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Recent research has suggested that asteroids might be particle aggregates held together by self-gravity alone.
This has important implications on the possible equilibrium shapes of spinning asteroids. As in the case of
spinning fluid masses, not all shapes and spins may be compatible with a granular rheology. We take the
asteroid to be an ellipsoid with an interior modelled as a rigid-plastic, cohesion-less soil. Using an approximate
volume-averaged procedure, we are able to derive regions in spin-shape parameter space that allow equilibrium
solutions to exist. Our results are the same as those reported by Holsapple (2000), but are obtained with much
less effort. We also investigate the dynamics of such spinning asteroids and attempt to recover the results of
Richardson et al. (2004), who obtained equilibrium shapes of smooth spherical aggregates by numerically
studying their passage into equilibrium.

1 INTRODUCTION

Investigations of spinning fluid masses go back to
the time of Newton who, assuming the asphericity
to be small, determined the flattening of the Earth
by modelling it as such. Later, Maclaurin determined
the equilibrium shapes of oblate fluid rotators, the so-
called Maclaurin ellipsoids. He further showed that
prolate equilibrium shapes cannot be obtained. Truly
triaxial ellipsoidal shapes of equilibrium for spinning
fluids were not supposed to be realisable until Jacobi
put forth an argument in support of their existence.
These ellipsoids branch off from the Maclaurin se-
quence and are called the Jacobi ellipsoids. The equi-
librium shapes of spinning fluid ellipsoids are com-
prehensively covered by Chandrasekhar (1969) in a
unified manner, using the volume-averaged method
introduced below.

Recent research (see Richardson et al. 2002) has
suggested that asteroids might be incoherent struc-
tures held together by self-gravity and best modelled
as granular aggregates. Observations also show that a
majority of asteroids are in a state of pure spin about
their axis of maximum inertia. This motivates a study
of equilibrium shapes of spinning aggregates taken
to be ellipsoids as a first approximation. Like fluids,
granular materials place restrictions, though not as
severe, on the allowable shapes of a spinning ellip-
soid by limiting the amount of stress that it can tol-
erate. Such restrictions may help constrain their inte-
riors and thus, constitute a first step towards solving
the inverse problem of inferring the asteroids’ interi-

ors from a knowledge of their shapes and spins. This
is especially important now that the shape and spin
states of many asteroids are known to a high degree
of accuracy, either from radar observations (see Os-
tro et al. 2002) or by inverting light curve data (see
Pravec et al. 2002).

Granular materials display a wide range of be-
haviour, from nearly rigid structures to loose fluid like
flows. It seems appropriate to consider asteroids as
dense frictional aggregates modelled as a rigid-plastic
soil obeying a Mohr-Coulomb failure law. Holsapple
(2001), in his analysis of equilibrium shapes, used this
rheology for asteroid interiors. His analysis relied on
techniques of limit analysis from plasticity theory, in
particular, the lower limit theorem (see, e.g., Chen and
Han 1988). He was able to map out regions in spin-
shape space where ellipsoids could exist in equilib-
rium. In his sudy, the body fails at a point whenever
the inhomogeneous distribution of stress satisfies the
yield condition at that point. His analysis was a lo-
cal one in contrast to the volume-averaged approach
presented below.

Richardson et al. (2004) studied the equilibrium
shapes of spinning dense granular aggregates mod-
elling them as collections of smooth spheres held
together by their gravity. From an initial (non-
equilibrium) configuration they followed the evolu-
tion of each sphere using a smooth particle hydrody-
namic (SPH) code until equilibrium was attained.

Here we investigate asteroids modelled as rigid-
plastic soil ellipsoids in pure spin using a volume-
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averaged method. We will first obtain regions in pa-
rameter space describing the shape where, for a given
spin, an ellipsoidal asteroid can exist. Our results
match Holsapple’s (2001) exactly, but are obtained in
a very transparent manner using a minimum of com-
putation. We then study the dynamical evolution of a
non-equilibrium ellipsoid, which is very complicated
if Holsapple’s (2001) approach is followed. This will
help evaluate the appropriateness of comparing our,
and Holsapple’s (2001), continuum approach to the
discrete model used by Richardson et al. (2004).

2 VOLUME-AVERAGING
We begin with a kinematic assumption, viz. the ellip-
soid’s deformation is homgeneous, so that the defor-
mation gradientF is constant. Thus, ellipsoids can
deform only into ellipsoids. This is a first approxima-
tion, but was shown by Chandrasekhar (1969) to yield
physically meaningful results in the case of spinning
fluid masses, and is further motivated by the fact that
spinning elastic ellipsoids deform into ellipsoids (see
Love 1946). Equations governing the evolution ofF
are obtained by taking the first moment1 of the linear-
momentum-balance equations

∇ · σ + ρb = ρẍ, (1)

and assuming a traction-free surface, to yield

F̈F−1I = M T −σV, (2)

wherex is the position vector,σ the average stress,

I =

∫
V

ρx⊗ xdV , (3)

the inertia dyad, and

M =

∫
V

x⊗ ρbdV , (4)

the moment tensor due to the body forcesb. In our
case, the body force is due only to internal gravity,
and we can compute the above integral to find

M = −2πρGIA, (5)

whereG is the gravitational constant and the tensor
A captures the effect of the ellipsoidal shape on its
internal gravity (see Chandrasekhar 1969). It depends
only on the axes ratioα = a2/a3 andβ = a3/a1.

Introducing the velocity gradient

L = ḞF−1, (6)

1I.e. integrating the dyadic product (⊗) of each quantity in
the equation with the position vector, over the body’s volumeV .

and using (5) forM , reduces (2) to(
L̇ + L2

)
I = M T −σV. (7)

The inertia dyad’s evolution is governed by

İ = LI + ILT , (8)

which is obtained by taking the first moment of the
mass conservation equation.

In the case of an ellipsoid in pure spin and in
equilibrium, L’s symmetric part, thestrain rate (or
stretching rate) tensorD = 0, so that (7) simplifies to

σV =
(
2πρGA−W 2

)
I , (9)

whereW , theangular velocity(or spin) tensor, is the
anti-symmetric part ofL. Note that the above equa-
tion is a balance between “centrifugal” and gravita-
tional stresses in a volume-averaged sense.

In general, Eqns. (6), (7) and (8) govern the motion
of a homogeneously deforming gravitating ellipsoid
in free space, once a constitutive equation forσ is
specified.

2.1 Rheology
It is possible to explore different material models by
specifying an appropriate constitutive relation. We re-
strict attention to a rigid-plastic frictional soil with
an appropriate failure criterion. The material remains
rigid until a failure criterion is violated, whereafter
plastic flow begins. For statics, we use the Mohr-
Coulomb (MC) criterion:

σmax − kMCσmin ≤ 0, (10)

in terms of the extremum principal stresses andkMC

is related to the internal friction angleφF by

kMC =
1 + sinφF

1− sinφF

. (11)

For dynamics, we use a smoothed MC criterion, the
Drucker-Prager (DP) failure criterion

|σ′|2 ≤ k2p2, (12)

wherep is the pressure,σ′ the deviatoric stress and

k =
2
√

6 sinφF

3− sinφF

, (13)

chosen so that the DP-yield surface is the inner enve-
lope of the MC-yield surface. Subsequent plastic flow,
assumed incompressible, is governed by the flow rule

D = q̇σ′, (14)

with q̇ a constant. The stress during plastic flow is

σ = p

(
1 − k

D

|D |

)
. (15)
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3 EXAMPLES
We give two examples of the above volume-averaging
approach in the context of ellipsoids spinning about
the 3-axis with1 > α > β.

3.1 Statics
By using stresses from (9) in the MC-failure criterion
(10) with an equality sign, we obtain critical curves
for the spinW3 in terms of the axis ratioβ. We use
α = (1 + β)/2 for triaxial ellipsoids. In each case, we
have to chooseσmax andσmin, thus yielding regions
separated by heavy curves on which two of the prin-
cipal stresses are equal, as shown in Fig. 1. We see
that, for any friction angle, there is an upper and a
lower curve bounding a region within which a stable
spinning ellipsoid is possible. The failure can be un-
derstood by identifying the maximum and minimum
principal stresses at failure. For example, in the oblate
and prolate cases, the upper region(s) corresponds to a
rotational disruption, the centrifugal stresses dominat-
ing gravitational stresses. In the oblate case, the lower
region corresponds to gravitational collapse. This is
not true for prolate objects, where the lower-most re-
gion corresponds to disruption due to a competition
of rotational stresses in the equatorial plane. Invis-
cid fluids are indicated byφF = 0o. The heavy curve
in Fig. 1(a) corresponds to the Maclaurin ellipsoids,
while Fig. 1(b) shows that static prolate inviscid ellip-
soids are not possible. A Jacobi ellipsoid is indicated
by the intersection point in Fig. 1(c).

The constraints on spin and shape for rigid-plastic
soils obtained using volume-averaged methods are in
complete agreement with Holsapple’s (2001) results.
In some respects, this exact match is very surprising,
because the homogeneous method deals with volume-
averaged stresses and, thus, looks for failure on the
average. In contrast, Holsapple’s (2001) exact anal-
ysis seeks failure point-wise. Thus, it might be ex-
pected that a point-wise theory would be more sen-
sitive than an average theory, which should be more
conservative. The reason for the match lies in the fact
that Holsapple’s (2001) analysis predicts simultane-
ous failure at every point in the body. This means that
failure at a point coincides with failure on the average.

3.2 Dynamics
We study the passage into equilibrium of prolate (α =
β) ellipsoids in pure spin with friction angleφF = 40o.
When thought of as rigid-plastic objects, the equi-
librium shapes obtained by Richardson et al. (2004)
were shown by them to lie in a region bounded by
φF = 40o curves (as in Fig. 1(b)).

Requiring a compressive average pressure, as is of-
ten done for granular materials, yields the disruption
curveC3 in Fig. 2. We useC2, the failure curve cor-
responding to the smooth DP criterion, instead of the
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Figure 1: Regions in spin-shape space where equi-
librium ellipsoids are possible. Numbers next to the
curves indicate the corresponding friction angleφF .
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less conservative curveC1 obtained from the MC cri-
terion (see Fig 1(b)). Ellipsoids with initial conditions
betweenC3 and C2 deform dynamically until they
reach an equilibrium shape. Fig. 2 shows the results
with the initial and final states connected. The average
final α is indicated by numbers next to each group.

Comparing the results of Fig. 2 with those of
Richardson et al. (2004), we find that there is quali-
tative, and in some respects, even quantitative match.
We predict the presence of a disruption zone that cor-
responds to those of Richardson et al. (2004). Like
them, we obtain a rather narrow “deformable” zone
above the upper failure curve, with ellipsoids elon-
gating before equilibrating. There are two principal
differences. First, unlike Richardson et al. (2004), we
can predict a disruption, but not follow it through.
This may be addressed by using higher-order mo-
ments. Second, we observe less deformation than
Richardson et al. (2004). This could be attributed to
our use of the curveC2 (DP criterion), rather than
C1 (MC criterion), as the upper boundary of the equi-
librium region. The latter delays transition to rigidity,
thus enhancing deformation. However, we believe this
is because in the model of Richardson et al. (2004),
the internal friction’s origin is geometric alone, i.e.,
due to the aggregate’s packing, as the constituent
spheres are smooth. Thus, in their case, the frictional
resistance contributes at higher packing fractions. In
contrast, our model preserves volume, and does not
differentiate between geometric and surface friction,
leading to a greater frictional effect, so that the el-
lipsoid equilibrates faster. This could be amended by
using a flow rule that is not volume preserving, and by
allowing the friction to depend on the packing fraction
to simulate a geometric dependency. Alternatively, we
could model the initial aggregate as a dense gas of
smooth spheres, whose rheology transitions to that of
a rigid-plastic soil as the packing fraction increases.

4 CONCLUSIONS

We employ a simple and transparent method to char-
acterise the equilibrium shapes, and passage into
such states, of asteroids with interiors modelled by
cohesion-less rigid-plastic soils. This approach can
also be used to study disruption of asteroids during
a planetary fly-by. The fact that we recover Holsap-
ple’s (2001) results exactly and those of Richardson
et al. (2004) approximately has a number of impli-
cations. First, it may be used to determine the sta-
bility of the equilibrium shapes, as carried out by
Chandrasekhar (1969) for fluid ellipsoids. Next, non-
equilibrium dynamics of rigid-perfectly-plastic ellip-
soids can be explored in a rather simple manner with
the added ability of quantifying the results of Richard-
son et al. (2004). Finally, the volume-averaged ap-
proach is amenable to systematic improvements. Dif-
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Figure 2: Passage into equilibrium of initially prolate
ellipsoids.

ferent internal rheologies may be explored. It may
also be possible to extend the analysis to more gen-
eral shapes by using higher-order moments. Such an
analysis will be fruitful considering the wide variety
of shapes seen amongst asteroids.
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