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Abstract

Communication networks have evolved from specialized, research- andyndii@nted trans-
mission systems to large-scale and highly complex interconnections of intelligeioes. Ef-
fective operation of such large-scale networks hinges upon real-timeatila of network
resources that match the user demands. This thesis contributes towemds key problems
encountered in both, monitoring and resource allocation in networks.

Volatile operating environments encountered in ad hoc and sensor netplade severe
restrictions on the resources (bandwidth and power) available to netwdes. Pertinent ap-
proaches have sought to replicate the Internet protocols in ad hocrketvesacerbating the
resource scarcity by ignoring the peculiarities of the underlying wirelésgfate. The present
thesis leverages the ground-breaking idea of network coding to desigiess network pro-
tocols. Towards this end, a cross-layer design is pursued, and ketades are optimized
jointly with protocols operating at application, medium access control (MAGY, physical
(PHY) layers. Fowireless fading networksiual decomposition is utilized to optimally in-
tegrate network coding into the protocol stack. Network coding is also intexti for use in
Aloha-based MAC, and the resulting non-convex problem is solved zigessive convex ap-
proximation to realizgoractical network coding algorithmsBenefits of network coding also
extend toQoS-constrained scenariosuch as in real-time and streaming media applications.
Modeling constraints on packet deadlines is the key challenge herepasitant-factor approx-
imations are proposed to this end. In sensor networks where the othsiigeis correlated
across nodes, network coding can both compress and communicate the datallection
agent. An efficient decoding scheme for thitwork-compressive scheisaleveloped, yield-
ing network-wide energy savings and increase in the network lifetime.

Exhaustive monitoring of large-scale networks may be challenging or everssitgte to
perform, motivating the need to account for missing measurements. This pl¢si®rth the
novel concept oflynamic network cartographgs tool for inference, tracking, and prediction
of the network state. Tapping into the spatio-temporal kriging theory, amignaetwork
kriging approach is developed with real-time network-wide prediction dhped based on
latency measurements acquired for a small subset of network paths. @alifgeyond state-
of-the-art methods, the proposed model captures not only spatio-tdropoedations, but also
unmodeled dynamics due to, e.g., congested routers.
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Chapter 1

Introduction

Communication networks have evolved from specialized, research- andyndii@nted trans-
mission systems to large-scale and highly complex interconnections of intelligeines. Net-
works today are heterogeneous and comprise not only of computer tésnpboaalso smart
power grid networks [106, 115], ad hoc networks [122], senstwarks [2], and cognitive
radio networks [70, 110]. The traffic carried by these networks Isasiacreased explosively,
thanks to the advances in processing speed and storage efficiedegtobr@c devices. The
resulting need for higher efficiency in network operation and managehasnprompted re-
searchers to rethink the principles of network design altogether. Theldaside has thus
witnessed significant advances in network information theory [48] aaank optimiza-
tion [150], as well as an increasing use of statistics and machine learnilsginocommu-
nication networks [84].

From a systems perspective, all networks are distributed systems cansistisers that
generate and consume traffic, along with protocols that regulate its flossatre network [150].
Effective operation of a network hinges on real-time allocation of netweskurces match-
ing the user demands, while ensuring a prescribed minimum quality of se@a®)( Con-
sequently, network operators are interested in (a) monitoring the netwatek ia order to
estimate the demand and availability of resources; and (b) designing protbabkllocate
network resources to users in a fair and efficient manner. This thesisdswpon some of the

key challenges encountered in both monitoring as well as resource altopadiolems. Lever-



1.1 Motivation and Context 2

aging recent advances in network information and optimization theory, ttepfirt of the
thesis considers the problem of optimal resource allocation under diffecenarios for both
ad hoc and sensor networks. The second part of the thesis devedtatsstical framework
for network monitoring and prediction, with emphasis on large-scale nesnanrll real-time

operation.

1.1 Motivation and Context

The ability to deployad hoc wireless networksgithout centralized control or infrastructure is
key to achieving the next-generation promise of ubiquitous connectivigsd belf-organizing
networks are already indispensable for applications such as sensingatsupport, search-
and-rescue, as well as mesh networks. The challenge of efficiently gilizenavailable re-
sources, namely spectrum and battery life, is the first priority for ad bowarks. The broad
aim of the first part of this thesis is to systematically design and analyzeroesefiicient ad
hoc network protocols.

Internet protocols have been phenomenally successful in achievingdigs and ensuring
low delays in wired networks. Indeed, most wireless routing schemesduaght to repli-
cate the “wireline success” by neglecting the vagaries of the wirelessadoggerénd reusing
the available algorithms and protocols. However, this wireline mindset hassajnled to
inefficient use of bandwidth and power resources, as well as to @abilé complications in
the deployment of ad hoc networks. Network coding is a recent groueaking alternative to
routing that offers the potential to transcend these arbitrary limits by emigrdwnpeculiari-
ties of wireless networks [94].

Network coding refers to the notion of allowing nodes to perform encodperaiions
on packets traversing the network [1]. Interestingly, linear mixing of ptcls sufficient for
achieving multicast capacity in wireline networks [61, 175]. This optimality ltesas en-
couraged harvesting the benefits of linear network coding to areaversalias distributed
storage [44, 45], peer-assisted file delivery [66], streaming medid [B} 149], network to-
mography [58, 59], security [21, 77], data collection in sensor netsv§itk4], and ad hoc

networks [60]. The potential of network coding in wireless applicationssis &ell appreci-
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Figure 1.1: Information exchange through a relay node. Colors indediffieeent time slots.

ated by now [28, 62], and some of the early prototypes include COPE &A= MIXIT [80].
The emerging consensus is that network coding is not just an “exotithgpsubstitute, but a
new paradigm for information collection, storage, and dissemination.

To demonstrate the advantages of network coding over routing in wired&ssgs, Fig-
ure 1.1 depicts a canonical example, where two nadasd ¢ intend to exchange packets
through an intermediate node With traditional routing (depicted on the left), this exchange
requires at least four time slots. However, network coding at bocin allow the exchange
to occur in just three time slots (as shown on the right). Observe how, unkkeotiting
scheme, network coding is also able to capitalize on the broadcast advanttagent to wire-
less networks. This example underlines the importance of jointly designingrietading
with transmission scheduling, in order to fully utilize the network capacity.

Switching our focus from optimization to monitoring, measurement tools aratesser
maintaining seamless end-user experience in dynamic environments, as Viegllemsuring
network stability and security. In IP networks for instance, path delagsl@ss rates can
portray network health, assess user experience, and allow usemnpadifferent service
providers. Unfortunately, acquisition and tracking of path metrics doesaabe well to large
networks, where the number of paths grows as the square of the nufrdaeat-points. This
problem of “missing data” in Internet measurements has prompted the demestbpfinfer-
ential monitoring where statistical tools are used to impute the missing entries [84].

Early work in this context included network tomography, which aimed at iimigrink
delays in networks using only path delay measurements [24, 151]. Leetag ihcurred on
a link ¢ be denoted byr,, and let theL x 1 vectorx collect the delays on all links in a

network. Also, lety, be the path delay, collected in tiiex 1 vectory for all paths. The delay
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tomography approach utilizes the linear model
y = Gx (1.2)

where the(p, £)-th entry of the routing matriXG is one if pathp includes link¢, and zero
otherwise. Suppose further that at any time, onlySar 1 sub-vectory® with S < L entries
can be observed. Define the sub-vector of missing entrig$ aend the sub-matrices, and
G, formed by the rows corresponding to observed and unobserved paghsctively. Then,

the following expression was proposed in [24] for determining missing meamnts
v' = G,GL(G,G])y° (1.2)

where the rows inG, were chosen such = rank G) = rankG,). SinceS < L <« P,
this approach allows reduced measurement overhead compared to expésiirement on all
paths.

While network tomography allows perfect recovery of missing delays vig),(it cannot
work if S is even one less than raf®). This imposes a severe limitation on its practicality,
since measurement probes are always considered low-priority, anceasily get lost due
to congestion. These considerations motivate monitoring via approximatageebrsuch as
those employed in the context of spatial prediction [141], and these farivetsis of the present

work.

1.2 Thesis Outline and Contributions

The first part of this thesis proposes network coding protocols fooadhd sensor networks.
In order to systematically design wireless protocols that can harnesslitpettential of net-
work coding, a cross-layer design approach is pursued. Within thisefseork, protocols at
different layers are allowed to interact with each other, in hopes of abggan improvement
in network throughput and QoS. Subsections 1.2.1-1.2.4 describe theedifEcenarios under
which protocol design is considered.

The second part of this thesis proposes a dynamic network delay eagitggiramework,

which is described in Subsection 1.2.5.
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1.2.1 Multicast in Fading Channels

As seen in Figure 1.1, even simple linear mixing operations can be powedubé to en-
hance the network throughput, minimize delay, and decrease the ovenadl ponsump-
tion [175], [28]. For the special case of single-source multicast, whigs chot even admit
a polynomial-time solution within the routing framework [14], linear network cgdinhieves
the full network capacity [1]. In fact, the network flow description of mukicavith random
network coding adheres to only linear inequality constraints reminisceneafdiresponding
description in unicast routing [97].

This encourages the use of network coding to extend several popsildtsin unicast rout-
ing framework to multicast without appreciable increase in complexity. Of pdatiénterest
is the resource allocation and cross-layer optimization task in wireless hstj@s], [65].
The objective here is to maximize a network utility function subject to flow, rapacity
and power constraints. This popular approach not only offers thibifigx of capturing di-
verse performance objectives, but also admits a layering interpretatisimgafrom different
decompositions of the optimization problem [26].

Chapter 2 deals with cross-layer optimization of wirelesdticastnetworks that use net-
work coding and operate ovéading links. The aim is to maximize a total network utility
objective, and entails finding end-to-end rates, network code desi@bles, broadcast link
flows, link capacities, average power consumption, and instantanemeas plbocations.

Network utility maximization was first brought into coded networks in [97], rettbe aim
was to minimize a generic cost function subject only to flow and rate constraimesoptimal
flow and rate variables may then be converted to a practical random #et@ding imple-
mentation using methods from [95] and [27]. Subsequent works exdethdeframework to
include power, capacity, and scheduling constraints [3,38,159, Th@]interaction of network
coding with the network and transport layers has also been explore8,i89291, 168, 169];
in these works, networks with fixed link capacities are studied, and diffetfecomposition
techniques result in different types of layered architectures.

There are however caveats associated with the utility maximization problem ilesgre

networks. First, the power control and scheduling subproblems aedlyison-convex. This



1.2 Thesis Outline and Contributions 6

implies that the dual decomposition of the overall problem, though insightfudtisetessarily
optimal and does not directly result in a feasible primal solution. Secondofainuous fading
channels, determining the power control policy is an infinite dimensionallgmobExisting

approaches in network coding consider either deterministic channeldJB,d, links with a

finite number of fading states [38, 74, 173].

On the other hand, a recent result in unicast routing shows that albeibtheonvexity, the
overall utility optimization problem has no duality gap for wireless networks watttiauous
fading channels [139]. As this is indeed the case in all real-life fading@mwients, the result
promises the optimality of layer separation. In particular, it renders a dbgradient descent
algorithm for network design optimal [64].

Chapter 2 begins with a formulation that jointly optimizes end-to-end rates, Mitwss,
broadcast link flows, link capacities, average power consumption, atanianeous power
allocations in wireless fading multicast networks that use intra-session eteding. The
first contribution of this chapter is to introducerealistic physical layer moddbrmulation
accounting for the capacity of broadcast links. The cross-layerlgmolis generally non-
convex, yet it is shown to have zero duality gap. This result consilebmbadens [139] to
coded multicashetworks with broadcast links. The zero duality gap is then leveragedar or
to develop a subgradient descent algorithm that minimizes the dual fun@tfmmalgorithm
admits a natural layering interpretation, allowing optimal integration of netwoding into
the protocaol stack.

Next, the subgradient algorithm is modified so that the component of theaglibgt that
results from the physical layer power allocation may be delayed with respeperations
in other layers. This provably convergent asynchronous subgntadiethod and it©nline
implementation constitute the second major contribution. Unlike the algorithm inid¢h
is used for offline network optimization, the algorithm developed here is daifabonline
network control. Convergence of asynchronous subgradient nefoodiual minimization
is known under diminishing stepsize [83]; this chapter proves resultsofastant stepsize.
Near-optimal primal variables are also recovered by forming runningages of the primal

iterates. This technique has also been used in synchronous subgradiéods for convex
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Figure 1.2: A tactical network

optimization; see e.g., [113] and references therein. Here, ergodiergmmce results are

established for the asynchronous scheme and the non-convex pratiieamd.

1.2.2 Multicast in Random Access Networks

Tactical wireless ad hoc networks play a crucial role when it comes to comatiom dom-
inance in the battlefield. Important requirements for such networks inclesiBence and
efficiency. In order to accommodate units such as soldiers, military vehalesfield hospi-
tal, tactical networks are typically multi-hop; see e.g., Figure 1.2. Thus, @rbes important
to deploy decentralized protocols, so that no single node exposes \nilitgiE the network.
Aloha is a simple, yet widely deployed medium access control (MAC) prétadwmse opera-
tion is distributed and resilient to both random, and jamming-induced link failures.
Chapter 3 focuses on multicasting applications for tactical networks, whingnation
needs to be multicast from a single source to multiple target nodes. Efficidtitasting is
realized using network coding whereby nodes perform encodingifnsocon packets traveling
in the network. Although the multicast capacity region of wireless networkstikmown, the

rate region achievable with linear network coding has been charact¢®izetb9]. This rate
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region can be practically achieved by fully distributed random linear nétwoding strate-
gies [27,72,96]. Random network coding also results in each paekiitgdistributed spa-
tially, thus providing some inherent protection against eavesdroppingedver, wedding of
network coding with Aloha is particularly attractive for military networks besgathe network
operation becomes extremely simple. Specifically, given the access pittgsgbeach node
simply transmits random linear combinations of the packets in its buffer at apsefied
rate [27,72,96]. The protocol does not require ACKs (nor retrassions) at the MAC or
network layers.

This chapter considers joint design of wirelesslti-hopnetworks employing random net-
work coding and slotted Aloha. A cross-layer optimization problem is formdjat®ere net-
work coding rates (also called subgraphs) and transmission probabitgigsrely determined
to maximize a network-wide objective. In contrast to simple protocol operatienjoint de-
sign itself is notoriously difficult. This is because the Aloha capacity regieen éor three
nodes with fully backlogged queues is described by non-convex signoariatraints [138].

Joint design of network coding and Aloha MAC has been undertakesirigte-hopnet-
work topologies. The performance of slotted Aloha for star networksamagyzed in [88].
A game theoretic approach for throughput maximization in a single-hop setiagmwposed
in [75]. The performance for two-hop (relay) networks with bi-directsibiaffic was reported
in [161]. These works underline the significance of the cross-layemagh for coded Aloha
networks.

Joint design of coded Aloha multi-hop networks has been attempted. Arbearttbound
method was employed in [140] to obtain globally optimal transmission probabilitiesw#nd
graphs. While offering a benchmark for comparison, the resultantgrbieay be too complex
for use in large networks. A heuristic algorithm was proposed in [166grevthe access prob-
abilities and network coding rates were optimized separately. Albeit pradieahpproach
in [160] is suboptimal, and does not provide performance guarantees.

In this chapter, a successive convex approximation approach is ddopibtain solutions
that are guaranteed to be locally optimal. Convex surrogate problemsresteumted in such a

way to guarantee convergence of the overall algorithm to a KarusimRubker (KKT) point
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of the original non-convex problem, and thus enable a tractable, localipajsolution, even
for large networks. This requires an efficient re-formulation of the M&@straints, which
constitutes our first contribution.

The constructed surrogate problems are not amenable to distributed soliditiris end,
a separable structure is created by further approximating the problem, stillilgreserving
KKT optimality of the overall algorithm. This forms our second contribution, \hit/olves
approximating even convex terms in order to make the overall problemat#parThe dual
subgradient method is employed for the resulting convex problems, wheepeithal and dual
updates can be performed in a parallel and distributed fashion. A pritgibsoyielding near-
optimal access probabilities and network coding rates, is recoveredrgl@veraging. An
online network control protocol is also introduced to perform the optimizagisk.

The coded Aloha scheme enjoys features attractive for tactical netwspleifically, the
resulting protocol is simple and decentralized, whereby every nodentisnsandom linear
combinations with its access probability. Moreover, the optimal designs of tiris take into
account the packet loss probability due to the wireless medium (erastiniefpature can be
leveraged to ensure jamming-resilience by preemptively setting higherenasbabilities
for any part of the network that is likely to be jammed. Furthermore, the adimmt-based
online optimization and control uses a constant stepsize, which enablgstiatato slowly
time-varying environments, for instance, due to mobility of branch units, arstationary
jamming. The proposed scheme can also be used in low-end systems whighimiglement

any scheduling and power-allocation schemes.

1.2.3 Muticast under Delay Constraints

An important, but often overlooked, aspect of several wireless apiplicais the sensitivity of
packets to delays. Streaming media and real-time sensor data, for examplssaciated with
strict deadlines, failing which, packets become useless. However, niggigss network cod-
ing implementations, such as [27], operate under the assumption of largel®hgths. This
requires the sinks to accumulate a large number of packets before commtreitecoding

process, thereby incurring prohibitively large delays.
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Chapter 4 develops a joint scheduling and network coding (JS-NC)ithligofor wire-
less networks with packet delay constraints. A single source multicastrszés considered
where packets must be decoded at each sink within a specified number-afdiimsince their
first transmission by the source node. Delay constraints significantly catelice JS-NC
design since the optimal codes may have infinite block-lengths; see [5@thedreferences
in Section 4.

Since infinite block-length codes are difficult to design as well as implemenin@les
periodic version of this joint design problem is proposed that operatestione-unwrapped
graph, thus allowing for finite block-length network codes. Peeiodic formulationis em-
ployed to derive a constant-factor approximate, augmenting-path ddgatitam that is both
scalable and distributed. The resultant network coding protocol ddegquire any end-to-
end feedback or asymptotically large field size, and needs only a brigpgatie.

For networks with primary interference constraints, the JS-NC desidriegmmais also ana-
lyzed from an integer programming perspective. A set of valid inequalitidsvisloped which
is subsequently used to derive a linear programming upper bound onhievatule through-
put. Finally, simulations are used to corroborate the performance of thexapate JS-NC

algorithm, and the quality of the associated bounds.

1.2.4 Network-Compressive Coding in Wireless Sensor Netwiks

Wireless sensor networks (WSNs) have become ubiquitous for cestieff, distributed environment-
monitoring and surveillance applications [156]. Deployed over largesa¥®8Ns are comprise
of low-cost autonomous sensing devices with limited processing capabilitiesatery life.
In large-scale WSN deployments, however, relaying information ovesraetiops becomes
increasingly energy inefficient. On the other hand, observations fesrby sensors may be
highly correlated; for instance, in temperature monitoring or intrusion-detesgistems. For
such applications, spatial correlation can be exploited to perform in-mietwammpression of
data, and achieve significant energy savings and prolonged netweiitkf[119].

Chapter 5 develops network-compression algorithms thdtness network codingLNC)

to compress and communicate sensor observations. Compression via aiNf@$esimple op-
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erations per sensor and reduced transmission energy. In generalskhef jointly designing
data collection and compression protocols falls under the broad aredrdfidisd source cod-
ing (DSC) [123, 146, 171]. However, in contrast to most DSC schetgpially involving
Slepian-Wolf coding, the LNC-based network-compression does gatreethe intermediate
nodes to have knowledge of the correlation between sensor obsesvation

The use of network coding for in-network compression has been amasidefore in the
context of network multicast; see [101] and references therein. Sptocea source-network
decoding generally requires a search over an exponentially-larggwsed set of hypothe-
ses, most results focus on characterizing the achievable rate regigroimied out in [101],
it is possible to perform approximate decoding by modeling the probabilistitaedhips
among observations using a factor graph [86], thereby allowing the fussvacomplexity
message-passing algorithms. The caveat though is that constructiomalgsisof “good”
factor graphs, promising low decoding complexity, or reliably decoded e}egtimates, is
not straightforward, and was not dealt with in [101].

This chapter considers the design and analysis of network-compressiing and decod-
ing algorithms. Using the sum-product algorithm for decoding, specifinastes are iden-
tified, which yield factor graphs that admit practical protocols and low diecperror. Two
novel factor graph constructions are proposed, offering complemyesttangths in modeling
and inference accuracy. Performance of the proposed appraasb @nalyzed by deriving er-
ror exponents of the probability that the distortion at the sink surpassesratglerable level.
These error exponents expose the interplay between correlation lewgbression ratio and
alphabet size. The proposed algorithm is tested both on synthetic as wedl asita sets, thus
verifying its efficacy.

It is worth noting that the problem of efficiently collecting distributed data liss laeen
explored in the context of decentralized detection, see e.g., [156] terdmees therein. How-
ever, most of these approaches are for scalar random variabls §bdl assume that all sen-
sors receive observations from the same variable [180]. Some apassume the observa-
tions to be real-valued and exploit compressive-sensing [69], orsgaviselief propagation [7]

for recovery. However, these algorithms entail mixing and transmissionabg-amplitude
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messages, which may be impractical in low-cost sensing devices. Moreowe of the exist-
ing approaches considers the design of mixing matrices (tailored to minimize caoatiom

cost), or analyze the impact of quantization errors.

1.2.5 Dynamic Network Cartography

The explosive growth in network size has necessitated the developmavarafgarde moni-
toring tools to endow network operators with a real-time view of the global m&thehavior.
As pointed out earlier, acquisition and processing of network-wideopadnce metrics for
large networks is no easy task. Focus has thus shifted towards statistaras ofepredicting
network-wide performance metrics using measurements on only a subsztes [124, 153].
A promising approach in this context has been the applicatickriging, a tool for spatial
prediction popular in geostatistics and environmental sciences [36, Bdhptwork kriging
approach was developed in [29], where network-wide path delays predicted using mea-
surements on a chosen subset of paths. The class of linear predittoduaed leverages
network topology information to model the covariance among path delays. iShiscom-
plished in [29] by assigning higher correlation between two paths if theg seweral links, as
in this case, they are expected to incur similar delay variations.

Chapter 6 puts forth alynamicnetwork kriging approach capable of real-time spatio-
temporal delay predictions. Specifically, a kriged Kalman filter (KKF) is emgidoto ex-
plicitly capture variations due to queuing delays, while retaining the topoleggd kriging
predictor. The resulting dynamic network kriging approach not only yiklder prediction
error, but is also more flexible, allowing delay measurements to be takemdomasubsets
of paths. In this context, the problem of choosing the optimal paths for dedegurements is
also considered. Since the KKF runs in real-time, the paths are also seteatednline fash-
ion by minimizing the prediction error per time slot. Interestingly, the resulting coatdiral
optimization problem is shown to be submodular, and is therefore solved>apately via a
greedy routine.

Recently, a compressive sampling-based approach has also bededdpo predicting

network-wide performance metrics [30, 172]. For instance, diffusiamelets were utilized
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in [30] to obtain a compressible representation of the delays, and adoowpatial and tem-
poral correlations. Although this allows for enhanced prediction acgweer [29], it requires
batch processing of measurements which does not scale well to largerkefaoreal-time
operation. In contrast, both the KKF and the greedy path selection algothtais sequential
operations, and are therefore significantly faster.

Imputation of end-to-end delays has also been considered in the cohtexémet ge-
olocation. Treating end-to-end delays as distances between nodesiy albge distances are
estimated using Euclidean embedding [40], or, matrix factorization [92]. edew these ap-
proaches do not exploit the temporal or topological information, since theirs is not on

monitoring or extrapolation (that is, prediction) of delays.

1.3 Publications

The present Ph.D. work on network optimization and monitoring has resultadircation of
three journal papers (in the IEEE/ACM Transactions on Networking][1BEE Transactions
on Signal Processing [134], and IEEE Journal on Selected Areasrmtinications [131]).
It has also led to two journal submissions, currently under consideratigoublication (in the
IEEE Transactions of Wireless Communications [126] and IEEE Transaotiblnformation
Theory [129]), and one journal paper in preparation [56] for subimisto the Journal of
Machine Learning Research. In addition to these 6 journal papetd{sr@s this thesis have
also been disseminated at pertinent conferences, where a total deferwe articles has been

accepted for publication [57,127,128,132,133,135, 136].
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Chapter 2

Cross-Layer Design of Coded

Multicast in Fading

This chapter deals with cross-layer designs in wireless fading netwArksptimal resource
allocation framework is formulated, where the nodes are allowed to perietwork coding.
The aim is to jointly optimize end-to-end transport layer rates, network cesigml variables,
broadcast link flows, link capacities, average power consumption feomtterm power alloca-
tion policies. As in the routing paradigm where nodes simply forward padketsross-layer
optimization problem with network coding is non-convex in general. It is gdollowever,
that with network coding, dual decomposition for multicast is optimal so longeafatting at
each wireless link is a continuous random variable. This lends itself to lpisoeanvergent
subgradient algorithms, which not only admit a layered-architecture netiatjpn but also op-
timally integrate network coding in the protocol stack. The dual algorithm ispEsed with a
scheme that yields near-optimal network design variables, namely multich$d-@md rates,
network code design quantities, flows over the broadcast links, linkcitagsa and average
power consumption. Finally, an asynchronous subgradient methodetogded, whereby the
dual updates at the physical layer can be affordably performed witrtaiic delay with re-
spect to the resource allocation tasks in upper layers. This attracttuedémmotivated by the
complexity of the physical layer subproblem, and is an adaptation of theailibgt method

suitable for network control.
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The organization of this chapter is as follows. Section 2.1 presents thiepréormula-
tion that jointly optimizes end-to-end rates, virtual flows, broadcast links)dwk capacities,
average power consumption, and instantaneous power allocations inswifatithg multicast
networks that use intra-session network coding. The cross-laybtepnos generally non-
convex, yet it is shown to have zero duality gap (Section 2.2.1). Thedieatity gap is then
leveraged in order to develop a subgradient descent algorithm that misithizdual function
(Section 2.2.2), and is provably convergent (Section 2.2.3). In Seci®ritie subgradient
algorithm is modified so that the component of the subgradient that resuftstfre physi-
cal layer power allocation may be delayed with respect to operations inlagrers. Finally,

numerical results are presented in Section 2.4, and Section 2.5 concladdmiier.

2.1 Problem Formulation

Consider a wireless network consisting of a set of terminals (nodes)ettbp/\". The broad-
cast property of the wireless interface is modeled by using the concleypefarcs. Ayperarc

is a pair(i, J) that represents a broadcast link from a notlea chosen set of nodesc V.
The entire network can therefore be represented as a hypergrapb\V, A), where A is the
set of hyperarcs. The complexity of the model is determined by the choite aletA. Let
the neighbor-sed (i) denote the set of nodes that nodeaches. An exhaustive model might
include all possible/NI — 1 hyperarcs from nodé. On the other hand, a simpler model
might include only a smaller number of hyperarcs per node. A point-to-podautel is also a
special case when nodéas| N (i)| hyperarcs each containing just one receiver.

The present chapter considers a physical layer whereby the dbamaergo random mul-
tipath fading. This model allows for opportunistically best schedules pamradi realization.
This is different from the link-level network models in [38, 74,97, 159here the hyperarcs
are modeled as erasure channels. The next subsection discusskgdicalgayer model in

detail.
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2.1.1 Physical Layer

In the current setting, terminals are assumed to have a set of foaeailable for transmission.
Let hzfj denote the power gain between nodesdj over a tonef € F, assumed random,
capturing fading effects. Léi represent the vector formed by stacking all the channel gains.
The network operates in a time slotted fashion; the chammeinains constant for the duration
of a slot, but is allowed to change from slot to slot. A slowly fading channetsaimed so that
a large number of packets may be transmitted per time slot. The fading procesddted to
be stationary and ergodic.

Since the channel changes randomly per time slot, the optimization variablegatsical
layer are the channel realization-specific power aIIocaﬁéﬂﬂn) for all hyperarcgi, J) € A,
and tonesf € F. For convenience, these power allocations are stacked in a e@ior
Instantaneous power allocations may adhere to several scheduling akacomstraints, and
these will be generically denoted by a boundedI$educh thatp(h) € II. The long-term

average power consumption by a nads given by

p=E> S plm) (2.1)

f J:(i,J)eA
whereE[.] denotes expectation over the stationary channel distribution.

For slow fading channels, the information-theoretic capacity of a hypérar) is defined
as the maximum rate at whidll nodes inJ receive data from with vanishing probability
of error in a given time slot. This capacity depends on the instantaneous dacations
p(h) and channelh. A generic bounded functio@fJ(p(h), h) will be used to describe this

mapping. Next we give two examples of the functional form§§f(-) andII.

Example 2.1. Conflict graph model: The power aIIocatiopg adhere to the spectral mask
constraints

0<pl, <p] (2.2)

max*

However, only conflict-free hyperarc are allowed to be scheduled fgivenh. Specifically,

power may be allocated to hyperafes, J;) and(iq, J2) if and only if [159]

) i1 # i2;
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i) i1 ¢ Jo andiy ¢ Jy (half-duplex operation); and
ii-a) Jy N Jy = 0 (primary interference), or additionally,
iii-b) J1 N N(iz) = Jo N N(i1) = 0 (secondary interference).

The seflI therefore consists of all possible power allocations that satisfy the piepi@per-
ties.

Due to hyperarc scheduling, all transmissions in the network are intedereee. The
signal-to-noise ratio (SNR) at a nogle= J is given by

h)h,
Fij( (h)7h) pW (]V) (23)
J

where N; is the noise power at. In a broadcast setting, the maximum rate of information

transfer from: to eachnode inJ is

¢’ (p(h),h) = rjnelnlog(l +T{,.(p(h), h)). (2.4)

A similar expression can be written for the special case of point-to-point bgksubstituting
hyperarcgi, J) by arcs(, j) in the expression foF{Jj(p(h), h).

For slow-fading channels, Gaussian codebooks with sufficiently ldogk kengths achieve
this capacity in every time slot. More realistically, an SNR penalty terran be included to

account for finite-length practical codes and adaptive modulation scheméhat

Cfy(p(h). ) = minlog (1 -+ T/, (p(h). b)/p) (2.5)

The penalty term is in general a function of the target bit error rate.

Example 2.2. Signal-to-interference-plus-noise-ratio (SINR) model: Here, thetcains set

IT is simply a box seB3,,
I =By = {pf|0 < pl, < play ¥ (i,J) € Aandf € F }. (2.6)

max

The setB,, could also include (instantaneous) sum-power constraints per nodecapheity

is expressed as in (2.4) or (2.5), but now the SNR is replaced by the, §i by
v/ (), h) = pf s, /(NG + 18 + 1+ 1250 2.7)

The denominator consists of the following terms:
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¢ Interference from other nodes’ transmissions to npde

g = Z ng(h)hgj- (2.8a)
(k,M)eA:jEM,
k#jk#i

e “Self-interference” due to transmissions of ngde
s =h; > plyh) (2.8b)
M:(5,M)eA

This term s introduced to encourage half-duplex operation by sétfing a large value.

e “Broadcast-interference” from transmissions of node other hyperarcs

pesd = ghl > ply(h). (2.8¢)
M:(i,M)eA
M#J
This term is introduced to force nodeo transmit at most over a single hyperarc, by

settingg to a large value.

The previous definitions ignore interference from non-neighborirdeaoHowever, they can

be readily extended to include more general interference models.

The link layer capacity is defined as the long-term average of the total iasous ca-
pacity, namely,

ciy=E | ¢l (p(h),h)| . (2.9)
f

This is also called ergodic capacity and represents the maximum averagatdateailable to

the link layer.

2.1.2 Link Layer and Above

The network supports multiple multicast sessions indexed byamelys,,, := (s, T™, a™),

each associated with a source netle sink nodedg™ C N, and an average flow raté&® from

s"™ to eacht € T™. The valuea™ is the average rate at which the network layer of source

terminal s™ admits packets from the transport layer. Traffic is considered elasttbasthe

packets do not have any short-term delay constraints.
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Network coding is a generalization of routing since the nodes are allowentimgackets
together rather than simply forward them. This chapter considers intséeeestwork coding,
where only the traffic belonging to the same multicast session is allowed to mix.ugytHzet-
ter than routing in general, this approach is still suboptimal in terms of achi¢ivingetwork
capacity. However, general (inter-session) network coding is difficicharacterize or imple-
ment since neither the capacity region nor efficient network code desighsown [175, Part
I1]. On the other hand, a simple linear coding strategy achieves the fullcigpregion of
intra-session network coding [1].

The network layer consists of endogenous flows of coded packetdhpperarcs. Recall
that the maximum average rate of transmission over a single hyperard exceed:; ;. Let
the coded packet-rate of a multicast sessioover hyperardi, J) be 2]’} (also referred to as

the subgraph or broadcast link flow). The link capacity constraints taaslate to
Y Ay <cy V(i,J) €A (2.10)

To describe the intra-session network coding capacity region, it is conmammnfo use
the concept oWirtual flow between terminal$ and j corresponding to each sessionand
sinkt € T™ with average ratecgft. These virtual flows are defined only for neighboring
pairs of nodes i.e.(4,j) € G := {(¢,7)|(¢,J) € A,j € J}. The virtual flows satisfy the

flow-conservation constraints, namely,

a™ if i =s™,
Z xgt - Z ff?ft =0 = —qm ifi= t, (2.12)
3:(,5)€g §:(j i) eg
0 otherwise

forall m,t € T™, and: € N. Hereafter, the set of equations for ¢ will be omitted because
they are implied by the remaining equations.

The broadcast flows]’; and the virtual flowsej}* can be related using results from the
lossy-hyperarc model of [97, 159]. Specifically, [159, eq. (9)htes the virtual flows and
subgraphs, using the fractiéfy i € [0, 1] of packets injected into the hyperdic.J) that reach

the set of node$( C N(i). Recall from Section 2.1.1, that here the instantaneous capacity
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function Cif ,(+) is defined such that all packets injected into the hyperatf) are received by

every node inJ. Thus in our caséy; ;x = 1 wheneverk N J # () and consequently,

Soapt< Y 2 KCN(G)ieNmiteT™ (2.12)
JEK J:(i,J)eA
JNK#0

Note the difference with [159] where at every time slot, packets are injéated fixed
set of hyperarcs at the same rate. The problem in [159] is therefored@fasthedule of
hyperarcs that do not interfere (the non-conflicting hyperarcsg séme schedule is used at
every time slot; however, only a random subset of nodes receive tlodadjpackets in a given
slot. Instead here, the hyperarc selection is part of the power allocatiblem at the physical
layer, and is done for every time slot. The transmission rate (or equivalérglghannel coding
redundancy) is however appropriately adjusted so that all the nodee setbcted hyperarc
receive the data.

In general, for any feasible solution to the set of equations (2.10))(Zal#twork code
exists that supports the corresponding exogenous «&t¢87]. This is because for each mul-
ticast sessiom, the maximum flow betweesl™ andt € T is o™, and is therefore achiev-
able [1, Th. 1]. Given a feasible solution, various network coding m&secan be used to
achieve the exogenous rates. Random network coding based implemensatitnas those
proposed in [95] and [27], are particularly attractive since they dhedistributed and require
little overhead. These schemes also handle any residual errors oresrésat remain due to
the physical layer.

The system model also allows for a set of “box constraints” that limit the teng-powers,
transport layer rates, broadcast link flow rates, virtual flow ratesedisas the maximum link

capacities. Combined with the déf these constraints can be compactly expressed as

B:={y,p(h)| p(h) €I, 0<p; <p™>, ap, <a™ <al

ax?

0 S CiJ S C?Ll]axv
0<z7 <z} 0< a:;-?t < x?;ax . (2.13)
Herey is a super-vector formed by stacking all the average rate and poviel s, that isq™,

275, x{?t ¢ij, andp;. Parameters with min/max subscripts or superscripts denote prescribed

lower/upper bounds on the corresponding variables.
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2.1.3 Optimal Resource Allocation

A common objective of the network optimization problem is maximization of the exaggen
ratesa™ and minimization of the power consumptipn Towards this end, consider increasing
and concave utility function#/,,,(a™) and convex cost functiong;(p;) so that the overall
objective functionf(y) = >, Un(a™) — >, V(p;) is concave. For example, the utility
function can be the logarithm of session rates and the cost function ¢he bguared average

power consumption. The network utility maximization problem can be written as

P= max Un(a™) = > Vi(pi 2.14a
(yp(h))elgzm: (a™) EZ: (pi) (2.14a)
sstoo< Yy apt— > a Vm,i#tteT™ (2.14b)
(i) €0 (j:1)€G

Soamt< > VK C N@i),m,teTm (2.14c)

jeK J:(i,J)EA

JNK#D
> A< V(i,J)e A (2.14d)
cis <E | CLi(p(h),h) Y (i,J) € A (2.14e)

f
EN > plm)| <p (2.14f)
f J:(,J)eA

wherei € N. Note that constraints (2.1), (2.9) and (2.11) have been relaxed witteagasing
the objective function. For instance, the relaxation of (2.11) is equittderllowing each node
to send at a higher rate than received, which amounts to adding virtualesoat all nodes
1 # t. However, adding virtual sources does not result in an increase wbibetive function
because the utilitie§,,, depend only on the multicast rai&".

The solution of the optimization problem (2.14) gives the throughputhat is achievable
using optimal virtual flow rates:g.“f and power allocation policieg(h). These virtual flow
rates are used for network code design. When implementing coded netingokactice, the
traffic is generated in packets and stored at nodes in queues (and guuges for virtual
flows) [27]. The constraints in (2.14) guarantee that all queues dikesta

Optimization problem (2.14) is non-convex in general, and thus difficult teesoFor
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example, in the conflict graph model, the constrainfbét discrete and non-convex, while in
the SINR-model, the capacity functic@‘{J(p(h), h) is a non-concave function qf(h); see
e.g., [98], [93]. The next section analyzes the Lagrangian dual. )2

2.2 Optimality of Layering

This section shows that (2.14) has zero duality gap, and solves the i via subgra-
dient descent iterations. The purpose here is two-fgJdo describe a layered architecture
in which linear network coding is optimally integrated; aiyito set the basis for a network

implementation of the subgradient method, which will be developed in Section 2.3.

2.2.1 Duality Properties

Associate Lagrange multiplier§™, n™t, &, \;; andy; with the flow constraints (2.14b), the
union of flow constraints (2.14c), the link rate constraints (2.14d), thaaiyronstraints (2.14e),
and the power constraints (2.14f), respectively. Also(léke the vector formed by stacking
these Lagrange multipliers in the aforementioned order. Similarly, if inequalid<i§)—
(2.14f) are rewritten with zeros on the right-hand side, the vegter p(h)) collects all the

terms on the left-hand side of the constraints. The Lagrangian can trebefavritten as

L(y,p(h),¢) = Un(a™) = > _ Vi(p:) — ¢Taly, p(h)). (2.15)
m ieN
The dual function and the dual problem are, respectively,
= L(y,p(h), 2.16
<) ymax (v, p(h),¢) (2.16)
D= min o(¢). (2.17)

Since (2.14e) may be a non-convex constraint, the duality gap is in generakero; i.e.,
D > P. Thus, solving (2.17) yields an upper bound on the optimal vRlaé (2.14). In the

present formulation however, we have the following interesting result.

Proposition 2.1. If the fading is continuous, then the duality gap is exactly zero, i.e.,

P =D. (2.18)
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A generalized version of Proposition 2.1, including a formal definition otiocoous fad-
ing, is provided in Appendix 2.A and connections to relevant results are nmHie essential
reason behind this strong duality is that the set of ergodic capacities rgduttin all feasible
power allocations is convex.

The requirement of continuous fading channels is not limiting since it holdslifpracti-
cal fading models, such as Rayleigh, Rice, or NakagamRecall though that the dual prob-
lem is always convex. The subgradient method has traditionally beentasggroximately
solve (2.17), and also provide an intuitive layering interpretation of thear&taptimization
problem [26]. The zero duality gap result is remarkable in the sense teati¢rs this layering
optimal.

A corresponding result for unicast routing in uncoded networks kas proved in [139].
The fact that it holds for coded networks with broadcast links, allowisra integration of the
network coding operations in the wireless protocol stack. The nexestibs deals with this

subject.

2.2.2 Subgradient Algorithm and Layer Separability

The dual problem (2.17) can in general be solved using the subgtaiigations [12, Sec-
tion 8.2] indexed by

(y(£), p(h; £)) € arg max L(y,p(h),{(()) (2.192)
(v.p(h))eB
C(C+1) = [¢(0) + eal(y(0), p(h; )] (2.19b)

wheree is a positive constant stepsize, drjd denotes projection onto the nonnegative orthant.
The inclusion symbolg) allows for potentially multiple maxima. In (2.19)(y (¢), p(h; ¢))

is a subgradient of the dual functieni¢) in (2.16) at{(¢). Next, we discuss the operations
in (2.19) in detail.

For the Lagrangian obtained from (2.15), the maximization in (2.19a) cagdagated into
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the following subproblems

ai*(¢) € argmax |[Up(a™)— Z v (0)a™ (2.20a)
a;’ﬁinéa <amax teTm
zi7(f) € arg max Z Z i (0) — &r(l) | 27 (2.20b)
0=25<25" | KeNG@) teTm
KNJ#)D
a'(0) € argmax | (O1s — VP (OLie — > ni(0) | 2" (2.200)
O<a ! <aje KCN(i)
JjeEK
cig(€) € arg max [&5(0) — Aig(0)] cig (2.20d)
0<cyy<cmx
pi(¢) € arg max [u;(0)p; — Vi(pi)] (2.20e)
0<p; <p;ra*
p(h;¢) € arg max Z fyZJ( (h),h,¢) (2.20f)
P(MEIL ¢ i ea
where
7, (p(h), b, ¢) = iy CYy(p(h), h) — pip; (h) (2.209)

and1y is the indicator function, which equals one if the expressiois true, and zero other-
wise.

The physical layer subproblem (2.20f) implies per-fading state seitigraSpecifically,
instead of optimizing over the class of power control policies, (2.20f) alkolging for the

optimal power allocation for each fading state; that is,

P(p(h)) = max E{ > Al(p(h),h,¢)
£i(

PIEIL | i Dea |
E{max > ~L(p(h), b, ¢) | . (2.21)
p(h)ell | “
£, JJ)eA ]

Note that problems (2.20a)—(2.20e) are convex and admit efficient swutidhe per-
fading state power allocation subproblem (2.20f) however, may nossadfy be convex. For
example, under the conflict graph model (cf. Example 1), the numbemsitie power allo-

cations may be exponential in the number of nodes. Finding an allocation tRahines the
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objective function in (2.21) is equivalent to the NP-hard maximum weightpefayc match-
ing problem [159]. Similarly, the capacity function and hence the objectinetion for the
SINR model (cf. Example 2) is non-convex in general, and may be difficuptimize.

This separable structure allows a useful layered interpretation of théepmoIn particular,
the transport layer sub-problem (2.20a) gives the optimal exogeatassallowed into the net-
work; the network flow sub-problem (2.20b) yields the endogenousrfites of coded packets
on the hyperarcs; and the virtual flow sub-problem (2.20c) is redplerfer determining the
virtual flow rates between nodes and therefore the network code desigwise, the capacity
sub-problem (2.20d) yields the link capacities and the power sub-prqBl@@e) provides the
power control at the data link layer.

The layered architecture described so far also allows for optimal integratioetwork
coding into the protocol stack. Specifically, the broadcast and virtuasfaptimized respec-
tively in (2.20b) and (2.20c), allow performing the combined routing-pletsvork coding task
at network layer. An implementation such as the one in [27] typically requuesep for both
broadcast as well as virtual flows to be maintained here.

Next, the subgradient updates of (2.19b) become

v (04 1) = [Ut(0) + g™ (0)] T (2.22a)
R+ 1) = [0 + el ()] (2.22b)
Es(0+1) = [G(0) +eg? (0] (2.22¢)
As(C+1) = M) + e (0] (2.22d)

pi(0+1) = [pi(0) + eqi(0)] (2.22¢)
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whereg(¢) are the subgradients at indégiven by

o0 =o O+ Y 2RO = D w0 (2.233)
(Z',j)eg (.777')6-(;
szmt Zx Z 2 (0) (2.23b)
jeEK J:(3,J)eA
JNK#)
@0 =350 — eus(0) (2.23¢)

CKJ () = cis(¢

ZC{, ] (2.23d)
E{Z > p{Jhe] pi(0). (2.23¢)

f J:(,J)eA
The physical layer updates (2.22d) and (2.22e) are again complicatathey involve the
E[.] operations of (2.23d) and (2.23e). These expectations can be atgigrdonte Carlo
simulations by solving (2.20f) for realizations hfand averaging over them. These realiza-
tions can be independently drawn from the distributiorhpfor they can be actual channel
measurements. In fact, the latter is implemented in Section 2.3 on the fly duringrketwo

operation.

2.2.3 Convergence Results

This subsection provides convergence results for the subgradiaattdter (2.19). Since the
primal variablegy, p(h)) and the capacity functioﬁ{](.) are bounded, itis possible to define

an upper bound: on the subgradient norm; i.elgq(y(¢), p(h;¢))|| < G forall £ > 1.

Proposition 2.2. For the subgradient iterations i(2.20)and (2.22) the best dual value con-

verges taD upto a constant; i.e.,

6G2
lim min o(¢(¢)) <D+ — (2.24)

s—00 1<I<s 2
This result is well known for dual (hence, convex) problems [12pP802.3]. However,

the presence of an infinite-dimensional variab(#) is a subtlety here. A similar case is dealt

with in [139] and Proposition 2.2 follows from the results there.



2.3 Subgradient Algorithm for Network Control 27

Note that in the subgradient method (2.19), the sequence of primal it€satés does
not necessarily converge. However, a primal running averagersechan be used for finding
the optimal primal variableg* as summarized next. Recall théty) denotes the objective

function), Uy, (a™) — >, Vi(pi).

Proposition 2.3. For the running average of primal iterates
_ 1g
y(s) =22 (0. (2.25)
=1
the following results hold:

a) There exists a sequengp(h; s)} such that(y(s), p(h; s)) € B, and also

lim ||[a(y(s), b(h; s))]"|| = 0. (2.26)

S5—00

b) The sequencg(y(s)) converges in the sense that

o _ €G>
hrglnff(y(s)) >P— 5 (2.27a)

and limsup f(y(s)) < P. (2.27b)

5—00

Equation (2.26) asserts that the sequefig€/)} together with an associateg(h; /) }
becomes asymptotically feasible. Moreover, (2.27) explicates the asymptbtiptamality as
a function of the stepsize, and the bound on the subgradient norm. dtfop&.3 however,
does not provide a way to actually fifg(h; ¢)}.

Averaging of the primal iterates is a well-appreciated method to obtain optimal Iprima
solutions from dual subgradient methods in convex optimization [113]. thategh that the
primal problem at hand is non-convex in general. Results related to $ttiopa2.3 are shown
in [64]. Proposition 2.3 follows in this chapter as a special case resul foore general
algorithm allowing for asynchronous subgradients and suitable for onkteork control,

elaborated next.

2.3 Subgradient Algorithm for Network Control

The algorithm in Section 2.2.2 finds the optimal operating point of (2.14) inflinefashion.

In the present section, the subgradient method is adapted so that it cesedéor resource
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allocation during network operation.

The algorithm is motivated by Proposition 2.3 as follows. The exogenouslarates
a™(¢) generated by the subgradient method [cf. (2.20a)] can be used asthatéameous rate
of the traffic admitted at the transport layer at til&@hen, Proposition 2.3 guarantees that the
long-term average transport layer rates will be optimal. Similar observatemée made for
other rates in the network.

More generally, an online algorithm with the following characteristics is delgra

e Time is divided in slots and each subgradient iteration takes one time slot. @haath

is assumed to remain invariant per slot but is allowed to vary across slots.

e Each layer maintains its set of dual variables, which are updated acgoodi2.22) with

a constant stepsize

e The instantaneous transmission and reception rates at the various l&yses$ aqual to

the primal iterates at that time slot, found using (2.20).
e Proposition 2.3 ensures that the long-term average rates are optimal.

For network resource allocation problems such as those described]jnH8&ubgradi-
ent method naturally lends itself to an online algorithm with the aforementionqetpies.
This approach however cannot be directly extended to the presenbeaause the dual up-
dates (2.22d)—(2.22e) require an expectation operation, which need«mpowledge of the
exact channel distribution function for generation of independetizeg@ns ofh per time
slot. Furthermore, although Proposition 2.3 guarantees the existencegiiense of feasible
power variablep(h; s), it is not clear if one could find them since the corresponding running
averages do not necessarily converge.

Towards adapting the subgradient method for network control, recalitegdubgradients

¢y’ andg/, involve the following summands that require the expectation operation2[28d)
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and (2.23e)]

Cis(l) = E Z%(p(h;ﬁ),h)] (2.28)
f
B)=E| > p{j(h;ﬁ):| . (2.29)
| f,J:(i,J)eA

These expectations can however be approximated by averaging auval eltannel realiza-
tions. To do this, the power allocation subproblem (2.20f) must be solyedtedly for a pre-
scribed number of time slots, s&y while using the same Lagrange multipliers. This would
then allow approximation of thE operations in (2.28) and (2.29) with averaging operations,
performed over channel realizations at these time slots.

It is evident however, that the averaging operation not only conshtiese slots but also
that the resulting subgradient is always outdated. Specifically, if themutime slot is of the
form¢ = KS+1with K = 0, 1,2, ..., the most recent approximations@f; andP; available

are

N

CQ"—‘
(!

-1
Cis(—8)

iJ

> ¢ (p(hg; £ — ), hy) (2.30a)
I

1
~

-5
-1

K

~

Pt —58) = > plihgt-8). (2.30b)

0—5 f,J:(i,J)€A

N~

K

Here, the power allocations are calculated using (2.20f) withotemultipliers \; ;(¢ — S)
andu;(¢ — S). The presence of outdated subgradient summands motivates the usesghan
chronous subgradient method such as the one in [83].

Specifically, the dual updates still occur at every time slot but are alloweddsubgra-
dients with outdated summands. Thdg, (¢ — S) and P;(¢ — S) are used instead of the
correspondindg|[.] terms in (2.23d) and (2.23e) at the current tién&urther, since the averag-
ing operation consumes anotttetime slots, the same summands are also used for timéds
£+2,...,£+ S — 1. Attime ¢ + S, power allocations from the time slots¢ + 1,/ + S — 1
become available, and are used for calculaihg(¢) and P;(¢), which then serve as the more
recent subgradient summands. Note that a subgradient summand €Uohisaat leastS and

at most2.S — 1 slots old.
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Algorithm 2.1: Asynchronous subgradient algorithm

1 Initialize ¢(1) = 0 andC;;(1) = P;(1) = 0. Let N be the maximum

number of subgradient iterations.

2forv=1,2,...,N,do

3

10

Calculate primal iterates™ (¢), x7}*(¢), 2{7;(£), ci7(£), andp;(¢)
[cf. (2.20a)—(2.20€)].
Calculate the optimal power allocatigithy; 7(¢)) by solving (2.20f) usindy, and
¢(r(0)).
Update dual iterateg™ (¢ + 1), n7*(¢ + 1) and&;; (¢ + 1) from the current primal
iterates evaluated in Line 3 [cf. (2.22a)—(2.22c)].
if ¢ —7(¢)=S5,then
CalculateC; ;((¢)) and P;(7(¢)) as in (2.30).
end

Update the dual iterates ; (¢ + 1) andp; (¢ + 1):

Nial€+1) = [Nisl0) + eeast®) = Cuar@)))]
i+ 1) = [0+ e(Bilr(0) — (o)
Network Control: Use the current iterate (¢) for flow control; 273 (¢) andz%;(¢)

for routing and network coding; ;(¢) for link rate control; and (hy; 7(¢)) for

instantaneous power allocation.

11 end
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The asynchronous subgradient method is summarized as Algorithm 1. Tngratguses

the functionr (¢) which outputs the time of most recent averaging operation, that is,
7(0) =max{S|({— S —1)/S]+1,1} V £>1. (2.32)

Note thatS < ¢ — 7(¢) < 25 — 1. Recall also that the subgradient componéﬁ'nﬁandl% are
evaluated only at times(?).

The following proposition gives the dual convergence result on thigitthge. DefineG as
the bouncﬂ [CT PT}TH < G'whereC andP are formed by stacking the terrﬁs[zf ¢/ (p(h),h)
andE [Z IS, p{j(h)} , respectively.

Proposition 2.4. If the maximum delay of the asynchronous counterparts of physicat lay
updateq?2.22d)and(2.22e)is D, then:

a) The sequence of dual iteratg$(¢)} is bounded; and

b) The best dual value convergediaip to a constant:
. . eG? .
lim min o(¢(¢)) <D+ — T 2¢eDGG. (2.33)

§—00 1<l<s

Thus, the suboptimality in the asynchronous subgradient over the syrwls version is
bounded by a constant proportionalflo= 25 — 1. Consequently, the asynchronous subgra-
dient might need a smaller stepsize (and hence, more iterations) to reaemaigitance from
the optimal.

The convergence of asynchronous subgradient methods foncprai@lems such as (2.17)
has been studied in [83, Section 6] for a diminishing stepsize. Propositiopr@vites a
complementary result for constant stepsizes.

Again, as with the synchronous version, the primal running averagescalsverge to
within a constant from the optimal value of (2.14). This is stated formally in tépreposi-

tion.

Proposition 2.5. If the maximum delay of the asynchronous counterparts of physicat lay

updateg2.22d)and(2.22e)is D, then:
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a) There exists a sequenpéh; s) such that(y(s), p(h; s)) € Band

lim [|[a(y(s), p(h; s))]"|| = 0. (2.34)

5—00

b) The sequencg(y(s)) converges in the following sense:

lirginff(y(s)) >P— % —2¢DGG (2.35a)
and limsup f(y(s)) < P. (2.35b)
S—r00

Note that as with the synchronous subgradient, the primal running ageaag still asymp-
totically feasible, but the bound on their suboptimality increases by a ternogi@pal to the
delay D in the physical layer updates. Of course, all the results in Propositiornsna.2.5
reduce to the corresponding results in Propositions 2.2 and 2.3 on setting. Interestingly,
there is no similar result for primal convergence in asynchronous adlegt methods even for
convex problems.

Finally, the following remarks on the online nature of the algorithm and the implitien

of the Lagrangian maximizations in (2.20) are in order.

Remark 2.1. Algorithm 1 has several characteristics of an online adaptive algorithiparin
ticular, prior knowledge of the channel distribution is not needed in dadeun the algorithm
since the expectation operations are replaced by averaging overethaahizations on the
fly. Likewise, running averages need not be evaluated; Propositioarres that the cor-
responding long-term averages will be near-optimal. Further, if at somethiem@etwork
topology changes and the algorithm keeps running, it would be equivaarstarting the

entire algorithm with the current state as initialization. The algorithm is adaptilessense.

Remark 2.2. Each of the maximization operations (2.20a)—(2.20e) is easy, becausa\veisv
a single variable, concave objective, box constraints, and locally alailalgrange multipli-
ers. The power control subproblem (2.20f) however may be hardezpdre centralized com-
putation in order to obtain a (near-) optimal solution. For the conflict grapteisee [71,159]
and references therein for a list of approximate algorithms. For the SINdRInmsolutions
of (2.20f) could be based on approximation techniques in power cowiradligital subscriber
lines (DSL)—see e.g., [64] and references therein—and efficientagegmssing protocols as
in [170].
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Figure 2.1: The wireless network used in the simulations. The edges indieateifhborhood
of each node. The thickness of the edges is proportional to the mean obrtesponding

channel.
2.4 Numerical Tests

The asynchronous algorithm developed in Section 2.3 is simulated on thessireéwvork

shown in Figure 2.1. The network has 8 nodes placed on a 39B@0m area. Hyperarcs

originating from node are denoted byi, J) € A whereJ € 2V® \ ( i.e., the power set of

the neighbors of excluding the empty set. For instance, hyperarcs originating from node 1

are(1,{2}), (1,{8}) and(1, {2,8}). The network supports the two multicast sessiSns=

{1,{4,6}} andS, = {4, {1,7}}. Table 2.4 lists the parameter values used in the simulation.
The conflict graph model of Example 1 with secondary interferenceti@nts is used. In

order to solve the power control subproblem (2.20f), we need to ermienalt possible sets of

conflict free hyperarcs (cf. Example 1); these sets are called matchngsch time slot, the

aim is to find the matching that maximizes the objective funchop,, ~/,. Note that since

%fj is a positive quantity, only maximal matchings, i.e., matchings with maximum possible

cardinality, need to be considered. At each time slot, the following two stepsaaried out.

S1) Find the optimal power allocation for each maximal matching. Note that tleitapf
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F 2

hl; | Exponential with mear, = 0.1(d;;/do)~2 for all (i,j) € G

andf, whered, = 20m andd;; is the distance between the nodes

i andy; links are reciprocal, i.eh!; = h?.

Noise power, evaluated usinfg; = 100m in the
expression fo?zf;. above

Phax | 5W/Hz for all f

max | 5 \W/Hz foralli € N

ar.. | bbps/Hz for allm
am. | 107 bps/Hz for allm

i interference-free capacity obtained for egch J via waterfilling
under {Zf pf(hzfj)-‘ < praxforalli e N

2 /2 forall (i, J) € A

x| e /2forj e Jandi e N
Up(a™) | In(a™) for all m

Vi(p;) | 10p? foralli e N

Table 2.1: Simulation parameters

an active hyperarc is a function of the power allocation over that hypatane [cf. (2.3)
and (2.4)]. Thus, the maximization in (2.20f) can be solved separatelabtr feyperarc
and tone. The resulting objective [cf. (2.20g)] is a concave functiorsingle variable,

admitting an easy waterfilling-type solution.

S2) Evaluate the objective function (2.20f) for each maximal matching ambfeers found

in Step 2, and choose the matching with the highest resulting objective value.

It is well known that the enumeration of hyperarc matchings requiresnexyial complex-
ity [159]. Since the problem at hand is small, full enumeration is used.

Figure 2.2 shows the evolution of the utility functigify (s)) and the best dual value up to
the current iteration. The utility function is evaluated using the running geeshthe primal

iterates [cf. (2.25)]. It can be seen that after a certain number of itegtilbe primal and dual
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Figure 2.2: Evolution of the utility functionf(y(s)) and best dual valugpes(s) =
ming<s o(¢(¢)) for e = 0.15 and.S = 50.

values remain very close corroborating the vanishing duality gap.

Figure 2.3 shows the evolution of the utility function for different values$'ofAgain the
utility function converges to a near-optimal value after sufficient numbétecdtions. Note
however that the gap from the optimal dual value increases for larges/aiuS, such as
S = 60 (cf. Proposition 2.5).

Finally, Figure 2.4 shows the optimal values of certain optimization variablecifglly
the two subplots show all the virtual flows to given sinks for each of the msitieassions,
namely,{s' = 1,t = 6} and{s? = 4,t = 7}, respectively. The thickness and the gray level
of the edges is proportional to the magnitude of the virtual flows. It carbberged that most
virtual flows are concentrated along the shorter paths between theessnadhe sink. Also,
the radius of the circles representing the nodes is proportional to the optumige power
consumption. It can be seen that the inner nodes 2, 4, 6, and 8 consumeoncer than the
outer ones, 1, 3, 5, and 7. This is because the inner nodes have rigitears, and thus more

opportunities to transmit. Moreover, the outer nodes are all close to thelthweig
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Figure 2.3: Evolution of the utility functiorf(y(s)) for different values ofS with stepsize

€ =0.15.
2.5 Conclusions

This chapter formulates a cross-layer optimization problem for multicast netwdnere nodes
perform intra-session network coding, and operate over fadinglbas# links. Zero duality
gap is established, rendering layered architectures optimal.

Leveraging this result, an adaptation of the subgradient method suitaliietfeork con-
trol is also developed. The method is asynchronous, because the gdHggir returns its
contribution to the subgradient vector with delay. Using the subgradietdiygrimal iterates
in turn dictate routing, network coding, and resource allocation. It is ksial that network
variables, such as the long-term average rates admitted into the networkdageerge to
near-optimal values, and the suboptimality bound is provided explicitly asdaidmnof the

delay in the subgradient evaluation.

2.A Strong Duality for the Networking Problem (2.14)

This appendix formulates a general version of problem (2.14), ared gdsults about its duality
gap. Leth be the random channel vector §h := ]Rih, whereRR ;. denotes the nonnegative

reals, andiy, the dimensionality oh. Let D be theo-field of Borel sets in2, and P, the
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Figure 2.4: Some of the optimal primal values after 5000 iterationsantt).15 andS = 40.
The gray level of the edges corresponds to values of virtual flonsrdic to the color bar on

the right, with units bps/Hz.
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distribution ofh, which is a probability measure dn.

As in (2.14), consider two optimization variables: the vegtoconstrained to a subset
B, of the Euclidean spacR®; and the functiorp : Q — R% belonging to an appropriate
set of functionsP. In the networking problem, the aforementioned function is the power
allocationp(h), and setP consists of the power allocation functions satisfying instantaneous
constraints, such as spectral mask or hyperarc scheduling constchiatso Examples 1 and
2). Henceforth, the function variable will be denotedpinstead ofp(h), for brevity. LetII

be a subset dR?%. Then?P is defined as the set of functions taking valueslin
P := {p measurablép(h) € II for almost allh € Q}. (2.36)

The network optimization problem (2.14) can be written in the general form

P= max f(y) (2.37a)
s.t. g(y)+E[v(p(h),h)] <0 (2.37b)
y€EBy, peP (2.37¢)

whereg andv are R%-valued functions describing constraints. The formulation also sub-
sumes similar problems in the unicast routing framework such as those ir8f4, 1

Evidently, problem (2.14) is a special case of (2.37). If inequalities (B-42.14f) are
rearranged to have zeros on the right hand side, funestigrih), h) will simply have zeros
in the entries that correspond to constraints (2.14b)—(2.14d). Thédorgy, p(h)) defined
before (2.15) equalg(y) + E[v(p(h), h)].

The following assumptions regarding (2.37) are made:

AS1. Constraint seB,, is convex, closed, bounded, and in the interior of the domains of func-
tions f(y) andg(y). Setll is closed, bounded, and in the interior of the domain of function

v(.,h) for all h.

AS2. Function f() is concaveg(-) is convex, andv(p(h),h) is integrable whenevep is

measurable. Furthermore, there i€ a> 0 such that|E[v(p(h), h)]|| < G, whenevep € P.
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AS3. Random vectoh is continuous: and

AS4. There existy’ € By, andp’ € P such that (2.37b) holds as strict inequality (Slater

constraint qualification).

Note that these assumptions are natural for the network optimization problés).(Specif-
ically, By are the box constraints for variable®, x;?t, 2", ¢;y, andp;; andlIl gives the in-
stantaneous power allocation constraints. The funcfign) is selected concave andy) is
linear. Moreover, the entries &f(p(h), h) corresponding to (2.14f) are bounded because the
setll is bounded. For the same reason, the ergodic capaEi[miéé(p(h), h)] are bounded.

While (2.37) is not convex in general, it is separable [11, Section 5.1/&. LRgrangian
(keeping constraints (2.37c¢) implicit) and the dual function are, respégtjef. also (2.15)

and (2.16)]

L(y,p.¢) = f(y) — ¢" (8(y) + Elv(p(), h)]) (2.38)
o(¢) == max L(y,p,¢) =v¥(¢)+ &(C). (2.39)
YEBy, peEP
where( denotes the vector of Lagrange multipliers and
(€)= max {f(y) — ¢"e()} (2.40a)
#(¢) := max ¢TE[v(p(h), h). (2.40b)
PEP

The additive form of the dual function is a consequence of the selpastthcture of the La-
grangian. Further, AS1 and AS2 ensure that the domain(¢f is R¢. Finally, the dual
problem becomes [cf. also (2.17)]

D= min (). (2.41)

As p varies inP, define the range d&[v(p(h), h)] as
R = {w € R?|w = E[v(p(h), h)] for somep € 79} . (2.42)

The following lemma demonstrating the convexity®flays a central role in establishing the

zero duality gap of (2.37), and in the recovery of primal variables frasttbgradient method.

Formally, this is equivalent to saying th&t, is absolutely continuous with respect to the Lebesgue measure

on lRih. In more practical terms, it means thahas a probability density function without deltas.
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Lemma 2.1. If AS1-AS3 hold, then the sRtis convex.

The proof relies on Lyapunov’s convexity theorem [16]. Recentlyesiension of Lya-
punov’s theorem [16, Extension 1] has been applied to show zero dgafitgf power control
problems in DSL [98]. This extension however does not apply heredéasated in the ensuing
proof. In a related contribution [139], it is shown that the perturbatiorction of a problem

similar to (2.37) is convex; the claim of Lemma 2.1 though is quite different.

Proof of Lemma 2.1Letr; andr, denote arbitrary points iR, and leta € (0, 1) be arbitrary.

By the definition ofR, there are functionp; andp- in P such that

ry = /V(pl(h),h)dph andrg = /V(pg(h),h)dph. (243)

Now define

/ v(p1(h), h)dP,
E

[ Vot wyar,
E
The set functionu(E) is a nonatomic vector measure @h because?;, is nonatomic (cf.

AS3) and the functions’(p;(h),h) andv(p2(h),h) are integrable (cf. AS2); see [46] for

u(E) = , EeD. (2.44)

definitions. Hence, Lyapunov’s theorem appliesitd); see also [16, Extension 1] and [139,
Lemma 1].

Specifically, consider a null sét in D, i.e., a set withP,(®) = 0, and the whole space
Q € D. It holds thatu(®) = 0 andu(f2) = [r], rI]T. For the chosen, Lyapunov’'s theorem

asserts that there exists a $&t € D such that £ denotes the complement 6%,)

u(E,) =au(Q) + (1 — a)u(®) = « ! 1] (2.45a)
ro
u(ES) =u(Q) —u(Ey) =1 -« [ 1] . (2.45b)
ro

Now using thesé”,, and E,, define

pa(y = {1 e b (2.46)
pQ(h), h € Eg.
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It is easy to show thap, (h) € P. In particular, the functiomp, (h) can written ap, (h) =

pi(h)1g, + p2(h)1g:, wherelg is the indicator function of a sef € D. Hence it is
measurable, as sum of measurable functions. Moreover, we have,tttat € II for almost
all h, because; (h) andp2(h) satisfy this property. The need to shew(h) € P makes [16,
Extension 1] not directly applicable here.

Thus,p.(h) € P and satisfies [cf. (2.45)]

[ vpab) Py = [ v WP+ [ v(pan) WP = ari+ (-0
: (2.47)
Thereforear; + (1 — a)ry € R. O
Finally, the zero duality gap result follows from Lemma 2.1 and is stated in thenfioiip

proposition.
Proposition 2.6. If AS1-AS4 hold, then proble(@.37)has zero duality gap, i.e.,
P=D. (2.48)

Furthermore, the valueB and D are finite, the dual problen2.41) has an optimal solution,

and the set of optimal solutions (2.41)is bounded.

Proof. Functionf(y) is continuous oy, since itis convex (cf. AS1 and AS2) [12, Prop. 1.4.6].
This, combined with the compactnessif, shows that the optimal primal valiis finite.

Consider the set

W= {(wl,...,wd,u) € R4t

£(¥) < u,g(y) + E[v(p(h), h)] < w for somey € By, p 73}. (2.49)

Using Lemma 2.1, it is easy to verify that 98t is convex. The rest of the proof follows
that of [11, Prop. 5.3.1 and 5.1.4], using the finitenesB ahd Slater constraint qualification
(cf. AS4).

The boundedness of the optimal dual set is a standard result forxcprnvielems under

Slater constraint qualification and finiteness of optimal primal value; sed 2gRrop. 6.4.3]
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and [113, p. 1762]. The proof holds also in the present setup Biigénite, P = D, and AS4
holds. O

2.B Dual and Primal Convergence Results

This appendix formulates the synchronous and asynchronous diggranethods for the
generic problem (2.37); and establishes the convergence claims insRiop®2.2—2.5. Note
that Propositions 2.2 and 2.3 follow from Propositions 2.4 and 2.5, resphctiupon setting
the delayD = 0.

Starting from an arbitrarg (1) > 0, the subgradient iterations for (2.41) indexed’by IN
are [cf. also (2.19)]

y(0) € arg max {ry) = ¢"(0s(y)} (2.50a)
p(;¢) € arg max ¢T(OE[v(p(h), h)] (2.50b)
and CU+1)=[C) +e(g(t) +¥v(0)" (2.50c)

whereg(¢) andv (¢) are the subgradients of function$¢) and¢(¢), defined as [cf. also (2.23)]

g(0) :==g(y(0)) (2.51a)
v(0) := E[v(p(h; £), h)]. (2.51b)

The iteration in (2.50c) is synchronous, because at eydrgth maximizations (2.50a) and (2.50b)
are performed using the current Lagrange multipdief). An asynchronousnethod is also of
interest and operates as follows. Here, the componeasftthe overall subgradient used /&t
does not necessarily correspond to the Lagrange multi@#r but to the Lagrange multiplier
at a timer(¢) < ¢. Noting that the maximizer in (2.50b) is(.; 7(¢))) and the corresponding

subgradient component used/as v(7(¢)), the iteration takes the form
Cl+1) =[O +e(&O)+v(r()]", e (2.52)

The difference&—7(¢) is the delay with which the subgradient componebecomes available.

In Algorithm 1 for example, the delayed components@rg(r(¢)) andP;(7(¢)).
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Next, we proceed to analyze the convergence of (2.52). Fungfiphis continuous o,
because it is convex [12, Prop. 1.4.6]. Then AS1 and AS2 imply that thésés a bound~
such that for ally € By andp € P,

lg(y) + E[v(p(h),h)]|| < G. (2.53)

Due to this bound on the subgradient norm, algorithm (2.52) can be viesvadspecial
case of an approximate subgradient method [112]. We do not follow thisfiapalysis here
though, because it does not take advantage of the source of therethm subgradient—
namely, that an old maximizer of the Lagrangian is used. Moreover, algo(Rt62) can be
viewed as a particular case of arsubgradient method (see [11, Section 6.3.2] for definitions).
This connection is made in [83] which only deals with diminishing stepsizes;rastiis are

proved for constant stepsizes. The following assumption is adoptedefaletay? — 7(¢).
ASS5. There exists a finitd) € IN such that — 7(¢) < D forall ¢ € IN.

AS5 holds for Algorithm 1 since the maximum delay therdis= 25 — 1. The following
lemma collects the results needed for Propositions 2.2 and 2.4. Specificaligrétcterizes
the error term in the subgradient definition wheti(7(¢)) is used; and also relates successive

iterates¢ (¢) and( (¢ + 1). The quantityy in the ensuing statement was defined in AS2.

Lemma 2.2. Under AS1-AS5, the following hold for the sequefi¢€’) } generated by2.52)
forall@ >0
a) — v (r(0)) (0 — ¢(1) < $(6) — $(C(1)) +2¢DGE (2.54a)
b) — (&(£) +¥(r()))" (6 — ¢(0)) < 0(6) — 0(¢(0) + 2¢DGG (2.54b)
©) IS¢+ 1) = 0]* = [IC(0) — 0] < 2¢[0(6) — o(¢(£))] + €G? + 4 DGG (2.54c)
Parts (a) and (b) of Lemma 2.2 assert that the vectar§r(¢)) and—g(¢) — v(7(¢)) are

respectivelys-subgradients of(¢) and the dual functiom(¢) at ¢(¢), with ¢ = 2eDGG.

Note thate is a constant proportional to the deldy

Proof of Lemma 2.2a) Rewrite the left-hand side of (2.54a) as

—H(7(0) (0 = ¢(0) = v (7)) [6 — ¢(r()] = ¥ (7(0)) [¢(r(€) = ¢(O)] . (2.55)
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Applying the definition of the subgradient fgf¢) at{(7(¢)) to (2.55), it follows that

=1 (7(0) (8 —€(6) < ¢(8) — (¢ (7(0))) — ¥ (7(£)) [¢(7(€)) — ¢(0)] - (2.56)

Now, adding and subtracting the same terms in the right-hand side of (2. &@jtain

L—7(L)

—vT(7(0)) (0 - ¢(0)) < 6(8) — $(C(0) + Z [6(C(7(0) + &) — (C(T(0) + K —1))]
L—7(L)

vT 7))+ K —1)—C(7(0) + K)]. (2.57)

k=1

Applying the definition of the subgradient fof¢) at{(7(¢) + ) to (2.57), it follows that
—vT(r(£)) (0 = ¢(6) < 6(6) )+ Z vi(r &) [C(T(€) + £ —1) = ¢(7(£) + k)]
k=1

- V() [C(r(0) + Kk — 1) = C(7(0) + k)] (2.58)

Using the Cauchy-Schwartz ingeuality, (2.58) becomes

=¥ (1)) (6~ ¢(6)) < ¢(8) — &(¢(0))
L—1(£)

+ Z ¥ (7€) + m)ll + [F ()N IC(r(6) + £ = 1) = (7 (€) + K)[| . (2.59)
Now, write the subgradient iteration [cf. (2.52)]&) + x — 1:
C(r(h) + k) = [C(T(ﬁ) +r—1)+ e(g(T(ﬁ) +r—1)+v(r(r(l)+ Kk — 1)))]+ (2.60)

Subtracting (7(¢) + x — 1) from both sides of the latter and using the nonexpansive property

of the projection [12, Prop. 2.2.1] followed by (2.53), one finds frond@2 that

IC(r(0) + 5) = C(r(0) + £ = D[ < e[g(r(0) + £ = 1) + V(7(7(£) + £ — 1))|| < €G.
(2.61)
Finally, recall that|v(¢)|| < G forall ¢ € IN (cf. AS2), andd — 7(¢) < D forall ¢ € IN (cf.
ASD5). Applying the two aforementioned assumptions and (2.61) to (2.59bteén (2.54a).
b) This part follows readily from part a), using (2.39) and the definitibthe subgradient
for ¢(¢) at¢(¢) [cf. (2.51a)].
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¢) We have from (2.52) for a# > 0 that
. . 2
1¢(¢ +1) — 017 =[1¢(0) + e (&(6) + ¥ ((0))]" - 0" (2.62)
Due to the nonexpansive property of the projection, it follows that

IC(E+1) — 0] < [IC(0) + e (&(£) + V(7(€)) — O]
= [I¢(6) — 611* + € [1§(0) + ¥ (r(0))]*
+2¢ (&(0) + v(7(0)" (¢(6) - 6). (2.63)

Introducing (2.54b) and (2.53) into (2.63), (2.54c) follows. O

The main convergence results for the synchronous and asynclsrenbgradient methods
are given by Propositions 2.2 and 2.4, respectively. Using Lemma 2 208§ition 2.4 is proved

next.

Proof of Proposition 2.4.2) Let¢* be an arbitrary dual solution. Wit andv; denoting the

i-th entries ofg andv, respectively, define

0= 1?ii£d{_gi(yl) — E[vi(p'(h),h)]} (2.64)

wherey’ andp’ are the strictly feasible variables in AS4. Note that 0 due to AS4.

We show that the following relation holds for &l> 1:

ﬁ . 2¢eDGG
20 0

160~ ¢l < max{ J¢(1) = ¢, (D~ F) + ¢+ G}

(2.65)

Eqg. (2.65) implies that the sequence of Lagrange multip§€rg)} is bounded, because
the optimal dual set is bounded (cf. Proposition 2.6). Next, (2.65) is shoyinduction. It
obviously holds for = 1. Assume it holds for soméc IN. It is proved next that it holds for
¢+ 1. Two cases are considered, depending on the valae(df)).

Case 1:0(¢(¢)) > D + €G?/2 + 2¢eDGG. Then eq. (2.54c) witl# = ¢* ando(¢*) = D

becomes

1C(E+1) = ¢*I? < 1IC(0) — ¢ — 2¢ [0(C(0) — D — €G?/2 — 2¢DGG] . (2.66)
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The square-bracketed quantity in (2.66) is positive due to the assumpt@asefl. Then (2.66)
implies that/|¢ (¢ + 1) — ¢*||? < ||¢(¢) — ¢*||?, and the desired relation holds fo#- 1.

Case 2:0(¢(¢)) < D+eG?/2+2eDGG. It follows from (2.52), the nonexpansive property
of the projection, the triangle inequality, and the bound (2.53) that

160+ 1) = ¢l < [[¢(0) + e(&(t) +v(r(£))) — ¢*|| (2.672)
< SO +11€7] + eG (2.67b)

Next, a bound on|¢(¢)|| is developed. Specifically, it holds due to the definition of the
dual function [cf. (2.39)] that

o(¢(0) = max_{f(y)—¢"(0)(g(y) +E[v(p(h),h)])}

y€EBy, peP

> f(y') = ¢T(0) (8(y") + E[v(p'(h), h))). (2.68)

Rewriting the inner product in (2.68) using the entries of the correspomgictprs and substi-

tuting (2.64) into (2.68) using > 0, it follows that

d d
8y i) < =Y ¢ O (gi(y) +Elvi(p'(h), b))
=1 =1
< o(¢(0) — f(¥). (2.69)

Using|[¢(0)|| < Zle ¢;(¢) into (2.69), the following bound is obtained:

16Ol < 5(e(¢(0) - F()) (2.70)

Introducing (2.70) into (2.67b) and using the assumption of Case 2, theedeasla-
tion (2.65) holds for + 1.
b) Setd = ¢* andp(0) = o(¢*) = D in (2.54c¢):

IC(+1) = ¢*I* < [[€(0) = ¢*|1* + €G? + 42 DGG + 2¢[D — 0(¢(4))] - (2.71)

Summing the latter fof = 1, ..., s, and introducing the quantityiin; <,<s o(¢(¢)), it follows
that

IC(L+1) = ¢ < [I€(1) = ¢*[1 + 5€G? + 45> DGG + 25€D — 2¢ > 0(¢(4))
(=1
<€) = ¢*|1? + 5€2G? + 452 DGG + 25¢D — 2s¢ 1min o(¢(0)).(2.72)
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Substituting the left-hand side of (2.72) with O, rearranging the resultingiaiitg we obtain

0 <[¢(1) = ¢|)? + s€2G? + 452 DGG + 2seD — 2s¢ min o(¢(4))

1<t<s
and thus,
: eG® S 1K) - ¢
< — —_— . .
min 0(¢(0))<D + 5 T 2¢eDGG + s (2.73)

Now, note thatim;_,., min;<,<s 0(¢(¢)) exists, becauseiin;<,<s 0(¢(¢)) is monotone
decreasing is and lower-bounded by, which is finite. Moreoverim,_,. ||¢(1) — ¢*||*/(2es) =

0, becaus&™ is bounded. Thus, taking the limit as— oo in (2.73), yields (2.33). O

Note that the sequence of Lagrange multipliers in the synchronous algq@tbc) is
bounded. This was shown for convex primal problems in [113, Lemma Bferdstingly,
the proof also applies in the present case since AS1-AS4 hold and implydptiteal P =
D. (cf. Proposition 2.6) Furthermore, Proposition 2.2 for the synchremathod follows
from [12, Prop. 8.2.3], [139].

Next, the convergence of primal variables through running averagessidered. The fol-
lowing lemma collects the intermediate results for the averaged seq{igficg [cf. (2.25)],
and is used to establish convergence for the generic problem (2.37)syitht@onous subgra-
dient updates as in (2.52). Note thats) € By, s > 1, because (2.25) represents a convex

combination of the point§y(1),...,y(s)}.

Lemma 2.3. Under AS1-AS5 witld* denoting an optimal Lagrange multiplier vector, there

exists a sequeng®(.; s)} in P such that for any € IN, it holds that

_ ¢+

a) [|[g( () + E[v(d(hss), W] || < == (2.743)
b) f(y(s)) > D — HC2(2H2 — 622 —2¢eDGG (2.74b)
©) f(¥(s)) < D+ €7l || [8(F(5)) + E[v(B(h; s), W] |- (2.74c)

Eg. (2.74a) is an upper bound on the constraint violation, while (2.74bj2aR4c) provide
lower and upper bounds on the objective functiory@t). Lemma 2.3 relies on Lemma 2.1
and the fact that the averaged sequefyoe) } is generated from maximizers of the Lagrangian

{y(¢)} that arenot outdated.
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Proof of Lemma 2.3a) It follows from (2.52) that

CUl+1) = C(0) +e(g(6) +v(7(0))).- (2.75)

Summing (2.75) ovef = 1,..., s, using¢(1) > 0, it follows that

> B +e) ¥(r(h) <¢(s+1)

and thus,

C(s—i—l).

€S

1S a0+ é S(r(0) < (2.76)

Now, recall the definitions of the subgradieg§’) andv(7(¢)) in (2.51). Due to the
convexity ofg(-), it holds that

(60 = § D) = | 3800 @77)
Due to Lemma 2.1, there existgh; s) in_P such that _
Elv(p(h; 5), ) =i;E[v<p<hmw>>, )=~ ;w(@). 279)
Combining (2.76), (2.77), and (2.78_), it follows that _
£(7() + Blv(p(n; ) ) < LY. 279
Since¢(s + 1) > 0, (2.79) yields
&(7(5)) + Efv(p(hs), b)) < $C D
and thus,
(85 (5)) + Elv(p(: ), )| < 1D (280

€S

b) Due to the concavity of (-), it holds thatf(y(s)) > 137, f(y(¢)). Adding and

subtracting the same terms to the right-hand side of the latter, we have that

£ 2 = 3 [F ) ~ ¢ Ogly ()] — 3 ¢ OBV (p( m(0), b))
=1 =1

£ 308 (0) + Elv(p(h; 7(0), ). (2.81)
(=1
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It holds thatf(y(¢)) — ¢T (O)g(y(£)) = ¥(¢(¢)) due to (2.50a) and (2.39). Using the latter
into (2.81),

s

IS [v(p(h:7(0)). b)]
/=1
+§§:€j 0) + Efv(p(h; 7(0)), b)]). (2.82)
=1

Now recall thatE[v(p(h; 7(¢)),h)] = v(7(¢)) [cf. (2.51b)]. Thus, it holds that

~CH(OE(p(h; 7(£)), b)) = —¢T (r(O)¥(7(6) + v (r(0)[¢(r(6) = ¢(0)].  (2.83)

The first term in the right-hand side of (2.83)d$¢(7(¢))) ([cf. (2.50b) and (2.39)]. The
second term can be lower-bounded using Lemma 2.2(a) &ith ¢(7(¢)). Then, (2.83)

becomes
~CH(OE[v(p(h; 7(£)), h)] > $(C(0) — 2¢DGG (2.84)
Using (2.84) into (2.82) angh(¢(¢)) + #(€(£)) = o(¢(¢)) > D, it follows that
f(3(5)) 2 D~ 2:DGG + - 3" ¢T(0)(gly(0) + Elv(p(n r(0) b)) (2.89)
=1

Moreover, it follows from (2.52) and the nonexpansive property efftiojection that

16+ D)2 < [[¢0) + e(8(v(©)) + Elv(p(b; 7(0). 0))||*
and thus,
16+ D)2 < ICOI +2e¢T(0) (8(y () + Elv(p(hs 7(£)), b))
+€ lg(y(0) + Elv(p(h; £), h)]|*. (2.86)
Summing (2.86) for = 1,...,s, dividing by 2es, and introducing the bound (2.53) on the

subgradient norm yield

¢+ DI = KO o

2es

=1

Using (2.87) into (2.85) together witf¢ (s + 1)||?> > 0, one arrives readily at (2.74b).
¢) Let¢* be an optimal dual solution. It holds that
F3(s) = F(3(5)) — ¢ (8(F(s)) + E[v(B(h; 5), h)])
+ ¢ (8(3(s)) + E[v(B(h; ), h]) (2.88)
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wherep(h; s) was defined in part (a) [cf. (2.78)].
By the definitions oD and¢™ [cf. (2.41)], and the dual function [cf. (2.39)], it holds that

D=0o(¢") = yegfgepﬁ(y, pP.¢") > L(y,p,¢"). (2.89)

Substituting the latter into (2.88), it follows that

F(3(5)) <D+ ¢ (g(y(s) + Elv(p(h; ), h)]). (2.90)

Becaus&™* > 0 and@ < [0]* for all , (2.90) implies that

f(5()) <D+ ¢ [g(y(s)) +Elv(p(hss), h)]] . (2.91)
Applying the Cauchy-Schwartz inequality to the latter, (2.74c) follows readily O

Using Lemma 2.3, the main convergence results for the synchronous amchesous

subgradient methods are given correspondingly by Propositions @.3.&nafter substituting

q(y(s),p(h;s)) = g(y(s)) + E[v(p(h; s)]. (2.92)

Proof of Proposition 2.5.a) Take limits on both sides of (2.74a)as+ oo, and use the bound-
edness of {(s)}.

b) UsingP = D and taking thdim inf in (2.74b), we obtain (2.35a). Moreover, using
P = D, (2.74a), the boundedness|@f*||, and takindim sup in (2.74c), (2.35b) follows. [
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Chapter 3

Cross-Layer Design of Coded

Multicast with Random Access

This chapter considers joint optimization of network coding and Alohaéasedium ac-
cess control (MAC) for multi-hop wireless networks. The multicast thrpughvith a power
consumption-related penalty is maximized subject to flow conservation and &tA@vable
rate constraints to obtain the optimal transmission probabilities. The relevantizgiion
problem is inherently non-convex and hence difficult to solve even im&ralezed manner.
A successive convex approximation technique is employed to obtain ahkEwm-Tucker
(KKT) solution. A separable problem structure is obtained and the dwaindgosition tech-
nique is adopted to develop a distributed solution. The algorithm is thus agplicalarge
networks, and amenable to online implementation. Numerical tests verify penfice and
complexity advantages of the proposed approach over existing desigretwork simulation
with implementation of random linear network coding shows performancealesg to the
one theoretically designed.

This chapter is organized as follows. The system model and the problésmstat are
given in Section 3.1. The successive convex approximation algorithmsisrided in Sec-
tion 3.2. A distributed solution and its online implementation are provided in Section 3.3
Numerical tests as well as a network simulation with suitable implementation of ralittkam

network coding are presented in Section 3.4, followed by the conclusid@edition 3.5.
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3.1 System Model and Problem Statement

3.1.1 System Model

Consider a wireless network represented by a hypergfAph4) with the set of nodesV/
and the set of hyperarcd. A hyperarc(i,J) € A models the broadcast channel between
node:, and the set of receivets C A. The super-set/; collects all such sets of receivers
{J|(i, J) € A} for nodei € N. The one-hop neighborhood of nodis denoted byV (i) and
includes all nodes belonging to at least oneket 7;. The hyperarc model is very general and
allows nodes to transmit at different rates and powers on each hgpseare.g., [96,97, 159].

It also subsumes point-to-point, and broadcast-only scenarios, dsdé&ger in Section 3.1.3.

Consider further a multicast session involving a source sode\, and a set of sink nodes
T C N. The aim is to maximize the multicast raeat which nodes can transmit the same
information to all the sink nodese 7. The network operates in a time-slotted fashion. The
unit of R and of all other rates that will be described here is packets per slot.

For networks modeled by graphs with error-free edges, random Imetarork coding
achieves the full multicast capacity [72]. Wireless networks, howewegmor-prone and have
broadcast channels that are better modeled by hyperarcs. The muéteasgion with random
linear network coding for such networks is also known [97, 159] apcesents the achievable
rate region which can be realized by practical network coding scheneobsasu[27, 72, 96].
Leveraging on this characterization, the present section formulatesstlenger optimization
problem to maximize the multicast rates supported by a slotted Aloha networkisTenith a
set of auxiliary variables‘grg)} is introduced, Wi'[h“g) > 0 representing the virtual transmis-
sion rate (also called virtual flow) from nodéo a neighboring nodg¢ € N (i) for sinkt € 7.

Virtual flows abide by the flow conservation constraints [97]

S Y Rl -Rlly  ieNieT @)

ij
JEN() jHEN ()

wherel, is the indicator function that takes the value one when the expression inside th
curly brackets is true, and zero otherwise.

Optimization solvers usually require all constraints to be expressed asalitexgu There-
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fore, the following relaxed version of virtual flow constraints (3.1) iscusere

S N s Ry, teT,icN\{i). (3.2)

JEN(3) JHEN(J)
To obtain (3.2), note that in (3.1), the set of equationsifert can be omitted since they are
implied by the other equations. Relaxation of the flow constraints 6t is then equivalent to
allowing each nodeé to transmit at higher rate than received, which amounts to adding virtual
sources at all nodes. Note, however, that sending nonzero flowtfrese virtual sources to
the sinks can never increasg which is the flow froms to ¢t € 7. Thus, even if the optimal

solution has some nodes injecting extra flows, they can all be set to zeraiwitgedingR.

3.1.2 Characterization of MAC Constraints

The MAC layer employs the slotted Aloha protocol. At every time slot, each node\
transmits on hyperarg, J) with probabilityp; ; and (instantaneous) physical layer (PHY) rate
¢;7. The transmissions of different nodes are independent. Not all nodesan decode the
packets received from because of collisions or erasures. [Lét:) denote the set of nodes
whose transmissions interfere with the reception at nad®eception at node: may fail (a)
due to collisions—when a nodec I(m) or m itself (half-duplex contraint) is transmitting
at the same time slot—or (b) due to erasures caused by impairments of the suneldaim
or jamming. Erasure means that although the link may be collision-free, thizinecend
cannot decode the transmitted packets with some probability due to, e.g.,.f&lingrrence
of erasures is independent of collisions. To summarize, a transmissio foon is successful
when (a) no nodg € (I(m) U {m})\{i} transmits, and (b) there is no erasure on liftkn).
Let S7; denote the event that a packet transmitted on hypéiarg is correctly decoded by
nodem € J, and defing;; := 1 —Z']eji pi7, the probability that remains silent. Assume that
erasures happen independently across links and time slots, dnéddgt,, be the probability of
erasure on the linki, m) of a packet transmitted at PHY ratg;. Assuming fully backlogged

gueues at the link layer, so that all nodes have packets to transmit gttenerslot, one can
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write the probability ofS7; as

Pr(S") = Sim 11 qj m e J,(i,J) € A (3.3)
e (m)u{mp)\{i}

Next, introduce for eacl’ C N (i) the probabilityb; s that at least one node il receives

the packets injected on the hyperé&ic/) correctly; i.e,

bijk = Pr( U Sf}) K C N(i), (i, J) € A. (3.4)

meK
It is clear from this definition thak; ;, = 0 if J N K = @. From the inclusion-exclusion

principle [142, p. 6], the probability of the union of events in (3.4) camtpaaded as

|JNK|
Pr( U f{;) Y (v 1Pr< N ) K c N@),(i,J) e A. (3.5)
meK k=1 ]\/|[CJﬁkK meM
DefineI(M), for a set of noded/ C N, as the set of nodes whose transmissions interfere
with at least one node in/; i.e., I(M) = |, L(m). The probability that all nodes in/

decode the packet is

Pr( N ’3) = ( 11 &-m)( 11 qj>, McJieN. (3.6)
meM meM Je(I(M)UM)\{i}

The average rate at which packets are injected in the hyp@raktis given byz;; := ¢; ;.
The virtual flow rate for each sinke 7 can be related t§z;;} ; 7)c.4 through the following
set of inequalities [159]
ST <N zibuk, KCN(i),ieN,teT. (3.7)
JEK JeT:
The right-hand side represents the rate at which packets transmitted by reath at least
one node ink, through various hyperards, J). Combining (3.4)—(3.6), the virtual flow

constraints (3.7) become

|JNK|
ST < S emis oY CUFU]] sigme KCN(@), i€N, teT. (3.8)
jeK Jed k=1 MCJNK meM

| M=k
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3.1.3 Problem Formulation

The problem of interest is to maximize the multicast throughputhile minimizing energy
consumption, subject to network coding and random access const&iimts. higher values of
q; should translate to lower energy consumption at node\/, a convex, decreasing function
v;(q;) is used as a cost to penalize the energy consumption.

First, the following definition is introduced, in order to streamline the notation3.8) (
Cik ={(J,M,k)|J € Ty M C JNK,k=|M]|}. (3.9)

Also defineZ;y, := (I(M) U M)\ {i} ands;jnr := [L,,eas Sism- The overall optimization

problem is formulated as follows:

(P°) min > vilg) - R (3.10a)
R20,{rV>0} i
s t. S oW Ry - Y <0, teTieN\ {1} (3.10b)
JHEN(F) JEN(3)
Z Y’,L(jt) + Z (—1)kcijpiJ8iJM H q; <0, KcC N(i),i S N,t € T(310C)
JEK (J,M,k)eC; ¢ JETim
S psta-1<0, ieN. (3.10d)
JeT;

Note that (3.10d) is a relaxed version of the original equality const@ygji pig +q = 1.

If the optimal solution is such that strict inequality holds in (3.10d) for a nodeV, then the

value ofg; can be increased without changing any. This will likely decrease the probability

of collisions due to nodéfor other nodes, thus allowing at least as much throughput as before.
Problem(PY) is non-convex, because constraint (3.10c) is non-convex. A logadth

change of variables as in [25, Section 2] does not convexify the prokiéher, as (3.10b)

and (3.10c) both become signomial constraints. For this reason, a sivecgmnvex approxi-

mation approach is pursued in the next section to obtain a KKT optimal solufioieefly.

Remark 3.1. The problem formulation (3.10) can also be used when there are noesasu
also referred to as lossless network—by settifyg, = 1 for all links. This is the case when,
e.g., sufficiently strong error correction codes are employed at the liek lagssibly combined

with appropriately reduced rates;. Erasures correlated over space, e.g., due to jamming, can
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also be incorporated in the formulation by directly plugging in the appropretes ofs; ;,

for each sef\/ in (3.10c).

Before concluding this section, it is worth mentioning that the proposed nsodsiumes
wireless networks with point-to-point, and broadcast-only transmissiorespidblem formu-

lation also becomes simpler under these special cases and is briefly oudiied n

Point-to-point Transmissions

When only point-to-point transmissions are allowed, the network can belewbh a regular
graph with edge€ instead of hyperarcgl. Using the set7; = {j|(i,7) € £} in (3.10c), the

new constraints become

rl(,? — CikPikSik H q; <0, ke N(i),ieN,teT. (3.11)
Jel(k)U{kN\ {4}

wherel — s;; is the erasure probability on link, k) € £. The sum-of-probabilities con-

straint (3.10d) also simplifies tEjeN(i) pij +q; < 1.

Broadcast-only Transmissions

In networks with broadcast-only transmissions, nottansmits all its packets on the hyperarc
(¢, N(i)). Such a scenario arises when each node/N can only transmit at the same PHY
ratec; to all its neighbors. In this case, transmitting on a hypefaré) such that/ C N ()
does not yield any rate advantage. Under this assumption, the Alohagristatso simplified
and at each time slot, nod®nly transmits or{i, N (i)) with probability p; ;) = 1 — ¢;. The

setC;k is replaced here by the set
Cixe = {(M,F)|M C K,k = [M|}. (3.12)

DefiningZ},, := (I(M) U M)\ {i} andZ?, := I(M) U M, constraint (3.10c) becomes

Yol <ea > M a-g)si [] @

JEK (]\/[,k)GéiK J€Lim

2
=ay > (0)"Psi [T o KCN@),ieN,teT (3.13)

p=1 (M,k)EéiK jGZfM
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wheres;ys := s;y(;) - Note that problem (3.10) remains non-convex even under both special
cases.

The broadcast-only case was also considered in [140], where alkisgdralgorithm was
developed for small-size networks. In addition to focusing here on digtdboptimization
that is scalable for larger networks, characterization of the MAC cansdrim (3.13) (as well
asin (3.10c)) is more efficient. Specifically, the MAC constraints in [14€aptured through
the variables; 7, which, in turn, are described using a sum with the number of terms growing

exponentially in /|, whereas in (3.13), the number of terms is exponential onJyif)|.

3.2 Successive Convex Approximation

Optimization over general non-convex constraints is well known to be wliffielowever, de-
pending on the problem structure, several approximation methods al&béaAn option is
offered by successive convex approximation, which, under cemsginarity conditions, guar-
antees first order KKT optimality [105]. In this section, the successiwwaeoapproximation
approach is applied t@P"). First, the general method is reviewed. Then, it is explained how

to obtain a convex approximation for the cross-layer optimization problerarat.h

3.2.1 Successive Convex Approximation Procedure

Suppose that the objective function to be minimized is convex, and the dahsgtis the in-
tersection of a sl := {y|hi(y) <0,i=1,2,...,1} withaconvex sef. Functions{h;(y)}
are differentiable but may be non-convex in general. Th€ setptures convex constraints, if
any. The idea is to solve a sequence of surrogate problems, indexed KY, 2, ...}, where

H is substituted per iteratiohby a convex set’. Since the intersection of convex sets is a
convex set [18, Section 2.3.1], the resulting optimization problems are xoS&t " is
constructed a$(‘*! := {y|hi(y;y*) < 0,5 = 1,2,...,I}, wherey’ is the solution of the
convex approximation at théth iteration, an&i(y; y!) for eachi is a differentiable convex

function satisfying the following three conditions:

(c1) hi(y) < hi(y;y") forally e H'* 1 e
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(€2) hi(y") = hi(y%y*); and
(c3) Vhi(y*) = Vhi(y";¥Y).

The procedure is initialized at an arbitrary feasible pgittc H N C. As shown in [105], the
limit of the sequencédy’} is precisely a KKT point of the original (non-convex) problem. If
there are more than one non-convex functibig)—so there is an intersection of sets of the
form 7{—a convex approximating function is needed for each of them, satisfyinditbans
(C1)—(C3).

3.2.2 Centralized Solution

In order to apply the successive convex approximation metho@t9, consider first the
change of variableg;; := logp;; andg; := logg;. The objective in (3.10a) remains con-
vex provided that the cost functian(q;) = v;(e%) for eachi is chosen to be convex if.
Such a requirement is not too restrictive, as it is satisfied by a large dlasgfol cost func-
tions including, e.g.v;(¢;) = —Ing; andv;(¢;) = ¢; ¢, @ > 0. Such cost functions do not
allow ¢; = 0, or, equivalently each node remains silent with nonzero probability, winsh
desirable effects on fairness as well as power savings. Constraib@b)j&re not affected by
the change of variables, and hence remain convex (linear). Cons{&ibdsl) become
> exp(pis) + exp(Gi) — 1 <0, ieN (3.14)
JeT;
which are convex.

Constraints (3.10c) become

ng-)— Z CijSiJM €XP (ﬁu-l- Z dj)—i- Z CijSiJM €XP <]5z‘J+ Z @j)
(

JEK (J,M k)eCl, J€Lim J,M k)eCZ, J€Lim

<0, KCN(@i),ieN,teT (3.15)
where the odd: and evenk subsets of ;i are defined as

Cle := {(J, M, k)|(J, M, k) € Cif, k odd} (3.16)

Ch¢ = {(J, M, k)|(J, M, k) € Ci, k every . (3.17)
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It is noted that the second summand (with its sign) in (3.15) is concave in the ogtiioniz
variables, while the rest are convex. However, it is possible to uppanébthe concave terms
by an affine function [18, p. 69]. Specifically, given the solutfé@ andqf) of the/-th convex
approximation, (3.15) can be replaced with the following convex constaaitite (¢ + 1)-th

approximation:

2. TS‘) - > Ciasiamal Ty (1 + Pis — Biy + > (G- @(6))>

JEK (J,M,k)eC}, J€Lim

+ Z CiJSiJM €XD (ﬁu—i— Z qu> <0, KCN(@),ieN,teT (3.18)

(J,M k)eC?, J€Lim

where for(J, M, k) € Cl,,, K C N (i), andi € N, itholds thahg?M = exp <ﬁ§? + D ieTin q§£)>.

It is easily verified that the approximation introduced in (3.18) satisfiesittond (c1)—(c3).

The resulting convex optimization problem for tffe+ 1)-th iteration is given by

(P}) min Z vi(e¥) — R (3.19a)
R>0,{r{>0},{p;s<0}.{Gi <0} jcpr
s. t. (3.10b) (3.14) and (3.18) (3.19b)

and can be solved by generic algorithms for convex programs such deripi@int methods;
see e.g., [11], [18]. Note that in the first iteratie[m?,gg), qi(o)} must be initialized to a feasible
point of the original non-convex proble?). This can be done by selecting arbitrary values

for p;; such thatzjeji pig < 1, settingg; =1 — > ; p;is, andR as well as{rg)} to zero.

3.2.3 Implementation

The successive convex approximation procedure outlined in Sectionca2 [ used to solve
(P%) to KKT-optimality. The algorithm must be executed offline in a centralized fastoo
obtain the transmission probabiliti€p; s, ¢;}. Using the scheme of [96], at each time slot,
nodei simply transmits random linear combinations of packets in its buffer on hypgrar)
with ratec;; and probabilityp; ;. However, a centralized solver may require a long time to
solve each surrogate proble(ﬂ?}) and need several successive approximations to converge.

Algorithm 3.1 describes an online variation of previously described algoritrhich uses

0)

the probabilities{exp(ﬁgj ), exp(c](e))} for transmission, as and when they become available.

)
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This is allowed since in the limit, the variabléﬁl(.?, c‘jl.“)} become KKT-optimal. The random
network coding scheme, adopted from [27], ensures that the asymptatigtiput achieved
is also KKT-optimal. Interestingly, the scheme does not require MAC/netheydr acknowl-
edgments or retransmissions; only the sinks need to signal the end ofereaatipon.

As the size of the network scales, it is of prime interest to s¢R8) in a distributed
manner. Moreover, it is desired that the iterative optimization is performédeoso that
(slow) variations in the network topology and parameters can be trackadrds these ends,

a distributed algorithm is developed next, which also lends itself to an online imptatioa.

3.3 Distributed Algorithm

Solving convex network optimization problems in a distributed fashion usualbhies appli-
cation of problem-specific decomposition techniques. The aim is to decorntiposeiginal
problem into smaller sub-problems, which can be solved by distributedgsorsecoordinated
through local message passing. A popular method is the dual decompositimiiee based
on Lagrangian duality, which is well-motivated when the primal problem haparable struc-
ture [11, Section 5.1.6], [93].

Unfortunately, the convex approximaticéﬁ’%) is not separable. In particular, the sum-
mands in (3.18) with eveh involve exponentials of the sum of the transmission probabilities
of neighboring nodes. Therefore, they do not take the form of a dusrms that depend on
individual node variables. To cope with this hurdle, additional approximasiintroduced first
to effect a separable structure. Moreover, a set of auxiliary vasa[mé?)}tg is introduced
to allow decomposition of the problem to the individual sinksJin For simplicity, the algo-
rithm development hereafter specializes to the broadcast-only casevEigthe methodology

extends straightforwardly.

3.3.1 Creating Separable Structure

As noted earlier, the distributed solution is developed here for networksbhnatdcast-only

transmissions. Changing the variabjgs= log ¢;, and defining’},- andC?, as the odde and
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Algorithm 3.1: Online implementation of the centralized algorithm

1 initialize

2

3

N

10

11

12

13

14

15

16

17

18

19

20

21

22

Convex approximation indek= 0
Current generation index= 1
{;553), q§°)} to arbitrary values satisfying (3.14)

foreachtime slotdo

/1 Protocol operation
foreachnodei do
if nodei has packets of generatignthen

Transmit a random linear combination of packets from genergtimmthe

hyperarc(i, .J) with probability exp(5\7)
end
if packet is received at nodeghen

Store packet if it is linearly independent of the packets already stored at

nodes.
end

end
if each sink € 7 can decode all packets of generatigithen
Flush all packets of generatiginfrom all nodes in the network
updateg < g+ 1
end
/'l Update the transm ssion probabilities
if solution{p?;, G} to (P}) availablethen
update
Pty @Y g fori e N, (4,J) € A
l+—0+1

end

23 end
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evenk subsets o€,k [cf. (3.12)], (3.13) becomes

ZTS)—CZ' Z SiMeXp<Z‘7j>+Ci Z SiMeXp<qu>
(

JjeK (M,k)€EC} JETH, M.k)eC JETH,
+ci Z SiM exp( Z @) - Z SiM exp( Z @) <0 (3.20)
(M k)eCly J€ETZ (M k)eC JE€L

which can be expressed compactly as

Z Tij —CZZZ Z x"‘pSiMexp( Z q~j> <0. (3.21)

JeK =1 p=1 (M,k)eC%, JETID,
Of the five terms in (3.20), the second and fifth terms (those correspotmiegenz + p
in (3.21)) are non-convex and can be upper-bounded using affircéidns as in the centralized
solution. Thus, giverzfj(.@ at the/-th iteration, the following approximations are used fo&

pe{1,2}:

exp< 3 qj> > %), <1+ S @ -3 ) (3.22)
€Ty JEID,
where, similar to beforeqz(]& = exp (Zjeli q](‘))

Note that the resultant affine terms are already separable. To make theingntarms
separable, another layer of approximation is applied to (3.20). The ideass the arithmetic-
geometric inequality to upper-bound each term in the third and the fourth surmsati¢s.20).

Specifically, it is noted that [25, p. 32]

I ew(@) < Z B3t P (ﬁ(qg ) (3.23)

jEIlPM J GI iMjp

is satisfied for terms correspondingto= 3 — p € {1,2}, provided thatﬂl.(f&jp > 0 and

> €T ﬁfﬁjp = 1 hold. Moreover, it can be verified that conditions (c1)—(c3) are sadisft

qgj = § ), j € I, if the approximation paramete{§ } are chosen fo(M, k) € Cix,

iMjp
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(6

iMjp — qji(@ Thus, (3.20) can be surrogated by
ZJ/EIP q.,

K C N(3), ]EIM,andZENaSB

JEK z=pe{1,2} JET
(M k)ECT,
+ ¢ Z SiM Z /BZM]p ( i > <0, KCN(@),ieN,teT (3.24)
r=3—pe{1,2} JEI, BlM]P
(M,k)eC%

which is now separable in the per-node optimization varia{rl%%} andg; for eachi e NV.

To induce per-sink decomposability of constraint (3.10b), a set of aqxil'taiables{R(t) et
is introduced, which represents the multicast rates for the individual siaKg, and additional
constraints are imposed to ensure that the sinks can support the ofti®pécifically, (3.10b)

is substituted with

> rﬂ + ROy = ) r <0, teT,ie N\ {t} (3.25)
JHEN(H) JEN(3)
R—RWY <o, teT. (3.26)

The resulting problem

(P?) min Z vi(e¥) — R (3.27a)
R>0,{R(1>0},{r{" >0} {5:<0} jcnr
s. t. (3.24)(3.25), and (3.26) (3.27b)

is amenable to a distributed solution, as detailed next.

3.3.2 Distributed Solution via Dual Subgradient Method

The convex optimization problem (3.27) is solved here in a distributed fastidgothe dual
decomposition technique. Since the objective function in (3.27a) istniotly convex with
respect to all primal variables, the dual function may not be differentidiiteis, the subgra-
dient method is employed to solve the dual problem [12, Ch. 8]. The sdiegtamethod is
widely used in cross-layer optimization; see e.g., [23, 26,93, 97] arderetes therein. Also,
to ensure feasibility of the primal solution recovered from the dual optimabies, primal

averaging is employed [113].
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Upon introducing the Lagrange multipliefs\;x; > 0} and {x; > 0} to relax con-

straints (3.24) and (3.26), respectively, the partial Lagrangian far}3s written as

LR ARDY, {r} 4@t = Y vi (%) = R+ Y w (R~ RO)

ieN teT
¢ (i
+ > )\iKt{Z 7’1(;) — Y SiMOéE]\)@ <1 + > (@G- qj( ))>
KCN(i), JEK z=pe{l,2} J€T
iENteT (M,k)eCF
. , © a 3.28
+ ¢ Z SiM Z 5@'Mjp exp 0 . ( . )
r=3-pec{1,2} JELH, BiMjp
(M.k)eCik

Thus, the dual function is given by

D({hiri} {uey) = min  L(R RO}, {(x), (@),
R>0,{R(")>0},
{r{>0} {@; <0}

s. t. (3.25) (3.29)

and the dual problem by

D\ , . 3.30
{/\iKtéré?v}E/ﬁtzo} ({ Kt} {Nt}) ( )

In particular, the dual problem is solved using the subgradient methad.isTapproach
is popular for network optimization problems; see e.g., [93], [26] andeafes therein for
uncoded networks, and [97] for coded networks. The separahletste is leveraged in order
to decompose the problem in smaller, easier to solve tasks which map to vaeiousin
control functions, such as flow control.

First, a general description of the subgradient algorithm for the dualcofhivex optmiza-
tion problem is given [12, Section 8.2]. Consider the standard problemimifmizing the
convex functionfy(y). Suppose the (convex) constraints are partitioned into sets of explicit
constraintsf; (y) < 0 and implicit constraint€,(y) < 0, while there may be an additional
convex set constraint € ). Associate Lagrange multipliegswith the explicit constraints.

Then, the associated Lagrangian function is

L(y,C) = f(y) + ¢ fu(y) (3.31)
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The subgradient iterations indexed by= 0, 1,2, ... proceed as

y(r) € argmin L(y,{(7)) (3.32a)
y:f2(y)<0,y€y
C(r+1) = [C(r) +efily(n))]" (3.32b)

where[.]* denotes the nonnegative orthant. The iterations are initialized with arbdt(@ayy>

0.

Remark 3.2. The choice of which constraints to explicitly relax via dual variables andwhic
to keep implicit may affect complexity of the minimization step in (3.3.2), as well asdhe ¢
vergence speed of the algorithm. Specifically, if only few constraints epe iknplicit, the
primal solution step (3.3.2) may be simple, but the subgradient method to sod@ (Bay
take long time to converge. On the other hand, keeping many constraints imphchincker
distributed implementation of (3.3.2), as it becomes hard to exploit the sepataldéure.
Here, inspired by [97] and [169], the virtual flow constraints (3.2%) lept implicit, which

leads to a favorable trade-off between decomposability and convergpeed.

The separable structure of (3.27) allows terms in the Lagrangian functlmre-grouped
according to the corresponding layers in the networking protocol. Thimmization of La-
grangian decomposes to per-layer sub-problems in the link layer (invalventpg probabili-
ties{g;}); the network layer (involving the network coding parametgé") } and{rg)}); and
the transport layer (involving the multicast ra®, each of which can be solved individually
given the Lagrange multipliers. In the sequel, distributed solutions to th@mildbems are

developed.

Link layer sub-problem

The link layer sub-problem can be further decomposed to the node Igweh tlefining the set

Z,” of nodes that are interfered by nodgtransmission as
;P :={m e Nli € UyreNm)Zh s} (3.33)

the link layer sub-problem for node € N is obtained by collecting irC(-) of (3.3.2) the

terms containing; (henceforthy denotes the iteration index of the subgradient updates to be
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discussed later):

2
Gi(T )Earg min vZ ~' clqz<z Z Z Z SmMOémMp Amrt(T ))

<
%<0 2=l et PKCN(m) (M,k)eC?

( Z Z Z Z SmMﬁmN[zp mKt( )eXp (g) }334)

meZ; P KCN(m) (M,k)eCE mMip
p=3 *"B te T

Network layer sub-problem

The network layer sub-problem can be further decomposed to the sielk Bus,R*) and

{rgi) }ien(),ienr €an be updated by solving the per-sink problem for gaety” given by

(RPN e ammin 3w 3 dalr) - u(r)RO
R(t>zo,{r§§>zo}jeN(z‘),z‘eN KCN(i)

KBJ
oy rﬂ + RO, — Z r) <0, ie Mt} (3.35a)
JEN(% 1EN(j

ng <e¢, jeN(i),ieN.(3.35b)

Problem (3.35) can be reduced to the standard minimum-cost flow problexdyg a virtual
link from nodet to nodes with infinite capacity and costp; [10]. The minimum-cost flow
on this graph then yields the solution to the original problem wi#fh given by the flow on
the virtualt-s link.

The minimum-cost flow problem is a well-studied problem; see e.qg., [10] fortailele
survey. Many of the algorithms available are amenable to distributed implementatidn
terminate in a number of steps polynomially bounded by the number of nodest tase, the
iterative primal updates only involve changes in the link costs. Theretommuld be useful
to choose a method that can soft-start from an available feasible solubiontliie previous

iteration. One such method is teeelaxation method; see e.g., [10, Ch. 7], [13, Ch. 6], [63].

Transport layer sub-problem

In order to obtain the update equation @y note first that the optimak is necessarily upper-

bounded because the per node maximum transmission ¢ate bounded. In particular,
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from (3.10b) withi = s and (3.10c) withX' = N (i), it holds that

R< Z <c5|cst)\ : Rmax. (3.36)
JEN(s)

Using (3.36) as an additional constraint, the multicast fate updated as

R(7) € Oil;égggizx <Z (T 1)R (3.37)

which can be solved straightforwardly.

Dual update and primal recovery

Once the primal iterateg(7) = [{G (1)}, {R® (1)}, {T,E;)(T)},R(T)] have been obtained,
the dual variables are updated to solve (3.30). The subgradientfiwojetethod is employed,

which amounts to updating the dual iterates through

Aurca(T +1) = [ ikt (T +U{ZT1] )i Z SlMo‘sz<1+Z _QJ )

jEK z=pe{1,2} jeIp
(M k)€C
5\
) 4\
te Y s D By exp (B(/z) ) }] ’
r=3-pec{1,2} JETIEy, iMjp
(M, k)ECE,
KCN@G),ieN,teT (3.38)
_ Oy

el +1) = [ut(T) to (R(T) “R (T))] . teT (3.39)

where[-]* := max{0,-}, ando > 0 is the step size. The dual iterates can be initialized to
arbitrary non-negative values. The subgradient method with a corstemisize converges
into a ball of the optimal dual variables, whose radius is proportional to tiye size; see
e.g., [12, Prop. 8.2.2] for the exact claim and the convergence rates.

Due to the lack of strict convexity, the primal iterates-) recovered from the dual iterates
may not converge in general. Nevertheless, their running averége:= Zp Oy( ) is
asymptotically feasible, and converges to the optimum squtio(rP@p [113]. The running

z+1) (L+1)

averages are then used to upd%qurl } (to evaluate{alMp , M]p }) for the next approxi-

mation(P7, ;) and the subgradient iterations restarted.
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It is also possible to combine the subgradient and convex approximatiotioiter &y not
reinitializing the dual iterates when updating the values‘eqéf)}. If the surrogate problems
(P7) and(P7, ) are not too different, the final dual iterates(&f?) will also be near-optimal
for (Pfﬂ). Retaining the dual iterates is therefore equivalent to “soft-starting” tia¢ glb-
gradient method with near-optimal initial values. The next section builds tipsrtombined

algorithm, and describes its distributed and online implementation.

3.3.3 Distributed and Online Protocol

The present section describes a distributed, parallel, and online implememiatie succes-
sive convex approximation algorithm. Recall from the centralized AlgorithimtBat it is pos-
sible to operate the network using a sequence of transmission probal@ilitieSp(cjy))}, con-
verging to KKT-optimal values. In the present case, these valuesariepd by the combined
subgradient and convex approximation algorithm outlined in Section 3.3.2rifkig 3.2 de-
scribes the message passing and variable updates required by the mgbetich nodec N.
Each subgradient iteration in Algorithm 3.2 takes up several time slots; chrittign 3.1.
Observe that the message passing required at each iteration is modeeatBc&ly, node
i collects primal variableg;(7) from all nodesj € (Un,Z0,) \ {i} = I}N(i), and dual
variables{\,, k. } from all nodesn € Z, ” for p = 1,2. Roughly speaking, these quantities
pertain to the two-hop neighborhood of nodeFurther, the source needs to solve (3.35) at
each iteration and for each sink (in parallel), using an asynchron@isbdted method such

ase-relaxation. Finally, the convex approximation parame{er%)M, ﬁfﬁ} at nodei depend

on q(.f) for j € I}N(i). These variables are anyway made known to nofte the purpose
of dual updates. Overall, if each node has at nabseighbors, it exchanges(2?) variables
with each of itsO(d?) two-hop neighbors, per subgradient iteration. Each node also exesan
O(d) variables pek-relaxation iterations. Finally, the storage requirement for each node is
0O(2%d?) variables.

In general, the subgradient method does not specify a stopping critenidiit is customary
to use a fixed number of iterations. Alternatively, the subgradient algodtmstop when the

primal averages converge and remain unchanged for several itaratiothe present case, a
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Algorithm 3.2: Distributed and online algorithm for node

1 maintain variables

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

agfv)[p andﬁfﬁjp for M C N(i),j€Zh,, p=1,2
Gi(7), 7 (7) for j € N(i), and\ixe(7) for K C N(i), t € T, i #1

if nodei is sourcethen R(7), R (1), us(r) fort € T

initialize

probabilities,”’ and evaluate:(y), . A7), Aixe(1) = 0for K € N(i),t € T,i #
successive convex approximation index 0, running averageg (0) = 0, and
70=20

if node: is sourcethen p,(1) = 0, fort € T

foreachT =1,2,...do

collect{ A\, x+(7)} from nodesn € Z; ”, p = 1,2 and{g;()} from nodes
JE Iz'lN(i)
update

primal iteratesj; (1) andrg.) (1) [cf. (3.34) and (3.35)]

dual iterates\;x+(7 + 1) [cf. (3.38)]

running averagg; (1) < —=2=L1G;(r — 1) + ——g (1)

T—Ty T—Ty

if nodes is the sourcehen
primal iteratesRk(7) and R® (1) [cf. (3.37) and (3.35)]
dual iterategy (7 + 1) [cf. (3.39)]
end
if subgradient iterations have converged or maximum iterations reattiesd

update g™

%

¢ @i(r) and evaluater)y; ) and 8{; 1)
update/ <+ £+ 1
reinitialize running averagég;(7) « 0, and sety, = 7

end

24 end
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more sophisticated stopping criterion can also be employed. After a fixedanahiterations,
each node can use the current valueg;ab calculate the maximum achievable throughput
of the original problem(P") (specialized to broadcast case). Recall that given the probabili-
ties, this is a linear program. If this throughput turns out to be better than thegiput of

the previous convex approximation, convergence is declarec{@ﬁ@q values are updated.
Otherwise, the iterations continue till a prespecified maximum number.

The use of subgradient algorithm offers some flexibility in the choice of the-sicaée of
iterations. It is not necessary to wait for convergence of the sulegrachethod for updating
the transmission probabilities. Indeed, the running averfigesexp(g;(7))} can also be used
as transmission probabilities at intermediate iterations, since these conv@tge@p(qj@)},
which in turn converge to the KKT-optimal probabilities. Before concludagemark about

alternative distributed solutions is due.

Remark 3.3. The convex problem formulated in Section 3.3.1 can also be solved by the aug
mented Langrangian method [143, Section 6.4.3], as an alternative to theuthggadient
approach. Note that application of this method typically makes the problensemerable,
making the dual decomposition not readily applicable. Nevertheless, it @bp@so have a

distributed implementation of the method, using the techniques in [13, Section 3.4].

3.4 Numerical Results

Numerical tests are performed for the centralized and distributed algorittopeged in Sec-

tion 3.2 and 3.3. Related algorithms from [140] and [160] are comparedrahinarks.

3.4.1 Simulation Set-up

Random networks are generated using the MAX-DPA algorithm [117Ewpenerates graphs

by placing nodes one by one, while respecting certain maximum-degreeodadoroximity
constraints so as to simulate a realistic ad hoc network. The algorithm parameterhosen

to bed = 3, dnmax = 6, anddy = 0.2 (see [117]), and the nodes are placed in a square area

with the average node density 1. The erasure probability for a pair ohipeiong nodes
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# of nodes| Heurist. | Central.| B. & B. | Orth. Schedul.
7 0.1883 | 0.3103 | 0.3138 0.3144
8 0.1762 | 0.2736 | 0.2782 0.2667
9 0.1664 | 0.2584 | 0.2647 0.2498
10 0.1632 | 0.2354 | 0.2426 0.2214
20 0.1242 | 0.1890 - 0.1263
40 0.1110 | 0.1615 - 0.0776

Table 3.1: Average optimized throughput.

and;j separated by distaneg; is given byl — exp(—dfj/4), assuming Rayleigh fading. The
transmission rate; is assumed to be unity for all nodése N. The multicast session is
chosen so that the leftmost node is the source and the two rightmost nedhe aimk nodes.
To compare with the existing algorithms on an equal footing, the broadchssoenario is

considered and only the throughput is maximized wkilgq;)} are set to zero.

3.4.2 Centralized Algorithm

Table 3.4.2 gives the maximum throughput achieved with different scheamesaged over
100 random network realizations. Four different methods are comptredieuristic method
from [160], the proposed method (centralized version), the brandHbaund method from [140],
and the orthogonal scheduling from [97] with only one transmitting noddimer slot. The
proposed centralized algorithm is initialized by considering a set of 2@ralydchosen prob-
abilities ¢;, and picking the one that yields the maximum valuefofwhich can be easily
obtained by solving a linear program). It can be seen that for small-steeries, where the
branch-and-bound algorithm runs in a reasonable time, the averagghiput of the proposed
centralized algorithm is close to the global optimum. The suboptimality is due to pssib

convergence of the algorithm to a KKT point.



3.4 Numerical Results 72

0.02

Distributed |+
— — — Centralized
n

. . . . n
0 500 1000 1500 2000 2500 3000 3500

Iteration index 7

Figure 3.1: Evolution of the end-to-end throughptin the subgradient method with step size

o = 0.5 for the first surrogate problenf (= 0) ando = 0.1 thereafter. The vertical lines
result from the fact that the primal averages are refreshed wheth@/ealue off is advanced.
Therefore the solution obtained from the next few subgradient iteration$ poor quality

and gives low values oR. However, the network throughput depends only on the access

probabilities at the instants when the subgradient iterations converge.

3.4.3 Distributed Algorithm
Evolution of the Subgradient Method

Algorithm 3.2 is simulated on a randomly generated network with 40 nodes. Tta roint
was chosen again as in Section 3.4.2. Figure 3.1 shows the evolution ofdbghput achieved
with the running averagég;} (which is close but not exactly equal to the running average
R) across the subgradient iterations and successive convex apptioxisnaRecall that the
running averages are refreshed when the convex approximation aseabdnterestingly, the

throughput converges to a near-optimal value in very few conveoappation iterations.

Online Implementation

Algorithm 3.2 is implemented with the random network coding scheme of [27] dmples

dynamic network. The network is shown in Figure 3.2 and initially consists ofalés except
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Figure 3.2: Dynamic network used for simulation. Node 4 joins the network at siote

4 x 10%.

node 4. The aim is to multicast packets from source node 1 to sink nodels87 &he network
is simulated forf7 x 10 time slots, and node 4 joins the network at time 8let10* and starts
transmitting with arbitrary probability.

The network coding scheme is implemented using a generation size of 10&tqaahd
field size28. The source is infinitely backlogged, i.e., there are generations waiting to be
transmitted at all time slots. It is assumed that an end-to-end network emection code
is employed; see e.g., [8] and references therein. Consequently, kiseaserequired to col-
lect only 90 linearly independent packets for each generation. This inthi¢she uncoded
throughput is 9% of the value obtained from the centralized solution. The subgradient al-
gorithm runs in parallel with the network protocol, and updates the transmipsdtabilities
every10? time slots.

Figure 3.3 shows the evolution of the per-generation throughput of 8tersyrepresented
by dots. The per-generation throughpuRis := 90/7,, whereT}, is the time-difference (mea-
sured in time slots) between transmission of the first packet of generatind the reception
of 90 linearly independent packets of generagait all sinks. The solid curv&,,, represents
the moving average a®, for 10 previously received generations. Finally, the dotted lig )

shows the 9% of the KKT-optimal value ofR obtained by running the centralized algorithm.
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Figure 3.3: Evolution of the R values. A dot at a given time slot represeatthtioughput
of the generation that is received at that time slot. Since generations aseniti@d serially,
the moving average of the per-generation throughput represents thugliput achieved over

several generations.

It can be observed that the per-generation throughput is low in therbrgias all nodes
start transmitting at suboptimal access probabilities. The throughput ingpasvihe subgra-
dient iterations evolve, but decreases again when node 4 joins the ketWuis is because
when node 4 enters, it also starts transmitting at an arbitrary probabilityintarferes with
reception at other nodes. Eventually though, the subgradient iterattoh&do a new opti-
mum, and the throughput increases again. Intuitively, node 4 helps tigprg more paths for
packets being multicast to nodes 7 and 8, and therefore the overall imatLig higher than be-
fore. The remaining gap between the centralized solution and achievemlitimat is because
of the overhead inherent to the network coding scheme. This gap catbeed by using a
larger generation size or more sophisticated schemes (such as genmtati@aving [27]) at

the expense of increased end-to-end packet delay.
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3.5 Conclusion

The problem of joint optimization of network coding and Aloha-based MACHfwilti-hop
wireless networks was considered. The multicast throughput with a mmmsumption-related
penalty was maximized subject to flow conservation and MAC achievable sastraints to
obtain the optimal transmission probabilities. The relevant optimization problers twit to
be non-convex and hence difficult to solve even in a centralized maArserccessive convex
approximation technique was employed to obtain a Karush-Kuhn-Tuckeicso The idea
was also extended to create a separable structure in the problem, ancitdechmposition
technique is applied to derive a distributed solution. The algorithm is thus apf@itor large
networks, and amenable to online implementation. The numerical tests vefilympance and
complexity advantages of the proposed approach over existing desigreswork simulation
with implementation of random linear network coding shows performancealesg to the

theoretical.
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Chapter 4

Cross-Layer Design of Coded

Multicast under Delay Constraints

This chapter deals with network-coded multicast for real-time and streamidgrapplica-
tions where packets have explicit expiration deadlines. Most of the popetavork coding
approaches require asymptotically large block-lengths, thereby inguoing decoding de-
lays. The present chapter introduces a joint scheduling and netwdilkgcdesign that aims to
maximize the average throughput while respecting the packet deadlinesioVhl approach
relies on a time-unwrapped graph expansion in order to construct thenketedes. The resul-
tant algorithm draws from the well-known augmenting-path algorithm, andtrsdistributed
as well as scalable. For networks with primary interference, a lowendon the worst-case
performance of the algorithm is provided. The associated optimization jpnablalso ana-
lyzed from an integer programming perspective, and a set of valid itiggsas derived to

obtain an upper bound.

Related Work

The design of joint-scheduling and network coding (JS-NC) schemes ®ldly donstraints has
not been addressed in literature. Several works though, have addhe delay performance
gains of network coding in single-hop scenarios [51,76,90]. Exterisimulti-hop networks is

non-trivial since the presence of scheduling constraints significantiyplicates the solution.
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A related problem in the context of wired networks has been analyze®jn{Ie major
difference however is that [50] considers bit-by-bit transmission atdiork coding. This
results in a problem similar to that of determining the minimum finite field size for thengiv
network. In packet networks though, field size is usually not the bottlenec

Several heuristic network coding schemes in media streaming applicatioasar@vail-
able; see [34, 118, 149] and references therein. These do righdestwork coding jointly
with scheduling constraints, and focus primarily on implementation issuesathstes focus
here is on joint designs and performance guarantees.

Recently, there has been an attempt to reduce queuing delays in baskfprenethods
by modifying the Lyapunov function [19]. This may also result in reducinguing delay
in network coding schemes that employ back-pressure. However, mitetsef methods also
require large block-lengths, thereby rendering decoding delay a nballgbottleneck.

The organization of this chapter is as follows. Section 4.1 proposes aljpeviersion of
the JS-NC problem, which is then used in Section 4.3 to derive a constamt-&aproximate,
augmenting-path algorithm. For networks with primary interference contredection 4.4
analyzes the JS-NC design problem from an integer programming pavepdeinally, Sec-

tion 4.5 presents simulated tests and Section 4.6 concludes the chapter.

4.1 System Model

Consider a wireless network represented by a directed acyclic graph (V, E), with V
denoting the set of nodes arfiflthe set of edges. The sEtconsists of tuplegu, v) denoting
the two nodes that the edge connects. The network supports a multicishsEmsisting of a
source node € V that intends to transmit a packet-stream to each of the sink riode$’.
Linear network coding is performed at intermediate nodes, which allows thdimearly
combine and forward received packets. A block-network coding nmisdskumed, wherein the
packet stream is parsed into blocks before transmission. Subseqoehtlgackets belonging
to the same block are allowed to be mixed. The sinks also decode the packétsdk-avise
fashion; that is, upon receiving linear combinations of the packets hielpigeach block.

The network operates in a time-slotted fashion, where one time slot cargepamket.
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Figure 4.1: The key difference between Pl and Sl constraints. Undétltbonstraint, nodes 2
and 4 can simultaneously receive from transmitters 1 and 3. Under Staions however, the
two transmitters interfere with reception at nodes 2 and 4, and should schieduled at the

same time. Node 5 can receive from node 3 in both cases.

The deadline constraintictates that the sinks must be able to decode a block withiime
slots of the transmission of thiest packet from that block by the source. Further, the wireless

interface imposes the followingcheduling constraints
SC1. The nodes adhere to a half-duplex operational mode; and
SC2. The nodes experience interference of either (a) primary; or, (lonskcy nature.

The half-duplex constraint SC1 prevents a node from transmitting areivireg in the
same time-slot. The primary interference (PI) constraint SC2(a), hotdsrtieogonal (i.e.,
channelized) access, e.g., via spreading codes or frequency dinigitliplexing. SC2(a)
allows each node to receive from at most one neighboring node per timeeate.g., [39].
The secondary interference (Sl) constraint SC2(b) imposes additestactions: two links
(u1,v1) € E and(uz,v2) € E cannot be used for transmission in the same time slot if either
(u1,v2) € Eor (ug,v1) € E; see e.g., [71]. Clearly, broadcast is allowed for both Pl and SI
types of constraints. Figure 4.1 shows the key difference between @8I constraints.

The aim is to find the maximum multicast throughput, given here by the ratedizap&r
time slot) at which the source transmits packets that reach all the sinks withitighlted
deadline. In this JS-NC framework, both the time slots at which each nodanitsras well as

the linear combinations it uses to code must be designed.



4.1 System Model 79

Throughput optimization with JS-NC design is well-known to be difficult evethout
deadline constraint [144, 159]. Some approximate JS-NC designs seabdel in [71], [39]
but cannot be extended to the deadlined case as they rely on using hetwless with large
block lengths, and consequently incur long decoding delays. This @atith motivates the

following operational assumption.

AS6. The source begins transmitting the next block of packets only after théopeellock

has been decoded at all sinks.

Together with the deadline constraints, AS1 implies that each block of paathkgtsin the
network for at mostD time slots. As a result, the goal reduces to that of finding the JS-NC
design maximizing the number of packets that can be multicast to the sinks withirsthe fi
slots. The schedule and network code can both be reused for sebsdducks, which also
makes the transmission and reception patterns of the nodes periodic with déindd p. The
next section describes a time-unwrapping technique used for solvingrtiphfied problem.

Before concluding this section, a few remarks on the assumptions are due.

Remark 4.1. The block-decoding assumption at the sink nodes is not necessarilytmatu
optimal. This is because the sinks begin decoding only upon receiving tlae tambinations
corresponding to the entire block, resulting in long waiting-times for the #sstgackets of
the block (i.e., decoding delay). An alternative is to use infinite block-lengtivalutional
network code designs that allow for sequential decoding at the sinksHé@vever, designing
infinite block-length codes that satisfy the deadline constraints is knownddfloeilt even in
wired networks [50].

The use of only a single block per period, as implied by AS1, incurs arheaer This is
because the source is not allowed to transmit the next block until the |ds#tpEdhe current
block has been received at each sink. However, as shown in Sec8ioa golution obtained
with this assumption, can be converted into a pipelined solution, that significediges this

overhead.

Remark 4.2. Compared to a back-pressure approach, the JS-NC design is natidyne., the

scheduling and network coding decisions are not made on a per-fasketind do not depend
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on the instantaneous channel conditions. Back-pressure schemegehoave well-known to
exhibit poor delay performance [19]. Further, most dynamic JS-NCrigthgos require large
block-lengths, resulting in prohibitive decoding delays [74]. On the ottzerd, the static
JS-NC design proposed here offers flexibility to operate with a speciedlthe D. The
channel-oblivious nature of the design also makes it simpler, and easistribude relative to
the dynamic designs.

Varying channel conditions always result in packets getting droppedased even in the
absence of collisions. In delay-critical applications, it may not be poskibyecover the lost
packets at all, due to the extra time required for the sink to send feedatty@asource to re-
transmit. To a certain extent, erasures can be handled through classicaid error correction
codes that are applied at the source node. Alternatively, specializédmenetwork codes are
available to correct packet-erasures; see e.g., [178], [85] aarkrafes therein. In cases when
the number of erasures becomes too large, partial recovery may ladsieeand can be pro-
vided through the use of priority-encoding and transmission (PET) B&eral practical PET

designs have been proposed in the context of network coding for sjglgacations [137,152].

4.2 Time-Unwrapping and Network Code Design

Under AS1, the goal is to find the JS-NC design allowing the source to multistaximum
number of packets to each sink within slots. This section introduces the idea of “time-
unwrapping” of a graph as a tool for JS-NC design. Time-unwrappasgteen employed by
time-slotted networks, e.g., to solve the quickest-flow problem [20], and indhtext of net-
work code designs over wired networks [1,50]. As the name suggetstse-unwrapped graph
can be used to represent the entire transmission and coding scheduigfen number of time
slots on a single graph. The proposed construction is similar but here itaaiuste also to the
scheduling constraints SC1-SC2. Specifically, each node is first spliséntral functional
subnodes, namely receiver-, combiner- and transmitter-subnodere being replicated. The

entire procedure proceeds in these steps.

(U1) Each node» is split into receiver-, combiner- and transmitter-subnodes, and replicate
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D times. The subnodes corresponding to ki time slot are denoted by (k), v¢(k)

andv!(k), respectively.

(U2) Adirected edgéu,v) in the original graph is replaced Wy directed edgeg:! (1), v" (1)),
(u!(2),v"(2)), and so on.

(U3) Since packets received in the current time slot are only availabtegfiasmission in the
subsequent time slots, a subnadék) is only connected to subnode$(k + 1), ...,

vé(D).

(U4) Each combiner-subnode (k) is connected to its corresponding transmitter-subnode
vt(k).

(U5) Finally, the source node is modeled as a “wired” source-subnosté connected to
D transmitter-subnode€ (1), st(2), ..., s'(D), i.e., s has no receiver- and combiner-

subnodes.

(UB) Similarly, the set of sink nod€eB is modeled by a corresponding set of “wired” sink-
subnodes. Each wired sink-subnod¢ € 7T, fori = 1,2,...,|T|, receives fromD
receiver-subnode$ (1), ¢ (2), ..., t] (D).

Figure 4.2 shows a time-unwrapped node. The overall time-unwrappgth @8 denoted
by G = (V, ), with V denoting the set of nodes afidhe set of edges. Further, transmission
on an edge of the forrfw!(¢),v"(¢)) € &€ corresponds to transmission on the eflgey) € F
at time slot/. Similarly, two transmissions off, that violate SC1-SC2, give rise to a set of
so-termecconflictingedges inG. Thus, the entire operation (i.e., reception, combination, and
transmission of packets) of the wireless netw6tlover D time slots can be described using
the time-invariant grapt.

Given a generic time-invariant graph, any network code design algotitkes as input the
sets of edge-disjoint paths from the source to each of the sinks. Th@adbconstraint in the
present case is that the edges on these paths must not conflict withtkachGiven a set of
1 edge-disjoint, non-conflicting;” — ¥ paths inG for each sink” € 7, an network code can

be designed using one of the methods in [78]. These algorithms return éffeciemts used
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Figure 4.2: A time-unwrapped node. Note that the first combiner- andntittes-subnodes,

and theD-th receiver-subnode are redundant.

at each edge € ¢ for linearly combining the. packets. Formally, the vector of coefficients
for edgee, referred to as the global encoding kernel, is givenfky) € Ff, whereF, is the
finite field of alphabet sizg [175]. These global encoding kernels can be obtained using
deterministic or randomized algorithms as those described in [78] and [Wied, if the field
sizeq > |T|, randomly drawn kernel§f.} suffice with high probability, and will be used
henceforth.

The linear combination provided for an edgé (¢), v"(¢)) may then be used on the edge
(u,v) € E attime slot/. All other edges are internal to the nodes and are only used to deter-
mine which packets need to be combined per time slot. The overall networksctiuefore
a list of global encoding kernels of the forf(e, ¢) for eache € F and? = 1,2,..., D. For
convenience, the schedule at théh time slot will be denoted using a gragh = (V, Ey),
where(u,v) € E; if and only if the edgeu’(¢),v"(¢)) € £ carries a non-zero encoding vec-
tor. The overall network coding operation can therefore be viewedeasetjuence of graphs
namely,G1,Gs,...Gp; G1,Gs...,Gp; G4, .. ..

It should now be clear that the multicast throughput can be maximized bydjtitériargest
possible value ofx such that there are as many non-conflicting, edge-disjoint, augmenting

paths from the source’ to each sinkt? < 7, and this is the focus of the next section. But
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before pursuing this direction, a few remarks pertaining to the time-unwrgyppocedure are

in order.

Remark 4.3. It can be seen that the proposed time-unwrapped graph itself takesfdare
scheduling constraints partially. For instance, the graph does not aliopasimfrom traversing
through bothv”(¢) andv'(¢). A packet received at time sldtcan only be sent at a later
time-slot. Similarly, the combiner-subnodes allow only one packet to be transtbitadcast

per-time slot.

Remark 4.4. Since each packet traverses at most a single hop per-time slot, some transmitte
and receiver-subnodes may be redundant. Examples include theafistitter and combiner,
and the last receiver-subnodes since only the source transmits in thenfesslot, and only

the sink receives in the last slot. These nodes can be removed to régiictne complexity.

4.3 An Augmenting Path Approach

This section develops a greedy augmenting path (GAP) algorithm for maxinttzéngalue
of 1, the number of edge-disjoint, non-conflicting, augmenting paths fronteatirto each
sinkt” € T. A worst-case performance bound on the performance of GAP algofahfi
networks is also established. The proposed algorithm can be viewedeagesmsion of the
well-known Edmond-Karp algorithm [32, Ch. 26] for the wireless settingstered here.

In order to describe the GAP algorithm in detail, some graph-theoretic naienstro-
duced. Aflow is an assignment df; (i.e., 0-1) values to the edges of the graph.vaiid
flowis one satisfying the flow conservation constraints; i.e., the total flow on tlenimg and
outgoing edges of a node should be the sameniAvalid flowis the assignment of 1s along
anaugmenting pathdefined as any directed source-sink path. Given a flowetsidual graph
is obtained by reversing the direction of all edges with unit values.

Finding the maximum number of edge-disjoint augmenting paths, is equivaléntiog
the maximum number of unit valid flows (the max-flow problem). The Edmong{d()

max-flow algorithm proceeds as follows:

(EKO) Initialize flow values on all edges of gragtto zero;
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(EK1) Find the shortest augmenting (source-sink) path using e.g., Digkstigorithm [32, Ch.
24];

(EK2) Increment the flow values along the path found in EK1;

(EK3) Setg equal to the residual graph; and go back to EK1.

The idea of finding edge-disjoint augmenting paths via (EK0)—(EK3) znkee extended
to the wireless setting, albeit with a modification. Specifically, after obtainingigmanting
path? in EK1, all other edges that conflict with any of the edges P must be deleted
from the residual graph obtained in EK3. This ensures that the augmeating found across
iterations do not conflict with each other. Since edges are only being einawny set of
non-conflicting augmenting paths is also a feasible solution to the wired case.

In a nutshell, while repeating EK1-EK3, constraints SC1-SC2 can beatesiby deleting
conflicting edges till no more augmenting paths can be found. The modifieddeiithm
however may not always find all the edge-disjoint augmenting paths e¢32, Lemma 26.2]
no longer applies. Intuitively, once an edge is deleted to obey SC1-S&& #dugmenting
paths that could contain it are not present in the output of the modified Eifithign. On the
other hand, the fact that EK1 explorsisortestaugmenting paths helps to reduce the number
of conflicting edges deleted.

Further modifications of the EK algorithm are needed for extension to theangtsmulti-
ple sinks; see Algorithm 4.1. In this case, the algorithm maintdihsopiesg, G, .. ., gm
of the graphg, one per sink. The modified EK algorithm is run gir except that conflicting
edges are deleted froall copies{g, El. The set of edge-disjoint augmenting paths for each
sink ¢ consist of edges with unit flow values §h. Theoverall flow on G can be obtained by
assigning unit flows to those edgegimwhich have unit flows on one of the graph copiks

The list of conflicting edges to be deleted depends on the interference osade Let,/,
(O,) denote the set of incoming (outgoing) edges to the nodée). For the Pl model, the set

of edges deleted at each inner iteration of Algorithm 4.1 is as follows.
(P1) For every receiver-subnodg(j) € P,

(@) delete edgéve(j),v'(j)); and
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Algorithm 4.1: Greedy augmenting path (GAP) algorithm

1 Initialization: Create copie$gt}‘t£|1 of the time-unwrapped gragh Initialize flow
values on all edges for each graghto zero. Set the number of edge-disjoint

augmenting pathg = 0.

2 repeat

3 fort=1,2,...,|T|do

4 Find the shortest augmenting — t* pathP® on the grap!g;.

5 Remove edges conflicting with edgesAf) from all graphsgy, . . ., Gy

6 end

7 Increment a unit valid flow and reverse the edges along the augmentireypéth
for each graply;. Incrementu by one.

8 until ans” — t¥ path can be found

(b) delete edge € I, if e ¢ PY).
(P2) For every transmitter-subnodgk) € P, delete all edges € I, ).

Edges are deleted in P1(a) and P2 to prevent violation of the half-duptestraint SC1; while
those deleted in P1(b) prevent violation of SC2(a).
The list of edges to be deleted in the Sl constraint SC2(b) is slightly moreséxten

(S1) For every receiver-subnodg(j) € P,

(a) delete edgév’(j),v'(4));
(b) delete edge € O.,, where(u,v"(j)) € £ andu ¢ P®); and

(c) delete edge € O,:(; where(v,u) € E.
(S2) For every transmitter-subnodd k) € P,

(a) delete all edgese I,-(1);

(b) delete all edges € O,,, wherew ¢ P® such thatw, ) € £ and(vt(k),u) € £

for some node: ande # (v'(k),u); and
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(c) delete edge € I,,-(), where(u,v) € E.

As with the Pl model, S1(a) and S2(a) take care of the half-duplex camstraHowever,
unlike the Pl model, correct reception at a nedender Sl is only ensured if all its neighboring
nodes are silent. The edges corresponding to these cases are list¢ol)jr5&(c), S2(b), and
S2(c). Note that Algorithm 4.1 can be extended to include more generdergece models
by appropriately modifying these steps.

It is worth stressing that only the original gragh and not the residual graph copies, are
used while determining the edges to be deleted. Thus, Algorithm 4.1 outpudsdesjgint
augmenting paths for each sink as argued. Likewise, Algorithm 4.1 doetiminate the pos-
sibility of choosing augmenting paths that delete a large number of edgesisélad shortest
augmenting paths however reduces this possibility. The next subsectioidgs further im-

provements by appropriately modifying the shortest-path finder employédgioyithm 4.1.

4.3.1 GAP Enhancements

The first part of this subsection describepipelinedapproach to multicast that reduces the
overhead caused due to AS1 [cf. Remark 4.1]. Pipelining alters AS1 hyiatiche source
to multicast more than one block of packets petime slots. The second part describes an
earliest-shortest path (ESP) algorithm, for use in Algorithm 4.1 which imgrthweughput by
reducing the number of deleted edges. In addition, the ESP algorithm suivielopment of

worst-case bounds for the performance of Algorithm 4.1.

Pipelined Multicast

As observed in Remark 4.1, AS1 results in an overhead by allowing onlplook of packets
per D time slots. This yields an overall throughputof D. The throughput can be improved
if consecutive blocks are allowed to overlap while ensuring that they timtevfere with each
other. This is effected through pipelining, which allows the source to begirstnitting the
next block of packets as soon as all its neighbors have finished transrtigicgrrent one.
The idea can be formalized using the notation from Section 4.2dléénote the length

of the shortest path between the souscand a sinkt € T in the graphG. Without loss of
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generality, let; be the sink that is nearest #pand letd; := d;, = min; d;. Since the source
begins transmitting at the first time slot, the sinks start receiving o tfg time slot at the
earliest. Similarly, the source stops sending at(the— d; + 1)-st time slot since all packets
must arrive by thé-th time slot. Depending on the interference model used, it is now possible
to calculate the exact time slot on which the source can start sending thel ok bf packets
without mixing it with the current block.

For PI networks, one-hop neighbors of the source are no longesmtitimg at the(D —
dy +3)-rd time slot. Thus, if the source transmits the next block of packets afthed; + 3)-
rd time slot, its one-hop neighbors can receive them without interfer@migis equivalent to
saying that the schedulé€s;, andG p_g4, 13 are conflict free. Similar deductions can be made
aboutG; andGp_g4, +4, and so on. Define the union operation for two conflict-free schedules
Gy, andGy, as

Gy, UGy, = (V, Ep U EgQ). 4.1

The overall pipelined network schedule can thus be expressed asdhense of graphs
Gi1,Ga, ..., Gp_4,+3 U G1,Gp_q,+4 U Ga,. ... Further, the asymptotic throughput, given
that Algorithm 4.1 returng edge-disjoint paths, becomgg(D — d; + 2).

The argument for S| networks is similar, except that the one-hop neigtifadhe source
can only receive whetheir next-hop neighbors stop transmitting. This happens at the-

d; + 4)-th time slot, which yields an effective throughputof(D — d; + 3).

In the analysis so far, it is assumed that in the worst case, the sourceanamit the last
packet to the sink; at the(D — d; + 1)-st time slot. However, all other sinks are farther than
di hops and the number of packets reaching every sink is the same. Treeeefoore efficient
choice of augmenting paths may make the source send its last packetg At-thé, + 1)-st
time slot wherel, = max; d;. This observation can be used to derive an upper bound on the
achievable throughput. Specifically, if the source were to transmit orkepper-time slot, it is
possible to transmit at mo&! — d, + 1 packets. If the augmenting paths are chosen carefully,
transmission of the next block of packets may start immediately at timelsletds + 2,
resulting in the maximum achievable throughput of 1. This is also the maximumvablee

throughput for any JS-NC scheme, including those which do not candalay constraints,
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since the source can only transmit at most one packet per-time slot.

The Earliest-Shortest Path (ESP) Algorithm

Recall that unlike the EK algorithm, it is possible to choose augmenting paths#lyatause
deletion of a large number of edges, thus yielding a small final valye ofhe choice of
shortest augmenting paths is therefore a justifiable heuristic since shattisrgre expected to
conflict with fewer edges. Another factor influencing the throughputrned by Algorithm 4.1
is the number of time slots for which each packet stays in the network. Intyjtargy packet
that is transmitted within the first few time slots should be received by the sinksasas
possible; or else, it may (unnecessarily) cause congestion to packeimitted later. One
way to ensure this is to always choose the shortest péthwhose ending time slot (i.e., the
time slot/ for which¢”(¢) € P) is the least among all shortest paths.

This strategy can be implemented by using Dijkstra’s algorithm to find the shpe#s
but with a simple modification. Recall that Dijkstra’s algorithm visits nodes stasting, and
maintains an upper bound on the minimum distance fgrto each node. This upper bound
is updated if a shorter distance is found, and the algorithm terminates whentiresgraph
has been visited. However, when all edges are of unit-length (as in ¢éisergrcase), if the
nodes are visited in a breadth-first manner (i.e., the algorithm first visitaelhop neighbors,
then two-hop neighbors, and so on), the algorithm can terminate as stlo® @astination is
encountered.

The modified algorithm does not terminate on reaching the destinétion the first time.
Instead, a new variabl8,,..x is initialized to store the time slot of the last visited receiver-
subnode of”. The next timet” is visited, the value ob,,.x is updated to the minimum of
Smax, and the time slot of the last-visited receiver-subnode. The algorithm teleainden all
nodes as far from the sourcetéhave been visited. The earliest-shortest path can be recovered
by backtracking along the receiver-subnode with time slot equal to tHeveihge of Sy,.x. In
other words, the ESP algorithm is similar to Dijkstra’s, except that the time sltiteofast
visited receiver-subnode is used to break ties while choosing the dhfmathsat the sink node.

The full ESP scheme is listed as Algorithm 4.2.
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Algorithm 4.2: Earliest-shortest path (ESP) algorithm

1 Initialize @ «+ {s"}

2 Initialize variablesiy,x « 0, dsv <+ 0, andd, < oo forallv € V \ {s”}

3 Initialize Spax < oo, ands, < time slot associated with node for all
veV\{s",T}

repeat

N

5 U < argmingeq dy
6 | Q<+ Q\{u}
7 Amax < dy

8 foreachnodev in set{v|(u,v) € £} do

9 if v =t then

10 Smax < min(Sy, Smax)
11 end

12 dy < min(d,, d, + 1)

13 Q< {Qu{v}}

14 end

15 until dpax = d

16 Backtrack path starting fromi (Syax) to s”.

Note that Algorithm 4.2 visits nodes in a breadth-first manner starting.at his is ac-
complished by maintaining a s€tof all nodes which have themselves been visited but whose
neighbors have not been visited. At each iteration, the neighbors afeaahasest to the source
is visited and the distance metrics are updated. Interestingly, Algorithm 4.RPecased to
claim certain approximation guarantees for the Pl model. This is established angluing

subsection.

4.3.2 Performance Bounds

Performance bounds are developed in this section for Algorithm 4.1 appliet networks.

The following theorem gives a bound on the achievable throughput.
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Theorem 4.1. The throughpup obtained through Algorithm 4.1 using the ESP and pipelining

enhancements can be bounded as follows:

LD—%Q-FQJ
- = < p<1. 4.2
D-di+2- "= (4.2)

As a corollary, it can be seen that Bs— oo, the bound reduces ty2 < p < 1. Next,

the proof of Theorem 4.1 is provided.

Proof. The upper bound has already been derived in Section 4.3.1. The girtiod lower
bound relies on the special structure of the time-unwrapped gfajin particular, notice that

the shortest” — t¥ path inG corresponds to the set of wireless nodes that lie on the shortest
s-t path inG. Thus, for each sink, there exist several shortest pathgjirach of which has

the following form

PO = (s, (02), 07 (02), 05(£2), v} (o),

SRR Uzri‘z—l(edtfl)v Uzciz—l(edt)v Ufit_1(€dt)7 tr(edt)a ty> (43)

wherel := ({1,0s,...,44,) andl < ¢; < ly < ... < {4 < D. The length of the shortest
s¥ — t¥ path is therefor@d; + 1. This is also the minimum length of the shortest augmenting
path on any residual graphs that arise in Algorithm 4.1. In other worddettgth of the short-
est augmenting path always increases as iterations of Algorithm 4.1 goush. a&Sbehavior

of increasing path-lengths is well known for the EK algorithm. It also hoki® fsince any
augmenting path found in Algorithm 4.1 is a feasible EK augmenting path.

For each sink € T, define the quickest-shortest (QS) path starting at time /skx
QW () := P (e), wherel = ((,¢+1,0+2,...,¢+d; — 1). Note that given any graph
g, such a path exists for every sinke T and every time slot < ¢ < D — d; + 1. Further,
starting at time slot, Q(*)(¢) is a shortest path that reaches the sinke 7 at the earliest
possible time slot + d; — 1. Thus, for a given sink € T Algorithm 4.2 will return the QS
pathQ® (¢) for some/, as long as such a path exists in the residual graph. Note that the QS
paths{Q® (¢)};cr do not conflict with each other, and thus form a shortest path tree (SPT)

Next, define a partial order on all shortest augmenting paths return&lgibsithm 4.2 with

starting time slot; and ending time slat,,. Specifically, given two augmenting patR§*) ()
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andP(®2)(5), ending at two, possibly different sinks andt,, defineP(1) (i) < P(t2)(5) if

and only ifi; < j; andig,, < jg,. The partial ordering can now be used to understand
Algorithm 4.2 better. For instance, if at some iteration in Algorithm 4.1, it is kntveh a path
Pl(t) exists in the residual graph, then Algorithm 4.2 will always return a Wé’fh < Pft) of
length less than or equal to the IengthR{f).

The following lemma states another useful aspect of the QS paths.

Lemma 4.1. If t, andt, be two (possibly different) sinks, afdienotes any time slot such that
the pathsQ(*=) (¢) and Q(*») (¢ + 2) exist on the graplg, then the pathQ(*) (¢ + 2) does not
conflict with any pathP < Q) (¢).

The proof of Lemma 4.1 is provided in Appendix 4.A. The result is interestitigarsense
that the entire SPT formed by QS paths starting at a given timé dim¢s not conflict with any
path in the SPT starting at time slot- 2. This observation can now be used to prove the main

result of Theorem 4.1 as follows.

(L1) Inthe firstiteration, the path@*) (1) for each sink € T exist and are therefore returned
by Algorithm 4.2. At the end of the first iteration, all edges that lie on any efpthths

Q(1) are reversed and assigned unit flow values.

(L2) At the second iteration, any ESP starts at or after the second time shile e paths
Q") (2) may not necessarily exist, Lemma 4.1 ensures that the QS Q&th8) still ex-
ist; that is, they are not deleted from the residual graph in the first iteradi®observed

earlier, an ESP returned at the second iteration is suctPvarx Q) (3).

(L3) Generically, thei-th iteration returns a pat®®) < Q®(2i + 1). Since the farthest
sink allows the source to transmit up to e — d» + 1)-th time slot, there are at least

{WJ iterations, and as many augmenting paths.

(L4) As observed earlier, transmission of the next block can begin at tohél3 — d; + 3).

L . —da+2)/2
This yields the asymptotic throughputéﬁ#ﬂ.
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Note that for the SI model, it is not possible to provide similar guarantees &3Shmths
for different sinkst € T starting at the same time sl@t(*)(¢) may conflict with each other.
Thus, the existence of the SPT itself is not guaranteed. However, tbé girdheorem 4.1
provides some justification for the ESP heuristic even when the algorithmlis@pppgeneric

interference models.

4.3.3 Distributed Implementation

Algorithm 4.1 readily lends itself to a distributed implementation. Assume that eaelessr
node is aware of its two-hop neighbors, the source and sink nodetyeagrhph parameters

andd; for eacht € T'. The following observations may then be used to distribute the algorithm.

(D1) Construction of the time-unwrapped graplonly involves creation of several subnodes
per node, which can be done locally, without requiring any communicatiomgrie

nodes.

(D2) The source must calculate the ESP for every iteration and every Biskributed and
asynchronous versions of Dijkstra’s algorithm are available [121pCBj and can be
readily adapted for Algorithm 4.2 here. A speed improvement can be otitaynaways

visiting the nodes with an earlier time slot first.

(D3) Finally, the source sends a packet along the shortest augmentmgf@and in D2,
informing the nodes of its choice. The participating nodes may then obtainditeaé¢
graph, update flow values along their edges, and delete conflicting bggdeforming

their neighbors.

Before ending this section, a few remarks are in order.

Remark 4.5. During the operation, each node in Algorithm 4.1 transmits and receives on
predetermined time slots with a fixed schedule. This allows most nodes to sleep$bd
of the time slots, except when operating or performing maintenance tasks.a3ject of

Algorithm 4.1 makes it attractive for sensor and ad hoc networks.

Remark 4.6. Most deterministic network code designs, such as those in [78], reswdtan r

tively small finite field sizes, typically)(|7'|). Randomized schemes such as the one in [73]
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only require a field size that is a prime power greater th#f|. This is in contrast with most
random network coding schemes that assume asymptotically large field wszesly 28 or
216), Smaller field sizes translate to lower overhead since the coding coefficisnusually

carried in the packet headers [27].

Remark 4.7. The distributed version of the algorithm works in a feed-forward waysT hei-

ther link-by-link nor end-to-end acknowledgments are required. SunghCGK-free operation
makes sense in networks with hard deadlines since nodes do not havertiedrémsmissions
anyway. This is appealing for video streaming applications, where fa®eafd operation is

commonly used; see e.g. [137].

4.4 Linear Programming Bounds

This section examines the maximizationiofrom an integer programming perspective. Sec-
tion 4.4.1 describes an integer programming formulation for Pl networks. Withiay be
impossible to efficiently solve the resultant integer program for large nksytine formula-
tion provides ways of obtaining upper bounds. For example, a lineararoging (LP) bound
is obtained in Section 4.4.1 by relaxing the integrality constraints in the integgrgmo Sec-

tion 4.4.2 further improves this bound by adding a clasgadifl inequalities

4.4.1 Integer Programming Formulation

Following the notation of Section 4.2, the problem of finding the maximum numbedgé-

disjoint paths from the sourc€ to each of the sink8” € 7, can be expressed as the following
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integer program:

p* = argmaxp (4.4a)
s. t. Z al) = Z z), teT,veg)\(s",1) (4.4b)
66[1) 6601;
> a2l =y, teT (4.4c)
[SON
> el =y, teT (4.4d)
ecly
Ze > a:(et), teT,ecé& (4.4e)
xt(et)v Ze € {07 1}7 te T, ec & (44f)

where variablescgt) andz. represent the virtual and real flows, respectively, on the edgé€
[97]. The flow variables are related to the flows defined in Section 4.3.virheal flow 2
corresponds to the flow values assigned to edges; pwhile the real flowz. corresponds to
the overall flow ong.

In the wireless setting, the scheduling constraints SC1-SC2(a) must atstilbd. For a

nodewv and time slot, these constraints can be represented by the inequality

Z Ze + Z(ve(k),vt(k)) <1 Yv € V, 1<k<D (4.4g)

e€L,r (1)
where the first summand in (4.4Q) represents the total flow on edges inctortimg receiver-
subnodev” (k), and the second term is the flow leaving the combiner/transmitter-subnode at
the same time slot. The inequality ensures that in a single timé: skitmost a single packet

is either received (from a single node) or transmitted (broadcast tibposuultiple nodes).

The LP bound for the problem (4.4a)—(4.49) can be obtained by rel&kidf with,
z®, 2, €[0,1]. (4.4h)

This bound can be further improved by adding “tightening” inequalities thratvalid only
for the original integer programming constraints. In other words, thegb imaqualities may
“cut-off” regions of the polyhedron defined by the linear inequality ¢ansts (4.4b)—(4.4€)
and (4.49)—(4.4h). Valid inequalities can also be used to exactly solve thlygiirpeogram

using methods such as branch-and-cut [167, Chap. 8], althoughdist-@ase complexity
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of these integer programming solvers is still not polynomial. The next stibedocuses on

developing a set of such valid inequalities.

4.4.2 A Class of Valid Inequalities

Before describing the valid inequalities, some simplifications and related notatiotro-
duced. First note that it is straightforward to eliminate the variabfeom the set of equa-
tions (4.4b)—(4.4d). Next, letv be then x 1 super-vector that contains all remaining opti-
mization variables{:cg), ze }. After eliminatingy, the constraints (4.4b)—(4.4e) and (4.4g) can
be generically denoted by the set of inequalittesr < b, where each equality constraint is
simply expressed as two opposing inequalities. The set of all feasible rirmgeggramming
solutions is then given byw € {0,1}"|Aw < b}, while the corresponding LP relaxation
lies in the polyhedron represented as the{setc [0, 1]"|Aw < b}. A set of inequalities

Cw < d is said to be valid if

{w € {0,1}"|Aw < b} ={w € {0,1}"|Aw < b,Cw < d} (4.5)
while

{w e [0,1]"|Aw < b} D {w € [0,1]"|Aw < b,Cw < d}. (4.6)

It is well known that the optimum solution of an LP always lies on an extreme pbthe
polyhedron defined by its linear inequalities [167, Chap. 2]. For an inf@ggram however,
its LP-relaxation polyhedron may not necessarily have integral extremé&spdhe optimum
solution of the LP may therefore be fractional, and its optimum value may lie dan the
optimum of the integer program. Valid inequalities can be used in such casetsdfi some
or all of the fractional extreme points of the LP relaxation polyhedron.

In principle, a finite number of “necessary” valid inequalities is sufficierdrisure that all
extreme points ofw € [0,1]"|Aw < b,Cw < d} are integral. A well-known method of
generating valid inequalities is the Chvatal-Gomory (CG) procedure, wlginlgenerate all
necessary valid inequalities in a finite number of steps [167, Chap. 8gnGiwsystem ofn

linear inequalitiesAw < b, and a vectog € [0,1)™, the CG procedure generates the valid
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Figure 4.3: An example of wireless network and its time-expanded version.

inequality (also called a CG-cut) denoted as
lg”A|w < [g"b] 4.7)

where| a| stands for the elementwise floor operation of the veator

The caveat however is that the CG-procedure generates an exjpdipdarge set of in-
equalities, which cannot be handled efficiently by any LP solver. Theinel@aof this section
describes a method to generate a smaller class of valid inequalities that dfinibetly sep-
arated and thus accommodated by LP solvers.

Figure 4.3 depicts a simple example network and its time-expanded gragh fer3,
with redundant nodes and edges removed. The solution obtained forethisrk using the
LP relaxation isz. = 2. = 1fore = (s¥,5%(1)), (s'(1),v"(1)), (v*(3),t"(3)), (¢t"(3), t*),
andx. = z. = 0.5 for all othere € £. This gives a total flow of 1.5 that also satisfies the
constraints (4.4g). The integral solution, on the other hand, achieW®a unit of end-to-
end flow, i.e., a single packet is transmitted freno v in the first time slot, and from to ¢ in

the second time slot.
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An observation that follows from this example is that in three time slots, only ankgp
goes “through™. Interestingly, this also holds for larger valuesiofand for any three, pos-
sibly non-contiguous, time slots. For instance there can be at most threstqagach either
transmitted or received by a node in three time skatsk, andks. However, there can be at
most one packet which is both transmittad received in these three time slots. In contrast,
the constraint (4.4q) allows 1.5 packets to be transmitted and received.

In order to enforce this condition, note that the flow passing through a nod time
slots k1, ko and ks, is given by the total flow through the edges@n:= {(ni,n2)|n1 €
{v"(k1),v"(k2)},n2 € {v°(k2),v°(k3)}}. Thus, an extra inequality can be introduced, limit-
ing the total flow on these edges to one. Note that for the case of multiple #ieksirtual
flow corresponding to each sink requires a separate inequality. Theaddze generalized to

any odd number of time slots as asserted by the following theorem.
Theorem 4.2. For the time slotd < &y, ko, ..., k¢ < D, and a nodey, define the set of edges,
C:= {(nl, n2)|n1 € {Ur(kl), 'UT(kQ), ... ,Ur(kgfl)},
ng € {v°(ka),v(ks),...,vke)}}. (4.8)

Then, the following is a valid inequality for alle T

Yl < H . (4.9)
ecC 2

Proof. The cuts can be generated by applyifig) %}-CG cuts to some of the constraints

in (4.4b)—(4.4e) and (4.49). Note that for any gtothe following holds

Dzt 2wt < 1

ee]vr(k)
[cf. (4.4¢e) ¢ (t)
=70 w g a 1
eEIvr(k)
[cf. (4.4D)] Z mﬁf) + Z xgt) <1 (4.10)
eeOerC) eelvcuc)
Adding up the last set of equations for sléts= k1, ko, . . ., k¢, we obtain

> dooal+ Y Y W< (4.11)

ke{ki,....,ke} eGOvr(k) ke{ki,...ke} e€lye (g
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Note that in (4.11), the termsg) for all e € C occur twice, while all other terms occur only

once. Thus, dividing (4.11) by 2 and rounding towards zero, weeat (4.9). Ol

The generated set of inequalities (4.9) is much smaller than the full set obsdilpe
valid inequalities, and is therefore not necessarily optimal. Further, everseh contains
exponentially many constraints. Interestingly however, the set admits aieeffseparation
oracle which identifies a possibly violated inequality given any feasible salofithe relaxed
LP problem. The solution to the entire LP can also be found efficiently usingltipsoid
method [148, Chap. 5], whose calls to the separation oracle can bedabpalynomially. For

the set of inequalities generated by (4.9), the following result holds.
Lemma 4.2. The worst-case complexity of the separation oracle(sD|T|).

Proof. Given a candidate solutio(wg),ze), the problem of verifying its feasibility can be
stated as follows:

For every node and sinkz,
(F1) Find the set of time slots,, . . ., k, such that a constraint in (4.9) is violated,; or,
(F2) Output that there is no such set.

It will be argued next that this problem is equivalent to finding a separatiacle for the
matchingproblem on a derived graph. Given a gragh = (U,, E,), associate variableg’
with each edge € FE,. Let(C, denote the set of edges connected to a nodd/,,. A matching
is a set of edges, such that no two edges of the set connect to the sdeneboivalently, a

matching is an assignment of binary values to variapfesuch that
d o<, ve € {0,1}. (4.12a)
GECu

Interestingly, it is possible to replace the integrality constraints in (4.12a) withls non-

negativity constraints, by adding the following set of valid inequalities

Z Yl < V‘;'J V sets of nodes. (4.12b)

{e=(u1,u2)|u1,u2€S}
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Although the number of valid inequalities in (4.12b) is also exponential, it iSiples® design
a separation oracle that returns the violated inequality(ifi/,|) [148, Chap. 25].

In the present case, for a nodeconstruct grapld, with nodes 1, 2, .., D, and connect
pairs of nodegi, j) for all i > j. The edg€i, j) in G, represents the edde” (i), v(j)) in
the original graptg. Similarly, set the variableg;; equal to the corresponding edge variables
fﬂﬁi)r@,vc(j))- A related set of constraints fof; can be derived based on (4.4g) and (4.9) as
follows.

(M1) All flow variables are positive, thus implying > 0 for all e = (4, j).

(M2) The set of edges connecting to a ndde {1, ..., D} in G, correspond to all the edges
e € Oyrky U L. Thus, (4.10) implies that

<t (4.13a)
ecCl
(M3) Since any set of time slot&k, ..., k,} corresponds to an equivalent set of nodes in
Gy, (4.9) translates to
v l
Z ve < |3 V1<¢<D. (4.13b)

{e=(ki k;)[1<i,j<t}

It can be seen that the constraints (4.13a)—(4.13b) resemble the matmhétigamts (4.12a)—
(4.12b). Thus, given a candidate solut'mﬁﬁ), an assignment to variablg$ can be calculated
for each nodev. Invoking the matching separation oracle then results in a possibly violated
inequality in terms of;?, which can finally be translated to a corresponding inequality in terms
of 2. Since the separation oracle runs in timeD) and must be invoked for every node and

every virtual flow, the total time complexity 8(nD|T|). O

4.5 Numerical Comparisons

This section presents simulations on the performance of Algorithm 4.1. Ropai@son, the
throughput obtained using a delay-agnostic, conflict-graph method [ff@iralong with the

bounds derived in Sections 4.3.2 and 4.4, are also plotted.
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Figure 4.4: Performance and bounds on a PI network.

Random networks are generated using the MAX-DPA algorithm outlined1@d][1The
algorithm generates graphs by placing nodes one-by-one, whilectegpeertain maximum-
degree and proximity constraints so as to simulate a realistic ad hoc netwaglalddrithm
parameters are chosen to de= 5, dn.x = 8, anddy = 0.2, which denote respectively the
average and maximum node degrees, and the minimum distance betweemrgighle nodes
are placed in a square area chosen such that the average nodeidemstyNext, the leftmost
node is chosen to be the source and all edges are chosen to be diveayeftoen the source.
Finally, all nodes without any outgoing edges are chosen to be sinks.

Figure 4.4 shows the performance of Algorithm 4.1 for small Pl networks.tfiroughput
is averaged over 2,000 different networks with 20 nodes each, andtiec¢pfor a range of
values of the deadlin®. The length of the bars equals half the standard deviation over the
network instances. Pipelining in Algorithm 4.1 is implemented such that the sdaesenot
necessarily wait till th¢ D —d; +3)-rd time slot, but may begin transmission earlier if possible.
For comparison, the lower bound stated in Theorem 4.1 and the LP uppeddare also
plotted. In the absence of any deadlines, it is possible to evaluate the maxichiguadole

throughput using one of the approximation algorithms outlined in [71]. Thbethline in
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D 15 | 20 | 25 | 30 | 35 | Random approach [71]
Network 1| 0.33| 0.36 | 0.37 | 0.38 | 0.38 0.50
Network 2| 0.20| 0.20 | 0.24 | 0.25| 0.27 0.39
Network 3| 0.25| 0.21| 0.29 | 0.30| 0.28 0.39

Table 4.1: Performance of Algorithm 4.1 on large networks

the figure shows this value, calculated using the random approach Joiv{ffil500 random
maximal-independent sets, assuming no erasures on links.

As expected, Algorithm 4.1 exhibits graceful degradation in performastieeedeadline is
reduced. Interestingly, the trend is also visible in the curves showing @pgelower bounds
on the throughput. Further, it can be seen that the bounds become tightes salue of
D increases, reaffirming their usefulness. Finally, note that the variatiparept from the
standard deviation bars is largely because of the variation among ranelworks. Thus,
the overlap between the bars for lower and upper bound doesean that the bounds are
incorrect for some network instances.

Next, the performance is analyzed on a large network with 100 nodeslamhSraints.
Three random networks are generated, and Algorithm 4.1 is run fareift values ofD.
While the lower and upper bounds do not apply to this case, the randomaappfrom [71]
is again used here as a benchmark. Note that for large networks, thenahfityperarcs, and
consequently the size of the resulting LP used in [71] becomes prohibliveards this end,
the interference model used in [71] is simplified by considering only bastdcansmissions,
i.e., each node either broadcasts its packets to all its receivers or staysHilis translates to
the simple rule, used in several MAC protocols: a node transmits only wheroitedw neigh-
borhood is silent. Further, only 200 maximal-independent sets are gediefable 4.1 lists the
throughput achieved for all three realizations. As with the Pl model, thegimuout-delay trade
off is again apparent here. In this case however, the differenceebatthe deadline-free case
and the GAP throughput with large is not as pronounced. Further, the quality of approxima-
tion in Algorithm 4.1 also depends on the topology of the network. Thus fmesoetworks,

such as Network 3 in Table 4.1, the throughput does not always decneanotonically with
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Figure 4.5: Degradation of throughput with packet erasures forrdiftevalues ofD.

Finally, the performance of the resulting network protocol is studied fderdit erasure
probabilities. Towards this end, a random network with 100 nodes is agteakrand Algo-
rithm 4.1 is run to obtain the network operation schedules. Next, the prassiotulated using
Monte-Carlo runs, assuming that the links fail independently with specifeesliee probabil-
ities. Figure 4.5 depicts the average throughput, given by the averagieenwf linear com-
binations received by the sinks, per time slot. It can be seen that the tpaiugerformance

degrades only gradually with erasures.

4.6 Conclusion

This chapter considered network-coded multicast with deadline constreBitge popular
generation-based approaches do not handle delay constraints, sclogdluling and network
coding approach is introduced to maximize the average throughput whileatésy the wire-

less constraints and packet-deadlines. The novel algorithm relies on artimrepped graph
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expansion in order to construct linear-periodic time-varying networlesodlThe approach
draws from the well-known augmenting-path algorithm, and is thereforedsthibuted and
scalable. For networks with primary interference constraints, the algowtsshown to have
a constant-factor bounded worst-case performance. The setupseamalyzed from an inte-
ger programming perspective, and a set of valid inequalities was dededmpeused to obtain

a linear programming based upper bound on the throughput.

4 A Proof of Lemma4.1

First, using contradiction, we show that pat§«)(¢) and Q(*)(¢ + 2) do not conflict. If
the two said paths indeed conflict, it would imply that there existe Q(*=)(¢) ande, €
Q") (¢ + 2) such that one of the following holds:

(C1) Edges, ande, violate the half-duplex constraint. This means that there exists a node
v € V and a time slo? < k < min(dy,,d,) such that either (a}, € Ly () and

€q € O’Ut(k:); or, (b)e, € Ivr(k) ande;, € O’Ut(k‘)'
(C2) There exists a nodec V' and time slot such thak, € I~y andey, € I, (1)-
(C3) The two edges are the same, ieg.= ep.

We begin by assuming that (C1-a) holds for some time &lahd nodev. Since node
v"(k + 1) lies on the QS pati®*=) (¢ + 2), it implies that a subnode in the wireless nade
can be reached ih — ¢ — 1 time slots if the path alon@ (<) (¢ + 2) is taken. Note however
thatv” (k) also lies onQ(®)(¢), which would imply that it must take at leakt— ¢ time slots
if a path alongQ®)(¢) is taken. Therefore, the path(*«) (¢) reaches node earlier than the
path Q(tb)(ﬁ) starting at the same slot. This is a contradiction since both paths were already
assumed to be QS paths. The intuition is that starting at time/&éotd/ + 2, the time slots at
which two QS paths reach a node differ by at least two.

The complementary case (C1-b) yields an even stronger contradictiomguiés that the
QS path starting at a later time slot reaches a node at an earlier one. Simimdyhén cases

C2 and C3 also follow from the aforementioned argument. Specifically, i»#m@ C3 imply
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that two QS paths, starting at different time slbend/ + 2, reach a node at the same time slot
k, which is not possible. It can be seen that the argument holds if thesatt{¢) is replaced
by a shortest pat® < Q(*«) (¢) since that would again imply a stronger contradiction.

Note that it is not possible to provide similar guarantees for the SI model, sintike the

PI model, two QS paths starting at the same time slot may conflict with each other.
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Chapter 5

Network-Compressive Coding for

Wireless Sensors Networks

A network-compressive transmission protocol is developed in whicleleted sensor obser-
vations belonging to a finite alphabet are linearly combined as they traversetivork on
their way to a sink node. Statistical dependencies are modeled using fesgptuisg The sum-
product algorithm is run under different modeling assumptions to estimate tkienoma a
posteriori set of observations given the compressed measuremerdgssatkimode. Error ex-
ponents are derived for cyclic and acyclic factor graphs using the mhethtypes, showing
that observations can be recovered with arbitrarily low probability ofrersdhe network size
grows. Simulated tests corroborate the theoretical claims.

This chapter is organized as follows. Section 5.1 describes the model,eatidrs5.2
describes the sum-product variants for cyclic and acyclic factor graflection 5.3 derives
the error exponents when exact MAP decoding is possible. Sectionveglgimulation results
with synthetic and real datasets for both cyclic and acyclic cases. Finatliip8 5.5 concludes

the chapter.
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5.1 System Model and Problem Formulation

Consider a sensor network with a set of nodésdeployed to observe an environmental phe-
nomenon. The environmental state, at the location of a senser\/, is represented by a
discrete random variabl®,,, taking values),, € Fq, wherelFg denotes the finite field of al-
phabet siz&). The state variables are assumed drawn from a known prior probability mas
function (pmf) p(0), where® stacks the variable§d,, }. Sensom € N does not directly
observed,,, but instead its noisy versian, € g, drawn independently from a known pmf
p(zn|0r). Next, theN := |N| sensor observations, henceforth denoted by\he 1 vectorx,

are communicated to a sink node (fusion centetblinear network coding is used to combine
entries inx as they traverse the network on their way to the sink, which receivesithe 1
vectory = Ax, where entries ofA are also drawn froni¥g and are known at the sink node.
Givenp(0), p(z,|0,), A, andy, the sink wishes to estimate

In order to motivate the system model, consider sensor networks deployeatking
applications, where the environmental state takes only two possible vatuessponding to
the presence or absence of a target. Moreover, since only a fearsengy detect the target at
a given instant, the state variables are clearly correlated among neasgoys€erl he observation
noise is also binary in this case, arising from false positives or falsdinegin the detectors
of the individual sensor nodes.

In environment-monitoring systems, while many natural phenomena are cargiatued,
one may be interested only in monitoring them coarsely. For instance in monitevielg of a
chemical contaminant or temperature, the quantity of interest may only bedhézpd value,
say in whole degrees centigrade. In this case, the environmental stdie nadeled again as
a discrete random variable, representing the quantized version of dlegeamplitude quan-
tity. Moreover, since continuous values at nearby sensor nodesmedated, their quantized
components will also be correlated. Finally, observations, which are thetigad and noisy
versions of the true analog-amplitude quantity, can be modeled as the nossynvef the

guantized values.
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Giveny at the sink node, tha posterioriprobability is given by

p(Bly) o< p(8,y) (5.1a)
= > p(0,x,y) (5.1b)
xEFg
= 3" plylxp(x/0)p(6) (5.1¢)
xng
N
= 3" py) [ p(aal0a)p(6) (5.1d)
xE[Fg n=1

where (5.1c) follows from the fact tha{t) andy are conditionally independent given Here
p(y|x) is simply the indicator functioly_a, and (5.1d) follows independence assumption
on the observation noise, which implipgx|0) = nglp(xnwn). The sink node wishes to

obtain the block maximum a posteriori (MAP) estimateothat is

0 = arg max p(0)y). (5.2)
6cFy

Alternatively, the sink seeks the a posteriori probability (APP) of gagmamely

pabnly) = D p(6ly) (5.3)
ong\an
where the notationd,, is used to indicate that the sum is carried oveGad Fg with fixed
0,,. From (5.3), the per-entry MAP estimate can be founé,as arg maxg, erg, Pn(0n|y)-

In general, finding (5.2) or (5.3) involves searching or summing overparentially large
space. Similar problems involving maximization (or marginalization) of a pmf ovésaete
domain are encountered in several areas, most notably in channdimgdmage processing,
and statistical physics [100]. To cope with this prohibitive complexity, fagtaph represen-
tations ofp(@|y) are often used to perform such maximization (or marginalization) at least
approximately. In the present chapter, the sum-product algorithm is eatptoyefficiently
evaluate the per-entry MAP. The sum-product algorithm has also bepoged for a related
problem considered in [101]. In general however, the performahoeessage-passing algo-

rithms may not necessarily be reliable, and the sum-product algorithm mayewtonverge.
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The focus here is therefore on identifying scenarios where the prioppffand the coding
matrix A have enough structure so as to guarantee convergence and asynygtotéadity.

Note that unlike traditional network coding schemes, mafixieed not be square since
the correlation ok and@ can be utilized to solve (5.2) or (5.3) even whegh< N. Clearly
in this case compression is achieved, with ratie- M /N. Before concluding this section, a

remark about the practical implementation aspects of the algorithm is due.

Remark 5.1. In low-cost sensor networks, MAC protocols (such as S-MAC [184Bn use
packetized transmissions instead of transmitting individual observationsackepmay ag-
gregate multiple observations collected over time, of the same or multiple physaraities.
Packetization is achieved in the proposed algorithm by assidgogndy bits per observation in
each packet. The entries of tematrix are chosen by the intermediate nodes, and the same
linear combination is used for all observations within a packet. These eatddlsen stored in
the packet headers, so that they can be used by the sink for decatliogtvsignificant over-
head; see e.qg. [27,76]. Finally, note that packets may be lost due to caoatimmerrors, and
this may result in the sink receiving fewer tha# linear combinations. The proposed algo-
rithm is still applicable for this case, since the matAix constructed from the received packet
headers, will only contain rows corresponding to the correctly redegiye Sensor failures can

also be handled similarly, by setting the entries of the corresponding colunarzeros.

5.2 Factor Graph Representation and Message-Passing Algorithm

The per-sensor posterior probabiliy(6,,|y) can be expressed as

palOnly) = DY > p(6,xly) (5.4)

N
0€F 5 \On XGFQ

x > Zp(yrxH (n|0n)p (5.5)

eng\en erFg n=1

=

Efficient evaluation of the summation in (5.5) may be possible if the multiplicanddean
further factored into several terms, each depending on only a subgatiables ind, x, and

y. Towards this end, the following modeling assumptions are made.
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(A1) The pmfp(@), describing the hidden random variables, can be factored as

J
1
p(®) =[] fe,(0c,) (5.6)
j=1
whereCy,...,C; C N are generally overlapping clusters (@mueg of nodes, and

7 = Zeepg [1; fc,;(8c;) ensuregp(@) sums up to one. The factog;; have local

domains¢; := {0i|k € C;}, and are referred to as factor potentials [15, Section 8.3].

(A2) The network coding protocol is designed so that egglis a linear combination of only

a subses,,, € N of the observations, i.e.,

i€Sm
where linear coefficients!,, ; € Fg are drawn randomly from a uniform distribution.
The other entriesd,,, ; = 0 for all j ¢ S,,, which renders the matriA sparse if

|Sm| < N for all m.

Assumption (A1) subsumes the case when each clagtes simply a pair of neighboring
nodes. Defining as the set of all pair&:, n’) of nodes where: andn’ are neighbors igV/,

the pmfp(@) for the pairwise case factorizes as

p@ = TI fuwl6n6w) 58)

(n,n")e€
whereZ is again the normalization constant. The choice of the sulsseta (A2) dictates the
communication protocol used and the cost incurred. In order to saveimdisidual sensors
do not route their observations to the sink directly. Instead, data fronodksins,, are
linearly combined intay,,, and then routed to the sink. This can be done efficiently by using a
collection tree spanning all nodes$h,, and rooted at a nodec S, that is closest to the sink.
Then, as explained in Appendix A, the collection procedure incurs|shly— 1 transmissions.
Let the hop-distance of node € N from the sink be denoted by,. Since the node it%,,
that is nearest to the sink is responsible for collectjpgfrom other nodes irb,,, the total
communication cost of this scheme is giveny, |Sy,| — 1 + mingeg,, hy. In comparison,

routing each observation without coding incurs a cost 9. \- i
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Figure 5.1: Factor graph representation of the posterior density in (5.9).

Using (A1)-(A2), it is possible to rewrite (5.5) as

N

J
peBely)oc D> prm|><s H (0]6n) H (5.9)

OFY\0 xeFy m=1

wherep(ym|xs,,) = 1if ym = ZieSm Ap,izi, and O otherwise. The overall factor graph
is depicted in Figure 5.1. The hollow circular nodes are the variable nadésgdenote the
observed and hidden variables. The square, factor nodes comcegpthe functions that appear
within the summation in (5.9), and represent the relationship between theatimgneariable
nodes. The variable nodes representjpgare shaded, because they are already known and
need not be inferred.

The factor graph in Figure 5.1 contains cycles or loops, which genenagepts one from
performing exact inference. Observe from Figure 5.1, that any gyblet may occur in the
factor graph may span: (a) only the séts or (b) only the sets5,,,; or (c) bothC; andS,,.

Of these, cycles due to (a) are unavoidable if the pr{é) already has cycles and is precisely
known. In principle, one could discard dependencies among some oéihlebaring nodes,
albeit at the expense of some model mismatch. The resulting modeling erroremiastified

if the performance of the sum-product algorithm improves such that bestamation error

decreases; see e.g., [162] and references therein. In practiesdmanly the topology of the



5.2 Factor Graph Representation and Message-Passing Algorithm 11

network is specified, and a model fpf6) must be postulated by choosing the clustgrs}
appropriately.

5.2.1 Cyclic Factor Graphs

If the specified topology does not admit an acyclic factor graph reptratsen, the sum-product
algorithm may still be used to find the marginal (5a@)proximately The loopy version of the
sum-product algorithm consists of two steps: (a) passing messageslireariable to all
factor nodes, and (b) passing messages from all factor nodes tbleaniades. Denoting the
variable node®,, andz,, by indicesr andn, and likewise the factor nod&s; and.S,, by j

andm, the expressions for messages take the following form.

tv—5(0n) = tin—v (6n) H 11— (On) (5.10a)
J#]
pisv(On) = Y fo,(0c,) T por—i(0n) (5.10b)
~{6n} n'#n
tv—n(Zn) = Z p(zn|0n) H:U«j’—w(en) (5.10c)
eneFQ jl
an]FQ m/
Mn—)m(xn) = Nl/—m(xn) H ,U/m’—m(xn) (5.10e)
m'#m
Mm—WL(wn) :Zp(ym’XSm) H ﬂn’ﬁm(l'n’)- (51Of)
~{zn} n'#n

Here the summations in (5.10b) and (5.10f) are over the vector doflains ng‘ \ 6, and
Xg,, € IE"C‘;’”‘ \ x,, respectively. The messages_.;(6,) andu;_,,(6,) are those exchanged
betweenC; and6,,, and messages, . (r,) and j,—n,(z,) are those exchanged between
Sm andz,. For simplicity, the messages betweep 6,, andp(x,|0,) are compacted into
messagesg,—.(6,) andu, . (x,) (the messages to and from factp(s:, |0,,) are bypassed).
The algorithm starts by setting,,—,,(z,) = pv—;(0n) = 1 (forall 1 < m < M,
1 <v <N,1 <5 < J, andz,, 0, € Fg), and runs for several iterations. At each
iteration, the first step consists of evaluating (5.10b) followed by (5.Ha),(5.10f) followed
by (5.10d), while the second step consists of evaluating (5.10a) ande}5.I8e algorithm
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is terminated either upon convergence, or after a fixed number of iteramhyields the
approximate marginal distribution(6,,y) o fin—y(0n) [ 1£5—(0n). The complexity of
this algorithm is exponential in the number of nodeginand.S,, (denoted respectively by

;| and|S,,|), because (5.10b) and (5.10 it an I~ summands respectively.
Cj| and|S,,|), b ( b) and ( f) hape’i|—1 andQ!%m1—1 d ivel

However, the number of summations and multiplications in (5.10a)—(5.10f)reehat each
iteration are only linear inv.

With loopy factor graphs, the sum-product algorithm does not—in genguadvide any
guarantees on the quality of the approximation. Related results from thegclitirature
suggest that short cycles typically result in poor approximations [109tles of length four
may occur for instance if two sefs andSs (or clustersC, andC5) overlap in two or more
nodes. Four-cycles between the clust€rscan be avoided by using a pairwise factorization
for p(@) as in (5.8). An approximate algorithm to choose the $éts} so as to minimize
the communication cost and allow no cycles among themselves is provided imdipfeA.
However, cycles of length eight may still occur as clugierand a setS,, may share two
or more nodes. The next subsection describes a scheme that allows toyblke completely

eliminated from the factor graph.

5.2.2 Acyclic Factor Graphs

As discussed earlier, for acyclic factor graphs, the sum-productidigois guaranteed to
converge in a finite number of iterations, and finds the exact per-entyimaésp(x,,|y) [15].
Further, some network topologies may be well-suited to an acyclic factorizaftipf®@). For
instance, the graph of a chain of sensfts2,3,..., N} admits a cycle-free factor graph
representation with clusters of the foth = {1, 2,3}, Cy = {3,4,5}, and so on.

Once the cluster§’; can be chosen to avoid cycles within themselves, other cycles can be
eliminated as follows. First, let/ = J, and setS; = C; forall 1 < j < M. Next, observe
that the factor graph can be “folded” along the factor nogles,|0,,) [cf. Fig. 5.1]. More

precisely, it is always possible to combine the two variablgsnd,, into a single variable
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Figure 5.2: Acyclic factor graph for Section 5.2.2.

Wy € Fé and express the marginal pmf as

pOaly) o ngn thCm (5.11)

xe]FN n/=1
GE]F \Gn

wherewc,, = {w;|i € Cp}, g(wy) = p(zy|0,), andh(we,,) = p(ym|xc,,) fe,.(0c,,)-
The resulting factor graph is now acyclic, and an example is shown in Fig. 5.2

The sum-product algorithm is also simpler to describe in this case, and isvoagsing
messages., . (wy,) from variable node: to factor noden, and i, (w,) from the factor

nodem to variable node:. These messages take the form

m/#m
pmn(wn) = Y h(we,) [T swsm(wn). (5.12b)
{w; GIFQQUGCm\n} n'#n

The algorithm starts by setting, ., (w,) = 1 (forall1 <m < M,1 <n < N, andw,, €
Fé), runs until convergence, and yields the approximate marginal distribption|y) o
g(wy) I1,,, tm—n(wy). The variables:,, and§,, may then be recovered by maximizing the

individual marginals as described earlier. Before concluding the seeti@mark is due

Remark 5.2. Itis also possible for each,, to sendL(m) > 1 linear combinations to the sink.
The availability of more thar) | L(m) > M linear combinations at the sink can provide a
better MAP estimate, though at the cost of higher communication requirem@nt 6f,,| —

1+ L(m) mingeg,, hi. Furtherin the factor graph, only the expressionfay,,|xs,, ) changes,

while the structure of (5.9), and consequently the complexity of the sumipradgorithm
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remains the same. Varying the valuesigfn) across clusters thus provides a low-complexity

method of exploring the cost-performance tradeoff.

5.3 Error Exponents

In this section, bounds on the probability of error are evaluated for thek AP estima-
tor (5.2). For simplicity, bounds are first derived in Section 5.3.1 for toeofagraph repre-
sentation of 5.2.2 in which the resulting factor graph is acyclic and thus g¢agiandle. The
bounds in Section 5.3.2 on the other hand, require a pairwise correlatiogl,rbatare valid
even if the resulting factor graph is cyclic. Both subsections assume thalb$leevation noise

is zero, i.e.p(x|6) = 1,—¢.

5.3.1 Acyclic Factor Graphs with General Correlation Model

As discussed in Section 5.2.2, nodes are divided into overlapping clysters)_,. Cor-
related observations of each cluster are sent to the sink after beingylinearbined into a
single symbol irfg. The clusters are constructed in such a way that the resulting factdr grap
is acyclic.

The sink node can tolerate a limited amount of distortion in the reconstric(ed 6).
Define the cluster-Hamming distortion metiig; (x, x’) between two vectorg andx’ as the
fraction of clusters over which the two vectors differ, i.e.,

{mlxc,, #xc,,}

DH(val) - M

(5.13)

The probability of errotP. is the average probability that the distortion between the observed

vectorx and the decoded vectgéris greater than a tolerable levéli.e.,
P.= Y Pr(Dy(%,x) > dx)p(x). (5.14)
XEFg

The conditional error probability PDy (x,x) > d|x) can be bounded as shown in the follow-

ing lemma; see Appendix 5.B for the proof.
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Lemma 5.1. The conditional probability that the distortio® (x,x) exceeds a tolerable
thresholdd, can be bounded as
Pr(Dg(%,x) > d|x) < > Q™M (5.15)
zng,DH(z,x)zd

p(z)>p(x)
The intuition behind Lemma 5.1 comes from the observation that if two vegtairsd z

differ over a single cluster, the probability that a randdmsatisfiesAx = Az is exactly
1/@Q. Thus, when the two vectors differ ovéi! clusters (corresponding to a distortid)) A
satisfiesAx = Az with probability Q=M.

Interestingly, it is possible to obtain a compact form of the bound in (5.1%niix)
has an acyclic factor graph representation. Define the cluster giaph (Vc,Ec) as the
undirected graph formed by the set/af nodesV¢, representing the clustef€,,,}2._,, and
the set of edgeSc, connecting pairs of overlapping clusters. For the p(xf) to be an acyclic
factor graph, it is necessary that the cluster graph is also acyclicudragently tree-shaped.
In this case, it is always possible to facigx) in terms of the individual and pairwise cluster

pmfs as follows [163]

p(X) _ H Dm (Xm) H pm,m’ (Xm, Xm’) (516)

meVe (m,m/)e€c pm(xm)pm/ (Xm/)

where noden represents Clustér,,, x,,, represents seic,, , andp,, (x,,) andp,, m/ (Xm, Xp)
represent, respectively, the joint pmfs owef,, andxc,,uc, . Supposing identical clusters,
the subscriptsn andm’ can be removed from the pmfs. Singg is a tree, it is possible to
choose any cluster; as its root, reorder pairsn, m') appropriately, and express (5.16) as

px)=px1) J[ pEmlxm): (5.17)

(mum/)egc

Because of the Markov property, the variabigs depend on the variables,,, only through
the variables common to bott,,, and C,,/, i.e., p(Xm|Xm/) = p(xm|%Xc,.nc,,). Further,
as discussed in Section 5.2.1, for the factor graph to be acyclic, two dusieroverlap
in at most one variable, meaning thigt,, N C,/| = 1. With z; € C}, andp(x;) =

p(z1)p(xcp\(13]71), (5.17) can be rearranged as

p(x) =p(x1) [ pxcmjm o)) (5.18)

meVo
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wherej,, is some node in the sét,,.
With these assumptions, it is possible to manipujgte) using the method of types [37],
as detailed next. If each cluster has exadtlynodes, the pmp(xc,, .\ j,,|7;,,) takes at most

Q¥ values, also referred to as types. Defining := p(xc

' \jm — ’i‘l’jm = q), andﬁq,i =

H{m € Velxe,\jn = % 2j,, = q}l, the prior pmfin (5.18) can be expressed as

Q
p(x) = 22 IT 1] v (5.19)

q=14€1,
where the sef, := {i|p,; # 0}, and|Z,| < Q. Pmfp(x) now depends os through its type
{€,i(x)}.i, compactly denoted by th@* 1 x @ type matrixL(x), with entries

lgi(X) pgi#0

) (5.20)
0 otherwise

[L(x)]q,i :=
Conversely, given a type matrix, define7 (A) := {x|L(x) = A} as the set of vectors
that have the same type. In order to state the next result, a few definitemeaded. Let
pq be the pmf induced by, ; for fixed ¢, andy,(x) be the pmf induced by, ;(x)/{,(x),
where/,(x) = >, 4,i(x). Also defineH (y4(x)) as the entropy of the pmp,(x), and
D(pq(x)||pq) as the Kullback-Leibler (KL) divergence between pmfgx) andp, [35]. Then

the following lemma holds; see Appendix 5.B for the proof.

Lemma 5.2. The pmfp(x) in (5.18)can be written as

p(x) = éQ—M<HL<x>+DL<x>,p> (5.21)

where Hy, i = 29 “09 H (py(x)) and D, = 2% 1 “%) D(p,(x)|p,) are the av-

erage entropy and divergence operators.

Let £ denote the set of all possible types. Then, summing over all possible vdlsds

equivalent to summing over all typés € £, and summing over all vectosse A [37]. Using
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Lemma 5.2 in (5.14), it can be seen that

1
P, = g S Y Pya2 MUEATDAL) (5.22a)
AeLxeT(A)
1
= = > PAlT(A)[27MHATDAL) (5.22b)
Q AeL
1 _
< g > Pya2 P (5.22¢)
AeL
1
< a(M +1)9" P a2 MPar (5.22d)

whereP, |z :=Pr(Dy(%,x) > d|x € T(A)); the inequality in (5.22c) makes use of the bound
IT(A)| < Q2MHa (see Appendix 5.B); and (5.22d) considers the fact that the total nushber
types can be bounded B8 < (M + 1)@,

The bound in (5.22d) thus depends on whether otl»wy, is zero. Indeed, ifA], ; = pq:
for all ¢ ands, it holds thatDx , = 0. Such a type will be henceforth denotedAs§ and any
x € T(A*) will be referred to asypical It can be seen that except for typical vectersP,
goes to zero a3/ increases because the first term in (5.22d) grows only polynomially .in

The following proposition summarizes this result.

Proposition 5.1. For large M, the error probability P, in (5.22d)goes to zero for non-typical
x,i.€.,x ¢ T(A"), and goes ta5 (M + 1)9" P, 5- for typicalx, i.e.x € T(A").

In other words, the exponent of the conditional probabilfty, - for the typicalx dom-
inates the overall error probability. In order to derive boundsfpi -, note again that the
summation in Lemma 5.1 (over) can be expressed as summation over tyges £ and

vectors in each type € 7(2), yielding

Pi(Dy(%,x) >dlx e T(A") < > > QM (5.23)
QL zeT(Q)
p(z)>p(x)

Given thatx € 7 (A*), the conditiornp(z) > p(x) can simply be expressed &, + Dgq , <
Hp+ + Dp+, = Hp~. Replacing the summation overe 7(€2) by the bound7 ()| <



5.3 Error Exponents 118

Q2MHa [cf. (5.22b) and (5.22¢)] it follows that

Pr(Dy(%,%x) > djx € T(A*)) < Q? S g M@eQ-tia)
QeLl
HQ+DQ"D§HA*

QeLl

< Q|L]2~M(dlog @—Hax) (5.24)

As observed earlier, sindé&| is only polynomial inM, so that the overalP. is dominated
only by the exponential term. Finally, the conditional probability is always tless or equal
to one, so the exponent should always be negative. The followinggitign summarizes the

result.

Proposition 5.2. For sufficiently largeM, the error exponent of the probability of errét, is
bounded as? > [dlog Q — Ha-]", where[A*],; = p,; foralli € Z,,1 < ¢ < Q.

It can thus be observed that larger valueoield smaller probabilities of error. In-
tuitively, log @ is the number of observed bits at each sengbsg () is the number of bits
per-sensor that need to be reconstructed correctly at the sinkl/lgadepresents the total
number of (uncorrelated) information bits observed by the sensor newgoa whole. If the
entropyH 5+ is small, it means that sensor observations are highly correlated. Thierafuw
instance, when the transition probability; is close to 1 if all entries of are equal tg. In this

case, a smallap can also be used to recover information with smaller allowable distortion.

5.3.2 Cyclic Factor Graphs with Pairwise Correlation Model

This subsection derives bounds on the probability of error for cycplgs assuming the pair-
wise correlation model in (5.8). Define the graph= (N, £) with the set of noded/ repre-
senting the sensors, and the ed§asonnecting neighboring nodes. In this case, the pm{ of
can be expressed as a product of factors along a spanningtraad the rest of the edgés
[cf. (5.16)]

p0) = o [Ipoe) [ Zoelfefud T Pral@ufu) g o)

wayeer PP EIPu(@0) e Po(@)pu(Tu)
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o pv,w(x'u;xw) _ c H c H
whereW := 37 TL, po(@o) [(v.w)ee p.tipoasy @NAE = Er U Ep, With Er N ép = P is
the set of all edges representing the graphical model. Notice tHat# () then'W = 1 and
the model in (5.25) boils down to the one in (5.16). Assuming identical jointgitiies so
thatp(zy, w) = Pow(@w, ), and uniform prior probabilitieg, (z,) = 1/Q, p(x) can be

compactly written in terms of conditional edge transition probabilities

p(x):E H p(@y|T0w) H p(@y|T0w) (5.26)

(vw)€er (vw)e€r
where nowZ := [], ,yee P(@o|2w) [ 1y w)esy P(@v|2zw) replacesV in (5.25). Note that in
this modelp(x1) is not explicitly shown since the normalization const&ris needed anyway.
The types can now be defined as th&values the conditional pmf(z,|z,,) takes. Defining

pq,i andl, ;(x) in a similar manner as in Section 5.3.1, it holds that
lgi(x) = Zgi(x) + Z(ii(x) (5.27)

whereégi (x) counts the number of transitions @f, 7)-th type for edges i@, Whereaﬂzi(x)
counts the transitions for edges . Proceeding as in Lemma 5.2(x) in (5.26) can be
written as

p(x) = %2*|5T|(HLT<x)+DLT(x),p)2*\€T|(H1:T(x)+D1:T(x),p) (5.28)

where Hy, .(x), DL, (x)p Hip(x) @nd Dy, (), are defined as in Lemma 5.2, normalizing
counts ovet&r| and|E7|. Using this representation fp(x), the next proposition connects the
conditional error probability of cyclic graphs with respect to acyclic oseg Appendix 5.B

for the proof.

Proposition 5.3. For large |£7|, the error probability P, in (5.22d)with the prior p(x) as
in (5.28)goes to zero for non-typica, i.e., x ¢ 7 (A7), and goes taP5: for the typical
x € T(A}).

The consequence of this proposition is that the error probability of cytk¢is governed
by the error probability of any underlying tree. In fact, it will next be whathat for anyx
(typical or not) the conditional error probability with acycfi¢x) can be bounded by the same

bound benchmarking the performance of any underlying tree in the giidq is possible by
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appropriately bounding the conditional error probability P (x, x) > d|x) as shown next

PH(Dy(%,%) > d|x) < Y > Q-
Qrel zeT (1)
HQT‘FDQT,PSHA} HQT+DQT,p§H[\T+D[\T,P
< > |T(92r)| Q™™ (5.29)
Qrel

Hap+Dapp<Haz,

where the first inequality holds because the constiain} > p(x), which as per (5.28) is
equivalent tq5T|(HQT + DQT@) + ‘gT’(HQT + DQ%p) < |€T|HA*T + |€T|(HAT + DAT,p)’
can be split into two constraints, one for the tree-tyf2e¢sand A’ and another for the non-tree

typesQr andA 7. Using again the bound (27)| < Q2érHar (5.29) can be bounded as

Pr(Dy (%,%) > d|x) < Q > g [erllos @=Har) (5.30)

Qrel
H, D, <Hpx
QptPappSHaz

coincides with the bound obtained for acyclic graphs [cf. (5.24)]. @neark is now in order.

Remark 5.3. Although error probability bounds are identical for cyclic and acycliesathis
holds true only for the exact MAP estimation. As the sum-product algorithplieapto a
cyclic factor graphs yields approximate probabilities, its performance mayobse than that

of acyclic graphs.

Remark 5.4. The error probability bounds derived in this section provide a usefnhitative
description of the interplay between different parameters in a sensoomketitowever, care
should be taken when applying them to a real sensor network, especitilyegards to the

following assumptions.

1. The bounds derived here are tight onlyif is sufficiently large. Their applicability for

predicting the performance of small or moderate-sized networks is thel@foted.

2. The present analysis ignores modeling error, which is otherwise a majm in dis-
tributed compression implementations. For example, a simple correlation model, suc

as the one postulated in (5.6) may not be sufficient for a large network.
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5.4 Simulations

5.4.1 Sum-Product on Acyclic Factor Graphs

In order to test the performance of the MAP estimator, the network-cosipreprotocol for
acyclic factor graphs, developed in Section 5.2.2, was tested on twoetiffexpologies. First
in order to test the error exponents derived in Section 5.3.1, considepiesensor network
consisting of a chain graph of the fori,2,3,4,..., N}. SetsC; andS,, are both chosen
to be of the form{1, 2,3}, {3,4,5}, {5,6,7} ..., and the factor graph of Figure 5.2 is used.
Given the value of) (=4 in this case), sensors observe random integers between @,and
which are then mapped to tlig¢ elements offg. The integer label of an elementc F, is
henceforth denoted b¥(x), and likewise for a vectok. Observation errors are ignored for

simplicity, and the sensor observations within each cluster are assumed votfodi@mf

p(x0;) o< exp(= (I (Tjna) = (L)) (5.31)

Wherejmax = argmaxiec; () andjmin 1= arg mingec; I(xy). Clearly this pmf encour-
ages observations within a cluster to be close to each other. Since theztatorof p(x)
includes no cycles, vectotscan be sampled in a sequential manner; see e.g., [15, Chap. 8].

Figure 5.3 plots error probability. [cf. (5.14)] as a function of the tolerable distortion
level d for « = 3 and different values of\/. According to the error exponent derived in
Proposition 2,P, — 0 for M — oo, for all values ofd > H-/log, Q. Observe that the
derived bound is loose, a8 becomes very small even for valuesdbelow H - /log, Q
(depicted by the vertical line) and fad > 50. Nevertheless, the exponent is a good indicator
of the distortion at which lowP, can be obtained at a moderate valuelof

In the context of sensor networks, it is also interesting to quantify/ghend ¢;-norm
of the estimation error. In particulagy := HI(G) - I(@)HO/N represents the fraction of
entries that are decoded incorrectly, and is upper boundeB® {0, 0y) M K/N [cf. Sec-
tion 5.3.1]. The per-entry difference between the observed and ddogettors, given by
ep = HI(G) - I(@)H1 /N is also important since the sensor observations are derived from
continuous valued data, and errors with small magnitudes may be tolerailardBothis end,

consider the topology depicted in Figure 5.4 where the clusters used to paiti€csensor
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Figure 5.3: Probability of error when a distortidincan be tolerated at the sink, for different
values ofM, anda = 3. The vertical line shows the distortion above whigh— 0 whenever

M — oco.

nodes are also shown. Figure 5.5 shows the two measures of estimatioagairsty, which
signifies the level of intra-cluster correlation, f@r = 16. As expected, both error norms
decrease as increases. Interestingly, thg error is close to the, error, suggesting that all
decoding errors have small magnitudes. Note that @itk 16, the per-entry erro¢; ~ 0.1 is
equivalent to having each entry 8fincur an error of about 0.63.

Next, the impact of varying communication cost [cf. Section 5.2.2] on theopednce
of the proposed algorithm is studied. This is achieved by varying the vafub&n), which
changes both the communication cost as well as the compression ratio. Figwieows this
compression-performance trade-off f@Qr = 16, anda = 2. The communication cost is
expressed as the percentage of the cost incurred when sendingeilatons through the
shortest path tree. Such graphs can be used by the network desigficiemtly find the

communication cost incurred for different levels of tolerable estimatiomrro
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Figure 5.4: Sensors within the dotted circles are assumed correlated, wits denoting
communication links. All nodes within each cluster collect data at one of thesy@shd send

it to the sink through the shortest path.

5.4.2 Performance Evaluation with the Sensorscope Dataset

The proposed network-compressive scheme is tested on the datakdilaveom the Sen-
sorscope LUCE Project [147]. The LUCE deployment consists of sosaretwork, shown in
Figure 5.8, over a university campus measuring environmental quantitbssuemperature,
humidity, wind speed, etc. Only a part of the deployed network is consldeee, as not all
sensors were active at all times.

Temperature readings are quantized and mapped to integers betweey Lattithen to

elements off' to form the vecto®. The pmfp(z,|6,,) modeling the observation error is

0.01 I(xy)=1(60,)£1,1(6,) #1,Q
p(znltn) =90.02  I(z,) =2,1(0,)=10r1(z,)=Q—1,16,)=Q  (5.32)
0.98 I(z,) = 1(6,)
which roughly translates to a probability of error @f)1, except when the sensor observes

extreme values. The network is modeled using the factor graph of Figurevihilhidden

variables following the pairwise correlation model (5.8). The factorslaosen ag (0, 0;) :=
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Figure 5.5: Estimation error for different levels of cluster correlatioriuatad for@Q = 16.
For each clusterg.x = maxgec; I(xg) and xpin, = mingec; I(x), and the joint pmf

p(ecj ) XX e_a(ﬁmax—xmin) ]

exp(—2|1(0x) — 1(6,)]) for all the edges.

For this model, not all neighbors can be included in the edgé€ set it leads to a large
number of short cycles in the corresponding factor graph; see e4.,Ti@ avoid this situation,
the k-nearest neighbok(NNG) graph is used. Cycles in the graph are minimized for smaller
values ofk, so the smallest possiblethat yields a connecteeNNG is employed.

The sum-product algorithm as described in Section 5.2 is used. Towdsdmth the sets
Sy, are chosen using the algorithm in Appendix 5.A, with at most three nodeslysser.
Node 1 is assumed to be the sink, and all sgisthat contain node 1 send their data as
is to node 1. Figure 5.8 shows the estimation error (as described in Sectigh &ginst
the communication cost. The different levels of communication costs arise ditfenent
number of linear combinations sent by the clusters. As expected, even égdlecase, the
estimation error goes down as the communication cost is allowed to increasevétpthe
estimation error is higher here compared to that in the synthetic data, be¢au#ee sum-

product algorithm does not always converge, or converges torgatagstimates; and (Ip)0)
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Figure 5.6: Estimation error for different levels of compression, plottexdnag the commu-
nication cost. As communication cost increases, more linear combination® canbto the

sink per cluster, yielding higher compression ratios but lower estimatiorserro

andp(x|@) are no longer the true probabilities representative of the real data.rtNeless,
with 75% communication cost, while about %bentries are incorrectly estimated, the per-

entry error is only about 1.25".

5.5 Conclusions

A network-compressive coding scheme for sensor networks wasogek Probabilistic rela-
tionships among sensor observations were exploited to formulate the MAP tstim@blem

within the Bayesian inference framework. The sum-product algorithntlveasutilized to per-
form (approximate) low-complexity decoding, with reduced communicationheasl. Error
exponents and simulation results were provided to delineate, quantify, stnitheéeinterplay

between the estimation error, tolerable distortion, alphabet size, and conatiomicost.

1At Q = 16, the errore; ~ 0.2 is equivalent to a per-entry error of about 125
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Figure 5.7: Sensor network used for the simulations. Node IDs comdsjamothose in the

Sensorscope dataset.

5.A Choosing the SetqS,,} and {C;}

Consider first choosing the s€ltS,,, } such that the factor sub-graph formed by them is cycle-
free, and the total communication cost [cf. Section 5.2] is minimized. Givendhemuni-
cation graph of the sensor network, the problem is combinatorial, and ardpproximate
algorithm is provided here. To ensure that the sum-product algorithm efficiently, it is
assumed that < |S|,, < K.

Note first that the observations from all nodesSiy are collected at a nodec S,,, and
then sent to the sink. This collection procedure requires all ndédessS,,, \ {i} to at least
transmit once, and thus incur a total cost of at I¢é8st — 1. If the subgraph formed by nodes
in Sy, is connected, it can be shown that the collection cosiSgf| — 1 is also achievable.
Consider the collection tree rooted at nadand connected to other nodesSy,. As shown
in Figure, each node requires only one transmission. Specifically, theddat transmit their

observations uncoded, while the intermediate nodes transmit the linear cdiobfoamed by
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Figure 5.8: Estimation error vs. the communication cost. More communication athmnes

linear combinations to be sent to the sink per cluster, yielding lower estimatiors err

their own observation and the received symbol. Therefore, gives),stiat forms a connected
subgraph, a graph traversal algorithm (such as breadth-firsipbin-fiest search) can be used
to find a collection tree that is rooted at the node closest to the sink.

Having recognized that the subgraph formed by nodes in 8acimust be connected, the
following algorithm adds a new,, per iteration, while maintaining the acyclic nature of the

factor sub-grapt#’ formed by{S,,}.

1. LetR be the set of nodes that have already been added, and initRilize (). Also

initialize factor graph/’ with variables nodes/.
2. Unlessk = N, repeat

(a) chooses,,, as any connected subgraph with at m@shodes, of which one is from

R and others fromiV' \ R; and
(b) add the chosen factor nodefip and updat&k <+ R U S,,.
Clearly, the key step here is (2a), where the choserbgegnsures that the resulting factor

graph is acyclic. This is because at any iteration, for the added factier todorm a cycle, it

must connect at least two nodesf However the added set always contains only one node
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R and all others from\ \ R. Define N (i) as the set of neighboring nodes of nade.e.,
N(i) ={j: (i,4) € £}. In order to construct the connected subgraph of step (2a), itesiffic
to start at any node inthe sgt : k € |J,.x N(i),k ¢ R} and traverse the subgraph\ R
for K — 1 steps. Overall, at mosY possible graph-traversals may be required at each iteration,
so the overall algorithm runs in tim@(N M).

The clusterg’; can also be constructed in a similar fashion, except that the rigdedded

in step (2a) should be of the forfiii, C},),i € R,C;, € N(#) YN\ R)}.

5.B Proofs Required for Section 5.3

Proof of Lemma 5.1

Givenx, the estimatex depends on the mixing matriX, whose non-zero entries are chosen
in an i.i.d. manner fronffg. The conditional probability of error can therefore be bounded as

follows,

PH(Du(%,x) > d|x) < Pr(A € {A : 3z, Dy(z,x) > d, Ax = Az, p(z) > p(x)}| x)

(5.33a)
= Pr(A e U {A: Ax = Az}| x) (5.33b)
zng,DH(z,x)Zd
p(2)>p(x)
< > Pr(A € {A: Ax = Az}| x) (5.33c)
zE]Fg,DH(z,x)Zd
p(z)>p(x)

M
< Z H Pr(a], € {al, : al x = al z}| x) (5.33d)
zng,DH(z,X)Edmzl
p(z)>p(x)

The first inequality arises since the set in right hand side of (5.33a) alsusthe casp(z) =
p(x) (with Dy (z,x) > d) as an error. Such a situation may aris& ifs not unique. The
inequality in (5.33c) is the union bound, while (5.33d) follows from the faat the rows ofA

(denoted bya’)) are independent.
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Next recall that fora,, only the entries corresponding to the node€jp are non-zero,

and are chosen i.i.d. frofiig. Thus, given two vectors andz, it holds that [47],

1 if x¢,, =2zc,,
Prial € {al :al x =al z}|x) = 1<m< M. (5.34)
% if xc,, # zc,,
Since there ar@/ Dy (z, x) clusters such thatc,, # z¢,,,

Pr(Ax = Az|x) = Q MPu(zx) < =M (5.35)

where the last inequality follows from the fact thag; (z, x) > d

Proof of Lemma 5.2

Observe that the pmf(x) in (5.18) can be expressed as

1
p(X) — QZq,iéq,i(X) log pg,: (536)
1 _mE
- —9 L(z) 5.37
(5.37)

Here, the exponenty,, can be written as

1
g=11i€ly
Q
- _ ly(x) lyi(%) .
=2 Z ) log p,q (5.38b)
q=1 i€ly
< Q
lqo(x 0 (x
=2 qz\(/H(%(X)) + Q)D«oq(x)nm (5.38¢)
q=1 q=1
=: HL(x) + DL(x),p (5.38d)

which is the exponent in (5.21) sinéé(.) andD(.) are defined as

atela) = 3 5 0 (755) (5:39)
D(e(q)llpg) = gg’i((;)) log (;Z’)g?) : (5.40)
iel, 4 9\
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Bound on [T (A)|

Given a typeA, considerpa (z) which also factors according to (5.18), but with transition
probabilities specified bfA], ;. In this casepa (z) = 4274 since the term involving the

KL-divergence in (5.21) vanishes. Drawing vectarsom this pmf, it follows that

1> )" pa(z) (5.41)
z€T (A)

> 1 > 2 MHAa (5.42)
QZET(A)

1
—|T(A)[2~ M A
> 5T

which yields the boundi7 (A)| < Q2M A,

Proof of Proposition 5.3

Start from the error expression in (5.14) and enumexatsing all possibldéree-basedypes
asin (5.22)

-y ¥ pm 9~|E7|(HAp+Dag )9~ ET(HA, +Day 1) (5.43)
Arelr xeT (A7)

Emulating the steps in Appendix 5.B, it can be shown that the number of vectditype A1

is bounded a$7 (A7)| < Q2/7!Har |t can be likewise shown that the number of vectors of

the overall typeA := (A7, Ar) is bounded as
IT(A)] < Zp28r1Har glérlHa, (5.44)

whereZy = Y 271€IHac+Pac).a) - Since any set of edge containingEr allows for
more vectors of the same type thafir, then|7 (Ar)| < |T(A)|, and the following bound
holds

L o—leritg, 1

1 oler|Hay 5.45
Zn < TA7)] (5.43)
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Substituting (5.45) into (5.43) yields

1 ZA o—(|&r| DAy p+HETI DA )
P, < - P, 9~ el EAp pTIETI VAL p 5.46
=, \T(AT>| 2, famrz o
x€T (A7)
< 3 Pa, g A D), (5.47)
AT€£T

Clearly, 2.2~ (€7IPar+Er1DAr2) equals one when = p, and decays exponentially when
A # p.
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Chapter 6

Dynamic Network Delay Cartography

Path delays in IP networks are important metrics, required by networlatgperfor assess-
ment, planning, and fault diagnosis. Monitoring delays of all sourcérdd®n pairs in a
large network is however challenging and wasteful of resources. pidsent chapter advo-
cates a spatio-temporal Kalman filtering approach to construct netwokkdeidy maps using
measurements on only a few paths. The proposed network cartograpmgviork allows ef-
ficient tracking and prediction of delays by relying on both topological el &s historical
data. Optimal paths for delay measurement are selected in an online faghéweitaging the
notion of submodularity. The resulting predictor is optimal in the class of linestigtors, and
outperforms competing alternatives on real-world datasets.

This chapter is organized as follows. Section 3.1 introduces the model arpidhlem
statement. Section 6.2 deals with the Kriged Kalman Filter (KKF) approach, white S
tion 6.2.1 describes techniques for estimating the relevant parameters. ,Fangblyical vali-
dation of KKF and comparisons with the Kriging approach of [29] are jolex¥ in Section 6.4.

Notation Lower case symbols with indices, suchigsrepresent scalar variables. These
variables, when stacked over their indices are denoted through theifdo@d versions.
Bold-faced upper case symboB)(represent matrices. Regular upper case symisiisep-
resent constant scalars, and typically stand for the cardinality of thresetsented by corre-
sponding calligraphic upper case symh$).(Identity matrix of sizeP x P is denoted byl p,

, and its columns by, e», . . ., ep. Matrix C, denotes the covariance matrix of the vegtor
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6.1 Modeling and Problem Statement

Consider an IP network modeled by a connected digiagh (V, £), with V denoting the set
of nodes (devices, servers, or routers), &nthe communication links. The issue is to monitor
path delays on a set of multi-hop patRshat connect thé® := |P| source-destination pairs.
Latency measured on pathe P at timet is denoted byy,(¢), and all such network-wide
delays are collected in the vectp(t). At any timet¢ however, delay can only be measured
on a subset of pathS(¢) C P, which is represented by, (t). Based on such partial current
and past measuremertgt) := {ys(7)}._,, the goal is to predict the remaining path delays
ys(t) == {yp(t) }per\s) for eacht.

The per-path end-to-end delgy(t) comprises of several independent components corre-
sponding to contributions from each intermediate link and router. Of theseuiuing delay
Xp(t) is the time spent by the packets waiting in the queues of intermediate buffdrslean
pends on the traffic volumes in competing links. Network traffic is not onlyetated spatio-
temporally, but also exhibits periodic behavior, random fluctuations, ecasional bursts [87].

These effects motivate the following random-walk model for the latent veftqueuing de-

laysx(t),
x(t) = x(t = 1)+ n(t) (6.1)

wheren(t) denotes state noise with zero mean and covariance n@yix= E [n(t)n’ (t)].

Other components of the path delay, combined in the tesft), include the propagation,
processing and transmission delays, which are temporally uncorrelaee .G, [17] for de-
tails). The delays,,(t) are still zero mean, spatially correlated across paths, and the covariance
matrix of the compacted vector(t) is given byC,,. Finally, the measurement of path delays
using software tools such @$ ng itself introduces errors,(t), which are assumed zero mean,
uncorrelated over time and across paths, with covariafice- E [e,(t)el ()].

P
The measured delays are expressed as

yp(t) = Xp(t) + vp(t) + (1) peS().

Letting S(¢) denote theS(¢)| x P selection matrix with 0-1 entries that contains thth row
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of Ip if p € S(t), the measurement equation can be compactly written as

YS(t) = S(t)X(t) + Vs(t) + €s(t) (6.2)

where the vectok,(t) collects the measurement errors on paths S(t), andwv(t) =
S(t)v(t).
The next section describes a KKF approach for tracking and preditimgnd-to-end

delaysys(t), by utilizing the state-space model described by (6.1) and (6.2).

6.2 Dynamic Network Kriging

The spatio-temporal model in (6.1)—(6.2) is widely employed in geostatisticerancbnmen-
tal science, wherg(t) is generally referred to as trend, amg) captures random fluctuations
aroundx(t); see e.g., [141, Ch. 4], [104, 166]. Recently, a similar modeling approes
employed by [82] to describe the dynamics of wireless propagation clsaamal in [33] for
spatio-temporal random field estimation. Given only first- and seconel-ondments of)(¢),
€s(t), andu(t), this section derives the best linear predictoryfeft).

Suppose first that the queuing delay vegét) is known, and leS(¢) denote anS(t)| x P
matrix containing the-th row of I if p € S(¢); that is,S(¢) is a path selection matrix which
returns quantities pertaining to pathsSit). Then, the linear minimum mean-square error

(LMMSE) estimator (denoted hig* [.]) for v5(t) is given by (see, e.g. [4])
E* [vs(8)x ()] = S(t)Cu ST (1) (S(t)CuST (1) +0°Is) ' [ys(t) — S(t)x(1)]  (6.3)

and is commonly referred to as kriging [36]. In practice however, thedtpgit) has to be
estimated from the data. In the so-termed universal kriging predictof,[441) is estimated
using the generalized least-squares (GLS) criterion, whef# is treated as noise (lumped
together withe;(¢)). The prediction fow;(¢) is then obtained by replacing(¢) in (6.3) with
its estimate. This approach was proposed for network delay predictiofirej2d was referred
to as network kriging. However, since the trend is estimated independeinity®@kS per time
slot, its temporal dynamics present in (6.1) are not exploited.

From the spatio-temporal model set forth in Section 6.1, it is clear that estintaérigend

x (t) can benefit from processing both present and past measurements jibathrds this end,
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the Kalman filtering (KF) machinery offers a viable option for tracking thduian of x(t)
from the set of historical dati (¢). At each time, the KF finds the LMMSE estimatg(t) :=
E* [x(¢)|H(t)], and its error covariance matri¥i(¢) := E [(x(t) — x(t))(x(t) — x(¢))7]

using the following set of recursions (see e.g., [4, Ch. 3])

X(t) = x(t = 1) + K@) (ys(t) = St)x(t - 1)) (6.4a)

M(t) = (Ip — K(1)S(1))(M(t — 1) + Cy) (6.4b)
where the so-termed Kalman ga#i(¢) is given by
K(t) := (M(t — 1) + C,)ST(¢) [S()(Cy + Cyy + M(t — 1))ST(¢) + 0*Ig] ' (65)

Oncex(t) has been estimated via Ki;(t) can be readily obtained via kriging as in (6.3),
yielding the predictor

9s(t) = x(1) + S(1)CL8T (1) (S()C, ST (t) + 0°Is)
% [ys(t) — S(H)x(t)] - (6.6)

The predictor in (6.6) constitutes what is also referred to as the kriged Kditea [104, 166].
The LMMSE framework employed here yields the best linear predictor raron-Gaussian
distributed noise. The prediction error of the KKF is characterized in tiefimg proposition,

whose proof is provided in Appendix 6.A.

Proposition 6.1. The prediction error covariance matrix at timés given by

MY (t) == E{(ys(t) — ¥s(t))(ys(t) = 9s(t))"} (6.7a)

1 -1

=05 +S(t) |((M(t—1)+Cp, +Cp) ' + 5S8T(1)S(t)| ST(t). (6.7b)

o2

Having a closed-form expression for the prediction error will come hdoidselecting the
matrix S(¢), as shown later in Section 6.3.

The KF step also allows-step prediction forr > 1, which is given byy(t + 7) =
x(t), since the kriging term is temporally white. In the present context, this carséfelu
in preemptive routing and congestion control algorithms, as well as foamofting missing
measurements. In the latter case, the covariance matrix is updated sindlgt ps- M (¢ —

1) + C,,. Before concluding the description of the KKF, the following remarks ae d
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Remark 6.1. The random walk model adopted in (6.1) may result in an unstable filtera©per
tionally, if the KKF is unstable, an incorrect initialization M (0) or x(0) may result in poor
prediction performance even as—+ oo. This can be remedied by adopting a damped model
x(t) = kx(t — 1) + n(t) with k < 1. The results presented in this chapter also generalize to
the damped case. The random walk model is nevertheless used henecsins&bility issues

were observed in the two data sets considered in Section 6.4.

Remark 6.2. A distributed implementation of the KKF may be desirable for enhancing the
robustness and scalability of delay monitoring. In large-scale netwodistrébbuted algorithm
also mitigates the message passing overhead required to collect all meagaratreefusion
center. If the model covarianc€}, andC,, are globally known, and the selection matsi)

is constant for alt, a distributed implementation of (6.4) can be derived along the lines of [42].
On the other hand, if each node of the network has partial knowled@g o€,, andS(t), the
algorithm developed in [33] can be appropriately tailored to the problerarat.h

6.2.1 Estimating Model Parameters

The LMMSE-optimal dynamic kriging framework described in Section 6.2 reglinowledge
of model covariance matrices,,, ¢2Ig, and C,, to operate. Of these;? depends on the
precision offered by the measurement software, and can be safaipedg&nown a priori.

The structure ofC,, is motivated by the modeling assumptions and utilizes topological
information. Intuitively, propagation, transmission, and processing delegr pathg, ¢ € P
should be highly correlated if these paths share many links. This relatiocahipe modeled
by utilizing the Gramian matriG := RR”, whereR is the P x |£| path-link routing matrix;
that is, the(p, [)th element ofR is 1 if pathp € P traverses link € £, and 0 otherwise. Each
off-diagonal entry(p, ¢) of G represents the number of links common to the patlisc P.

On the other hand, the elements on the main diagon& ebunt the nhumber of constituent
links per path. The covariance matrix oft) can therefore be modeled &5, = 7G. A
similar model forC,, was adopted by [29], where it was motivated from the property that path
delays are sum of link delays, thatist) = Rx(t), where vectok(t) collects the link delays.

Under this assumption, it holds th@}, = G if the link delays are uncorrelated across links,
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and have covariance matrid¢|.

For the remaining parameters, namelyand C,,, an empirical approach is described
next. It entails a training phase, and a set of measurendgns)}'“, collected at time slots
t=1,...,t5. During the KKF operatior,;, — 1 time slots can be periodically devoted to up-
dating model covariances, while predicting the networks-wide detays fort = 1,...,t..
Let (Ajy(t) := 4(t)G and @n(t) denote the estimates @, andC,,, respectively, at time.
Estimating the covariance matrix of the state noise is well-known to be a challetagkg
primarily because(¢) andx (¢t — 1) are not directly observable. Furthermore, methods such
as those in [107] are not applicable in the present context, as theyedhaiKF to be time-
invariant and stationary. As shown in [111], a viable means of estimétipfrom {y (t)}ﬁil
relies on approximating the noisgt) asq(t) := x(t) — x(t — 1). Then, upon noticing that

the resultant procedsy(7)} is temporally-white, the sample mean and covarianag @dn be

obtained as
mg(tr) = - 1_ . > alt) (6.8)
t=2
Calt) = ;5 D (a(t) ~ rg(®)(a(t) — ring(t))". (6.9
t=2

Using (6.9), and exploiting the equal[ﬂ,{éq} = (tr, — )71 ,(M(t — 1) — M(t)) + Cy,
it follows that an unbiased estimate ©f, can be obtained as
tr

Cy(tr) = Cqltr) + tLl_ >0 (M) -M@-1)). (6.10)
t=2

Finally, in order to obtairy, consider the innovations at tim@sc,(t) := vy, (t) —xp(t—1),
and notice that if the model covariances are correct, then is temporally white and zero-
mean [107]. Indeed, it is possible to show thdt, (¢)i(t)] = [M(t — 1) + Cy, + C,,]pq+02
for anyp,q € S(t) [111]. Further, let],, := {t|]1 <t < t;,p,q € S(t)} be the set of time
slots for which pathg andq are both measured. Then, the sample covariance betwggn
ande(t) is given byCp, := | Tpy| ™! > teT,, to(t)iq(t) for all pairsp, ¢ € P. GivenM(t — 1)

ando?, this observation ylelds the following estimate

St ]pq !Eq! Z 0 (£)egt C Mt~ 1) + Cy (D] 6.11)
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Indeed, entries o@,,(t) can be updated recursively usiﬁig,(t —1)in (6.11). At each time,
only a few entries are updated, depending on which paths are observed

Finally, 5(¢) can be obtained by fittin@,,(t) to vG in the least-squares sense, which
yields

~

Zp,qG'P [G]pq [Cu (tL)]pq
IGII%

A(tr) = (6.12)

6.3 Online Experiment Design

This section considers the problem of optimally choosing the set of gathgequivalently,
the matrixS(t)) so as to minimize the prediction error. To begin with, a simple case is con-
sidered where the sé&i(¢) is allowed to contain any paths. Operational requirements may
however impose further constraints 8f¢), and these are discussed later.

The prediction error can be characterized by using a scalar functivR ¢f); see e.g., [5].
To this end, the so called D-optimal design is considered, where the goammiimize the
function f(S(t)) := logdet(MZ(¢)). The paths selected at timeare therefore given by the

solution of the following optimization problem

S*(t) = arg glé% f(S) (6.13)
st |S|=85. (6.14)

Clearly, tackling (6.13) incurs combinatorial complexity and is challenging keesexactly,
even for moderate-size networks. Indeed, (6.13) is an example of taled subset selection
problem, which is NP-complete in general; see e.g., [43] and refererexesrth

Interestingly, it is possible to solve (6.13) approximately by utilizing the notisubfmod-
ularity. Consider a functiog(S), which takes as input sefsC P. Given a setd € P and an
elemenp € P\ A, the increment function is defined &(p) := g(AU{p})—g(A). Function
g(-) is submodular if its increments are monotonically decreasing, meafjing > o7 (p) for
all A C B € P. Likewise,g(-) is supermodular iff% (p) < 6%(p) forall A C B € P. Inthe

present case, the following proposition holds.

Proposition 6.2. The functionf(S) is monotonic and supermodular &
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The proof of Proposition 6.2 is provided in Appendix 6.B, and relies ontedlaesults
from [5].

An important implication of Proposition 6.2 is that a greedy forward selectiooridtgn
can be developed to solve (6.13) approximately [114]. Upon defining tifitectiunction
h(S) := f(S) —logdet(M(t — 1) + C,, + C,, + oI p), a result from [114] ensures that the
solution of the greedy algorithi&¢(¢) satisfies the inequality

h(S9(t)) < <1 _ 1) h(S* (1)), (6.15)

(&

While performance of the greedy algorithm is usually much better in practisehdlind en-
sures that it does not break down for pathological inputs.

The greedy algorithm involves repeatedly performing the updatesSUarg min,,¢s 6£ (p)
until |S| = S. This is useful in the present case, since the increments can be evaifated

ciently using determinant update rules. Specifically, the updates arelgiven
53 (p) = —log <1+ [M(t—l)+Cn+C,,} > VpeP (6.16)
p,p
5h(p) = —log (1 + [((M(t 1)+ Cp+ G+ STS)”} ) VpeP\S. (6.17)
b,p

Further, each iteration requires a rank-one update to the matrix inver8elif),(which can
also be performed efficiently. The full greedy approach is summarizetbiorithm 6.1, where
® := (M(t — 1) + C, + C,)/o?. Algorithm 6.1 involves only basic operations, and it is easy
to verify that its worst case complexity 8(PS?). Further, the final value of the matri¥
evaluated in the last iteration (Algorithm 6.1, line 11) is exactly the inverse teguined for
evaluating the Kalman gain in (6.5). It is remarked that the operational coitypt=n be
further reduced using lazy updates [109].

Next, consider a more practical scenario, where the software installeachtend-node
can measure delays on all paths originating at that node. At anyttimgever, delays are
measured from onlyW end-nodes. LeV. denote the set of all end-nodes, dhg the set of
paths which have the nodec V. as their origin (likewisePy := J,cp Po for N C Vo).
For any subsetV’ (and its complement’ := V \ N), define the selection matriN (N)

consisting of canonical vecto:s;f as rows, for allp € Py (p € Py). Defining the cost
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Algorithm 6.1: Greedy algorithm for solving (6.13)
Data: @, S

Result S

1 s arg [max, (®])p

2V [1/([®lss+1)

38« {s}

4 for k=2to S do

5 | wy+ ®s,forallpe P\S

6 S — arg mgax [®]pp — Wi Vw,
pES

7 S+ Su{s}

8 d+ [®]ss — Wl Vwg + 1

9 u <+ —Vwyg
V +uul/d u/d
10 V «
u’'/d 1/d
11 end

function f,,(N) := f(Py), the online optimal design problem for this scenario is expressed as

N(t) = arg min f,(A) (6.18a)
s.t. |[N]=N. (6.18b)

It follows from the properties of submodular functions that the costtfancf,, () is also
monotonic and supermodular.M. In particular, observe that the incremefits(v) = f,,(NU
{v}) = fu(N) = f(PyUPy) — f(Py) for v ¢ N satisfy the non-increasing property, i.e.,
0% (v) < 63(v) forall A C B C V. andv ¢ B. A greedy algorithm similar to Algorithm 6.1
can therefore be developed to obtain an approximate solution with the (3amé/e) guar-
antee as in (6.15). Complexity of the greedy algorithm in this case would beveowigher,
since evaluating (v) now requires rankP, | updates in the determinant and inverses. Nev-
ertheless, the algorithm would still be efficient as long7ag < P for all v € V.. In the

special case when delay measurements are performed by only oneanditegpsiot (V = 1),
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the solution of (6.18a) is simply given by

N*() = arg min log det (IW v [M(t 1)+ Cyt c,,} ) (6.19)

’UEVe

where|M(t — 1) + C,, + Cu} » is the| P, | x| P, | submatrix containing the rows and columns
of M(t — 1) + C,, + C,, corresponding to the paths,.

In some networks, it may be relatively straightforward to install delay measemt soft-
ware on every end-node, while allowing each end-node to measureatetayly one path per

time slot. This amounts to replacing the budget-constraint (6.14) in (6.13) with
ISNP,| =1 Vovée)e. (6.20)

Interestingly, constraints of this form can also be handled using theygeggxoach by simply
imposing (6.20) while searching for the best increment at every iteratigecifially, the
search space of pagh[cf. Algorithm 6.1, line 7] now becomes € P \ Py, where N =

{v:S8nNP, # 0}. More general constraints of the forfl§ N P,| < S, can similarly be
incorporated. Constraints of this form are referred to as partition mataidtints, under

which the greedy algorithm provides an approximation ratib/@f[55].

6.4 Empirical Validation

Performance of the proposed network-wide latency prediction schemakdated using two

different datasets, which include delays measured on:

(a) Internet2 backbone netwdrka lightly loaded network that exhibits low delay variability;

and,

(b) New Zealand Active Measurement Project (NZ-AMP) network deployed across several
universities and ISPs in New Zealand, characterized by comparatiggigrvariability

in delays.

[Online] ht t p: / / www. i nt er net 2. edu/ net wor k
2[Online] htt p: // erg. cs. wai kat 0. ac. nz/ anp
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Using the aforementioned datasets, the performance of KKF is also caimggaist that of
competing alternatives in [29] and [30].

Before proceeding, a brief description of the nonlinear estimation techm30] is pro-
vided. The approach hinges on a sparse representation of the netiderklelays, and em-
ploys /;-norm minimization to recover the sparse basis coefficient vector. Splifithe
path delays adhere to the postulated linear mgdel = H3(t), where||3(t)|o < P, and the
matrix H € RP*" is constructed using diffusion wavelets [31]. The diffusion matrix used fo
computing the wavelet basis is obtained by applying Sinkhorn balancing {d54e matrix
W € RPXP whose(p, ¢)-th element is defined as

) Gl
Wha = (@], + [Gly — [Glyy (6.21)

whereG is the Gramian defined in Section 6.2.1. The overall algorithm amounts to solving

the following minimization problem

B(0) = axg min 18] (6.22a)
s.t. ys(t) =S@t)HLS (6.22b)

whereL is a diagonal matrix whosén, n)-th entry is given by{L],, = 2%, with k € N
denoting the scale corresponding to the diffusion wavelet coeffidig80]. Subsequently,
ys(t) is predicted ags(¢) = S(t)HLS (1).

Under the premise that delays change slowly with time, the described algoathbewsed
to estimatey;(¢) over a sequence of > 1 contiguous time-steps jointly. In this case, prob-
lem (6.22) is solved by replacing. (t) with y(¢) := [y (t—7+1),y L (t—7+2),...,¥yL (1)]7,
and by computing thé’r x Pr diffusion wavelet matrix based oW and temporal correla-
tions as shown in [30]. Although this is a viable way to capture temporalletions of delays,
observe that it requires solviffg-norm minimization problems witl?+ variables every time
slots. This increase in complexity prohibits the use of a large value afd the simulations
here only report performance with= 5. It is also worth mentioning that such a batch solution
also does not compare favorably to a real-time implementation, such as thateprdy the

KKF where delay predictions become available every time new measuremeves ar
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Figure 6.1: Internet2 IP backbone network.

6.4.1 Internet2 Delay Data

The One Way Active Measurement Project (OWAMP) collects one waysd@ela the Internet2
backbone network The network has 9 end-nodes and 26 directional links as depicted in
Figure 6.1. Delays are measured on the 72 paths among the end-nogemiente. The data
{y(t)} is collected ovet p = 4500 minutes (about three days) in July 2011.

The model KKF covariance€, andC,, are estimated using data from the initial 1,000
time slots. In this phasé( paths are randomly selected per time slot. The KKF is initialized
by settingy = 1, C,, = C,,, and run for 500 time slots. Nex,t) and(AJn(t) are updated in
an online fashion, as outlined in Section 6.2.1. The final values are obtinleel conclusion
of the training phase at= 1,000.

Pictorially, the performance of different algorithms can be assessedgthrdelay maps
shown in 6.2. Such maps can succinctly represent the network healthreaadpecially useful
for networks which otherwise have low delay variability, such as the Iat8rnThe map in
Figure 6.2(a) corresponds to the true delays, where maps (b), (cfdadepict the predicted

values obtained from the network kriging, wavelet-based approach K& respectively.

3[Online]htt p: // ndbl. net. i nt er net 2. edu/ cgi - bi n/ owanp. cgi
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Figure 6.2: True and predicted delay map@@maths in the Internet2 network over in interval

of 100 minutes.

Predictions are performed using measurements over an interva shinutes onl0 random
paths (same paths are used throughout the considered interval), ahelaie are predicted
on the remaining 62 paths are reported. In these maps, paths are drimnggreasing order
according to the true delay at time= 1. It can be seen that the map produced by the kriging
and compressive sensing approaches are very different fromuthentxp. In contrast, the map
obtained when using the KKF is close to the true map. In particular, obseatv¢hih delays

of several paths change slightly aroune- 80 in Figure 6.2(a). However, of the three maps,
this change is only discernible in the KKF map in 6.2(d). The delay predictiomgded

by the KKF are thus sufficiently accurate for human inspection at congritecs, even when
monitoring a few paths.

For a more detailed analysis of the different delay prediction approatiesormalized
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Figure 6.3: NMSPE as a function 6f Internet2 network with random path selection.

mean-square prediction error (NMSPE) is considered. It is defined as

_ 1 N o(h) — o2

The prediction performance of the three algorithms is first assessedrgydeday measure-
ments on randomly selected paths for eaciihe (same) randomly selected paths are used
for all three approaches. Figure 6.3 depicts the NMSPE as a functiéi thie number of
paths on which delays are measured. Clearly, the KKF markedly outpesfibre other two
approaches across the entire range& ofAs expected [30], the compressive sampling-based
approach provides a more accurate prediction than network kriging.

Next, the performance of the three algorithms is analyzed for the case pdiks for
delay measurement are selected optimally. For the network kriging and tledetvbased ap-
proaches, the optimal paths are obtained according to the selectionymesedovided in [29]
and [30], respectively. As pointed out in [30], performance of theelet-based approach can
be improved by capitalizing on temporal correlations. This is done by sol&r&P) using
measurements from = 5 consecutive time slots in a batch form. The temporal correlation is
set to0.5 and the optimal paths are obtained again using the selection strategy outliBél in [

For the KKF, optimal paths are selected in an online fashion using AlgorithAgdin, a sig-
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Figure 6.4: NMSPE as a function 6f Internet2 network with optimal path selection.

nificantly more accurate prediction of the path delays for the entire ran§esobbtained via

the KKF.

6.4.2 NZ-AMP Delay Data

The KKF algorithm is tested here using delay data from NZ-AMP. The prajeatinuously
runsl CMP and scamper to determine the topology and delays between a set of nodas in N
Zealand. The data collected for this chapter consist of end-to-endsdelestisured every ten
minutes over the month of August 2011. The network has a total of 186, peliose delays
range from almost constant to highly variable, at times reaching up to 250ms.

In Figure 6.5, the NMSPE as a function 8fis reported, for the case where paths that
are to be measured are chosen randomly. Again, same paths are uedtfoee considered
schemes. The KKF provides a markedly lower prediction error also foNBY&MP delay
data. On the other hand, Figure 6.6 shows the NMSPE on optimally selectesifpatiil
three schemes. The KKF performs relatively better than the competing selienihis data
set as well. Observe though that the actual values of the NMSPE indorréus dataset is
at least an order of magnitude higher than those in the Internet2 datadetd|rgiven the

high variability in the data, it is possible to improve upon the prediction accuraé§KF
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Figure 6.5: NMSPE as a function 6f NZ-AMP network with random path selection.

by training it better. This is showcased by the considerably lower predietiar curve for
training intervalt;,=2,000 shown in Figure 6.6.

While the NMSPE is useful for characterizing the average performaeteprk operators
are also interested in the prediction accuracy over the entire range gfwddlees. Towards
this end, Figure 6.7 shows the scatter plotg gt) versusys(t) for all t and.S = 30 optimally
selected paths. The points cluster arounditivdegree liney;(¢t) = ys(¢), and the thinner the
“cloud” of points is, the more accurate the estimates are. Indeed, it caebdlsat the points
generated from the KKF estimates are crammed in a very close area aredfedibgree line,
and accurate estimates are produced for the entire range of expdrglags. Furthermore,

the scatter plots corroborate the unbiasedness of the KKF predictor.

6.5 Conclusion

The present chapter develops a spatio-temporal prediction apprasatkand predict network-
wide path delays using measurements on only a few paths. The proposéthaigadapts a
kriged Kalman filter that exploits both topological as well as historical data fildmework

also allows for the use of submodular optimization in the selection of optimal delagure
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Figure 6.6: NMSPE as a function 6f NZ-AMP network with optimal path selection.

ment locations. The problem of path selection is formulated for differemstyyd constraints
on the set of selected paths, and solved in an online fashion to near-optirfialtyesulting
predictor is validated on two datasets with different delay profiles, anaisrsto substantially

outperform competing alternatives.

6.A Error Covariance Matrix

Towards deriving an expression fdiY (¢), observe that the prediction error can be written as

~S()Cu8T (1) (S(1)CuST (1) + 0°Ls)  [ys(t) — S(t)x(1)] (6.24)
=S (x(t) — x(t) +v(t)) + es(t)
—S()C,ST (1) (S(H)CST (1) +0°Ls)  [S()(x(t) — X(t) + (1)) + €s(1)]
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Using (6.4a), the terny(¢) — x(t) can be written as

x(t) = x(t) = x(t) = x(t = 1) = K(#) [SE)(x(t) + v(t)) + es(t) = S()x(t - 1)]
= x(t) = x(t —1) + K(6)S(t)(x(t) —x(t = 1) + v(t)) + K(t)es(t)

= (Ip — K(t)S(1))x(t) — K(#)S(t)v(t) — K(t)es(t) (6.26)
wherex(t) := x(t) — x(t — 1). Substituting (6.26) in (6.25), it follows that

ys(t) = ¥s(t) = S(t)(Ip — K(1)S(1)) (x(t) + v(1)) — S()K(t)es(t) + €s(t)
—S(t)C,ST(t) (S(1)C, ST (1) + o?1s)
x [S()(Ip — K(8)S(t))(x(t) + v (1) — S(t)K(t)es(t) + €s(t)]
(6.27)
= S(t)(Ip — K(1)S(t))(x(t) + v(t))
—S(1)C,S (1) (S()C, ST (1) + 0%s) ' S(t)(Tp — K(1)S(H)(X(2) + v(t))
— S(HK(t)es(t) — SH)C,ST (1) (S()CLST (1) + 02Is) " (Is — S()K(¢))es(t)

+ e5(t) (6.28)
which, after some manipulations, can be expressed as

ys(t) = ¥s(t) = S(H)(Ip — Q()S (1)) (X (t) + v (1)) + Q(t)es(t) + €s(t) (6.29)
where

Q(t) .= K(t) + C,S(t)(S(t)C,ST(t) + ¢%Is) !

— C,S(1)(S(t)CLST(t) + 0?15) 'S(HK(t). (6.30)
Next, substituting folK(¢) from (6.5), the expression f@@(¢) simplifies to

Q(t) = (M(t — 1) + C,)ST (1) [S()(M(t — 1) + Cyy + C)ST(¢) + 0%L5]
+ C,ST(t)(S(t)C,ST(t) + 0%1g) !
— C,ST(t)(S(t)CLST (1) + 0*Ls) !S()(M(t — 1) + C,))S (1)
1

x [S(t)(M(t — 1) + Cy + C,)ST(t) + 0’1 (6.31)

— (M(t — 1) + Cy, + C,)ST (1) [S(t)(M(t — 1) + Cy, + C,)ST (1) + 0°I5] (6.32)
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Utilizing the fact that(t), v(t), €5(t), ande;(t) are mutually uncorrelated, with [x (£)x” (t)] =

M(t — 1) + C,,, the error covariance matriXI¥ () becomes

MY (1) = E [(ys(t) — 95(0) (ys(t) — ys(1))"] (6.33)

= S(t)(Ip — Q(1)S(1))(M(t — 1) + Cy + Cy)(Ip — ST()QT (1))S™ (¢)
+2S(t)Q(H)QT (1)ST(t) + 0*1p_g (6.34)

=S(t)(M(t — 1) + Cp + Cy)ST(t) — 2S()Q(t)S(t)(M(t — 1) + C,, + C,,)ST(t)
+S(HQHSH)(M(t - 1) + Cy + C)ST(1)QT (1)ST (1) + o?S(HQHQ (1S (1)
+0%Ip_g (6.35)

= S(H)(M(t = 1) + Cu + Cy)ST (1) = S(HQ)S()(M(t — 1) + Cu + Cy)S” (1)
+o%Ip_g. (6.36)

Substituting forQ(¢) [cf. (6.32)] in (6.36), and using the Woodbury matrix identity [67], the

final expression foM?Y () becomes

MY (1) = 0%Tp 5+ S(t) | (M(t—1) +C, + Cy,) ' + Sstmsm| s"w. (©.37)

S

6.B Proof of Monotonicity and Supermodularity of f
Let® := %(M(t — 1)+ C, + C,), and observe that can be written as

f(8) =log(c®) + logdet [Ip_g + S(®~" +8"8)7'S”] (6.38a)
= log(0?) + logdet [Ip + STS(®~' +S7S) ] (6.38b)

= log(0?) + logdet [®@* + STS + STS] + logdet [(2~" +STS)™']  (6.38¢)

where (6.38b) follows from Sylvester’s theorem for determinants [67].

Observing thaB”'S 4 ST'S = Ip, it is possible to writef (S) as

f(S) =log(c?) + logdet(®! +1Ip) — logdet (<I>_1 + STS) . (6.39)
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Next, consider the decompositidn = UU7, and define the shifted function

h(S) := f(S) — log(c?) — log det (® + Ip) (6.40a)
= —logdet(Ip + STS®) (6.40b)
= —logdet [Is + (SU)(SU)"] (6.40c)

where Sylvester’s theorem has again been used in (6.40c). Finally,étligwown that a func-
tion of the formlog det(Ip + (SU)?(SU)) is non-decreasing and submodular (see e.g., [5]),
which allows one to deduce th@tS) is non-increasing and supermodular. Note further that

the greedy approach from [114] can be used:@8) by definingh (@) = 0.
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Chapter 7

Summary and Future Work

This thesis touched upon several key monitoring and resource allocatiblems present in
communication networks. Chapters 2-5 leveraged the idea of networlgcdilesign wire-
less network protocols for information collection and dissemination in resexwaostrained ad
hoc networks. Towards achieving this goal, a cross-layer desigmagpmwas pursued, and
network codes were optimized jointly with protocols operating at applicationjumedccess
control (MAC), and physical (PHY) layers.

Chapter 2 considered wireless fading networks, where network cadinde optimally
integrated into the protocol stack using a dual decomposition method. lgavgrthis result,
an adaptation of the subgradient method suitable for network controlls@s@veloped. The
method is asynchronous, because the physical layer is allowed to retaomitibution to the
subgradient vector with some delay.

In Chapter 3, network coding was introduced for use with Aloha-base€ MAd PHY
layers, which are attractive in their simplicity. Although the overall optimizatiavbfam is
still non-convex, successive approximation is adopted to realize effioggwork coding algo-
rithms. The idea was also extended to create a separable structure intdlegrprenabling the
dual decomposition technique to yield a distributed solution. The algorithm isappliable
for large networks, and amenable to online implementation.

Benefits of network coding also extend@wS-constrainedcenarios, such as in real-time

and streaming media applications. Modeling constraints on packet deadliheskisy chal-
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lenge here, and Chapter 4 puts forth constant-factor approximations amthighe setup was
also analyzed from an integer programming perspective, and a selidinequalities was
developed and used to obtain a linear programming based upper boundtrotighput.

Chapter 5 dealt with sensor networks where the observed data is tedratxoss nodes,
and network coding can both compress and communicate the data to a collgetinAn ef-
ficient decoding scheme for this network-compressive coding schesmdeavaloped, yielding
network-wide energy savings and increase in the network lifetime. Expmmrents and simu-
lation results were provided to delineate, quantify, and test the interplagbgtilie estimation
error, tolerable distortion, alphabet size, and communication cost.

The second part of this thesis advocated dynamic network cartograpioplafor mon-
itoring and prediction of the evolving network state. Chapter 6 developgatiosemporal
prediction approach to track and predict network-wide path delays us@asurements on
only a few paths. The proposed framework not only exploits both topabgitd historical
data, but also allows for the use of submodular optimization in the selectiortiofalelay
measurement locations.

Before concluding this thesis, the remainder of this chapter describes fegearch direc-

tions which build on the framework and tools developed hitherto.

7.1 Dictionary Learning for Traffic Maps with Missing Data

An interesting extension of the network cartography framework involviesénce and predic-
tion of traffic volumes on links (also referred to as link counts) in IP netaoitknk counts
are one of the primary indicators of instantaneous network health, avelagthe basic ingre-
dient for more complex management tasks such as intrusion detectionitggpacisioning,
and network planning. Information about link utilization is typically available twoek op-
erators through off-the-shelf tools such as the SNMP. Missing entrie®ifintk counts may
however skew the network operator’s perspective. Packets mayopeeatt in SNMP for in-
stance, if some links become congested, rendering link count informatidma®e links more
important, as well as less available [99,155].

Let the L x 1 vectory(¢) collect the link counts orl, network links at a given time.
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Typically, only anM x 1 sub-vectory®(t) with M < L entries is observed at any time, and
the goal is to predict the unobservel — M) x 1 sub-vectory*(¢) using historical data and
topological information. In principle, missing link loads could be estimated if theixatr
flow volumes between all origin-destination (OD) paXst) were known. Upon defining the

F x 1 vectorx(t) := vec(X(t)) as the vectorized traffic matrix, it readily follows that
vi@t)=R"x(t), t=1,...,T (7.1)

where the routing matrix entffR"|, ; equals one if flowf passes through link and zero oth-
erwise, and. < F. However, measuring flow volumes is even more difficult, and in practice,
x(t) is itself estimated frony°(t) andR°. Since traffic matrix estimation is amderdeter-
minedproblem, most proposed approaches use specific priors or regtitarichniques, and
tacitly rely on the stationarity ot(¢) ; see e.g., [155,176,177] and references therein.

As future work, a more direct approach to predicting link counts is feadiplpostulat-
ing the over-complete representatipn= 5 s over a basis matri¥, with columns{bp}f:1
constrained to have unit norm (which avoids scaling ambiguity), and aegaefficient vec-
tor s. GivenB and theM x 1 vector of observed link countg®, contemporary compressive
sampling tools [6, 69, 157, 158] can be adopted to estimate the missing/ link countsy".
Consider partitioning the basis matrix 8s= [(B8°)" (B")]’, where3° corresponds to rows of
measured link count&" to rows of missing ones, ar(@)’ stands for transposition. During the
operational phasgthe sparse representation for= [(y°)’ (y*)’]’ can be estimated using the

least-absolute shrinkage and selection operator (Lasso) [157], as
§ := arg min ||y° —Bong + Alls|1 (7.2)

where the tuning parametar> 0 controls the sparsity &f, and can be chosen using standard
cross-validation techniques [68]. Oneés available, the missing link counts are predicted as
y* = B"s. Itis evident that for a given sparsity level dictated bjs||;, the quality of the
predictedy* depends o8. Bases comprising columrb; } that explain well the link counts
across the network will lead to improved predictionsytf Thus, the selection df must be

data-driven thereby shaping the colun{m§}5:1 to the link-count prediction task at hand.
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Choosing an over-complete basis on which a signal admits a sparseergptiEs has
led to exciting advancements in the areadaftionary learning[102, 103, 116, 158]. In its
canonical form, dictionary learning seeks a basiso that training datg” := {y(t)}L,
is well approximated ag(t) ~ Bs(t), vt = 1,...,T, wheres(t) is a sparsecoefficient
vector. Given historical link count§, it is possible to apply results from dictionary learning
to construct3. However, this would requiré measurements of the link counts at all network
links. Gathering7™ quickly becomes infeasible as the network size grows, thereby rendering
canonical dictionary learning impractical. To circumvent this challenge, geeigito capitalize
on semi-supervised learning and manifold regularization [9, 125].

Consider the historical data s&t, := {y°(t)}._, formed by observed link counts at
M < Llinks. EachM x 1 measurement vectorys := J.y(t), whereJ; isanM x L binary
matrix choosing thél/ measured link counts for theth measurement. To enable learnifig
from T,s instead of7, it is assumed that thé x ) network routing matrixR is available,
where @ denotes the number of OD pairs in the network. Each columR @ntains the
routing path for a given OD pair of nodes. UsiRy it is possible to construct an auxiliary
weighted graply with L nodes, one corresponding to each network link. The edge weights for
all links in the graph are subsumed by the off-diagonal entries of the Graimx G := RR’.

The data-driven basi8 is obtained during #&aining phaseas

T T T
({8(t)}L,,B) = argmin § :Hyf—JtBstH% +)\s§ :||st\|1 +Ag§ 's;B'LBs; (7.3)
{se}_y, =1 =1 =1
B:|[bp2<1

whereL is the Laplacian matrix of, and\,, A, > 0 are tuning parameters. The regularization
terms in (7.3) control both sparsity in the expansion coefficients througld;therm, but
also smoothness of the link-count predictions kiaThe optimization problem is nonconvex;
however, withB fixed, the problem is convex w.r.t{s;}, and vice versa, allowing one to
employ coordinate descent solvers. Future research directions iredadergence analysis of
the coordinate descent algorithm, development of online prediction anurigaapproaches
along the lines of recursive least-squares, and incorporation of tampamrelations in the

formulation (7.3).
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7.2 Joint Rate and Power Control for Coded CR Networks

Cognitive radio (CR) has recently been recognized as an emergingtilisrtechnology that
holds great potential to enhance spectrum utilization [70, 120]. A major cnem of the CR
technology has been dynamic spectrum access, in which network ygeEmgunistically gain
wireless access to licensed frequency bands without causing hartefiénence to incumbent
primary users (PUs) [52]. When designing CR networks howevetinget approaches can
not rely on the accumulated knowledge in conventional ad hoc netwouksatiher have to
account for the peculiarities of hierarchical access schemes [I¥B§Eonomous interference
management.

This motivates the development of resource allocation schemes that rele ertking
result [165] and facilitate the inclusion of capacity achieving protocols siscnetwork cod-
ing [97]. A fruitful direction to this end is a cross-layer design framewaortrder to jointly op-
timize power and rate allocations in coded CR networks in the presencerofahacertainty
induced by both shadowing and small-scale fading. Channel uncertairatye CR-specific
constraints can be incorporated directly into the optimization formulation, soyasltba re-
source allocation algorithm rooted at the PHY layer. Of particular interedélsy-limited
CR traffic, where QoS requirements are severe, and channel oat@#gesmmon. The idea is
to formulate a joint coding/routing rate and power allocation problem, which maasitze
network-wide utility while constraining the outage probabilities and averagdengésce to the
PU networks.

The primary challenge encountered when designing systems with outaggbpity con-
straints is that the resulting problem formulations are too complex for realisticneh dis-
tributions [54]. Related work in this context includes [81], where only sreedile fading is
considered. Future work can also include examination of these outagghjlity distributions
with the aim of obtaining an approximate convex problem, amenable to effickniosn. The
research issue here is to properly utilize the result that allows approximatsugn of log-
normal random variables with a single log-normal random variable; seqd41¢g53, 54, 108].
Such a scheme should then be able to adapt the network and PHY layerepensito the

propagation environment.
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