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Granular aggregates, like fluids, do not admit all manners of shapes and rotation rates. It is hoped that an
analysis of a suspected granular asteroid’s equilibrium shape and its structural stability will help confirm
its rubble-pile nature, and, perhaps, even constrain the asteroid’s material parameters. Equilibrium
shapes have been analyzed in the past by several investigators (Holsapple, K.A. [2001]. Icarus 154,
432-448; Harris, AW., Fahnestock, E.G., Pravec, P. [2009]. Icarus 199, 310-318; Sharma, I, Jenkins, ].T.,
Burns, J.A. [2009]. Icarus 200, 304-322). Here, we extend the classical Lagrange-Dirichlet stability theo-
rem to the case of self-gravitating granular aggregates. This stability test is then applied to probe the sta-
bility of several near-Earth asteroids, and explore the influence of material parameters such as internal
friction angle and plastic bulk modulus. Finally, we consider their structural stability to close planetary
encounters. We find that it is possible for asteroids to be stable to small perturbations, but unstable to
strong and/or extended perturbations as experienced during close flybys. Conversely, assuming stability
in certain situations, it is possible to estimate material properties of some asteroids like, for example,

1943 Anteros.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in testing the structural stability of freely-
rotating rubble-pile asteroids. The equilibrium shapes of these ob-
jects have been analyzed previously by Holsapple (2001) via limit
analysis, by Harris et al. (2009) who bound the surface’s maximum
slope by the local angle of repose, and by Sharma et al. (2009) uti-
lizing volume-averaging. At the same time, Richardson et al. (2005)
explored the equilibrium shapes of a collective of same-sized
smooth rigid spheres via a hard-particle discrete-element simula-
tion, while more recently Sanchez and Scheeres (2011, 2012) have
utilized soft-particle discrete element simulations to investigate
the equilibria and dynamics of granular aggregates in space.

Much work is available in the stability of rotating fluid ellip-
soids subjected to gravitational and tidal forces; see, e.g., Chandra-
sekhar (1969), Jeans (1961) and Lyttleton (1953). In contrast,
except for the recent work of Holsapple (2004), the stability of
spinning ellipsoidal granular aggregates has not been explored.
As we will see, typical stability tests employed for fluids do not car-
ry over in a straightforward manner, if at all, to the case of rubble-
piles on account of them being most conveniently modeled as non-
smooth materials; cf. Section 3. A stability test for rotating non-
smooth complex fluids was recently developed by Sharma
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(2012), and we extend it to the case of granular aggregates. We will
utilize our stability test to investigate several near-Earth asteroids.
We also compare our approach with that of Holsapple (2004) at
Section 7.3’s end. Finally, we extend our analysis of local stability
under infinitesimal perturbations to include finite disturbances
via an approximate higher-order stability analysis.

In our analysis, we will model rubble-pile asteroids as homoge-
neous isotropic self-gravitating rigid-plastic ellipsoids, and, fur-
thermore, restrict ourselves to deformations that retain the
body’s ellipsoidal shape, i.e., homogeneous deformations. Sharma
et al. (2009), henceforth Paper I, derives relevant dynamical equa-
tions. For reasons discussed later, the stability of rotating bodies is
best tested from within a rotating coordinate system. Thus, we first
re-derive the governing dynamical equations below, separating out
the effects of an underlying rotating coordinate system.

2. Homogeneous dynamics in a rotating frame

Sharma (2012), henceforth Paper II, derives equations for a
homogeneously deforming ellipsoid in a rotating frame from first
principles. Here, for reasons of completeness and continuity, we
adapt the derivation of Paper I done in a fixed coordinate system
to a rotating frame.

We recall that during homogeneous deformation, the material
velocity

x=Lp-x, (1)
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with x locating a material point, (°) denoting the time derivative in a
fixed frame' and L being the motion’s velocity gradient that is spatially
homogeneous but possibly time-varying; here the subscript ‘F indicates
that the velocity gradient is with respect to a fixed frame. Equations
governing a homogeneously deforming ellipsoid free from surface
forces but experiencing the body force? b are (Sharma et al., 2009):

(i} +L§> I=-6V+M', and (2a)
I=L-1+1-L, (2b)
where ¢ is the volume-averaged stress tensor,

I= /\/px@ xdV, and (3a)
M:iApx®bd% (3b)

being, respectively, the ellipsoid’s inertia tensor and external mo-
ment tensor, p and V are the ellipsoid’s density and volume, respec-
tively, and the tensor product (®) for any two vectors a and b is
defined in indical notation by (a ® b); = a;b;. The first equation above
follows L¢'s evolution by balancing inertial forces, internal stresses
and self-gravitation, while the second describes the changing iner-
tia tensor. The inertia tensor I should be contrasted with Euler’s mo-
ment of inertia tensor frequently employed in dynamics; cf. (23).
Finally, we refer the reader to the Appendix of Sharma (2009) for
a short summary of relevant tensor algebra.

We now adapt the above formulae to a coordinate system O
rotating at a possibly time-varying rate (t). It is helpful to intro-
duce the anti-symmetric tensor £2(t) that satisfies

Wxx=8- x (4)

thus, o is £2’s associated axial vector. We employ rotation rate vec-
tors, such as w, and their corresponding angular-velocity tensors, like
€2, interchangeably. From, say, Lubarda (1999, p. 41), the rates of
change in O of a vector a and a tensor B may be related to their rates
of change in a fixed frame by, respectively,

a=a+Q-a and B=B+Q -B-B-Q,

where now, and henceforth, (') indicates a time derivative in the

rotating fram_e O. Thus, if & are unit vectors defining O, then

a=aé and B=Bg ®¢. Viewing the homogeneously deforming
i i

ellipsoid from within ©, we may now rewrite (1) as

v=x=Lx (5)

where v is the relative velocity of a material point in © and

L=L - Q, (6)

is the velocity gradient observed in the rotating frame O. Similarly,
the set (2) becomes

(L+L*)-T=-6V+M —(Q+9°+2Q-L)-1, and (7a)
I=L-1+1-L" (7b)

We note that the stress and moment tensors remain unaffected
by rigid body rotation, as does the form for I's rate of change. In the
first equation, the bracketed three terms on the right-hand side
stem from, respectively, angular, centripetal and Coriolis’ accelera-
tions, and act in the rotating frame as external moment tensors.
The two equations above follow an ellipsoid’s motion as it deforms
homogeneously relative to the frame O according to (5).

The above two equations contain three unknown fields, viz., L, &
and I Thus, a closure equation is required. This is provided by

! We slightly modify Paper I's notation for future convenience.
2 Force per unit mass.

introducing a constitutive law. Given our interest in rubble-pile
asteroids, we will next introduce a rheology that describes these
granular aggregates.

3. Rheology

In the past, Sharma (2004, 2009, 2010) and Sharma et al. (2005,
2009) have modeled a rubble-pile’s constitutive response by that
of a rigid perfectly-plastic cohesionless material obeying a
Drucker-Prager yield criterion and an appropriate flow rule that
governed the material’s behavior post-yield. Paper I chose for
simplicity a non-associative flow rule that preserved volume during
plastic flow. Here we consider an associative flow rule;
non-associative rigid-plastic materials are typically trivially
secularly® unstable, as we show in a later section.

We first quickly introduce the Drucker-Prager yield criterion
whose smoothness makes it amenable to three-dimensional dy-
namic problems. To formulate this rule, we define the pressure

p=— o (8)

and the deviatoric stress

s=o0+pl 9)
The Drucker-Prager condition may now be written as

s < k*p?, (10)

where [s| is s’ magnitude given by

s = sisi,

utilizing the summation convention, and

~ 2V6sin ¢y

3 —singg’ (I

in terms of the granular aggregate’s internal friction angle ¢r.
Employing the principal stresses a;, we have

Is| = %{(0'1 —02)" + (02— 03)" + (03 — 01)"}

:%(rfﬂgﬂg), (12)
where 1;=(0j— 0y)/2, i #j#k are the principal shear stresses.
Therefore, |s| is a measure of the ‘total’ shear stress, and, conse-
quently, the yield criterion (10) limits the shear stress in terms of
the pressure and the internal friction angle. This internal friction
models the ability of an aggregate to support shear stresses, and
is traced to both the usual interfacial friction due to particle interac-
tion, as well as a geometric friction due to interlocking and rear-
rangement of finite-sized constituents. The latter is generally
dominant in dense aggregates, but decreases with lowering density.
Similarly, ¢f is greatly affected by confining pressure, with grain
crushing lowering ¢r when the confining pressure is 1 MPa or be-
yond. Typically dense soils at these confining pressures display ¢r
between 30° and 40°. We discuss soil behavior in more detail in
Section 7.1. In passing, it is worth mentioning the alternate Mohr-
Coulomb yield criterion wherein relation (10) is phrased in terms of
the greatest shear stress rather than |s|; see Chen and Han (1988,
Section 2.3.3, p. 88). This yield criterion was utilized by Holsapple
(2001, 2004). Sharma et al. (2005) and later Sharma et al. (2009)
showed that utilizing Drucker-Prager yield surface allowed for a
better match with simulations of Richardson et al. (2005). The re-
cent simulations of Sanchez and Scheeres (2012) confirm this latter
prediction.

3 Systems found stable by the energy criterion are secularly stable, cf. Section 5.2.
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Consider next the flow rule relating stress and stain increments
post-yield. These are traditionally obtained from an assumed plas-
tic potential g that defines a surface in stress space that facilitates a
relation between stress and strain increments; see, e.g., Chen and
Han (1988, Section 4.2, p. 181). Associative flow rules are found
by selecting the yield surface as the plastic potential, i.e.,

g=Is’ - K’p. (13)

To obtain the flow rule, we assume that when the material is
stressed beyond yield, the incremental strain d¢ — thought of as a
six-dimensional vector - at a stress state is normal to the surface
described by g passing through that stress point, i.e.,

K
dS,‘j ~ dg/dO',] =Sjj — ﬁakkéij =Si + 6p5,-j,
where the equality follows from differentiating formula (13), and
€ =k?/9; cf. point ‘E’ in Fig. 1. Introducing the proportionality con-
stant dq, the above may be written as

de = (s + ep1)dg,
which, after converting to an objective rate form, becomes
D = (s+epl)q, (14)

where the stretching-rate tensor D captures the stretching rates and
is the symmetric part of the velocity gradient L, and ¢ is again a con-
stant. A deformation that follows (14) is said to be compatible. In
flow rule (14), we may employ the stretching-rate tensor as ob-
served in the rotating frame O, as pure rotation leaves the symmet-
ric part of the velocity gradient unaffected; cf. (6).

To obtain ¢, we combine (14) with the yield criterion (10) and
find

. 1
q=——

PV + 3¢
with |D|? = D;D;;. Substituting the above in (14), we obtain the devi-
atoric stress post-yield in terms of the strain rate:

s:p<\/k2+362%—61>, (16)

where p is the pressure as defined in (8). Combining the above with
(9) yields the complete stress tensor during yielding

DI, (15)

Os Yield surface

B

Fig. 1. The Drucker-Prager yield surface in principal-stress/strain space appears as
a circle when viewed on a plane perpendicular to the pressure axis ¢, = 0, = g3. The
point ‘E’ corresponds to the stress state at equilibrium. The strain rate compatible to
the stress state o at ‘E’ is normal to the yield surface there. If the incompatible
strain rate shown by the gray vector is superimposed, the stress state immediately
shifts to a location & on the yield surface where the imposed strain rate would be
compatible. This leads to jump Ae in the stress state. The stress state a4 is not at
yield, but may move to a state 6 on the yield surface with corresponding
compatible strain rate Dy under the action of external forces; cf. Section 6.4.

i3l (17)

6=-pl+el1+p D]

that in component form reads

i = —p(1 + €)5; + p\/ I + 3¢ ——i?bk,'

It remains to obtain the pressure p during plastic flow. Taking the

trace of (17), we find the dilatation rate
3¢lD)

Vid13e’

where ‘tr’ denotes a tensor’s trace. Because the material dilates

post-yield, we need to postulate a relation between the pressure
and the dilatation. A simple linear relationship is:

p = —KktrD, 19
(

trD = (18)

where « is the granular aggregate’s plastic bulk modulus post-yield.
Because (18) is positive, the material expands after yielding leading
to a drop in the pressure. We discuss possible values for aggregates
such as sand in detail in Section 7.1. Here, we simply note that for
sands confined at hundreds of kilo-Pascals, the bulk modulus is of
the order of 1 MPa. In the above constitutive postulate, we could
have included a relation between pressure and dilatation rate via
a bulk viscosity, but because viscosity does not influence either the
system'’s equilibrium or its secular stability, we ignore viscous ef-
fects; see, e.g., Ziegler (1968, p. 91). Similarly, non-linear terms in
(19) will not affect a local stability analysis.

Here, we consider homogeneous dynamics where the velocity
gradient, and, so, the strain rate D is uniform across the body. Con-
sequently, so is the stress field, and the volume-averaged stress
field & coincides with the actual local stress a. We will, therefore,
in the sequel employ the constitutive relations (17) and (19) post-
yield with & and p replacing & and p, respectively. Finally, we note
that for a homogeneously deforming body, its average density p
and its volume V change according to
V__P_up (20)

p

The stress tensor (17) depends on the strain rate through the ra-
tio D/|D|, and is reminiscent of dry friction with k and p playing the
role of a friction coefficient and a normal force, respectively. This
should be compared with the rate-dependent constitutive relations
frequently employed for rapid granular flows discussed by Jenkins
and Zhang (2002).

To summarize, we employ a rigid-perfectly-plastic material
with a Drucker-Prager yield surface as a model for our asteroid.
The yield criterion is coupled with an associative flow rule to pro-
vide stresses during plastic flow. We emphasize that the constitu-
tive model so obtained is non-smooth in that the system’s response
change character abruptly at yield. We next explore how our cho-
sen rheology limits the range of equilibrium shapes in rotating rub-
ble-pile ellipsoids. Throughout we assume the asteroid to be
isotropic and homogenous.

4. Equilibrium shapes

An equilibrated rubble-pile asteroid will rotate rigidly as long as
the internal stresses do not violate the yield criterion (10). At equi-
librium, we align the coordinate frame © with the ellipsoidal aster-
oid’s principal axes, so that L and its derivative in O vanish, while
w equals the asteroid’s equilibrium rotation rate wg. Furthermore,
for an isolated homogeneous ellipsoidal asteroid that is free from
tidal interaction, the body force is due only to self-gravity, and
Sharma et al. (2009) show that
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M = —27pGI - A, (21)

where A is the self-gravity shape tensor that captures the depen-
dence of an ellipsoid’s internal gravitational field on its axes ratios
o =day/a; and f=as/a;. Relevant formulae for A in the ellipsoid’s
principal axes are available in Section 2.4 of Paper I. We note that
both A and I are diagonalized in the ellipsoid’s principal axes sys-
tem, so that they commute. Employing O’s definition and M’s for-
mula above in (7a), the latter reduces at equilibrium to

o:V = —(2npGA + 2F) -1, (22)

which relates the average equilibrium stress & to internal gravity
and centrifugal stresses; recall that £ and wg are related as per
(4). The stress 6 is then combined with the yield criterion (10) to
establish necessary relations between the asteroid’s equilibrated
rotation rate and its ellipsoidal shape at equilibrium. In the three-
dimensional shape (o, 8)-spin (wg) space, these conditions delineate
regions parameterized by the internal friction angle ¢r, and bound,
in general, by an upper and a lower critical surface. A rubble-pile
ellipsoid with friction angle at least ¢r can exist at equilibrium with-
in the region corresponding to that ¢r. This three-dimensional land-
scape is explored by appropriate two-dimensional sections. An
example is shown in Fig. 2, where the equilibrium regions in
shape-spin space for an oblate (a; = a, > az) rubble-pile asteroid
rotating at wg about its shortest axis &; are displayed for several
choices of internal friction angle ¢r. The classical shapes for inviscid
fluids - the Maclaurin spheroids - are obtained for ¢ = 0°. Here, and
subsequently, we assume that the equilibrated ellipsoidal asteroid
rotates about its shortest axis és, i.e., g = wges. This is prompted
by the knowledge that freely rotating dissipative bodies will ulti-
mately align into pure rotation about their shortest axis; see, e.g.,
Burns and Safronov (1973) and Sharma et al. (2005).

Fig. 2 confirms that for any fixed ¢r there is an upper and, often,
a lower critical equilibrium curve within which the ellipsoidal aster-
oid may persist at equilibrium. At faster rotation rates, yielding is
initiated by large shear stresses that are a consequence of centrif-
ugal stresses dominating self-gravitational stresses. Beyond the
¢r=90° curve yielding is caused by the radial stress in the equato-
rial plane becoming tensile, and we identify this as the disruption
curve. If the rotation rate becomes too small, self-gravity over-

o
©

. 2
= 90°
O 08}
Q
IS . 40°
;81 0.7+ Maclaurin 30°
o sl spheroids Y r
S (0]
C — =
S 05} 0f &
o] fey
"6 =}
= 047 o =
= 5 3
‘% 03[ 16 —
c
£ 1°
5 02f
c 0
(]
z 01 3 20° 10° 5°

0 0.2 0.4 0.6 0.8 1

Axes ratio B = a/a,

Fig. 2. Regions in shape (B)-spin (wg) space where an oblate ellipsoidal asteroid
with «=1 can exist in equilibrium. Numbers next to the curves indicate the
corresponding friction angle ¢r. For a particular ¢, a range of shapes are possible for
rotation rates faster (|os| is maximum stress) or slower (|gs| is minimum stress)
than that of a Maclaurin spheroid. This plot follows Fig. 3 in Paper I.

whelms both the centrifugal stresses and the frictional resistance.
Similar equilibrium regions may be located for prolate
(a; > ap = a3) and triaxial (a; > a, > as) ellipsoids; see Paper I. We
emphasize that the yield criterion puts a lower bound on a
rubble-pile asteroid’s internal friction angle; an asteroid’s location
in shape-spin space only precludes friction angles corresponding
to the equilibrium zones outside of which it lies.

We now probe the stability of equilibrated rubble-pile ellipsoi-
dal asteroids.

5. Stability

Local stability in the sense of Lyapunov requires that small per-
turbations of a system lead to small and bounded departures of its
coordinates from their equilibrium values; see, e.g., LaSalle and
Lefschetz (1961, p. 28). Stability is typically probed via spectral
methods that require investigating the eigenvalues of the linear-
ized governing equations and, or by energy methods that, in con-
servative systems, tests whether the system’s equilibrium lies at
the bottom of an appropriately defined energy well; see, e.g.,
Nguyen (2000, Chapter 6). Depending on which of the two meth-
ods is employed a system is said to be, respectively, spectrally/
dynamically or energetically/secularly stable/unstable. Spectral anal-
ysis is predicated on the amenability of the system’s governing
equations to linearization, and the belief that any possible motion
of the system may be expanded as a linear combination of the
spectral modes employed. The former requirement precludes its
application to the current investigation where we have modeled
granular aggregates via a non-smooth constitutive law. We will,
therefore, employ an incremental version of the energy criterion
to test stability of our system.

We note that for finite dimensional systems (a) secular stability
is equivalent to Lyapunov stability, and (b) secularly stable systems
are dynamically stable, but the converse is not always true as gyro-
scopic forces may stabilize energetically unstable systems; cf. Sec-
tion 5.2. These statements may not hold for infinite dimensional
continuous systems, and we refer the interested reader to Paper
Il and references therein. Here, we will restrict ourselves to homo-
geneous deformations that constitute a finite-dimensional system.

Before formulating the energy criterion, we discuss the coordi-
nate system'’s role in stability analyses.

5.1. Coordinate system

As Paper Il discusses via various examples, the choice of coordi-
nate system is critical to obtain a physically relevant stability pre-
diction. Systems observed in one coordinate system to remain in
the vicinity of their equilibrium states may well diverge when
viewed from another. For example, a rotating rigid body is station-
ary, and, hence, trivially stable to an observer who rotates with the
body, but is unstable when viewed from a fixed system; rotation
takes material points far away from their initial locations. For
rotating deformable bodies the situation is more complicated, as
the body’s changing shape may cause its average rotation to
change in order to conserve angular momentum. This was pointed
out first by Schwarzschild in 1897 in the context of spinning gas
clouds; see the discussion in Jeans (1961, p. 199). Another example
are the Jacobi ellipsoids that are the truly triaxial ellipsoidal equi-
librium shapes of rotating inviscid fluids. As Jeans (1961) and
Lyttleton (1953) indicate, the Jacobi ellipsoids are secularly unsta-
ble to homogeneous perturbations when viewed from within a
coordinate system that rotates steadily at the ellipsoid’s equilib-
rium rotation rate, but are secularly stable when observed from a
coordinate system that rotates so as to keep the relative angular
momentum of the deforming body zero.
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Paper II rigorously develops the coordinate system O's descrip-
tion that appears most appropriate to discuss the stability of rotat-
ing deformable bodies. This happens to be the Tisserand’s mean axis
of the body; see, e.g., Munk and MacDonald (1960, p. 10), that min-
imize the difference [, [u— @ x x|* dV between a material point’s
actual velocity u and the velocity that it would have were the body
rotating rigidly with the frame O. Furthermore, it may be shown
that the body’s relative angular momentum as measured in O,

Hrer :/x x pv dV,
v

vanishes. The Tisserand’s mean axis of the body, thus, best isolate
the average rigid body rotation embedded in a deformable body’s
motion.

Given the above choice of coordinate frame O, we need to fol-
low O’s rotation rate’s evolution @ post-perturbation. This is com-
plicated for general perturbations, and we refer the interested
reader to Paper II. Here, we restrict ourselves to situations wherein
the body continues post-perturbation to rotate about a principal
axis of inertia. We first note that the body’s total angular momen-
tum may be split as

H= Hrel +.’ -,
where
J=trl-1, (23)

is the Euler’s moment of inertia tensor. Differentiating H, noting that
H = 0 because external torques are absent and H is along a principal
axis, and also recalling that H,,; = 0 by ’s definition, we obtain

o=—J"J o (24)

For homogeneous motions, J is obtained by differentiating (23)
and employing (7b). Finally, there is the possibility that O’s rota-
tion rate may suddenly change from just before the perturbation
to just after, unless the perturbations introduce no angular
momentum. Paper II discusses this in detail.

To summarize, we will investigate the stability of rubble-pile
asteroids from within a coordinate system O that rotates in order
to keep the relative angular momentum of the body zero. We
now develop the energy criterion for stability.

5.2. Energy criterion

Following Pearson (1955), we adopt the following definition of
secular stability:

A system’s equilibrium state is stable if during a virtual displace-
ment the work done on the system by external agencies is less than
the total energy stored and/or dissipated by the system.

This statement of the energy criterion utilizes the concept of a
virtual displacement that is the difference between the locations
of the system’s equilibrium and any other kinematically admissible
configuration. Configurations and motions that do not violate any
kinematic constraints imposed on the system are termed kinemat-
ically admissible. Traditionally, virtual displacements are thought
of as kinematically admissible motions that occur over zero time.
This is sufficient for systems that are describable in terms of poten-
tials, so that the system’s response is path independent. However,
this is not so in the present case, as plastic dissipation is strongly
path dependent. In the past, authors such as Hill (1957) circum-
vented this issue by introducing a time-like variable to facilitate
integration along a virtual displacement following an initial pertur-
bation. Changes in the system’s constraints and applied external
force fields were included in the integration. This process, how-
ever, leaves no distinction between virtual displacements and

kinematically admissible motions that would ensue if the system
evolved dynamically from prescribed initial conditions. Given this,
we recast the above stability test as:

A system’s equilibrium state is stable if during a kinematically per-
missible infinitesimal displacement the work done on the system by
external agencies is less than the total energy stored and/or dissi-
pated by the system.

These kinematically permissible infinitesimal displacements
may be obtained, for example, by superimposing a kinematically
admissible velocity field on the body and following the body’s mo-
tion for an infinitesimal length of time. By doing so we will below
rephrase the stability criterion in terms of kinematically admissi-
ble velocity fields. The energy criterion as stated is an appropri-
ately modified version of the classical Lagrange-Dirichlet stability
theorem suitable for dissipative systems governed by possibly
non-smooth constitutive laws. The Lagrange-Dirichlet theorem is
exclusively applicable to conservative smooth dynamical systems;
see, e.g., Nguyen (2000, p. 97).

Pearson’s (1955) definition of stability was adopted by Hill
(1957), Chakrabarty (1969) and Stordkers (1977) in their investiga-
tions into the stability of rigid-plastic materials. A general form
suitable for rotating non-smooth complex fluids, of which rub-
ble-pile asteroids are an example, was derived recently by Paper
I, who then specialized it for homogeneously deforming bodies.
For the sake of clarity, continuity and completeness, we obtain be-
low via an alternative route an abridged version of the energy cri-
terion suitable for our purposes.

As stated, the energy criterion above is applicable for systems
that are stationary at equilibrium. We may easily adapt it to
rotating systems by an application of D’Alembert’s principle
(Greenwood, 1988, p. 23). This is equivalent to rewriting the linear
momentum balance in the rotating frame O:

V.ot pb—0 x— 0 x—22v)=py, (23)

where 2 x=® xx, 22 - x=0x (@ xx) and 22 -v=2m x v are,
respectively, the inertial, centripetal and Coriolis accelerations,
and we recall that v = zc}iéi is the material point’s relative accelera-
tion observed in O.

We will investigate stability by providing the material points of
the equilibrated body by an initial velocity perturbation. In general,
if perturbations are allowed to change the body’s relative angular
momentum, O's rotation rate will change abruptly across a pertur-
bation. In that case we have to distinguish between the velocity
perturbation observed in O just before, and just after, the perturba-
tion. Paper Il discusses this in greater detail, and further shows that
if we allow perturbations to introduce angular momentum, then it
is always possible to find a perturbation that will render the body
locally secularly unstable.* Thus, henceforth, we will assume that
perturbations do not add any angular momentum, so that O’s rota-
tion rate remains unaffected.

Now, let the equilibrated body be perturbed at t = 0 by a veloc-
ity field v(x,0)=vg(x) relative to the rotating frame O. Post-
perturbation, over the small time Jt, these material points will
displace by fgtvdt. The work done in the rotating frame O by
external agencies during dt is

ot
o Jvi

4 This result, though mathematically correct, appears physically unreasonable. It is
necessary, therefore, to modify the current approach to meaningfully include
perturbations that change angular momentum. Past works generally ignored angular
momentum perturbations, and when not, arrived at the same conclusion as here.
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as the Coriolis force does not do any work, and we ignore surface
forces in the context of asteroids. The Coriolis force is a gyroscopic
force that may dynamically stabilize systems predicted to be secu-
larly unstable. The energy stored/dissipated over 6t is obtained by
integrating the stress power per unit volume over the body’s volume
and time &t (Holzapfel, 2001, p. 153):

ot .
55:/ / o Ldvdr,
o Jvi

where for two tensors A and B, A:B = A;B;;. Everywhere above the
spatial integration is over the body’s current volume V(t) that
changes as the body deforms due to the initial perturbation. The en-
ergy criterion ensures secular stability if

OE > oW.
We now obtain an alternative form. Taking the dot product of (25)

with v and integrating over the body’s volume and time Jt, and com-
paring with formulae derived for E and éW, we find that

oW — OF = OE,,

where Ej is the relative kinetic energy measured in the rotating
frame O:

E, = / % pv-vdV, (26)
Jvy

and J&E; is E;’s change over time 6t. The energy criterion now re-
quires that for stability the kinetic energy relative to O decreases
over dt, i.e.,

SF < 0. (27)

Probing the above inequality is not easy for general motions,
and we will restrict ourselves to test the stability of bodies that de-
form homogeneously according to (5). Thus, the initial velocity
perturbation is also homogeneous:

V(X7 O) = VO(X) = DO * X% (28)

where D, is a symmetric tensor. The initial perturbations, thus,
do not add any rigid body rotation. Nevertheless, the above
velocity field will in general introduce angular momentum, and
thereby cause ('s rotation rate to change abruptly, unless D,
is further restricted to having no shearing action when viewed
in the ellipsoid’s principal axes frame; in which case I and D,
will commute.

Introducing (5) for v into E;’s definition (26), and employing (3a)
provides

E, :l/p(L.x) wLdv=lra.rn

2 )y 2
Now, 6E; = [2" Edt. Differentiating the above expression, we obtain
Ek:%(L-I:LT+L-1:LT+L-1:LT).

Replacing L and I from (7a) and (7b), respectively, and simplifying,
we obtain

E = {76'V+MT7(Q+92)-I} L

where we have utilized the fact that € .L-ELT=0, which is a
reflection of the fact that Coriolis’ force does not do any work. Thus,
finally,

ot
O, :/ [-ov+M —(@+0%) 1} Ldt (29)
0
Further progress is possible within the constraints of a local sta-

bility analysis, wherein a material point’s displacement f(‘)" vdt
following the velocity perturbation v is small. This is equivalent

to requiring that dt is small, allowing us to expand JE, about
t=0" i.e. the instant after v, is imposed, as

2
OF, = 6WE ot + 5<2>Ek‘% +0(5t%),

where

SVE, = {—&OV + M) — @2 -1} :D,, and (30a)

OPE, = % {—6V+M —(+Q%-1}:L|, (30b)
0

where the subscript ‘0’ indicates evaluation at t=0" and we have
recognized that Ly =D, and £, = Q. If §VE, is non-zero, it regu-
lates the sign of JE, so that stability is assured in this case if for
all permissible D, in (30a)

O0VE, < 0. (31)

However, when 6("E, does vanish, SE, is dominated by §®E;, and
we require for stability that

SPE, <0 (32)

for all D, in (30Db).

Now, often, the leading order term §VE, is taken to be iden-
tically zero. The underlying assumption is the vanishing at equi-
librium of the right-hand side of (7a). However, this tacitly
assumes that the frame O’s rotation @ and the average stress
field 6 remain unaffected by the velocity perturbation, i.e., wg
and &; just before perturbation equal, respectively, @y and &9
immediately after. Both these facts may not hold. Indeed, as
discussed in Section 5.1, the frame (’s rotation rate may have
to change instantly to accommodate angular momentum intro-
duced by a general velocity perturbation. Similarly, the stress
tensor may jump across t= 0. For example, pressure changes in-
stantly in incompressible materials for every perturbation. This
is exemplified in the context of homogeneously deforming
incompressible ellipsoids by formula (49) in Sharma et al
(2009). Similarly, in rigid-plastic materials the stress changes
instantaneously when the imposed velocity perturbation is
incompatible; see Fig. 1. A simple example is afforded by the
frictional slider. Suppose such a slider is at equilibrium while
pulled towards the right. The frictional force then acts towards
the left. However, if the slider is given a velocity perturbation
towards the left, the frictional force instantly switches towards
the right!

Paper Il discusses the above issues in detail. From the discussion
there, we find that rotating self-gravitating asteroids are secularly
unstable at first-order, i.e., we may find a D, such that 5VE; > 0, if
perturbations are allowed to add angular momentum; but see foot-
note 4 on page 5. For angular momentum-preserving, but incom-
patible, perturbations

OVE, = —(69 — &%) : D,V, (33)

which is guaranteed positive by the maximum dissipation postulate;
see, e.g., Lubliner (1990, p. 117). Thus, in this case the asteroid is
secularly stable at first-order. Note that the maximum dissipation
postulate may only be invoked if we assume, as we have, an asso-
ciative flow rule. For a non-associative rigid-plastic material, as
Hill (1957) notes, there is strong reason to expect secular instabil-
ity. This explains an earlier statement in Section 3 about these
materials being trivially unstable. Finally, for compatible perturba-
tions that do not add angular momentum, both stress and the
coordinate frame’s rotation rate are continuous across the pertur-
bation, and, consequently, 5("E; vanishes. Then SE's sign is dic-
tated by §?Eys, and, hence, so also is the asteroid’s secular
stability.
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To summarize, we restrict ourselves to a subset of the initial
velocity perturbations (28) that do not add angular momentum.
Of this subset, a rigid-plastic asteroid, irrespective of the flow rule’s
choice, is secularly stable at first-order to those perturbations that
are incompatible to the equilibrium stress state. Thus, we need
only investigate stability to compatible angular-momentum pre-
serving perturbations, and this is decided by 5®E’s sign, which de-
pends on the underlying flow rule.

We now specialize the above stability test to rubble-pile
ellipsoids.

6. Example: Rubble-pile ellipsoids

We model isolated asteroids as self-gravitating ellipsoids rotat-
ing about their shortest axis é;. Expanding all derivatives in (30b)
yields

(5(2)Ek = {—a'ov—a'Vo +Mg — (Qo +Qo~QE+.QE~Q0) - (.Qo +Q§) IO}

2Dy + {—6'0V+MT— (Qo-‘rﬂé) ~I} :Lg,

where, because we provide velocity perturbations, objects such as
V, I and M retain there equilibrium values at t=0". In the above,
we replace L from (7a), I from (7b), M and M from, respectively,
(21) and its derivative, and p and V from (20). Finally, recalling from
the preceding section’s end that D,’s and the ellipsoid’s principal
axes coincide, we obtain

OPE, = —(69 + 63trD, — 26% - D,)
D,V — {anG(AO —AtrDo) + 40 - QO} 1:D,— 21

We also require that the perturbations be compatible. Compatibility
depends on the asteroid’s chosen rheology and enforces further
restrictions on D,; cf. Section 6.3. Computing A is complicated and
is done in the Appendix A of Paper II. The term involving the stress’
time rate of change & is addressed next.

Section 3 models granular aggregates as rigid-perfectly-plastic
materials following an associative flow rule. Post-yield average
stress & is obtained by volume averaging (17). Differentiating this,
we find

- - N D, _
60 = — Po(1+ €)1+ poy/ k> + 3¢€? \DO\ + Do
0
D, (D,:D,)D,
x \/k* + 3¢ ——— 5,
{IDOI }

ID;|

so that, after volume-averaging (19) and substituting for p,, we
obtain

6y:D, = —x{ I +3€2|D,| — (1 + 6)trDo}tr D,.

Replacing the above in the corresponding term in 5?E,’s expres-
sion, we find

SPE, = K{ k* +3€2|D,| — (1 +e)trDo}trDOV— (6gtr D, —26%-D,)

:D,V —{2mpG(Ag — AtrD,) + 482 - 2} -1:D, — Q3 - 1.
We employ this formula to test §*E;’s sign, and thereby the ellip-
soidal granular aggregate’s secular stability to all compatible angu-
lar momentum-preserving homogeneous perturbations. First, we
non-dimensionalize the above expression.

6.1. Non-dimensionalization
We non-dimensionalize 6®E; by rescaling time by 1//27p,G,

stress by (3/207) (2mpoGm)(4n/3V)', and inertia by ma2/5. We
obtain

0@ E, =

K{ I +3€2|D,|— (1 +5)trDo}trDD
—(Getr Dy —265-Dy):Dy) (2)> - (AO —AtrD, +495490) Q:D,-22:Q, (34)

where the derivatives are now with respect to non-dimensional
time, Q is a non-dimensional tensor obtained from I that, in the
ellipsoid’s principal axes coordinate system, has the form

1.0 0
@Q=1]0 «* 0], (35)
0 0 p

and 5?E,, k, D,, 2 and & now represent non-dimensional quanti-
ties. In particular, the scaled « is obtained by dividing a body’s plas-
tic modulus by (3/207) (2mpeGm)(4n/3V)'2. Thus, x scales
inversely as the square of the object’s size; a body twice the size
of another of the same material will have one fourth the non-
dimensionalized plastic bulk modulus x.

6.2. Components

To evaluate (34) we need to select an appropriate coordinate
system. Because all quantities in 8?E’'s expression refer to the
state just after the perturbation, the most convenient choice is
the ellipsoid’s principal axes coordinate system. In this coordinate
system,

A, 0 O 0 —-w; O
A-=|0 A 0 [@=|w: 0 0| and (36)
0 0 A 0 0 0
g, 0 O
G = |0 & 0
0 0 o3

with G; to be found in the following section, and for angular
momentum-preserving homogeneous perturbations,

D, 0 0
D,)=|0 D, 0]. (37)
0 0 D

Note that [Q] is already available from (35).
We next obtain the asteroid’s equilibrium stress state in this
coordinate system, and also identify compatible perturbations.

6.3. Equilibrium and compatible perturbations
The equilibrium stress 6¢’s non-dimensional components in the

ellipsoid’s principal axes system are found from (22) and adopting
Section 6.1’s scaling:

o1 = (W — A (ap) ", (38a)
G2 = o (w2 — Ay)(ep) >, and (38b)
63 = —f*As(a) % (38¢)

note that shear stresses are zero. The equilibrium pressure py may
now be obtained with the help of (8).

Velocity perturbations are compatible with the stress state only
if their associated strain rates are normal to the plastic potential,
here taken to coincide with the yield surface. Thus, the strain rates
must satisfy the flow rule (14). Eliminating the proportionality
constant g, we find that a homogenous perturbation (28) is com-
patible when
D, - 02+ pe(1+¢€)

Di  G1+De(l1+€)

D5 753 +pe(1 +€)_

— = = T 39
Di o01+pe(1+¢€)’ (39)
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note that the shear strain rates are zero. Thus, a compatible pertur-
bation automatically preserves the asteroid’s angular momentum at
equilibrium.

We now return to the stability analysis of rubble-pile asteroids.

6.4. Local stability

The stability of rotating inviscid fluid ellipsoids corresponding
to ¢ = 0, is considered in detail in Paper II. There it is found that
the stability test developed above predicts that Maclaurin spher-
oids are secularly stable for axes ratio > f;=0.5827; this being
the Jacobi point from where the Jacobi sequence of ellipsoids bifur-
cate from the Maclaurin sequence. All Jacobi ellipsoids were found
to be secularly stable. These results are consistent with those of
Jeans (1961) and Lyttleton (1953) who invoked the Lagrange-
Dirichlet theorem, and of Chandrasekhar (1969) who employed
spectral analysis. Chandrasekhar (1969) further showed that
Maclaurin spheroids are ordinarily® stable for fz < f < fj, where
Br=0.3033 is the Riemann point from where the sequence of Rie-
mann ellipsoids emerge from the Maclaurin equilibrium curve;
spheroids with < iz were ordinarily unstable. Between fr < f <
the Maclaurin spheroids are stabilized by gyroscopic forces. Recall
that these forces do not input any power and are hence ignored by
the energy criterion, leading us to predict secular instability for
B < B It is interesting to note that Rosenkilde (1967) showed that
these gyroscopically stabilized Maclaurin spheroids are, in fact, ren-
dered unstable by viscosity’s presence. Finally, Paper II also draws
attention to an apparent contradiction, which is subsequently re-
solved, between the predictions of Riemann about the stability of
Maclaurin spheroids and those of Jeans, Lyttleton and Chandrase-
khar. After this brief summary of the stability of fluid ellipsoids as
determined by our stability criterion, we move on to granular
ellipsoids.

We saw in Section 4 that rubble-pile ellipsoids with a given
internal friction angle ¢r may persist in equilibrium in a three-
dimensional volume bound by an upper and a lower critical surface
associated with ¢f's choice. This is in marked contrast to inviscid
fluids where equilibria were identified by three-dimensional
curves in o — § — wg space.® Thus, for rubble-pile ellipsoids rotating
at wg and with friction angle ¢, we have to test the stability of ellip-
soids that lie not only on the associated critical surfaces, but also
within.

By an application of the maximum dissipation postulate, it may
be shown that all ellipsoids that lie within the equilibrium zone
corresponding to their internal friction, and not on the associated
critical surface, are necessarily stable at first-order to compatible
perturbations. Indeed, consider an ellipsoid at equilibrium but
not on the critical surface. Then the average equilibrium stress
6, lies within the yield surface of Fig. 1. When perturbed by Dg that
satisfies (39) for some compatible stress 63 that lies on the yield
surface, the ellipsoid’s stress state switches immediately to 65 from
4. This leads to 6VE, = —(65 — 6,) : Dp that is guaranteed positive
by the maximum dissipation postulate. It remains, therefore, to
consider the stability to compatible perturbations of only those
granular ellipsoids that at equilibrium lie on the critical surface
associated with their internal friction. We identify these as criti-
cally equilibrated ellipsoids. We will explore their stability by con-
sidering two-dimensional sections of the equilibrium landscape
corresponding to oblate, prolate and average-triaxial ellipsoids.

Fig. 3 displays stability results for oblate ellipsoids for various
choices of the scaled plastic bulk modulus «. For each k, there is
associated a shaded region within which all critically equilibrated

5 Systems found (un)stable by the spectral method are ordinarily (un)stable.
6 This holds also for Riemann ellipsoids that have internal vortical motion but
constant shape; see Chandrasekhar (1969, p. 129).
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Fig. 3. Stability regions in shape (f)-spin (wg) space for oblate ellipsoids with o = 1.
Several different non-dimensional plastic bulk moduli x are explored, and the
corresponding stability regions are shaded. Also shown by dotted lines are the
equilibrium zones corresponding to various choices of internal friction angle ¢r;
these equilibrium curves follow Fig. 5 of Paper I. The stability region corresponding
to k=1 is limited by the ¢r=90° disruption curve.

ellipsoids are secularly stable. Equivalently, ellipsoids lying on
their corresponding critical equilibrium curve outside the shaded
stability region associated with their plastic bulk modulus will be
secularly unstable. Figs. 4 and 5 display stability regions for criti-
cally equilibrated prolate and average triaxial ellipsoids, respec-
tively. It is interesting to note in Fig. 5 that the stability region
appears to shrink to the Jacobi ellipsoid as x — oo. This suggests
that a stable critically equilibrated incompressible granular ellipsoid
must have zero internal friction, i.e., is an inviscid incompressible
fluid.

In each of the three figures above, we see that as the plastic bulk
modulus is lowered, the stability regions expand, with the lower-x
stability region containing the higher-x zone as a subset. To under-
stand this, we recall from (10) that at a given pressure, the equilib-
rium zone grew with increasing internal friction, allowing the body
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Fig. 4. Stability regions for several non-dimensional plastic bulk moduli  in shape
(B)-spin (wg) space for prolate ellipsoids with « = . The dotted lines indicate
equilibrium zones for various choices of internal friction angle ¢r; these follow
Fig. 6 of Paper 1. See also Fig. 3’s caption.
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Fig. 5. Stability regions for several non-dimensional plastic bulk moduli x in shape
(B)-spin (wg) space for average-triaxial ellipsoids with o = (1 + 8)/2. The dotted lines
indicate equilibrium zones for various choices of internal friction angle ¢f; these
follow Fig. 7 of Paper 1. See also Fig. 3’s caption.

to achieve shapes and spins that coincided with ever greater prin-
cipal shear stresses; cf. (12). Thus, if the internal friction of a crit-
ically equilibrated ellipsoid was lowered, it would yield and the
ellipsoid would adapt its shape and spin so as to move within
the equilibrium zone corresponding to the lowered value of inter-
nal friction. Because pressure plays a role analogous to internal
friction, exactly the same response will be observed if the pressure
within a critically equilibrated ellipsoid was to suddenly reduce;
the ellipsoid will attempt to move within an equilibrium region
closer to that of a fluid. We expect that the ellipsoid’s excursions
from its equilibrium will be slow and modest for small pressure
drops. On the other hand, if the pressure is significantly lowered,
the ellipsoid will move faster and closer to a state with low shear
stress, i.e., nearer to a fluid’s equilibrium curve. Now, we saw from
(18) that the material post-yield expands and this, from our consti-
tutive postulate (19) led to a subsequent drop in the pressure from
its equilibrium value. The pressure drop’s extent is proportional to
the plastic bulk modulus x. Therefore, for large x, ellipsoid’s far
away from the equilibrium curve of fluid ellipsoids will be found
unstable. Equivalently, ellipsoids with smaller plastic bulk moduli
will have larger stability regions.

6.5. Stability to finite perturbations

We have so far considered a system stable if the leading esti-
mate of the relative kinetic energy JE,’s change is negative. This
is satisfactory when perturbations are infinitesimally small. How-
ever, in the presence of finite perturbations it may happen that
SE, increases/decreases following an initial decline/rise. This will
indicate higher-order instability/stability. We explore it in the con-
text of ellipsoids whose stress state at equilibrium lies within the
yield surface, and so are predicted to be stable at first-order. Such
an analysis is interesting considering the improbability of finding
critically equilibrated asteroids.

Consider a rotating self-gravitating rubble-pile ellipsoid whose
stress state at equilibrium lies within, and not on, the yield surface,
i.e., the ellipsoid’s location in shape-spin space is inside its associ-
ated equilibrium zone, and not on its boundary. We saw that the
maximum dissipation postulate assures first-order local stability
for this ellipsoid. Thus, for small enough dt, 6E,((” is negative and
it regulates SE,’s sign as well. However, if we follow E,’s evolution,
it may happen that beyond a time ot* ~ 2|8'VE/0PE|, §®E/s

contribution §®Ei5t?/2 overcomes & VEgs. In this case, if
8PE, > 0, oE, will become positive for times greater than 5t*, and
the system, though locally confined over infinitesimal displace-
ments, may begin to depart from its equilibrium location after time
ot*; such a situation will be considered unstable. Obviously, greater
82, is in comparison to 5("E,, smaller is ét* i.e., the earlier this
instability will occur. Thus, ellipsoids that, while not critically
equilibrated, but lying in regions wherein 6?E; is positive may
be unstable to perturbations large enough to ensure that the sys-
tem does not cease moving before time Jt*.

The expression for §*?E for ellipsoids whose average stress
state 6 at equilibrium does not lie on the yield surface may be ob-
tained in a manner similar to how (34) was derived. We find that

SPE, = [ikK{\/I* + 3€2|D,| — (1 + €)trD, }trD, — (GotrD,

—26¢-D,)
: Do) (ap)* — (Ao — Atr D, + 49 - 20) - Q : D, — 22
[Q+AG: (D§ +Q ' Aa) (@p)??, (40)

where the change in the equilibrium stress to its post-perturbation
value &,

kpe — |E| -

AG = 6y — O = S + — SE,
Ise|

is obtained by scaling the equilibrium deviatoric stress sg so that sy
lies on the yield surface; thus, there is no change in the pressure.
This choice guarantees the smallest possible value for 5'’E,. Note
that s¢ is available from (38) and (9) once the rotation rate wg
and the ellipsoid’s shape are chosen. Note that in the above devel-
opment, the states ‘E’ and ‘0’ correspond to locations A and B of
Fig. 1, respectively.

Figs. 6 and 7 display regions in shape-spin space where 5*)E;
given by (40) is negative for, respectively, prolate and average-
triaxial ellipsoids with an internal friction angle ¢r of 30°. The
regions are parameterized by the non-dimensional plastic bulk
modulus k. We observe that, in general, as the plastic bulk
modulus x increases from 0 to about 10, the region where 5?E,
is negative shrinks. For some x this zone vanishes. As k continues
to increase, this region reappears and begins to grow. For x beyond
1000, these regions tend not to change. This is because for large x,
the first term in §2E;’s expression that is regulated by x controls
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Fig. 6. Regions in shape (8)-spin (wg) space where §?)E, < 0 for prolate ellipsoids
with « = p and internal friction angle ¢r=30°. The shaded regions correspond to
different non-dimensional plastic bulk moduli . See also Fig. 4's caption.
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Fig. 7. Regions in shape (f)-spin (wg) space where §?)E; <0 for average-triaxial
ellipsoids with o = (1 + $)/2 and internal friction angle ¢r=30°. The shaded regions
correspond to different non-dimensional plastic bulk moduli k. The point marked
‘A’ is an example asteroid discussed in the text. See also Fig. 5’s caption.

32E's sign. Note that because we have taken the ellipsoids to have
¢r=30°, the stability regions do not extend beyond the equilib-
rium zone corresponding to a friction angle of 30°.

As an illustration, consider asteroid A with internal friction an-
gle ¢r = 30° located as shown in Fig. 7. Assume that the asteroid has
a plastic bulk modulus of 1 MPa and density 2000 kg m~>. If the
asteroid’s largest semi-major axis were 2 km, its non-dimensional
plastic bulk modulus x would be slightly more than 900. Because A
is within the equilibrium region corresponding to ¢ = 30°, the re-
sults of the previous section guarantee its local secular stability at
first-order to infinitesimal perturbations. However, its location in
Fig. 7 confirms that 8®E, > 0, so that there is a possibility that A
may deform appreciably following a finite perturbation. On the
other hand, were A’s rotation rate lower, so that it lay within the
shaded region corresponding to x of 1000, 5*’E; would be negative.
In that case, the asteroid A would be stable to finite, and not just
infinitesimal, disturbances.

Similar arguments may be made to motivate the impact of still
higher-order corrections to JEy.

7. Application: Near-Earth asteroids
7.1. Material parameters

Granular materials like soils display extremely complex stress
response, and constitutive models such as the popular cam-clay
model rely on very many parameters to capture this complexity;
see, e.g., Bolton (2003, p. 210). However, given that very little is
known about the physical nature of asteroids, utilizing a material
model with many parameters appears unwarranted. Thus, here
we model the material response of dry granular aggregates as a ri-
gid-perfectly plastic material with only two constitutive parame-
ters, viz., the internal friction angle ¢r that defines the yield
surface, and the plastic bulk modulus x that describes the flow
post-yield. Both these parameters depend on the manner in which
the aggregate is packed and the properties of its constituent grains.
For dry materials, the aggregate’s packing may be described in
terms of its void ratio’ and the average pressure confining the aggre-
gate together.

7 Ratio of the free volume in an aggregate to the volume occupied by grains.

Principal stress ratio, g
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Fig. 8. Typical variation with axial compression of the ratio g of the axial and lateral
stresses during triaxial tests of initially dense and loose soils.

A popular and versatile method of probing soils is the triaxial
test; see, e.g., Bolton (2003, p. 189), for a detailed description.
The setup involves first confining a sack containing sand at some
void ratio at an initial pressure by immersing it in a fluid. The sack
is then sheared by compressing it incrementally along its axis; the
axial and lateral directions are then the principal stress/strain
directions. The internal friction angle ¢f is found by measuring
the ratio g of the axial to the lateral principal stress at yield, and
invoking the formula ¢r=sin"![(q — 1)/(g + 1)]. A typical response
of the principal stress ratio g’s variation with axial compression
during a single triaxial test is shown in Fig. 8. We observe from
Fig. 8 that g goes through a maximum before settling into a lower
limiting value. The maximum of q corresponds to the soil’s peak
strength, while its limiting value is the soil’s ultimate strength.
The soil is said to have yielded when its peak strength is reached.
It then subsequently softens to a final critical state. A soil’s critical
state is characterized by an ultimate friction angle and a void ratio
that depends only on the confining pressure and not the soil’s ini-
tial density; see, e.g., Bolton (2003, Section 4.4, p. 69). Initially
loose soils often do not display a peak strength, and asymptotically
reach their critical state; see Fig. 8. The bulk modulus « is found by
the hydrostatic compression test that involves imposing additional
hydrostatic loading on the same initial triaxial setup. It is found
that a soil’s bulk modulus, and its peak and ultimate friction angles
depend crucially on the confining pressure, while only the first two
depend on the initial void ratio. These values can vary appreciably
from one soil to another.

Here, we employ the ultimate friction angle as the internal fric-
tion angle ¢ that characterizes yield in our rigid-perfectly plastic
material model. There are several reasons for doing so. First, as
mentioned above, a soil’s peak strength depends on in its initial
density, but not so its ultimate strength. Dense soils display a peak
strength, while loose soils do not. In contrast, every soil realizes its
ultimate (critical) state. Furthermore, as the experiments cited be-
low report, while the peak behavior varies greatly depending on
the soil type, the ultimate strength changes little and remains
within 30-40°. Thus, given that we do not know much about aster-
oidal interiors or origins, it appears prudent to calibrate our theory
against a soil’s critical state that differs less across soils, initial
states and confining pressures. Second, the decrease in the fric-
tional strength post-peak may be modeled by including softening
within our material model. An application of the maximum
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dissipation postulate will then show that a softening rigid-plastic
material is trivially locally unstable at first order; see, e.g., Chen
and Han (1988, Section 3.6.3, p. 168). Thus, we are less likely to
find asteroids with shapes and spins at equilibrium that require
the asteroid to mobilize its peak frictional strength. Finally, though
we do not investigate a granular asteroid’s long-term dynamics, it
is clear that it will be dictated by the asteroid’s ultimate friction
angle.

Typically, experiments are done at confining pressures of one or
more MPa and sand is found to have an ultimate friction angle ¢r
between 30-40° and plastic bulk modulus x of 1 MPa. The ultimate
friction angle for dense sands, though higher than ¢r is also within
the same range of 30-40°. On the other hand, not much experi-
mental data is available on sand confined at lower pressures. Ponce
and Bell (1971) and Fukushima and Tatsuoka (1984) report triaxial
tests conducted at confining pressures between, respectively, 1.4
and 241 kPa, and 2 and 400 kPa. These two tests utilized possibly
the lowest confining pressures in terrestrial triaxial tests done till
date. Recently, Sture et al. (1998) performed tests in space shuttle
flights under low-gravity conditions at confining pressures of 0.05,
0.52 and 1.30 kPa.

Ponce and Bell (1971) reported that as the confining pressure re-
duced from about 35 kPa to 1.4 kPa the ultimate internal friction an-
gle ¢ increased sharply from about 30° to 44°. The corresponding
value of peak friction for ‘very dense’ sands changed from 38.5° to
51.5°. This was attributed to reduced grain crushing during shearing
at low pressures. For ‘very loose’ sands the peak and ultimate fric-
tional strengths coincided, and was explained on the basis of low-
ered resistance to particle motion by neighboring particles. For the
quartz sand that Ponce and Bell (1971) employed, the relative den-
sity® for very loose sands was 5%, and was 94% for very dense ones;
the corresponding void ratios are 0.71 and 0.48, respectively. On the
other hand, the careful triaxial tests of Fukushima and Tatsuoka
(1984) that were conducted at low confining pressures between
2 kPa and 10 kPa, but on a different (Toyura) sand, concluded that
the ultimate friction angle ¢ changed slightly from 33.5° to 35°. The
peak strength of Toyura sand did increase as the initial void ratio
was lowered, but remained invariant to changes in the confining pres-
sures at a fixed void ratio. In fact, the peak friction angle in dense Toy-
ura sand was found almost constant at about 43.5°. This latter
conclusion was at variance with that of Ponce and Bell (1971), and
emphasized the difference in the material response of different soils,
especially at low confining pressures. Finally, working with Ottawa
quartz sand, Sture et al. (1998) confirmed the trends of the terrestrial
experiments of Ponce and Bell (1971). Sture et al. (1998) found that in
sand with relative density 85% the peak friction angle increased from
53.3°t0 63.4° as the confining pressure fell from 1.30 kPa to 0.05 kPa.
At the same time, in 20% less dense soils, the peak friction grew from
47.6° to 70° over the same decrease of confining pressure. The ulti-
mate friction angle ¢f's range too increased, albeit slightly, from 32-
34°in terrestrial conditions to 35-37° in a micro-gravity environment.

In each of the three works cited above, as the hydrostatic com-
pression test was not conducted, values of bulk modulus are not
accessible from the reported data. Hydrostatic compression tests
have been carried out at a confining pressure of 20 kPa and
25 kPa by, respectively, Lancelot et al. (2006) and Lade et al.
(2009); there appear to be no experiments at lower confining pres-
sures. Lancelot et al. (2006) report a plastic bulk modulus x of
100 kPa for loose Hotsun RF sand at a void ratio of 0.897 that they
employed. In contrast, Lade et al. (2009) observed a much higher x
of 100 MPa for loose Ottawa sand at a void ratio of 0.83, that in-
creased to 200 MPa as the void ratio decreased to 0.62.

8 Ratio of the deviation of the void ratio from its maximum achievable value to the
total possible change in the void ratio at a given confining pressure.

We saw above that soil properties show large variation with not
only the void ratio and the confining pressure, but also depend cru-
cially on the type of sand employed for experiments. Now, we re-
quire values of ¢r and x at void fractions and confining pressures
that we expect in rubble-pile asteroids. Assuming an average den-
sity of 2 gcm™ for a rubble-pile asteroid, and further assuming
chondritic constituent grains with density about 3.2 g cm 3 yields
a void ratio of 0.6. A terrestrial soil at this void ratio would be la-
beled ‘dense’. The corresponding volume fraction® is 0.625, close
to the volume fraction 0.64 of randomly closed packed aggregate
of same-sized spheres; see Jaeger and Nagel (1992). Similarly, rub-
ble-piles are held together by their own gravity, and thus exist at ex-
tremely low confining pressures of the order of tens of Pascals.
Indeed, employing (38) and (8) for 25143 Itokawa we compute the
average pressure to be as low as 4.3 Pa! This is three orders of mag-
nitude lower than the confining pressure employed in the terrestrial
triaxial tests reported above, and four orders lower than the pressure
utilized in the hydrostatic compression tests experiments quoted
above. The average pressure scales as the square of the size, but even
then, the largest near-Earth asteroid Eros has an average internal
pressure of a mere 17.7 kPa, still lower than the experiments of
Lancelot et al. (2006). This suggests that excepting Sture et al.
(1998), most experimental soil data currently available cannot be
employed to investigate rubble-pile asteroids and other small Solar
System objects; more experiments on dense soils confined at pres-
sures less than 100 Pa are needed.

In passing, we note that it was hoped that experiments on dust
aggregates by Blum and Schrdpler (2004), done with a view to
understand planet formation and comets, would have given some
hint at properties of lightly confined aggregates. However, these
aggregates are typically very fluffy with volume fractions of about
0.15 increasing to maximum of about 0.34, which is much lower
than the volume fraction of 0.625 estimated above for rubble-pile
asteroids.

Past work on rubble-pile asteroids, e.g., by Holsapple (2004) and
Sharma et al. (2009), has typically assumed ¢ about 30°, and a x of
1 MPa corresponding to a non-dimensional value of about 10000
for a body like Itokawa, but about 100 for a larger asteroid like
Eros. However, the discussion above suggests that these numbers
may not be sacrosanct. We will, therefore, not ignore the possibil-
ity of lightly confined rubble-pile asteroids having greater (ulti-
mate) internal friction angles ¢r of 40°/50°. It will also be
interesting to consider the possibility of a lower ¢r of 20°. This is
because dissimilar soils can respond very differently, for example,
natural sandy gravel has an ultimate friction angle of about 25°.
Furthermore, it is known that previously worked soil may have
much lower residual frictional strengths of 10-15°; see Bolton
(2003, Section 8.7.3, p. 55). Whether such reduction is still ob-
served at low confining pressures still needs to be tested. Finally,
as particle rearrangements will require no effort in the absence
of a confining pressure there will be no internal frictional resis-
tance, and we therefore expect that there will a regime of low-con-
fining pressures when friction in a soil will be much reduced.
Whether this regime exists and is relevant at internal pressures ob-
served in asteroids needs experimental verification. Similarly, plas-
tic bulk moduli of a few kilo-Pascals, corresponding to scaled x of
about 10 for asteroids of size about a kilometer and density
2000 kg m~3, will be worth exploring. Physically, this reflects our
expectation that contacts between the constituent grains in these
asteroids will be lightly loaded resulting in a lowered plastic bulk
modulus.

Before concluding this section, we mention that recent work by
Scheeres et al. (2010) suggests that in granular bodies with

9 Ratio of volume occupied by grains to total volume.
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meter-sized or smaller constituent grains, cohesion arising from
van der Waals interaction may play a role commensurate with
internal gravity. Scheeres et al. (2010) propose that because of
these cohesive interactions, the behavior of rubble piles in space
may be analogous to powders in terrestrial conditions; this makes
the case for performing experiments similar to those of Blum and
Schrapler (2004), albeit with denser powders. Cohesive bodies
are able to accommodate tensile stresses to some extent, and Hols-
apple (2007) finds that even a small amount of cohesion may allow
small fast rotators to survive as rubble piles. There exist straight-
forward extensions of the rigid-plastic material model utilized here
that may be employed to include cohesive effects; see, e.g., Chen
and Han (1988, Section 2.3.4, p. 94). However, we do not pursue
this here.

7.2. Near-Earth asteroid data

The rotation rates, density and sizes of several known near-
Earth asteroids (NEAs) are listed in Tables 1 and 2 along with,
respectively, the axes ratios of their best-fit prolate and average-
triaxial ellipsoidal shapes. Both radar and optical observational
data were employed. Data for 1980 Tezcatlipoca, 3199 Nefertiti,
3908 Nyx, and 5587 1990 SB were taken from Kaasalainen et al.
(2004) who inverted light curves to obtain ellipsoidal shapes that
best duplicated their observations. The light curve analysis of
Pravec et al. (1998) provided information for the shapes of 1943
Anteros, 3122 Florence, 3752 Camillo, 7025 1993 QA and 11066
Sigurd. Finally, the radar observations and subsequent shape mod-
eling incorporating both radar and, often, optical data, of Magri
et al. (2007, 2011), Hudson and Ostro (1994, 1995, 1999), Benner
et al. (1997, 1999), Hudson et al. (2000), Busch et al. (2006, 2008,
2011), Vilas et al. (1985), Shepard et al. (2008), and Brozovic
et al. (2010a,b, 2011) provided for, respectively, 1580 Betulia,
8567 1996 HW1, 4769 Castalia, 4179 Toutatis, 1620 Geographos,
3103 Eger, 2063 Bacchus, 6489 Golevka, 10115 1992 30 SK,
33342 1998 WT24, 2008 EV5, 3288 Seleucus, 2100 Ra-Shalom,
4660 Nereus, 4486 Mithra, 136617 1994 CCo. Data for 433 Eros
and 21543 Itokawa that were visited by probes are taken from,
respectively, Veverka et al. (2000), and Fujiwara et al. (2006). In
some cases the best-fit ellipsoids were not exactly prolate or aver-
age-triaxial, but in keeping with the errors inherent in observa-
tions, we ignored the mismatch if it was within 10%. For most
asteroids densities are not known and we employ densities as-

Table 1

Prolate asteroids. For each asteroid, its maximum estimated extent d (if known), axes
ratio 8, density p, rotation period P and the corresponding non-dimensional rotation
rate o are given. The axes ratio o~ f.

Asteroid B p (gecm™3) P (h) w d (km)
8567 1996 HW1 0.39 2 8.76 0.22 3.8
1620 Geographos 0.4 2 5.22 0.36 5
2063 Bacchus 0.45 3.6 15.00 0.09 1.11
4769 Castalia 0.44 2.1 4.00 0.47 1.8
3103 Eger 0.65 2 5.70 0.33 23
433 Eros 0.33 2.67 5.27 0.31 344
4129 Toutatis 0.42 2.1 176.00 0.01 4.6
6489 Golevka 0.71 2.7 6.03 0.27 0.35
4486 Mithra 0.61 2 67.50 0.03 235
10115 1992 SK 0.65 2.3 7.32 0.24 1.39
21543 Itokawa 0.44 19 12.13 0.16 0.52
3288 Seleucus 0.41 2 75 0.03 3.4
1943 Anteros 0.91 2 2.87 0.66 23
3122 Florence 0.83 2 2.36 0.81 49
3752 Camillo 0.50 2 37.85 0.05 -
7025 1993 QA 0.77 2 4.21 0.45 -
11066 Sigurd 0.40 2 8.5 0.22 2.5
3908 Nyx 0.83 2 4.43 0.43 15
5587 1990 SB 0.42 2 5.05 0.38 3.57

Table 2

Average-triaxial asteroids. For each asteroid, its maximum estimated extent d (if
known), axes ratio B, density p, rotation period P and the corresponding non-
dimensional rotation rate « are given. The axes ratio o ~ (1 + f)/2.

Asteroid B p (gcm™) P (h) w d (km)
2100 Ra-Shalom 0.66 24 19.79 0.09 2.96
1580 Betulia 0.64 2 6.14 0.31 6.59
33342 1998 WT24 0.85 3 3.70 0.42 0.47
2008 EV5 0.93 3 3.73 0.42 0.42
136617 1994 CCux 0.93 2 239 0.80 0.69
4660 Nereus 0.47 2 15.16 0.13 0.33
1980 Tezcatlipoca 0.51 2 7.25 0.26 43
3199 Nefertiti 0.83 2 3.02 0.63 2.2
4957 Brucemurray 0.83 2 2.89 0.66 -

sumed in earlier work. Exceptions to this include Eros and Itokawa,
and asteroids such as Castalia and Toutatis where radar observa-
tions coupled with detailed shape models have constrained the
density to some extent. Finally, the sizes of Seleucus, Anteros, Flor-
ence, Tezcatlipoca and Nefertiti were obtained from Chapman et al.
(1994), while Delbo et al. (2003) provided for 1990 SB and Nereus.

We have accepted the shapes and spins coming from the cited
sources for lack of better options, but we recognize that they
may contain errors. In this light we emphasize that, in the follow-
ing sections, the aim is primarily to indicate how equilibrium and
stability results obtained here may be employed to probe internal
structures of asteroids given their shape and spin states. Finally, we
note that the importance of accurate size estimates cannot be over-
emphasized. For example, in his study of the stability of granular
asteroids, Holsapple (2004) assumes an average asteroid size of
10 km to rescale elasto-plastic moduli. This is several times the
size of known near-Earth asteroids with the exception of Eros;
see Tables 1 and 2. As we saw in Section 6.1, moduli are scaled
by the inverse square of the object’s size, and, because stability de-
pends crucially on plastic modulus, inappropriate rescaling may
lead to misleading results.

7.3. Local stability

We consider the stability of rubble asteroids to infinitesimal
perturbations. In these cases, we utilize the local stability plots of
Section 6.4 that retain the influence of the first-order term 5(V'E,.
Figs. 9 and 10 repeat these stability maps while locating on them,
respectively, the asteroids listed in Tables 1 and 2. From Figs. 9 and
10, we may immediately claim that 3122 Florence and 136617
1994 CCx that lie outside or very near the disruption curve corre-
sponding to ¢r=90° are not rubble-piles, or if they are, then they
have some amount of cohesion that allows them to support tensile
stresses. The former conclusion is not very surprising for the
0.8 km diameter 1994 CCux that is the largest member of a triplet
system, remnants, perhaps, of an earlier disruption. However, Flor-
ence is estimated to be 4.9 km in diameter. This, and its identifica-
tion as a S-type asteroid, suggests the possibility of it being a
granular aggregate, in which case its location in Fig. 9 indicates
the presence of cohesion. Asteroids other than the three noted
above lie within the equilibrium curve corresponding to an inter-
nal friction angle ¢r of 30°. In fact, barring 1943 Anteros, 4957 Bru-
cemurray and 3199 Nefertiti, the remaining lie within the ¢ = 20°
equilibrium curve. If, as discussed in Section 7.1, we agree that ¢f
for aggregates tends to increase from 30° as the confining pressure
decreases, then this supports the hypothesis that these objects are
rubble piles. On the other hand, if we believe that at extremely low
confining pressures ¢r may actually fall below 30° due to relative
ease in particle rearrangements, then it makes the existence of
Anteros, Brucemurray and Nefertiti as cohesionless rubble-piles
suspect.



I. Sharma/Icarus 223 (2013) 367-382 379

0.9

08| Florences 4= 90
0.7 Loooee o
' - '//,,~—r—srf

Anteros

0.6

0.5+

0.4t

% Eger

Z oy Geographos

03+ (I f - Golévka
Oy~ RS N
7 LO90HWL N 1992 5K
L e Sigurd 40
0.2 A0l N
4 N Itokawa W
7 \
— Bacchus
01t 4~ a 1 | Bacehus \

Non -dimensional rotation rate w_/(2np G)'*

) o
\ \Selgucus \ & Mithra,
I in Touatis o pam 0

03 04 05 06 0.7
Axes ratio § = a,/a,

08 09 1

Fig. 9. Location of prolate NEAs on the stability map of Fig. 4. See also Fig. 4's
caption.

0.9

9= 90

08r

1994 cC

- --40]
07y R e
Jacobi ellipsoid - 1 STET-CE- 30
e o Nefertiti
06 Aoz

e = 0
e 10

05}

. T 1998 Wr24 10
7 S e
04+ ) ~ TS ST 2008 EVS|

B

S 100
- ( S .
0.3 A% S Betulia
N .

iy S >\ Tezcatlipoca

L Jre N N

0.2 A . 10 N

JNereus', \
‘' Ra-Shalom \
\ . \

\ \

) \
20° 10°
1y

01p o |

Non -dimensional rotation rate o, /(2mp G)"

5
il

03 04 05 06 07 08 09 1
Axes ratio B = a,/a,

0 0.1 0.2

Fig. 10. Location of average-triaxial NEAs on the stability map of Fig. 5. See also
Fig. 5's caption.

Conclusions about the physical characteristics of asteroids,
based on their local structural stability as rubble-piles, is only pos-
sible if the asteroid lies on its associated critical equilibrium curve,
i.e., the asteroid is critically equilibrated. As we saw in Section 6.4,
granular ellipsoidal asteroids whose stress state at equilibrium lies
within the yield surface are automatically locally stable at first-
order due to the maximum dissipation postulate. Thus, for exam-
ple, if we assume that Itokawa is a granular aggregate with friction
angle ¢r > 30°, then Fig. 9 shows that it that lies comfortably in the
associated equilibrium region’s interior. Our stability analysis will
find it stable, and nothing may be concluded about its bulk modu-
lus x, or its existence as a granular aggregate.

Asteroids 1943 Anteros and 4957 Brucemurray allow for more
interesting analysis. Figs. 9 and 10 show, respectively, that these
asteroids lie very nearly on the equilibrium curve corresponding
to an internal friction angle ¢r of 30°. If we assume that aggregates
confined at extremely low pressures too have ¢r around 30°, then
both Anteros and Brucemurray are almost critically equilibrated. In
that case, to have survived gentle perturbations, perhaps in the
form of distant flybys, through the course of their existence these

two asteroids cannot have a scaled x greater than 10. For the
2.3 km diameter Anteros this corresponds to a maximum plastic
bulk modulus of about 4 kPa. This may be an acceptable estimate
for Anteros that is confined by an average internal pressure of only
0.14 kPa. A similar estimate may be reached for the bulk modulus
of 3199 Nefertiti that in Fig. 9 is shown to lie between the ¢r=30°
and ¢p=20° equilibrium curves, provided we make the not
implausible assumption that an extremely low-pressure confined
Nefertiti’s internal friction is somewhat less than 30°.

In the case of Brucemurray, whose size is not known, we may
attempt an alternative analysis. From the non-dimensionalization
of Section 6.1, we see that bulk modulus scales as 1/D? where D
is the object’s largest diameter. Thus, if we assume that aggregates
in space, though confined by pressures of less than 20 kPa, never-
theless display a plastic bulk modulus of 1 MPa, then for Bruce-
murray to be locally stable, it must be an object sized greater
than 30 km. But such a large asteroid would have probably allowed
estimates of its diameter. Alternatively, were Brucemurray less
than a kilometer in extent, for it to be locally stable and have an
internal friction angle of 30° would necessarily entail its x to be
less than 700 Pa; such a low modulus has to be confirmed by
experiments on aggregates confined at around a kilometer sized
Brucemurray’s average internal pressure of 24 Pa. The only other
possibilities are that Brucemurray rotates at a slower rate or has
a greater ¢r.

We end this section by mentioning past work on the stability of
granular asteroids. Holsapple (2004) too approached stability from
an energetic viewpoint, but developed his stability test in terms of
virtual displacements rather than in the rate form followed here.
Interestingly though, while we couch our stability test as an exten-
sion of Pearson’s (1955) restatement of the classical Lagrange-
Dirichlet criterion, Holsapple (2004) framed his as an independent
postulate. It will, therefore, be instructive to compare our predic-
tions and highlight differences in our techniques.

Holsapple (2004) makes several assumptions that restrict his
method’s applicability. First, the derivation of the coordinate sys-
tem in which stability is tested holds only for bodies that continue
to rotate about a principal axis post-perturbation. Next, the contri-
bution of the angular acceleration €2 to relative kinetic energy is
ignored, thereby restricting the stability test to principal-axes
rotators that may be perturbed only in a manner that preserves
angular momentum. The body'’s fate following perturbations that
add angular momentum is unknown. Finally, perturbations are re-
stricted to those that are compatible with the chosen plastic poten-
tial; cf. (33) and accompanying discussion. However, incompatible
perturbations constitute an overwhelming majority; in the six-
dimensional space of all possible strain perturbations of a material
element, a compatible perturbation is just one choice.

If we restrict ourselves to angular momentum preserving com-
patible perturbations, we obtain results consistent with Holsapple
(2004) as follows. For the case of inviscid incompressible fluids,
where the yield surface collapses to a line, our stability predictions
are identical as expected, because the only incompatible perturba-
tions are those that do not preserve volume. Consider next solid
objects that were modeled as elastic-plastic materials by
Holsapple (2004), but as rigid-plastic materials here. When not
critically equilibrated, such objects are predicted to be stable pro-
vided that their elastic moduli are high enough. We reach the same
conclusion for the limiting case of a rigid-plastic ellipsoid. In our
case, as a consequence of the maximum dissipation postulate, sta-
bility for rigid-plastic solids that are not critically equilibrated is
decided at first-order itself, i.e., by 6("E’s sign in (30a). Further-
more, critically equilibrated elastic—plastic ellipsoids were pre-
dicted by Holsapple (2004) to become unstable to compatible
perturbations in the presence of a small amount of material soften-
ing. Here, because a softening material has a non-convex yield
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surface, the maximum dissipation postulate also predicts instabil-
ity for rigid-plastic materials at first order itself; cf. Section 7.1.

To observe differences that may arise when we ignore incom-
patible perturbations and/or do not preserve angular momentum,
consider the case of 1943 Anteros in Fig. 9 that for the sake of argu-
ment we take to be critically equilibrated. Given its shape and spin,
the analysis here can predict Anteros’ local response to all homoge-
neous perturbations. Perturbation that modify Anteros’ angular
momentum could potentially destabilize it. Anteros is stable, how-
ever, to incompatible perturbations that leave its angular momen-
tum unchanged. For compatible angular momentum preserving
perturbations that automatically do not affect the body’s angular
momentum, we are able to identify appropriate material parame-
ters that would lead to instability. Now, as mentioned above, com-
patible perturbations constitute a one-dimensional subset of the
six-dimensional space of displacement perturbations. Concluding
that Anteros is stable on the basis of its response to a solitary per-
turbation may not be entirely justified, as it is entirely possible for
Anteros to have during its lifetime seen perturbations that are
incompatible.

Finally, there are differences also in the way granular aggre-
gates are modeled. In contrast to us, Holsapple (2004) models rub-
ble-piles as elastic-plastic materials, and this necessitated
employing several parameters, obtained, in turn, from terrestrial
soil tests conducted at confining pressures of several MPa. This ig-
nored the fact that granular asteroids are confined by very low
pressures, and this affects material properties; cf. Section 7.1.
Our rigid-plastic constitutive description, on the other hand, re-
quires only two parameters.

7.4. Planetary encounters

During a tidal flyby an asteroid experiences forces and torques
over a finite duration. A rigorous investigation into the stability
of asteroids to planetary encounters will, therefore, require that
we follow the asteroid’s dynamics during its flyby along, say, the
lines of Sharma et al. (2006). Here, as a first step, we will approx-
imate the flyby as a single instantaneous perturbation, and further
assume that the asteroid’s angular momentum is left unchanged by
the tidal encounter; we comment on this latter assumption at the
end of this section. The local secular stability results of the previ-
ous section then are satisfactory for small perturbations as experi-
enced by an asteroid during a remote flyby. We now employ
Section 6.5’s analysis to investigate the stability of asteroids to
close planetary encounters where the perturbations are potentially
bigger.

After a close planetary flyby, asteroids that lie within the
boundaries of their associated equilibrium region may suffer
appreciable shape change, notwithstanding the first-order stability
prediction of the maximum dissipation postulate. As an approxi-
mation we assume that, if §?E; is positive for a choice of the ulti-
mate friction angle ¢r and plastic bulk modulus x, then the
corresponding asteroid is unstable to a close flybys, else not.
Fig. 11 locates the prolate near-Earth asteroids of Table 1 on
Fig. 6, while also appending plots corresponding to a lower and a
higher friction angle of, respectively, 20° and 50°. Fig. 12 repeats
the process for the asteroids listed in Table 2 by locating them
on Fig. 7 and on similar plots obtained for ¢ of 20° and 40°.

We have seen in the previous section that were Anteros consid-
ered critically equilibrated, for it to be locally stable, it requires a
scaled plastic bulk modulus x less than 10. From Fig. 11, we see
that even if Anteros with a low internal pressure of 0.14 kPa had
a higher friction angle ¢ of 50° - as suggested to be possible for
lightly confined aggregates by experiments of Ponce and Bell
(1971) discussed in Section 7.1 - for it to be stable to close flybys,
it should not have a x greater than 1. Obviously, given its location
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Fig. 11. Location of several prolate NEAs. See also Fig. 6's caption.

in shape-spin space, a ¢r below 30° is inadmissible for a non-
cohesive granular Anteros. Thus, both a local and an approximate
higher-order stability analysis appear to indicate that for Anteros
to be a rubble-pile asteroid it must have a very low plastic bulk
modulus. If, in case, future experiments on soils at low-confine-
ment pressures indicate that such low bulk modulus are unrealis-
tic, then either Anteros is not a cohesionless granular aggregate, or
it has never had a close tidal encounter as it is susceptible to signif-
icant reshaping. Exactly the same arguments may be made for
Brucemurray and Nefertiti in Fig. 12.

Considering other asteroids in Fig. 11, we see that for 1990 SB,
Geographos, Eger, Golevka, 1992 SK and Eros to be stable to close
flybys, they must have a high plastic bulk modulus x of at least
100 in case their friction angles are about 30°. At higher friction an-
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gles, this lower bound on x reduces to 20. For a 34 km Eros with a
¢r of 30°, this suggests a bulk modulus of at least 4 MPa. The aver-
age pressure within Eros is nearly 20 kPa, so that the bulk modulus’
estimate correlates well with the experiments of Lancelot et al.
(2006); cf. Section 7.1. On the other hand, Golevka is less than a
kilometer in size, so that the mean internal pressure is a low
7 Pa, and a non-dimensional x of 100 corresponds to about
1.2 kPa. It remains to be tested whether these are realistic esti-
mates for the plastic bulk modulus. If not, then our conclusions will
be as in the case of Anteros. Similar arguments hold for the triaxial
asteroids in Fig. 12, except that a low friction angle of 20° appears
less acceptable. We recall that all these asteroids, and also the ones
discussed in the next paragraph, were already seen to be locally
stable at first-order in Section 7.3, as they lie well within

equilibrium zones corresponding to any reasonable choice of the
friction angle. Thus, even if they are found unstable to close
planetary flybys, it does not prohibit their existence as granular
aggregates.

We turn finally to the Itokawa and its neighbors 1991 HW,
Sigurd, Bacchus, Camillo, Mithra, Seleucus and Toutatis in Fig. 11.
We see from the plot corresponding to ¢r=30° that, excepting
the latter two, all the others will be unstable to a close flyby inde-
pendent of x's value. Seleucus and Toutatis lie just within a zone
corresponding to zero plastic bulk modulus, and this k appears
unreasonable. Thus, in their case, if we require them to be stable
to close encounters, they must have a friction angle less than 30°
and a scaled x of about 2. For the 4.6 km long Toutatis with average
internal pressure of 0.4 kPa this gives a plastic bulk modulus of
about 1.2 kPa. This again is a low value that needs experimental
corroboration. Itokawa and the rest of its neighbors are stable to
close tidal encounters only if either they have a friction angle of
20° and a x of about 2, or a ¢ somewhat greater than 50° and a
scaled plastic bulk modulus between 100 and 1000; cf. the top
and bottom plots in Fig. 11. In case of the popular half-kilometer
long Itokawa that has an internal mean pressure of a mere 5 Pa,
these two cases correspond to bulk moduli of 15 Pa and 8 kPa,
for internal friction angle choices of, respectively, 20° and 50°.
The former estimate of k appears unreasonably low, and we are in-
clined to believe that a granular Itokawa has a ¢ greater than 50°
and a plastic bulk modulus around 10 kPa. It is interesting to note
that modeling Itokawa as a contact binary Sharma (2009) found
that a rubble-pile Itokawa requires an internal friction angle
slightly beyond 50° to exist in equilibrium. Very similar arguments
may be made for Nereus in Fig. 12.

Before closing this section we comment on our earlier decision
to ignore the change in an asteroid’s angular momentum during a
planetary encounter. This holds strictly for asteroids having an axis
of symmetry normal to the flyby plane, as tidal torques vanish. For
other asteroids, there exist flyby parameters that ensure that the
asteroid’s angular momentum is affected little by a tidal flyby,
see, e.g., Sharma et al. (2006). For the general case, if we were to
admit perturbations that change an asteroid’s angular momentum,
then, as discussed in Section 5.2 and in Paper II, the present anal-
ysis would predict instability. This would be a rather crude first
estimate, and for more accurate answers it will be necessary to ex-
tend the present analysis to include perturbations that occur over
finite time during which angular momentum may be transferred.

8. Conclusion

In this paper, we have investigated the structural stability to
infinitesimal perturbations of rubble-pile asteroids, modeling them
as freely-rotating rigid-perfectly-plastic ellipsoids following an
associative flow rule post-yield. To this end, we extended the clas-
sical Lagrange-Dirichlet theorem to the case of non-smooth mate-
rials like granular aggregates. We also discussed in detail the
appropriate coordinate system in which to carry out the stability
analysis; this was found to be the well-known Tisserand’s mean
axes of the body. We probed the stability of several near-Earth
asteroids, and explored the influence of material parameters such
as the ultimate internal friction angle ¢r and plastic bulk modulus
k. In this context, we also examined the stability of asteroids to
planetary encounters after making several simplifying assump-
tions. Close encounters were investigated via an approximate sta-
bility analysis of finite perturbations. We saw that it may be
possible for asteroids to be stable to small perturbations, but
unstable to strong perturbations as experienced during close fly-
bys. Conversely, assuming stability in certain situations, we could
place bounds on the ¢r and x of some asteroids. We saw that in
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cases such as Anteros, stability could only be guaranteed if it had a
K lower than 10 kPa. The possibility of such a low modulus for soils
needs to be verified experimentally by hydrostatic compression
tests conducted at confining pressures of less than 100 Pa, as
appropriate for kilometer sized granular asteroids.

In the future, we aim to apply the stability test developed here
to the small newly-discovered moons of the giant planets, many of
which are thought to be granular aggregates, and rubble-pile bina-
ries. It is also necessary to extend the present analysis to include
perturbations that are spread over finite time in order to address
tidal flybys.
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