad above.
Either this, or Metis is on the verge of failure.

7 Conclusions

In this paper, we have obtained general equations governing the equilibrium of
an ellipsoidal tidally-locked rubble-pile satellite of an ellipsoidal primary. This
constituted an extension of the first Darwin problem to the case of granular
aggregates. The general formulation was then specialized to the case of ellip-
soidal satellites of oblate primaries to investigate the equilibrium of the small
inner moons of the giant planets. In addition, we derived a Roche limit suit-
able for rubble piles in orbit about spherical primaries, and applied it to Mars’
moons. We also made contact with the earlier results of Davidsson (2001), and
were able to provide a more rigorous rationale for their correctness.

Several immediate avenues of exploration are now available. The first, more
straightforward one, is to apply the results in this paper to asteroidal satellites.
The second, more involved problem is to investigate the equilibrium of binaries,
i.e., systems where both the primary and the satellite are gravitational held
granular aggregates of comparable mass. It will also be interesting to explore
the dynamical passage into equilibrium of such rubble-pile satellites. As in the
case of rubble piles in pure spin, this exercise, apart from providing insight into
the accretionary process that formed/shape them, is helpful for comparisons
with (as yet unavailable) n-body simulations of these granular systems.
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A Cartesian tensors and coordinate systems

In this paper, we will need to employ two separate cartesian coordinate sys-
tems, viz., the principal-axes coordinate systems attached to the primary and
the satellite that are defined by the unit vectors ê′i and êi, respectively. These
two coordinate systems are shown in Fig. 1, where they are denoted by P and
S. The components of a vector a in P will be denoted by a′i and in S by ai,
so that we have the identities

a = (a · ê′i)ê′i = a′iê
′
i = (a · êi)êi = aiêi, (A.1)

where we have, and subsequently will employ, indical notation.

Because of the several possible relative orientations of P and S, we seek to
develop a coordinate-free representation. To this end, we utilize a tensor-based
approach. A first-order tensor is simply a vector. A second-order tensor, say A,
is the coordinate-independent counterpart of a matrix, so that A also operates
on a vector to produce another vector. Third- and fourth-order tensors relating
lower-order tensors to other lower-order tensors may be similarly defined.

To better understand tensors, it is useful to generalize the concept of a unit
vector to a tensorial basis. Such a generalization is furnished by the tensor
product (a ⊗ b) of two vectors a and b. The entity a ⊗ b is a second-order
tensor that can act on another vector c in two different ways to yield another
vector:

(a⊗ b) · c = (c · b)a and c · (a⊗ b) = (c · a)b , (A.2)

where the ‘.’ on the left hand sides denotes a tensor operation, and the usual
vector dot product on the right hand sides. The computation,

a⊗ b = aiêi ⊗ bj êj = (aibj)êi ⊗ êj ⇐⇒ a′iê
′
i ⊗ b′j ê′j = (a′ib

′
j)ê
′
i ⊗ ê′j, (A.3)

suggests that a tensorial basis may be constructed by taking appropriate order
tensor products of the unit vectors. Thus, a second-order tensorial basis in the
primary’s coordinate system P is given by the nine quantities ê′i⊗ ê′j. Similarly
we have êi ⊗ êj in S. A second-order tensor A can then be written as

A = A′ij ê
′
i ⊗ ê′j = Aij êi ⊗ êj, (A.4)
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in terms of A’s components Aij in P and A′ij in S, respectively. These com-
ponents, obtained by appealing to (A.2), are given by the equations

A′ij = ê′i ·A · ê′j and Aij = êi ·A · êj, (A.5)

that are reminiscent of analogous ones for vector components; see (A.1). We
will refer to the nine Aij’s (A′ij) as the “matrix of A in S (P )” denoted by
[A] ([A]′). A second-order tensor’s interactions with vectors and other second-
order tensors may be obtained by repeated (if required) application of (A.2).
These operations are summarized below:

A · a = Aij êi ⊗ êj · amêm = Aijaj êi (A.6a)

a ·A = amêm · Aij êi ⊗ êj = aiAij êj, (A.6b)

A ·B = Aij êi ⊗ êj ·Bmnêm ⊗ ên = AijBjnêi ⊗ ên (A.6c)

and A : B = Aij êi ⊗ êj : Bmnêm ⊗ ên = Aij êi ·Bjnên = AijBji, (A.6d)

where the first two operations produce vectors, the next another second-order
tensor, and the third a scalar. The double-dot product (:), as its form suggests,
denotes a sequential application of dot products. A’s actions on higher-order
tensors may be analogously defined. When there is no confusion, second-order
tensors are referred to simply as tensors.

The transpose (‘T’) and inverse (‘-1’) of a tensor A may be interpreted from
their corresponding matrix definitions

[AT ] = [A]T and [A−1] = [A]−1. (A.7)

If S is a symmetric tensor, i.e., ST = S , it is possible to find an orthogonal
coordinate system, say the ê′i of P , in which S ’s matrix is diagonal, so that
we may write

S =
3∑
i=1

S ′iê
′
i ⊗ ê′i, (A.8)

where S ′i, the components of S in P are called the eigenvalues of S corre-
sponding to S ’s eigenvectors ê′i. Finally, to every vector w, there corresponds
an anti-symmetric tensor W = −W T that is formed by the components of w
in any coordinate system, i.e.,

W = −εijkw′iê′j ⊗ ê′k = −εijkwiêj ⊗ êk, (A.9)

where εijk is the alternating third-order tensor (see below), such that εijk = 1
or -1, if i 6= j 6= k form an even or an odd permutation, respectively, and 0
otherwise.

In the sequel, we will need to find the components of vectors and second-order
tensors in one coordinate system, say S, given its matrix in the other, say P .
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This may be done by expressing the unit vectors of P in terms of those of S
as,

ê′i = (ê′i · êj)êj,
and substituting this relationship into the first of (A.1) and (A.5). Geometri-
cally, because both P and S are right-handed Cartesian coordinate systems,
it is possible to obtain one from the other by a rotation. A rotation, because
it takes vectors to vectors, is a second-order tensor, and we write

ê′i = T · êi,

in terms of the rotation tensor T = T ′ij ê
′
i ⊗ ê′j = Tij êi ⊗ êj. It may be shown

that, in fact,
Tij = [T ]ij = T ′ij = [T ]′ij ≡ ê′j · êi. (A.10)

Substituting the previous two equations into (A.1) and (A.5), we obtain the
coordinate transformation rules

[a] = [T T · a]′ = [T ]T [a]′ ⇐⇒ ai = Tjia
′
j (A.11a)

and [A] = [T T ·A ·T ]′ = [T ]T [A]′[T ]⇐⇒ Aij = TkiA
′
klTlj (A.11b)

for vector and second-order tensor components, respectively.

Next, consider third-order tensors. In terms of the third-order tensorial bases,
ê′i ⊗ ê′j ⊗ ê′k in P and êi ⊗ êj ⊗ êk in S, a third-order tensor is defined as

A = A′ijkê
′
i ⊗ ê′j ⊗ ê′k = Aijkêi ⊗ êj ⊗ êk, (A.12)

so that A′ijk and Aijk are the components in P and S, respectively. The actions
of A on vectors and other tensors of various orders are defined in a manner
similar to that of a second-order tensor (A.6), e.g.,

A · a = Aijkêi ⊗ êj ⊗ êk · amêm = Aijkakêi ⊗ êj (A.13a)

and a ·A = amêm · Aijkêi ⊗ êj ⊗ êk = aiAijkêj ⊗ êk. (A.13b)

Fourth-order tensors are formed in a manner analogous to third-order tensors,

A = A′ijklê
′
i ⊗ ê′j ⊗ ê′k ⊗ ê′l = Aijklêi ⊗ êj ⊗ êk ⊗ êl, (A.14)

and their operations on vectors and tensors of various orders may be developed
by following (A.6) and (A.13), for example,

A : B = Aijklêi ⊗ êj ⊗ êk ⊗ êl : Bmnêm ⊗ ên = AijklBlkêi ⊗ êj. (A.15)
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