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ABSTRACT

We derive the characteristic nutational damping time 74 for a linear, anelastic ellipsoid of
revolution. Our calculation is based on the well-known idea that energy loss within an isolated
spinning body causes the axis of maximum inertia of the body to align with its angular mo-
mentum vector, leading to pure spin. Energy loss occurs within an anelastic material whenever
internal stresses are time variable; thus even freely rotating bodies in space, if they are wob-
bling, lose energy because internal stresses are associated with the accelerations caused by
nutation. We find that 7y = D(h)(p,’;T%;), where D(h) is a constant of the order of a few times
10? that depends on the shape of the body with / being the (aspect) ratio of the lengths of axes to
one another, u is the elastic modulus, Q is a quality factor that describes the anelasticity of the
material, p is the density of the body, a is its radius and €2 is an angular velocity. This functional
form of the damping time is consistent with previous results but is more soundly based. Coef-
ficients in past expressions vary between various authors, leading to predicted damping times
that can differ by factors of the order of 10. To estimate damping times for typical asteroids,
we choose values for the various parameters in this expression. We conclude that the extent
of energy dissipation was over, rather than underestimated, in previous treatments. None the
less, we argue that asteroids will generally be found in pure rotation, unless objects are small,

spinning slowly and recently excited.
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1 INTRODUCTION

In celestial rotation, regularity rules: most spinning objects are found
in nearly pure spin (i.e. they rotate at a constant rate around a single
axis, which is the axis of maximum moment of inertia). Such a
rotation state is surprising because, over long times, bodies are being
continually jostled about, either through collisions or during close
flybys. The pure spins that are so prevalent must therefore result
from an ongoing process.

Energy and angular momentum are both conserved for an isolated
rigid body because no external forces act nor are internal motions
permitted. In general, rotation (described for biaxial bodies in Sec-
tion 5), such a body ‘wobbles’ or nutates (i.e. executes free Eulerian
motion); this motion, which is specified once the angular momentum
J., kinetic energy Ey and moments of inertia of the body are spec-
ified, can be quite complicated. The motions are usually described
in combinations of elliptic functions (Landau & Lifshitz 1960).

Internal dissipation, which occurs once internal motions are pos-
sible, however, leads to energy loss. This moves the body closer to
a state of pure rotation about its axis of maximum moment of iner-
tia as this state has the least energy for a fixed angular momentum
(Landau & Lifshitz 1960). In this state, the angular velocity and the
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angular momentum vectors are aligned with a body axis. The char-
acteristic interval over which this alignment occurs is the nutational
damping time 7 4; it will depend obviously on the energy loss rate
which has to be estimated.

Time-varying loads (stresses) lead to energy loss in isolated,
anelastic solid bodies; the former are a natural companion to the
nutational motion of the body, because this requires elements of the
body to undergo accelerations. Thus, in order to estimate the energy
loss, we must first calculate the induced variable stresses, and then
we must model the energy loss associated with the time-varying
stresses. In each of these steps we must assume a model of material
behaviour.

In the past, the nutational damping of asteroids as caused
by internal energy dissipation was analysed approximately by
Prendergast (1958), Burns & Safronov (1973), McAdoo & Burns
(1974), Efroimsky & Lazarian (2000) and Efroimsky (2000, 2001).
Many other similar dynamical studies concern planetary wobble
decay (e.g. Peale 1973; Yoder & Ward 1979), including damping
of the Chandler wobble of Earth (e.g. Munk & MacDonald 1960;
Lambeck 1980, 1987), interstellar dust grain alignment (e.g. Pur-
cell 1979; Lazarian & Efroimsky 1999) and comets (e.g. Molina,
Moreno & Martinez-Lopez 2003).

In most of these cases, the familiar Q model (Knopoff 1964;
Burns 1977; Lambeck 1980) was assumed to estimate energy
loss. Internal stresses were computed by either invoking Love
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numbers' (Munk & MacDonald 1960; Burns & Safronov 1973;
Peale 1973; Yoder & Ward 1979; Lambeck 1980) or by directly at-
tempting to solve the full three-dimensional (3D) elasticity problem
for the body (Prendergast 1958; Purcell 1979; Denisov & Novikov
1987; Lazarian & Efroimsky 1999; Efroimsky & Lazarian 2000;
Efroimsky 2000; Washabaugh & Scheeres 2002; Molina etal. 2003).
When computing stresses, the body was usually taken to be elastic or
at best viscoelastic (McAdoo & Burns 1974; Lambeck 1980, 1987);
with the latter model, only nearly spherical bodies were considered.
Lastly, we should mention that Denisov & Novikov (1987) managed
to solve for the stresses inside a tumbling, symmetric, linear-elastic
ellipsoid. However, we came to know of this reference only after
we had completed the calculations for the stresses.

All the above authors derive the same functional form for the
damping time (as could have been anticipated from dimensional
analysis alone); see Section 9. However, the numerical coefficients
in these published results are claimed to differ by factors of the or-
der of 10. This disagreement could be attributed to: (a) the different
body shapes that were used when stresses were estimated or, more
fundamentally, (b) the alternate approaches that were employed to
estimate stresses or, more prosaically, (c) errors in analysis or in-
correct assumptions. To complicate matters further for astronomers
or geophysicists who might wish to use these results when estimat-
ing actual damping times, the various authors often chose different
values for the physical constants that appeared in their expressions.

The calculation to be presented below should be useful because,
as an exact elasticity solution, it provides the best estimate of the
internal stresses employed in this and earlier works, and because
the character of the spheroid can be varied (from flattened discs to
narrow cigars) in order to explore how shape influences damping.

2 OUTLINE OF THE CALCULATION

Before proceeding further, we outline the broad steps involved in
our calculation. Questions as to why the problem is tackled in this
manner and/or why a possible effect is neglected will be addressed
in the following sections.

The general philosophy is that nutational motion of the body
introduces time-varying internal stresses which cause energy loss.
This dissipation then tends to align the angular velocity vector, the
angular momentum vector and the axis of maximum moment of
inertia. With this in mind, we proceed as follows.

(1) The acceleration field generated by any nutational motion is
calculated in order to provide the body forces that act on internal
elements.

(2) Using these body forces, internal stresses are calculated by
solving the corresponding elasticity problem.

(3) The stress field thus calculated furnishes the strain energy
necessary to estimate the energy dissipation using the energy dissi-
pation mechanism at our disposal.

(4) Knowledge of the energy dissipation rate then allows the nu-
tational damping time to be calculated.

3 MODEL AND SIMPLIFYING ASSUMPTIONS

In general, because the rotational dynamics are captured in the spec-
ification of three moments of inertia, one could consider modelling
the asteroid as an anelastic, friaxial ellipsoid. Here the anelasticity

! Love numbers, which give the response of homogeneous elastic spheres to
potential loads, are derived from the solution to an elasticity problem. See
Munk & MacDonald (1960) or Lambeck (1980, 1987) for further discussion.

accounts for energy dissipation while a suitable choice of the axes
of the ellipsoid would set the correct dynamics and would approx-
imate most physical bodies reasonably well. As a first step toward
the general solution for an anelastic triaxial ellipsoid, we have de-
rived the full 3D solution for any elastic solid of revolution (i.e. for
a prolate or an oblate spheroid). The energy dissipated is calculated
using a Q model (described below) as the loss mechanism.

The first step given in the outline (Section 3) does not pose seri-
ous difficulties because the acceleration field for a general triaxial
ellipsoid undergoing free Eulerian motion is available (Landau &
Lifshitz 1960). However, step 2 requires that the full 3D elasticity
problem be solved for a given body. This is a formidable task due to:
(a) the (likely) anelasticity of the material, (b) the absence of body
forces derivable from a potential and (c) the likely complex shape
of the body.

When deriving his eponymous numbers, Love (1946) assumed
that the body forces are derivable from a potential and further that
the body is linear-elastic spherical (or near-spherical) in shape. Nei-
ther of these assumptions is necessarily appropriate for our situation.
First, we will demonstrate below the non-potential nature of body
forces in our problem. Secondly, we often wish to consider aspher-
ical objects and any restrictions on the shape of the body limits the
usefulness of the result. These two failings have encouraged us to
not employ Love numbers when estimating internal stresses.

An anelastic triaxial ellipsoid (with suitable choices for the
anelasticity model and the axes of the body) is a very versatile model
that can approximate many real objects fairly well. Furthermore, this
is probably the most general model permitting an analytical solu-
tion. Unfortunately, this general model remains algebraically cum-
bersome and hence we have decided to simplify it. To start with, in
order to ease the algebra while still preserving our ability to vary the
shape of the body significantly, we restrict ourselves to ellipsoids of
revolution. The construction of the elasticity solution for the gen-
eral triaxial case is fairly straightforward but involves much more
algebra.”

Next we take the material to be homogeneous, linear and elas-
tic. Energy dissipation can be broadly classified into three cat-
egories: (a) frictional (rate-independent) dissipation; (b) viscous
(rate-dependent) dissipation (as in fluids); and (c) a combination of
rate-independent and dependent mechanisms, an example of which
would be furnished by granular aggregates (which most asteroids
are now thought to be). Energy dissipation in these mechanisms
can be analysed rather simply by introducing a ‘quality factor’ Q
(described below). In cases where we have rate-dependent dissipa-
tion mechanisms, Q varies with the loading frequency. Such a broad
rate-based categorization of energy dissipation simplifies the prob-
lem considerably. Moreover, given the unknown internal structure
of the body, there is little reason to favour a particular anelastic
model (say Maxwell) over one with dissipation depending only on
Q. Instead we ignore specific constitutive models and merely lump
the dissipative effects into Q which we restrict to be constant. As
we will see, this characterizes energy dissipation to be inherently
frictional in nature.

3.1 The energy dissipation model

Owing to the inherent inhomogeneity of actual physical bodies and
perhaps even the lack of a continuous structure (e.g. ‘rubble-pile’

2 Henceforth any reference to an ellipsoid should be understood to imply an
ellipsoid of revolution unless stated otherwise.
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models of asteroids), their internal energy dissipation is poorly un-
derstood. Introducing these processes into our model would make
it intractable unless we resorted to numerical computation (where,
even then, it might not prove solvable). Even in the latter case, we
would need to know the nature of the dissipation; in various cir-
cumstances it might be due to grain-boundary sliding, creation and
movement of dislocations, stress-induced flow of molten material
and other effects (Lambeck 1980). Accounting for each of these
mechanisms is obviously very complicated, indicating that a sim-
pler model is preferable.

The Q model. Commonly, one accounts for energy dissipation in
bodies under cyclic loads by assuming that the amount of energy
lost per cycle (AE) is given by

27t (amount of ‘fluctuating’ strain energy)

0o
_ 2nE, W
-

where Q is the (in)famous quality factor (Knopoff 1964; Lambeck
1980); it is also called the anelasticity. Although without much jus-
tification in terms of a simple, single physical mechanism, such
an energy-loss model across many decades of frequency has been
employed by a generation of geophysicists (e.g. Knopoff 1964;
Lambeck 1980) to represent decay of seismic waves, for example.
Typical values for Q in terrestrial materials at standard conditions
range from hundreds to tens of thousands.

In order to use (1) we have to define a measure for the ‘amount
of ‘fluctuating’ energy’. The standard definition is that given by
Lambeck (1980). He defines

AE =

E = / (e5)dV = (E), @
\4

where V is the volume of the body, (-) denotes the average over a
cycle (of the load), e, is the specific strain energy defined (in indical
notation) as

1

ey = 5 ij€ijs 3)

and E is the total strain energy (= fv e;dV). Here, o ;; is the stress
on face i in the direction j, €; is the corresponding strain and sums
are taken on repeated indices.

The above measure of energy fluctuation is valid for the case when
the stresses are purely sinusoidal which is not so for a tumbling
body. In this case, the stresses fluctuate about a constant, non-zero
value; because of this, the standard definition above cannot be used.
Definitions of measures of energy fluctuations corresponding to the
type of loadings encountered with tumbling bodies are not readily
available. We discuss an alternative definition in Appendix A.

For the moment we use

E, = (E,) —/ (oij)(€i;) dV. )
14

The above is the same as computing the average of e after dropping
all the time-independent terms in its expression and then integrating
the resultant expression over the volume of the body. That is, if we
decompose ey into a constant and a time-varying part,

constant ~
e, = e + e,

then E, defined above is the same as
E = / (@) av. (5)
|4
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The amount of energy lost per cycle is computed by using the above
equation in (1).

The measure of the amount of fluctuating energy described above
is the same as that used by Efroimsky & Lazarian (2000). We
use it here to ease comparisons with earlier work. This will also
indicate that differences in our results are because we solve the
accompanying elasticity problem exactly, and not because of a
different definition of energy dissipation. However, the definition
above is open to criticism as we discuss in Appendix A. Calcu-
lations based on the alternative (and perhaps more precise) for-
mulation described in Appendix A are available from the first
author.

3.2 Other assumptions

Next we list some assumptions that help to simplify our subsequent
calculations.

Small deformations. We take the deformations induced in the body
due to its nutational motion to be small compared with the flattening
or elongation of the body. This requires that the body have adequate
strength and/or the motion is not ‘too fast’ (so that the induced ‘iner-
tial forces’ are small). This assumption implies that the moments of
inertia of the body remain effectively unchanged throughout its mo-
tion. This in turn means that the ‘feedback effect’, i.e. any change
in the dynamics of the body due to its deformations, is negligi-
ble. Thus, rigid-body equations (applied to the original undeformed
body) describe the rotational motion of the body.

Small-strain elasticity. We consider that the small-strain theory of
elasticity provides a reasonable estimate of the stress—strain field.
The presence of internal gravity is an obvious problem especially
in large enough bodies. To overcome this difficulty, following Love
(1946), we think of the body as being already gravitationally pre-
stressed. All subsequent stresses resulting from the motion of the
body are considered to be superimposed on top of this pre-stress.
The idea is that, if the deformations induced by the motion of the
body are small enough, then one can apply the small-strain the-
ory to the gravitationally pre-stressed body rather than taking an
unstressed body and applying gravitational forces along with the
motion-induced body forces. Obviously this assumption relies on
the first assumption above in the sense that, if the shape changes are
small compared with the flattening, then the gravitational field will
not change much.

Material response. Finally, we assume that the body is isotropic.
The primary reason for this is, of course, simplicity. However, on the
other hand because so little is known about the internal properties
of asteroids it may not be a good idea to consider more compli-
cated models with many free parameters. The idea is to keep free
parameters at a minimum so that the correct physics can be better
captured.

The previous three assumptions reduce the problem to an elastic-
ity problem for a linear, elastic and isotropic body. The stresses and
the strains can now be related by Hooke’s law.

Slow rotational dynamics. The frequency of loading is considered
to be far slower than the lowest vibrational frequency of the body.
This ensures that elastodynamic effects can be neglected in any
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Figure 1. The rigid-body motion of an oblate ellipsoid. The unit vectors
i, J and k define an inertial coordinate system with the angular momentum J
setting the k direction. The unit vectors &, &, and & lie along the principal
axes fixed in the body. The angle @ is the nutation angle, v is the spin and ¢
is the inertial precession rate. The unit vector & | defines an intermediate axis
along the intersection of the é;—€> and f—j’ planes and €2 | is the associated
component of angular velocity.

elasticity calculation. More concretely,

—”;/”/Qo > 1.

This reduces our elasticity problem to a quasi-static one.

Most asteroid spin rates are about 10~ rad s~!. On the other
hand, the rigidity of rock is of the order of 107 Pa and the density of
asteroids is about 3 g cm ™ which leads to a speed of sound of 60 m
s~!. Thus, because of this large separation in time-scales, assuming
quasi-statics is not a bad assumption to make.

Small energy loss. Energy loss over a loading cycle is small; in
other words, the quality factor Q is large. This ensures that the rate
of nutational damping as measured by 6 (Fig. 1) is much less than
the loading frequency. With this assumption, two time-scales can
be considered: the slow time-scale over which 6 changes and the
fast time-scale over which the body is loaded. Thus, € is nearly
constant over a load cycle, and the loading is (almost) periodic, jus-
tifying our use of energy-dissipation models that consider periodic
loading.

4 ROTATIONAL DYNAMICS OF AN
ELLIPSOID OF REVOLUTION

Before solving the elasticity problem, we first describe the rigid-
body rotation of an isolated ellipsoid of revolution (see Fig. 1), i.e.
the classical problem of free Eulerian motion (Landau & Lifshitz

1960; Greenwood 1988). J is the total angular momentum of the
body, which is fixed in inertial space because no external torques
act. An inertial coordinate system is partly aligned by specifying
that the unit vector k be parallel to J. Our body-fixed coordinate
system has unit vectors &;(i = 1,2, 3), aligned with the principal
axes of the body. The moments of inertia of the body are A, A and C
about the axes &, &, and &3, respectively. With these assumptions,
and as derived in Appendix B, the total angular velocity €2 can be
written as the sum of two terms

Q=¥+, (6)
where the axial spin

(1 —H)JcosH
— & @)

with H = C/A and 6 the nutation angle. The inertial precession
rate

W= e, =

& =pi=""k (8)
= k= k

Because the body is precessing uniformly,

These equations merely say that an axially symmetric ellipsoid can
be described to spin about &; at ¥, carving out the body cone, while
& itself sweeps out a cone (the space cone) about k at ®. Note
that for a given nutational angle 6, W is constant while ® is always
constant regardless of 6.

Once the angular velocities are known, one can immediately write
down the acceleration of any point in the body as

a(r) = BUr + ddr 4+ 20 r, (10)

where abe = a x (b x ¢)andr = xé, + yé, + zés is the position
vector written in the body-fixed system.

We write the kinetic energy Ey stored in the body as Ex =
HAQT 4+ AQ3 + CQ3). Lastly, defining Qo = J/C, we obtain

cQ?
0(cos2 0 + H sin®6). (11)

Ek= 2

5 INTERNAL STRESSES

When an ellipsoid executes its nutational motion, stresses are gen-
erated in its interior in conjunction with the acceleration field (10)
derived in the previous section. Accordingly, we will solve an elas-
ticity problem in which the body is loaded by the body force
—pa. Here p is the uniform density of the body. The body is
taken to be homogeneous and elastic, allowing its material to be
characterized by only two parameters, namely the Lamé constants
A and p (Fung 1965). Furthermore, we assume that A ~ u for
simplicity.

In order to estimate the strain—energy fluctuations, we must first
solve for the stresses. For this we need to write down the body force
—pa (associated with the presence of the acceleration field). Toward

this end, we define
w, = ¢sinfd, w;=¢dcosh, (12)

permitting us, from (10), to write the body force at a point (x, y, z)
in the body-fixed coordinate system as

F = p{(aiz+ (by + bs)x +c1y) €
+ (a2z + byx + (c2 + ca)y) &2
+(asz + b3x + c3y) &3} a3
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with

a, = —w;3w, sinnt,
a, = —w3w, cosnt,
ag = wi,

by = w? cos?nt,

by = ¢ = —a? sinnt cosnt, (14)
¢ = & sin® nt,

by = —(wsw, +2a)pj/) sinnt,

c3 = —(w3wy + 2w, Y)cosnt,

by = ¢4 = (w3 + V),

|(1 — H)|JcosH
c .

Thus, the frequency of the load (or of the body forces) is simply
the magnitude of the axial spin. Using the above constants in the
expression for the force given by equation (13), we can see that
the body force is not derivable from a potential. This is due to
terms involving the angular acceleration of material points inside
the ellipsoid.

Our second assumption (see Section 4.2) allows us to consider
the elasticity problem to be quasi-static, which roughly means that
at each instant during the nutational motion we can consider the
body to be in static equilibrium. However, recall that during each
moment the body force is different so that, in reality, the stress field
is time-varying.

We are now in a position to solve for the stresses o ; and the ac-
companying strains €; with i, j = 1, 2, 3. The procedure employed
for the solution of the stress and the accompanying strains is out-
lined in Appendix B. For simplicity we report results obtained by
letting A ~ w. Because these expressions for the stresses are quite
complicated, we list them in Appendix B. It can be verified that
the calculated stresses do indeed satisfy the boundary condition that
the surface of the ellipsoid is traction-free (i.e. force-free). From the
stresses, the (specific) strain energy can be easily computed using
(3). The total strain energy E|, calculated by integrating e, over the
volume of the ellipsoid, can be arranged as

n=|y|l=

p*a’2

E, = h(Ey + E;cos 20 + E,cos 40), 15)
where Egy, E, and E4 are complicated functions of the geometric
parameter h.

We also estimate the fluctuating strain energy via (5):

_ 2’ L, .
E, = ——hsin“ 0(Ey + E, cos20), (16)
m

where again Ey and E, are functions of & alone.

A technical comment is in order with regard to the above formula.
We expect the strain—energy fluctuations to be zero whenever the
body rotates about a principal axis, i.e. when 6 = 0 or 7t/2. That is
true. What is not necessarily true is that these fluctuations should
approach zero as the body approaches a principal-axes rotation. In
fact, from (16) we see that E; — 0 only when & — 0. The reason
for it not vanishing (when 6 — 7t/2) is not hard to see; this purely
mathematical feature is probably best understood by considering
the strain (potential) energy of a simple harmonic oscillator (SHO):
B kx? N k sin® wt

sHO = — 2
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However,
k
(Esno) = 1 = constant,

no matter what the frequency w is!

Thus, in the case of the SHO, there will always be a finite (in
fact the same) amount of fluctuating strain energy as the frequency
approaches zero. This is exactly what happens in our case. On the
other hand, E; — 0 when # — 0. This is understood by consid-
ering the specific strain energy e,. This is a complicated function
containing terms in sinnt, cosnt and their powers. It is assumed
to be constant (at every point in the body) when the body is in
principal-axis rotation. When 6 = 7t/2, the loading frequency n =
0. Thus, e is automatically a constant. However, at 6 = 0,n # 0 but
e is still a constant. This can only happen if the coefficients of the
trigonometric terms (which are functions of the spin * vr) vanish. In
other words, &, = 0 when 6 = 0. Thus, in this case, {(e;) — e, as 0
— 0 so that (5) yields £, — 0.

6 EXPRESSION FOR THE NUTATIONAL
DAMPING TIME

Finally, we bring together the results of the previous sections in
order to calculate a characteristic nutational damping time. For this,
we use our solution of the elasticity problem involving time-varying
stresses along with the Q model to estimate AE (energy dissipated
in one cycle of the load).

Now, if there were no energy loss in this system, then the total
energy E = E 4+ E\ would be constant. Thus, when energy is lost
in the system, we can write

E=-2f g —g( (a7
T ey T T\ de T de )

From (11) we obtain

dE, ) .

v = CQy(H — 1)sinf cos 6. (18)

Combining the derivative of (15) with this, we can express

E| [dEgdo| 2 (Julp\' (1 —h)/(1 +h?)
E|  |dEg/de | 15 \ a9y Ey+4E4cos20

By the second assumption of Section 3.2, the term (/11/p0)/a20
is large so that Ey/E; > 1. All the remaining terms are of o(1)
except possibly when i ~ 1; thus E; <« Ej and can generally be
neglected for simplicity. For the moment, we will avoid the regime
h~1.

Then, rewriting (17) gives

E n AE
dE/d9 ~  2mdE./d6’
which then describes the time evolution of the nutation angle 6. The
damping time can be obtained by integrating (19):

14 Of

2(dE, /d6

Td:/ dt:—/ IndE/d9) 4 (20)
0 o nAE

~

19)

with ¢ = §. for oblate bodies and 0y = 7t/2 — §. for prolate
ones. In the above equation, AE is obtained from (1) using (16),
while dEy/df is given by (18). The parameter §. is a small an-
gle that is chosen as the smallest angular resolution of present-day

3 Recall that n = |v/].
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instrumentation. Following Efroimsky & Lazarian (2000) we choose
8. = 6°. There are two reasons for using § .. First, because the damp-
ing time oblate bodies is seen to diverge as 6+ — 0. Secondly, though
the time for prolate bodies to damp to 6¢ = 7t/2 does not diverge,
it does become quite large, and thus, it seems appropriate to com-
pare the damping times of oblate and prolate bodies when they are
assumed to damp to within an angle of 8. of their final states.

We now proceed to calculate the damping times using the Q
model.

6.1 Damping with the Q model

We first compute AE by using (1) and (16) to obtain
2.7

p-a Qg Ry -
AE = 27I—Qh sin“ 0(Eq + E, cos26). 21
"

Now, we use this expression for AE, (18) and the last equation of
(14) for n in (20) which, after substituting for C, H and J in terms
of p, a and h, is

g [ 1
sign(1 —my( LN [ 1 do
pa’sy ) 15 o SInO(Ep + E;cos20)

no
D(h)(pT%)s (22)

where D(h) is the shape parameter and 6¢ is as defined before. We
have suppressed the dependence of D on 6;. Note that, for fixed
initial angles, D is a purely geometric parameter, depending on the
aspect ratio of the body alone, that is computed numerically. In
Figs 2(a) and (b) we plot D as a function of 2 = c¢/a (and 1/h =
a/c). Recall that i < 1 signifies oblate spheroids that damp to 6 =
0 while 2 > 1 corresponds to prolate ones that damp to 6 = 7t/2.
Note that we have plotted both the prolate and the oblate cases on
the same plot by using 1/4 for prolate ellipsoids.

We see in (22) that the damping time depends on the initial nu-
tational angle as well as on the parameter 4 which characterizes the
shape of the body. These dependences are absent from most previous
works except Efroimsky & Lazarian (2000); the shape dependence
is also hinted at in Prendergast (1958), Burns & Safronov (1973)
and McAdoo & Burns (1974). However, because the initial angle,
once the final angle is chosen, does not affect the result by orders
of magnitude, we only plot the results for 6; = 7t/4. The reason
for a perceived discontinuity at 2z = 1 is the fact that while oblate
bodies (with & < 1) damp to 8¢ = 0, prolate ones relax to 6 = 7t/2.
Note that a spherical object (h = 1) does not have a damping time
as every axis is a principal axis of inertia.

Ty

6.2 Discussion

We have to exercise some caution before interpreting the results
of the previous section. Figs 2(a) and (b) plot the shape parameter
versus the aspect ratio. However, when using the shape parame-
ters to predict damping times we have to be careful that we do not
compare objects with different physical properties and, as a con-
sequence, vastly different dynamical properties. For example, if a
is of unit length an object of oblateness 4 = 0.5 and an object of
prolateness 4 = 2 will have a volume ratio of 1/4. Furthermore, if
we assume that the density is the same for both, then the masses and
the maximum inertia scale by 1/4. Consequentially, if €2, is also
taken to be the same, the prolate object has four times the angular
momentum and kinetic energy of the oblate one. Thus, these objects
have very different initial conditions and it would be inappropriate
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Figure 2. The function D(h) is plotted versus 4 and 1/h. The two figures
show the shape parameter D(h) for oblate bodies that damp to ¢ = §. and
prolate bodies that damp to 6y = 7t/2 — §.

to compare them directly. Another way of saying this would be that
using the shape parameter defined through (22) as a measure of
the damping time-scale would be appropriate only if the objects of
interest have the same a, J and p. However, frequently damping
time comparisons are made between objects with similar densities,
volumes and angular momenta but different shapes. Because, as
pointed out above, the volumes and angular momenta of these will
be quite different for different shapes, we need to rephrase (22) in
terms of the magnitude of the angular momentum J, the volume V
and the density p. For this we use the relations

V=Y 1 =ca =T onasa
DR R T L

Inverting, we obtain

4/3
parel = 1B (471 N e
0 8 3 V133 p2 :
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Using the above in (22), we obtain

4/3 13/3 2
Ty = i i D(h)h’4/3 nov-"p
125 \ 47 J3

V133 52
= Dl(h)(“QTp). 23)

In this form, the ‘new’ shape parameter D, is a measure of the
damping time of objects with similar densities, volumes and angular
momenta. The behaviour of D is plotted in Fig. 3.

From Figs 2(a), (b) and 3 we see qualitatively the following.

(a) Damping times are predicted to be infinite whenever 4 reaches
infinity or becomes zero. Thus, we expect long damping episodes
for flat plate-like or long cylinder-like objects.

(b) Note that the shape parameter using (22) and that from (23)
display qualitatively different results. While in the latter, prolate
ellipsoids always damp faster than oblate ones, this is not the case
when (22) is used. This reinforces the cautionary note above about
comparison between two objects. We should know whether we are
comparing objects with similar semimajor axes a and representative
angular velocity €29, in which case we will employ (22) and use
Fig. 2, or we are comparing objects with similar angular momentum
J and volume V, whence we should employ (23) and Fig. 3.

(c) The model predicts (relatively) rapid damping when h ~ 1.
This might seem counter-intuitive because as 7 — 1 the frequency
n of the body forces approaches zero; hence any ‘viscous-like’ dis-
sipation would decay to zero. On the other hand, we recall that the O
model does not tax the loading frequency and, in this sense, behaves
much like a frictional dissipation model.

(d) For h > 1, the Q model displays a finite time decay to a
principal rotation state. The reason for this again lies in the frictional
nature of the Q model. This is not surprising because a spring—mass
system with a frictional damper stops in finite time as opposed to
one with a viscous damper which takes infinitely long. However, as
we mention above, finite-time damping is not observed in the case of
oblate bodies, where the damping time diverges logarithmically. We
believe the reason for this lies in the way we estimate the ‘amount of
‘fluctuating’ energy’. As we state in Appendix A, this method does
not measure all the fluctuations. Indeed, when we use the alternative
estimation method outlined in Appendix A, we observe finite-time
damping, reinforcing the frictional nature of the Q model.
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In closing this section, we note that there is nothing sacrosanct in
using p, V and J as ‘comparison’ parameters and one can employ
other parameters such as the kinetic energy 7', the maximum inertia
C, the density p, etc., depending upon the type of comparison one
wishes to make.

7 COMMENTS ON NEARLY
SPHERICAL BODIES

An indicator that things could be complicated when & ~ 1 is the fact
(noted in Section 6) that the rate of change of strain energy could be
comparable to the rate of change of kinetic energy as the nutational
angle varies (see equation 17).

Therefore, let us consider cases when & ~ 1 but not exactly 1. A
fundamental assumption throughout this calculation is the first of
Section 3.2, namely, that one does not need to include the altered
shape in order to predict the dynamics even though the shape itself
is influenced by dynamical effects. Thus we have a one-way de-
coupling of dynamics and elasticity. However, this assumption fails
whenever i ~ 1, because then the body is nearly spherical, in which
case small shape changes may profoundly alter the dynamics. For
example, small deformations may change the ordering among the
axes of moments of inertia which in turn will affect the stability of
rotation about them. This can be further understood by recognizing
that a sphere is singular in so far as its free Eulerian motion goes,
which is perhaps best illustrated by the property that, for a given
angular momentum, just one nutational angle (¢ = 0) is possible,
whereas for a general body all nutational angles between 0 and
7t/2 are allowed. That is to say, ‘nutational damping of a sphere’ is
an oxymoron because a rotating sphere — whether rigid, elastic or
viscoelastic — never nutates; it always rotates uniformly about the
specified angular momentum vector.

With nearly spherical bodies at small wobble angles, the effect
of deformations can be more easily incorporated into the dynamics.
This is accomplished using perturbation techniques and Liouville’s
equation as outlined by Munk and MacDonald (1960) or Lambeck
(1980). For slightly flattened objects, the deformation forces (i.e. the
body forces resulting from the acceleration field) are derivable from
a potential function at least up to the first order in the flattening. *
Then as previous authors have argued, one can drastically simplify
the elasticity analysis by directly invoking Love numbers to estimate
internal deformations and stresses (neglecting the asphericity of
the body). If the flattening is not small, this simplification is not
possible. Then one has to solve to the complete elasticity problem
and this immensely complicates the application of the perturbation
technique. However, if the shape of the body is not nearly spherical,
the dynamical effects of slight shape changes will be small and thus
we can ignore the ‘feedback’ effect, at least up to the first order.

8 ESTIMATES OF NUTATIONAL
DAMPING TIMES

All researchers to date agree on the functional form of the char-
acteristic damping time. For example, Prendergast (1958), Burns
& Safronov (1973), Peale (1973), Purcell (1979), Yoder & Ward
(1979), Efroimsky & Lazarian (2000) and Efroimsky (2000, 2001)
report the characteristic damping time 7'y has the form:

T, =D <p52%3 > . 24)

4 Flattening f ~ & r/r characterizes the amount of oblateness.
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The results of the various authors differ solely through the constant
D, the values of which will be listed below. The form above indi-
cates that comparisons should be made with the damping time give
by (22), so that we have to use the shape parameter D plotted in
Fig. 2, rather than D, given in Fig. 3. Such a functional dependence
could have been anticipated, of course, directly from dimensional
analysis.

Let us now broadly categorize the aforementioned works.
Prendergast (1958) considers general symmetric ellipsoids and cal-
culates the strain energy using only the ‘centrifugal’ part of the
body force. Though he does not indicate how he calculates the
stresses, we surmise that the calculations follow Chree (1888). It
should be pointed out though that the body force will be nearly
‘centrifugal’ in nature only when the nutational angle 6 and/or the
flattening is small. Peale (1973), as well as Yoder & Ward (1979),
investigated nearly spherical objects at small nutational angles (6)
in their calculations. In contrast, as just discussed in Section 8, our
calculation and a few others are not valid for nearly spherical ob-
jects. Both of these 1970s papers call upon the Love numbers to
estimate the strain energy of the body (as is entirely appropriate
for nearly spherical objects) and they also carefully include ‘feed-
back effects’. However, as described at the beginning of Section 4,
Love numbers apply merely to spherical objects under loads that
are derivable from a potential, and neither of these conditions holds
for large flattening (when £ is far from 1). In such circumstances,
the complete elasticity problem must be solved. Furthermore, the
perturbation technique that they employ to incorporate ‘feedback
effects’ works solely for small 6. Burns and Safronov (1973) esti-
mated the strain energy that is periodically stored in the polar bulge
(employing a Love number to determine the rotational flattening)
and in bending stresses. Because their result is given as an order-of-
magnitude estimate, any difference (e.g. by a factor of several) that
it has from another author’s expression should not be a cause for
concern.

Moreover, only Prendergast (1958), McAdoo & Burns (1974),
Efroimsky & Lazarian (2000) and the present paper state explicitly
how D varies with the shape parameter. Burns & Safronov (1973)
did note that D would differ with A.

We note again that the expressions for damping time derived
above and by Efroimsky & Lazarian (2000) depend on the final angle
to which the body damps. Their damping times grew exponentially
as the body damped into a principal rotation state. Thus, they had
to define a characteristic damping time, which was the time taken
by the body to damp to within an angle 8. of a principal rotation
state. This is seen to occur in our calculation too in the case of oblate
bodies that damp to 6 = 0°, except that the growth in the damping
time is logarithmic. Thus, we too report the times for damping to an
angle of . for oblate bodies, and to an angle 7t/2 — §. for prolate
bodies. We take §. = 6°. It should be pointed out that the damping
time is sensitive to the final angle, i.e. if we choose §.. to be smaller,
say less than a degree, the damping times can increase by an order
of magnitude. Earlier estimates were merely e-folding times and did
not consider the final angle explicitly (and so can be thought of as a
measure of a ‘characteristic’ damping time).

In some sense, this logarithmic growth is unexpected because,
as we noted above, the Q model is frictional in nature and does
not tax the frequency of external loading. Thus, we should expect
damping in finite time. This is indeed seen to be true if we use
the alternate method of Appendix A. In this case, the sensitivity of
the damping time on the final angle is reduced significantly, which
is another reason, we believe, that the approach in Appendix A is
preferable.

The numerical coefficients previously obtained are, in chronolog-
ical order:

(i) Prendergast (1958):

D ~ 10 forh ~ 0.5
D ~30forh ~ 1
D~5forh~25

(i) Burns & Safronov (1973):

D ~ 100 for nearly spherical objects
but D ~ 20 for elongated objects;

(iii) Peale (1973):
D ~ 7 for nearly spherical objects;
(iv) McAdoo & Burns (1974):

D ~ 50 for viscoelastic spheres;
D ~ 4h*3 for cylinders;

(v) Yoder & Ward (1979):
D ~ 5 for nearly spherical objects;
(vi) Efroimsky & Lazarian (2000):

D ~ 4 for non-spherical objects that damp to within 6° of a
principal rotation state.

(vii) Molina et al. (2003):

D ~ 25 for symmetric ellipsoids with aspect ratios int he range
0.5-0.9.

We emphasize that the closeness in the D values for some of
these solutions is somewhat misleading. The results of Peale and of
Yoder and Ward pertain to nearly spherical bodies, whereas those
of Efroimsky and Lazarian, and Molina et al. apply to non-spherical
objects and are, in fact, reported to break down when the shape of
the body approaches a sphere (i.e. when 7 — 1).

(viii) This paper: the functional dependence of D on &, for damp-
ing to within 6° of the final state, is plotted in Fig. 2. It shows that
(see Fig. 2 for other & values)

D ~ 200 for h ~ 0.5
D ~ 100 forh ~ 1
D ~ 200 for h ~ 2.

Despite the functional similarity of these results, recently Efroim-
sky & Lazarian (2000) and Efroimsky (2000, 2001) have sharply
criticized all earlier works as missing important dynamics, failing
to perfectly satisfy boundary conditions and applying unphysical
choices for the parameters in (24). Later, Molina et al. (2003) claim
to put forward a solution better than that due Efroimsky & Lazarian
(2000). The procedures in these papers are very similar to those that
we have presented here. Furthermore, these calculations apply to a
cuboid (of dimensions a x a X ¢), whereas we study symmetric el-
lipsoids. Efroimsky & Lazarian (2000) claim to have solved the full
elasticity problem for the cuboid in order to estimate the stresses.
However, their solution satisfies only some, not all, of the boundary
conditions; in particular, shear stresses do not vanish on the faces
of the cuboid, as they should. This is also pointed out by Molina
etal. (2003), who themselves claim to have a better ‘approximation’
to the elasticity solution. However, we do not find any justification
as to why their solution is a better approximation. The expression
for the damping time in these papers, like ours, is reported to be
valid when the flattening (or elongation) is large. Thus, we make
the following detailed comparison between our solution and theirs.

(a) The stresses that Efroimsky & Lazarian (2000) obtain are
stated to reach a maximum in the interior of the body. In contradis-
tinction, our exact solution does not share this property. One might
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hope to attribute this discrepancy to the difference in the object
shapes that were considered. However, with suitable choices for the
axes, we can crudely approximate a cuboid; thus we maintain that
such a drastic change in the stress behaviour with depth is improb-
able.

(b) AsbothEfroimsky & Lazarian (2000) and Molinaetal. (2003)
note, their formula suffers from the problem of a ‘fast start’, i.e. if
an inertia axis is parallel to J, nutational damping continues to be
predicted to take place when in fact it should be absent. This is
equivalent to saying that in equation (19), § is non-zero when 6
— Qor7/2. This ‘problem’ persists in our formulae. However, the
truth is that this is not really a problem: § does in fact turn out to
be zero when 6 = 0 or 7t/2 provided we use these values of 6 right
from the beginning, i.e. when we estimate the amount of fluctuating
energy E. Analogous to what we saw in the technical comment at
the end of Section 6, there is no reason to expect that the value of
the limit as & — 0or7t/2 will be equal to the value at these points
due to the averaging integrals involved. This in fact is a classic case
of confusing the limit of a function with its value at a point. We note
that this has nothing to do with the validity of the averaging approx-
imation in equation (19) near the poles, i.e. when 6 = 0° or 90°.

(c) Both Efroimsky & Lazarian (2000) and Molina et al. (2003)
report that damping times are insensitive to the aspect ratio 4. This
is somewhat true in the range 0.5-2 of the aspect ratio. However,
away from this regime, our results (see Fig. 2a) indicate a strong
dependence on h.

(d) Comparing our values of D with those of Efroimsky & Lazar-
ian (2000) and Molina et al. (2003), we see that the extent of
the energy dissipation does not seem to have been previously un-
derestimated. If we consider damping to within a degree of the final
state, then calculations show that, in fact, if anything, it appears to
have been overestimated by as much as a factor of 100.

Calculations show that D can be much larger than this if one uses
an alternate rate-dependent (viscous) energy dissipation model. This
slower energy loss in the latter case happens because a viscous model
only penalizes the rate of change of the strain energy. On the other
hand, calculations also show that if we use the alternate estimate of
the energy fluctuations outlined in Appendix A, the shape parameter
isreduced. This occurs because the alternative formulation penalizes
energy fluctuations that are neglected in the present formulation.

(e) Efroimsky & Lazarian (2000) and Efroimsky (2000, 2001),
maintain that their solution differs fundamentally from all earlier
ones, except for Peale’s (1973), because they had recognized a
double-frequency term, and this accounted for order-of-magnitude
discrepancies in damping times. (For the historical record, we note
that, much earlier, Prendergast 1958, uncovered this term.) Later,
Molina et al. (2003) also spend considerable space on this feature.
This claim of substantial energy loss associated with the double-
frequency term seems implausible for three reasons. First, we have
used the same acceleration field as they, but our solution is dis-
tinct from theirs. Secondly, the functional dependence on 7 is not
very strong. Lastly, when using the Q model (with a constant Q), in
any Fourier decomposition of the strain energy each Fourier term
dissipates exactly the same amount of energy. In other words, the
fractional energy dissipation associated with each loading frequency
is exactly the same. This is easily seen by noting that the (absolute)
area underneath sin kt over a period of 27t is the same for each k
so that the amount of dissipation predicted by the Q model (being
directly proportional to this area) is the same. Thus, one does not
expect Fourier terms generated by a missed double-frequency term
in the acceleration to alter the amount of dissipation (and so the
dissipation time) by orders of magnitude.
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More likely, discrepancies between ourselves and Efroimsky &
Lazarian (2000) and Molina et al. (2003) result from the fact that
they both do not solve the elasticity problem for a homogeneous,
isotropic, linear elastic body exactly or even approximately. In the
case of the former, their solution does not satisfy the force-free
boundary conditions nor the compatibility equations. On the other
hand, Molina et al. (2003), while satisfying the force-free boundary
conditions, bypass the compatibility conditions by placing the (ad
hoc) restriction on the shear stresses to be zero. Though, while this
manoeuver may guarantee uniqueness of the stress solution, we
still do not know the rheology for which these solutions have been
derived. The rheology may be something completely unphysical.
In both these papers, the authors have chosen not to satisfy the
compatibility equations. As noted in the remark in Appendix C, not
satisfying the compatibility equations is a rather serious drawback.
For an example that illustrates this point, see Appendix C.

9 DAMPING TIMES

The actual times over which the nutation disappears can be com-
puted from (24) once values for the parameters ., Q, etc., are substi-
tuted in that expression. However, when estimating 7'y for asteroids
and comets, neither u nor Q is known, nor can these parameters be
measured. Even for the proximate Earth, their values are not found
from experiment but rather were originally inferred by the gross
properties of our planet (e.g. the elastic modulus of the Earth is de-
rived from seismic wave speeds, whereas its Q value comes from the
decay of seismic wave amplitudes, see Knopoff 1964 or Lambeck
1980, 1987).

Our understanding of the interior make-up of small, distant solar-
system bodies (asteroids and comets) has improved dramatically
over the last decade (see, e.g., Asphaug, Ryan & Zuber 2002; Binzel
et al. 2003). Many researchers now accept that such bodies are
‘rubble piles’, innumerable particles (whether collisional debris or
primordial building blocks) held together principally by self-gravity
augmented perhaps by feeble intermolecular forces. Puzzles remain
as to how asteroids can look so solid (support large craters and
irregular shapes, rotate as units) but apparently possess so little
strength as indicated by their rotational characteristics, high porosity
and apparent susceptibility to fragmentation under weak tidal forces
(Binzel et al. 2003).

Our estimate of u Q follows Harris (1994), who selects u Q =5 x
10" and p = 2.5, each in cgs units. These choices differ from those
of Burns & Safronov (1973), who had assumed a much stronger and
harder material, as well as those of Efroimsky & Lazarian (2000),
who took a weaker material. With these choices and selecting D
as 200 (roughly corresponding to oblate or prolate bodies with a/c
either 2 or 1/2), we find that the nutational damping time, given in
millions of years, is

P3
Ty=024—, (25)

where the spin period P is expressed in hours and the radius of the
asteroid is stated in kilometres. Almost all of the more than a thou-
sand asteroids with published light-curves are considerably larger
than a kilometre in size and have spins that are on average 10 h
long (summary plots are given in fig. 1 in Pravec et al. 2003 or
fig. 2 in Paolicchi, Burns & Weidenschilling 2002). Thus almost
all asteroids have nutational damping times that are considerably
shorter than the age of the solar system. Only about a dozen as-
teroids (or one in a hundred) are known to be wobbling (see the
tabulation in Paolicchi et al. 2002 and the plots in Harris 1994;
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Paolicchi et al. 2002). Most of the tumblers known today are small
and/or slowly rotating. All but one of the wobblers have nutational
damping times that are longer than the age of the solar system as
computed according (25) above. An approximately equal number of
asteroids that are not apparently wobbling fall into the region where
damping times exceed 4.5 billion years. The tumbling of some frac-
tion of these may, of course, have simply gone undetected; others
may, for one reason or another, suffer more severe internal energy
dissipation.

About two-thirds of the tumblers are Earth-crossing objects and
another is a Mars-crosser. However, it is uncertain whether this
result occurs because most tiny objects with measured light-curves
are predominantly Earth-crossers or because planet-crossing events
themselves may engender the wobble (Black et al. 1999). Among
the very fastest-spinning asteroids, only 2000 WL107, a20-m radius
near-Earth asteroid turning in 20 min, is tumbling. From (25), its
damping time is 20 Myr, a time similar to the estimated collisional
age of 10 Myr of such a minor planet in the main belt. Thus, its
nutation is unremarkable.

Only a few cometary spin rates are known and, in the mean, they
are longer than those of asteroids. The inferred sizes of cometary
nuclei are generally much smaller than those of typical asteroids.
Hence, cometary wobble damping times, according to (25), are con-
siderably longer than corresponding values for asteroids. It is not
surprising, then, that — despite a small sample — several comets, most
notably Halley, exhibit complex light-curves.

Because the sizes and spin rates of the few bodies that are known
to be wobbling appear to match well the predictions of our theory,
we take this as prima facie evidence that the above treatment may
indeed be correct. It also suggests that collision rates in the asteroid
belt are, and have been for some time, quite modest.

10 CONCLUSION

In this work we have presented a reasonably complete calculation
of the nutational damping times for prolate and oblate spheroids
in free space. Any reader who wishes further details on the calcu-
lation should contact the lead author. Our approach has relied on
several assumptions, some of which (e.g. small distortions and the
neglect of their effect on the subsequent dynamics) may leave our
methodology open to criticism. The next step toward creating a bet-
ter model must necessarily involve tracking the change in the shape
of the body and incorporating its influence on the dynamics of the
body. At the same time one could consider moving away from the
regime of small strains to allow for large deformations of the body,
which in turn would require accounting for possible changes in the
internal gravitational field. Finally, one should introduce more real-
istic constitutive laws (i.e. better descriptions of how stresses link
to strains).

The completeness of our computation is perhaps its principal
merit. Unfortunately, this came at a considerable cost: many phe-
nomena were overlooked. Yet we are confident that it would be com-
plicated to include most of the ‘improvements’ mentioned above.
Thus it may be time to attack this problem from an entirely novel
analytical philosophy (namely to sacrifice some rigour so as to per-
mit a more complex model) or from a numerical viewpoint (cf.
Richardson et al. 2002). The benefits may be substantial now as
landings on comets (Rosetta) and asteroids (Muses C) are being
planned, and as we attempt to characterize potentially hazardous
asteroids in order to develop strategies that will mitigate their pos-
sible threat to our planet.
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APPENDIX A: REMARKS ON THE 0 MODEL

As mentioned in Section 4.1, the definition of a measure of the
‘amount of fluctuating energy’ is not entirely obvious due to the
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type of body forces acting on a wobbling body. Consider a simple
one-dimensional example (e.g. a beam in tension). We consider a
case where the stress in this object is 0 = V2(a + bsinnt), and
thus is not purely sinusoidal but has a constant offset as well. This is
similar to the stress field in a nutating body. Proceeding to calculate
the (specific) strain energy, we obtain for a linear elastic material,

1
e= Eae = a® + b? sin® nt + 2ab sinnt.

In the above we assumed that the elastic constants are normalized
to unity so that the strain € = o. Now blindly using the standard
definition (2) will pick up the offset a*>. This seems inappropriate
because one does not expect constant stresses to lead to energy dissi-
pation. A possible alternative could be to, as Efroimsky & Lazarian
(2000) and Molina et al. (2003) do and similar to the definition out-
lined in the previous section, simply drop the offset term a from
the strains at the outset and calculate the average of the resulting
energy expression (b sin? nt in the above example). Unfortunately,
there is no easily identifiable reason why this procedure should
logically yield a good measure of the amount of fluctuation in the
strain energy. After all, in the above expression some of fluctuations
are carried by the 2ab sin nt term also. Thus, it would seem that by
dropping the offset from the stresses we are not accounting for these
fluctuations.

Alternatively, if energy dissipation is due to frictional sliding
between grain boundaries or at crack faces, it would make sense for
the dissipation to be affected by the presence of an offset.” This is
because an offset in the stress functions as a pressure, the presence
(or absence) of which increases or decreases the frictional force,
in turn affecting the amount of dissipation. The energy dissipation
model obtained by simply throwing out the offset in the stresses will
miss this mechanism of dissipation.

To the best of our knowledge, definitions of Q corresponding to
stresses of the kind ‘a + b sinnt’ are not readily available; thus
one needs to define an appropriate measure of the fluctuating strain
energy. One way to do this would be to think of fluctuations of the
strain energy as the amount of area under the strain energy graph
that actually changes sign over a loading cycle. So we would define
the amount of ‘fluctuating’ strain energy given by the specific strain
energy (es) via the definition

EM = / (les — (es)]y dV. (A1)
\%4

In this estimate one taxes the (absolute) amount of time-varying
strain energy. Unfortunately this expression suffers from the (obvi-
ous) problem as to how to handle the absolute value in the integrand.
Thus, rather than trying to evaluate EM° as suggested by equation
(A1), we introduce a new measure of the ‘fluctuating’ strain energy
E’ which dominates the previous estimate in the sense that

fluc inld
E™ < E.

Towards this end, we define

1/2
E =V / <<es—<es>>2>dV] , (A2)
\4

31t was pointed out by the referee that the standard definition of Q, which
is the one employed in the main text, when used for rocks, is insensitive to
pre-stressing over a broad range of pressures. Whether this holds true for
asteroid interiors that might be granular aggregates is not, as yet, known.
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which can be seen to have the aforementioned property by employ-
ing the following two inequalities:®

T T 12
/ [fldr < (T/ fzdt) ,
0 0
and
12
/\/g)dvg (V/gd\/) .
v v

We can now write (1) as

2nE!
AE =
Q/

with E; given by (A2). The reason for using Q' instead of Q will be
clearer in the next paragraph. This formula manages to capture the
fluctuation in the strain energy when the stresses are not purely sinu-
soidal and also gives estimates comparable to Lambeck’s definition
when the stresses are pure sinusoids.

A possible criticism is that it is not correct to compare damp-
ing time-scales using this definition with those obtained by using
the previous one. The reason being that the Q' used here might be
very different from the Q used in Lambeck’s definition of Section
3.1. However, then this criticism will be true too for the (ad hoc)
extension of Lambeck’s model postulated in that section.

However, consider the following experiment. Take a bar of unit
volume and apply stresses of the kind b sin nt. In such loadings we
know that Lambeck’s definition holds true. It predicts the dissipation
to be

; (A3)

27 b?

AE = ——.
02

Meanwhile the dissipation as mentioned by this model would yield
21 b?

AE =

T 022
Because the energy dissipated is a physical quantity, comparing the
two equations we see that

0 =02

This indicates that perhaps Q and Q' are comparable and not vastly
different as might be suggested. Moreover, we prefer to think of the
quality factor as a parameter, and do not think that the Qs should
be differentiated, especially because they do not seem to differ by
orders of magnitude.

The above definition is supposed to capture fluctuations in the
strain energy that were missed by the earlier formulation. Thus, one
expects greater energy dissipation when using this definition which
in turn would imply shorter damping times. This indeed turns out
to be the case. The corresponding shape parameter, is calculated to
be at least a factor of 10 lower. This should not be attributed to a
difference in Qs, because as mentioned in the previous paragraph,
we do not expect the corresponding Qs of the two definitions to
differ by an order of magnitude.

APPENDIX B: DYNAMICS OF A RIGID
ELLIPSOID OF REVOLUTION

For a free rigid body in space, angular momentum and energy are
conserved quantities. In addition to the angular velocity components

6 These are really two instances of the Cauchy—Schwarz inequality.
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Q; (i =1,2,3)along the principal axes, we introduce an intermediate
component measured along &, (see Fig. 1), Q. Then, because
of axial symmetry, we can write the angular momentum vector as
A, e +CQ;é;3. Conservation of angular momentum would imply
that this sum is a constant vector J. We orient the body as shown in
Fig. 1 with 6 measuring the tilt of the axis of symmetry é;.

From straightforward geometry, we have

CQ3 = Jcosb, (B1)
AQ, = Jsin6. (B2)
Energy conservation states that the kinetic energy’ Ey is given by
AQ? + CQ% = 2E, = constant.
Substituting from the previous two equations, we obtain
J?sin? 0 N J?cos? 6
A C

Then angular-momentum conservation implies that the angle 6 is a
constant (derivable from the above expression).

Let us write & = W + & in terms of a spin ¥(= /&) and an

inertial precession ®(= ok); see Fig. 1. Their magnitudes can be
solved by first noting that

¢sind =Q, = Q3 —¢cosh.

—2E,.

From these expressions and (B1) we obtain the formulae for W and
& given by equations (7) and (8), respectively. Referring to (7) and
(8), one should note the constancy of the spin and the precession
because H, J, C and @ are fixed for a rigid body.

Finally, we calculate the acceleration at a body point r:

ar)=v=Qxr=Qxr+Qxr, (B3)
but
Q=B+ b=y =0 x
=0 x W,
while
F=Qxr.

Using these in (B3), with the notation that abe = a x (b x c), we
obtain

ar) = (Qx V) xr+Qx(Qxr)
=—rxQx¥)+Q2x(Qxr)

—rQw +(T(?r

= —rdw + U Hr + dWr + PPr + Oor
280r + dHr + Ty, (B4)

where in the fourth line we have used the vector identity abc +
bca + cab = 0 in the first two terms.

APPENDIX C: ELASTICITY SOLUTIONS

In equation (13) the body force is

F = p{laiz+ () + bs)x +c1y] &
+ a2z 4 byx + (2 + cy)yl &, (CDH
~+ (a4z + b3x + c3y) é3}

7 Because we are neglecting self-gravity and outside effects, there is no
potential energy and all energy is kinetic.

with the constants given by equation (14). The equations to be solved
are the well-known Navier equations

A+ mVV -u)+pViu+F =0, (C2)

where A and u are the Lamé constants and u is the displacement of a
material point. The boundary condition that the surface of the body
( B) is free from applied forces can be stated in terms of stresses as

U,'_,'I’l_,‘lag =0. (C3)

Because the body is taken to be isotropic and linear elastic the
stresses are related to the strains (€ ;) by Hooke’s law

(T,'j = kekkS,-j =+ Zﬂéij. (C4)

Finally, the strains can be obtained from the displacements by the
equations

1
€j = E(ui,.i +uji). (C5)

Equations (C2) and (C3) represent a closed system of partial differ-
ential equations that (given the geometry of a body) can be solved
for the displacements u. Once the displacements are known, the
strains and the stresses can be calculated from equations (C5) and
(C4), respectively.

In order to solve (C2) with the boundary conditions (C3), we
exploit the linearity of (C2). We seek solutions of the form u =
uy + up such that uy satisfies (C2) with F = 0 (the so-called
homogeneous solution) while up is any solution to (C2) (this is
the particular solution). As Love (1946) noted, uy is a bi-harmonic
function® and each of its components (uy, vy, wy) can thus be
represented (Fung 1965; Chree 1886) most generally in terms of
infinite sums of spherical harmonics (H,) of order n as

uyg = ZHH +r22Hn—21

with r = (x2 + y? + z?)"/? being the distance from the origin.
Similar representations apply to vy and wy. Note that neither uy
nor up will necessarily satisty the boundary conditions (C3), but the
hope is that by appropriately choosing the various constants (which
have been suppressed in the expansion above but are incorporated
in H,) one can satisfy (C3). Once these constants are found, we
can calculate the total strain energy (E) stored in the body from
E, = %fv i€ dV.

REMARK

An elasticity problem can be formulated either in terms of displace-
ments (the Navier equation above) or directly in terms of stresses.
A displacement formulation incorporates the specific rheological
model of the body (a linear elastic solid in our case) under consider-
ation. However, a stress formulation is simply a statement concern-
ing the static equilibrium of the body. It makes no connection with
the rheology of the solid. Thus, there exists infinitely many sets of
six independent stresses that satisfy (static) equilibrium as well as
the prescribed boundary conditions. Each of these infinitely many
solutions are the solutions of a solid with some rheological model.
However, the nature of this rheology is unknown, and it is very likely
that the rheology would be completely unphysical. In order to help
us choose those stresses which are a solution to a specified rheology,
there exist compatibility equations. Thus, if we need stresses that
are solutions to a linear elastic solid, we must make sure that the

8 That is, it satisfies V# uy =0.
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Figure C1. An example problem in which a beam of length L and cross-
section @ x a is subjected to end loads given by y*> — a?. The coordinate
system is as shown. The length L is assumed to be much larger than the
thickness a.

stresses not only satisfy equilibrium and the boundary conditions
but also the compatibility equations that accompany the linear elas-
tic theology. In summary, a set of stresses, satisfying equilibrium
and boundary conditions but not the compatibility equations, run
the risk of being solutions to a solid for which the rheology, if it was
known, might not be very useful. See Love (1946) or Fung (1965)
for further details.

Efroimsky & Lazarian (2000) and Molina et al. (2003) have so-
lutions that satisfy equilibrium and the boundary conditions (ap-
proximately in the former case and exactly in the latter). However,
because their solutions do not satisfy compatibility conditions, it is
very probable that their solutions will be far from being the solutions
of a linear elastic solid. In fact, one has no knowledge of the elastic
behaviour of the solid for which they have obtained solutions. It
should be mentioned that though Molina et al. (2003) do not satisfy
the compatibility conditions, they make each individual stress com-
ponent vanish at the boundary. This is more than what is required
at the boundary because, according to (C3), the net force should
vanish at the boundary, which is not the same as all the stresses
vanishing. Thus, Molina et al. (2003) enforce extra conditions on
their stresses which they claim substitute for their having to satisfy
the compatibility conditions. However, there is no reason to believe
that enforcing such artificial constraints on their stresses will make
their solution any more or less physical than Efroimsky & Lazar-
ian (2000). Nor does such an imposition help us in identifying the
rheology of their body.

Finally, consider a simple example that illustrates that it is im-
possible to find (compatible) displacement fields for solutions of
a linear elastic material that do not satisfy the compatibility condi-
tions. Consider the long beam of Fig. C1 with a < L and subjected to
the forces shown. A solution that satisfies equilibrium and boundary
conditions but not the compatibility conditions is

2 2
Oxxy =y —as,
0y = 0y, =0.

Immediately we know that there is something wrong. Consider the
stresses on a cross-section far away from the ends. The stresses on
it will be the given by o, above. However, according the Saint-
Venant’s principle® the stresses on a cross-section far away from the
ends should be uniform as the elasticity solution is not sensitive to
the distribution of the loads at sufficient distances from the point
of application of the loads. This is an indication that everything
may not be correct concerning the solution above. However, there
is a more direct reason. Consider solving for the displacement field
using the above solution assuming the body to be isotropic, linear

9 See Timoshenko & Goodier (1970) for more details.
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elastic. Using (C4), we obtain the strains

A4+ y? —a?
€y = —————(*—d¥) = ,
nGBA+2u0) E
A —v(y? —a®)
€y = — O —a)= )
2u@Br +2p1) E

€y =0,
where E is the Young’s modulus. Using these in (C5) to solve for
the displacements u, and u,, we see that the following equations

must be satisfied:

Ou, y2—a

ox E

Ouy —v(y? —a?)
- E
Ous + 0, _ 0

oy ox '

In the above, v is the Poisson ratio. It is easily seen that it is impos-
sible to find any u, and u, that are compatible with the above three
equations simultaneously. The purpose of the compatibility equa-
tions is precisely to reject such solutions that are unable to yield
compatible displacement fields. If a solution does satisfy the com-
patibility equations, we are assured that the displacement equations,
analogous to the three above, will have a solution.

APPENDIX D: THE STRESS FIELD

In this section we give the stresses arising at any point (x, y, z) of an
elastic body with A ~ p due to its tumbling motion in free space.
For cosmetic purposes we introduce A; and B; as functions of the
aspect ratio. Let [m, n, p] = m + nh® + ph*. Then these functions
can be enumerated as follows:

5[0, 1, 0] [—39, 20, 0]
Al=—1" - Ap=-—""=
[13, 20, 0] 30[9, 8, 16]
0,13, —60] ~5[1,0,0]
T 1519,8,16] T 2[15, 10, 8]
Bi( )= [5,5,41(a®> — x* — y*) — [5, 4, 0]z*
Y= 2[15, 10, 8]
BZ(xa Yy, Z)
_[39,52,100](a? — x?) — [21, 16, 60]y* — 4[18, 25, 0]
- 3009, 8, 16]
Bs(x,y,z2)
190, 1, —2](a® — x?) — [0, 31, 6]y* — [45, —158, 0]z
- 30[9, 8, 16]
By(x,y,2)
_ —10,13, 15](a® — x») + [0, 13, 51y* + [13, 15, 0122
a 2[13, 20, 0]
BS(xs y’ Z)
_[135, 146, 120](h%a® — 2%) — [0, 135, 172)(x + y?)
- 3009, 8, 16] ’
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Now we can write the stresses as

1
;o” = —2A|w3w  yzcosnt + a4 Bi(x, y, 7) cos 2nt

+(2bs +as)By(x, y,z) +asBs(x, y, 2)
1
—0y = —2A 03w xzsinnt — ayB(x, y, z) cos 2nt
P

+ (2bs + as)By(y, x, 2) + as B3(y, x, 2)

1
—0op = Ajwswy (x cosnt + ysinnt)z — asB(x, y, z) sin 2nt
P

Xy
2 —y?

4+ (2bs + as) [Ba(x, y, 2) — Ba(y, x, 2)]

xy

+as[Bs(x,y,2) — B3(y, x, 2)] -
x5 =)

2

1
—013 = Ajh?wsw  xy cosnt + Ay(2bs + as)xz + Azasxz
0

+ Agaq(y sin2nt — x cos 2nt)z + wswy B4(x, y, z) sinnt

1 .
;623 = AW’wsw xysinnt + Ay(2by + ag)yz + Aszasyz

+ Agaq(y cos2nt + x sin2nt)z + wswy By(y, x, z) cos nt
1
—oy = A2bs +ay) [P(@® = 2x° = 2y%) = 7]
0

+ Ash’ay [(x2 — y?)cos 2nt — 2xysin 2nt]

+ay4Bs(x, y, 2).

The angular velocities w |, w3, a4, by are defined in (12) and (14)
and n is the magnitude of the spin angular velocity (see the last of
equation 14).
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