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Abstract
Communication networks have evolved from specialized, research- and military-oriented trans-

mission systems to large-scale and highly complex interconnections of intelligentdevices. Ef-

fective operation of such large-scale networks hinges upon real-time allocation of network

resources that match the user demands. This thesis contributes towards several key problems

encountered in both, monitoring and resource allocation in networks.

Volatile operating environments encountered in ad hoc and sensor networks place severe

restrictions on the resources (bandwidth and power) available to networknodes. Pertinent ap-

proaches have sought to replicate the Internet protocols in ad hoc networks, exacerbating the

resource scarcity by ignoring the peculiarities of the underlying wireless interface. The present

thesis leverages the ground-breaking idea of network coding to design wireless network pro-

tocols. Towards this end, a cross-layer design is pursued, and network codes are optimized

jointly with protocols operating at application, medium access control (MAC),and physical

(PHY) layers. Forwireless fading networks, dual decomposition is utilized to optimally in-

tegrate network coding into the protocol stack. Network coding is also introduced for use in

Aloha-based MAC, and the resulting non-convex problem is solved via successive convex ap-

proximation to realizepractical network coding algorithms. Benefits of network coding also

extend toQoS-constrained scenarios, such as in real-time and streaming media applications.

Modeling constraints on packet deadlines is the key challenge here, and constant-factor approx-

imations are proposed to this end. In sensor networks where the observed data is correlated

across nodes, network coding can both compress and communicate the datato a collection

agent. An efficient decoding scheme for thisnetwork-compressive schemeis developed, yield-

ing network-wide energy savings and increase in the network lifetime.

Exhaustive monitoring of large-scale networks may be challenging or even impossible to

perform, motivating the need to account for missing measurements. This thesisputs forth the

novel concept ofdynamic network cartographyas tool for inference, tracking, and prediction

of the network state. Tapping into the spatio-temporal kriging theory, a dynamic network

kriging approach is developed with real-time network-wide prediction capabilities based on

latency measurements acquired for a small subset of network paths. Goingwell beyond state-

of-the-art methods, the proposed model captures not only spatio-temporal correlations, but also

unmodeled dynamics due to, e.g., congested routers.
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2.3 Evolution of the utility functionf(ȳ(s)) for different values ofS with stepsize

ǫ = 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Some of the optimal primal values after 5000 iterations withǫ = 0.15 and

S = 40. The gray level of the edges corresponds to values of virtual flows

according to the color bar on the right, with units bps/Hz. . . . . . . . . . . . . 37

3.1 Evolution of the end-to-end throughputR in the subgradient method with step

sizeσ = 0.5 for the first surrogate problem (ℓ = 0) andσ = 0.1 thereafter.

The vertical lines result from the fact that the primal averages are refreshed

whenever the value ofℓ is advanced. Therefore the solution obtained from the

next few subgradient iterations is of poor quality and gives low values ofR.

However, the network throughput depends only on the access probabilities at

the instants when the subgradient iterations converge. . . . . . . . . . . . . .. 72

3.2 Dynamic network used for simulation. Node 4 joins the network at time slot

4× 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



LIST OF FIGURES viii

3.3 Evolution of the R values. A dot at a given time slot represents the throughput

of the generation that is received at that time slot. Since generations are trans-

mitted serially, the moving average of the per-generation throughput represents

the throughput achieved over several generations. . . . . . . . . . . . .. . . . 74

4.1 The key difference between PI and SI constraints. Under the PI constraint,

nodes 2 and 4 can simultaneously receive from transmitters 1 and 3. Under

SI constraints however, the two transmitters interfere with reception at nodes 2

and 4, and should not be scheduled at the same time. Node 5 can receive from

node 3 in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 A time-unwrapped node. Note that the first combiner- and transmitter-subnodes,

and theD-th receiver-subnode are redundant. . . . . . . . . . . . . . . . . . . 82

4.3 An example of wireless network and its time-expanded version. . . . . . . .. 96

4.4 Performance and bounds on a PI network. . . . . . . . . . . . . . . . . . .. . 100

4.5 Degradation of throughput with packet erasures for different values ofD. . . . 102

5.1 Factor graph representation of the posterior density in (5.9). . . . . . .. . . . . 110

5.2 Acyclic factor graph for Section 5.2.2. . . . . . . . . . . . . . . . . . . . . . .113

5.3 Probability of error when a distortiond can be tolerated at the sink, for different

values ofM , andα = 3. The vertical line shows the distortion above which

Pe → 0 wheneverM →∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Sensors within the dotted circles are assumed correlated, with edges denoting

communication links. All nodes within each cluster collect data at one of the

nodes, and send it to the sink through the shortest path. . . . . . . . . . . . .. 123

5.5 Estimation error for different levels of cluster correlation evaluated forQ = 16.

For each cluster,xmax = maxk∈Cj
I(xk) andxmin = mink∈Cj

I(xk), and the

joint pmf p(θCj
) ∝ e−α(xmax−xmin). . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 Estimation error for different levels of compression, plotted against thecom-

munication cost. As communication cost increases, more linear combinations

can be sent to the sink per cluster, yielding higher compression ratios but lower

estimation errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Sensor network used for the simulations. Node IDs correspond to thosein the

Sensorscope dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



LIST OF FIGURES ix

5.8 Estimation error vs. the communication cost. More communication allows

more linear combinations to be sent to the sink per cluster, yielding lower esti-

mation errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Internet2 IP backbone network. . . . . . . . . . . . . . . . . . . . . . . . . .. 143

6.2 True and predicted delay map for62 paths in the Internet2 network over in

interval of100 minutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 NMSPE as a function ofS, Internet2 network with random path selection. . . . 145

6.4 NMSPE as a function ofS, Internet2 network with optimal path selection. . . . 146

6.5 NMSPE as a function ofS, NZ-AMP network with random path selection. . . . 147

6.6 NMSPE as a function ofS, NZ-AMP network with optimal path selection. . . . 148

6.7 Scatter plot for the NZ-AMP network,S = 30 with optimal path selection. . . . 149



x

List of Tables

2.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Average optimized throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Performance of Algorithm 4.1 on large networks . . . . . . . . . . . . . . . .101



xi

List of Algorithms

2.1 Asynchronous subgradient algorithm . . . . . . . . . . . . . . . . . . . . .. . 30

3.1 Online implementation of the centralized algorithm . . . . . . . . . . . . . . . . 61

3.2 Distributed and online algorithm for nodei . . . . . . . . . . . . . . . . . . . . 69

4.1 Greedy augmenting path (GAP) algorithm . . . . . . . . . . . . . . . . . . . . . 85

4.2 Earliest-shortest path (ESP) algorithm . . . . . . . . . . . . . . . . . . . . . .. 89

6.1 Greedy algorithm for solving (6.13) . . . . . . . . . . . . . . . . . . . . . . . .140



1

Chapter 1

Introduction

Communication networks have evolved from specialized, research- and military-oriented trans-

mission systems to large-scale and highly complex interconnections of intelligentdevices. Net-

works today are heterogeneous and comprise not only of computer terminals, but also smart

power grid networks [106, 115], ad hoc networks [122], sensor networks [2], and cognitive

radio networks [70,110]. The traffic carried by these networks has also increased explosively,

thanks to the advances in processing speed and storage efficiency of electronic devices. The

resulting need for higher efficiency in network operation and managementhas prompted re-

searchers to rethink the principles of network design altogether. The lastdecade has thus

witnessed significant advances in network information theory [48] and network optimiza-

tion [150], as well as an increasing use of statistics and machine learning tools in commu-

nication networks [84].

From a systems perspective, all networks are distributed systems consisting of users that

generate and consume traffic, along with protocols that regulate its flow across the network [150].

Effective operation of a network hinges on real-time allocation of network resources match-

ing the user demands, while ensuring a prescribed minimum quality of service (QoS). Con-

sequently, network operators are interested in (a) monitoring the network state in order to

estimate the demand and availability of resources; and (b) designing protocolsthat allocate

network resources to users in a fair and efficient manner. This thesis touches upon some of the

key challenges encountered in both monitoring as well as resource allocation problems. Lever-



1.1 Motivation and Context 2

aging recent advances in network information and optimization theory, the first part of the

thesis considers the problem of optimal resource allocation under different scenarios for both

ad hoc and sensor networks. The second part of the thesis develops astatistical framework

for network monitoring and prediction, with emphasis on large-scale networks and real-time

operation.

1.1 Motivation and Context

The ability to deployad hoc wireless networkswithout centralized control or infrastructure is

key to achieving the next-generation promise of ubiquitous connectivity. These self-organizing

networks are already indispensable for applications such as sensing, combat support, search-

and-rescue, as well as mesh networks. The challenge of efficiently utilizing the available re-

sources, namely spectrum and battery life, is the first priority for ad hoc networks. The broad

aim of the first part of this thesis is to systematically design and analyze resource-efficient ad

hoc network protocols.

Internet protocols have been phenomenally successful in achieving high rates and ensuring

low delays in wired networks. Indeed, most wireless routing schemes havesought to repli-

cate the “wireline success” by neglecting the vagaries of the wireless interface, and reusing

the available algorithms and protocols. However, this wireline mindset has generally led to

inefficient use of bandwidth and power resources, as well as to considerable complications in

the deployment of ad hoc networks. Network coding is a recent ground-breaking alternative to

routing that offers the potential to transcend these arbitrary limits by embracing the peculiari-

ties of wireless networks [94].

Network coding refers to the notion of allowing nodes to perform encoding operations

on packets traversing the network [1]. Interestingly, linear mixing of packets is sufficient for

achieving multicast capacity in wireline networks [61, 175]. This optimality result has en-

couraged harvesting the benefits of linear network coding to areas as diverse as distributed

storage [44, 45], peer-assisted file delivery [66], streaming media [34, 118, 149], network to-

mography [58, 59], security [21, 77], data collection in sensor networks [164], and ad hoc

networks [60]. The potential of network coding in wireless applications is also well appreci-
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P1+P2 P1+P2

aa cc
bb

P2 P1

aa cc
bb

Figure 1.1: Information exchange through a relay node. Colors index thedifferent time slots.

ated by now [28, 62], and some of the early prototypes include COPE [79], and MIXIT [80].

The emerging consensus is that network coding is not just an “exotic” routing substitute, but a

new paradigm for information collection, storage, and dissemination.

To demonstrate the advantages of network coding over routing in wireless settings, Fig-

ure 1.1 depicts a canonical example, where two nodesa and c intend to exchange packets

through an intermediate nodeb. With traditional routing (depicted on the left), this exchange

requires at least four time slots. However, network coding at nodeb can allow the exchange

to occur in just three time slots (as shown on the right). Observe how, unlike the routing

scheme, network coding is also able to capitalize on the broadcast advantage inherent to wire-

less networks. This example underlines the importance of jointly designing network coding

with transmission scheduling, in order to fully utilize the network capacity.

Switching our focus from optimization to monitoring, measurement tools are essential for

maintaining seamless end-user experience in dynamic environments, as well as for ensuring

network stability and security. In IP networks for instance, path delays and loss rates can

portray network health, assess user experience, and allow users to compare different service

providers. Unfortunately, acquisition and tracking of path metrics does not scale well to large

networks, where the number of paths grows as the square of the number of end-points. This

problem of “missing data” in Internet measurements has prompted the development of infer-

ential monitoring, where statistical tools are used to impute the missing entries [84].

Early work in this context included network tomography, which aimed at inferring link

delays in networks using only path delay measurements [24, 151]. Let the delay incurred on

a link ℓ be denoted byxℓ, and let theL × 1 vectorx collect the delays on all links in a

network. Also, letyp be the path delay, collected in theP × 1 vectory for all paths. The delay
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tomography approach utilizes the linear model

y = Gx (1.1)

where the(p, ℓ)-th entry of the routing matrixG is one if pathp includes linkℓ, and zero

otherwise. Suppose further that at any time, only anS × 1 sub-vectoryo with S < L entries

can be observed. Define the sub-vector of missing entries asyu, and the sub-matricesGo and

Gu formed by the rows corresponding to observed and unobserved paths, respectively. Then,

the following expression was proposed in [24] for determining missing measurements

ŷu = GuG
T
o (GoG

T
o )

−1yo (1.2)

where the rows inGo were chosen suchS = rank(G) = rank(Go). SinceS ≤ L ≪ P ,

this approach allows reduced measurement overhead compared to explicitmeasurement on all

paths.

While network tomography allows perfect recovery of missing delays via (1.2), it cannot

work if S is even one less than rank(G). This imposes a severe limitation on its practicality,

since measurement probes are always considered low-priority, and mayeasily get lost due

to congestion. These considerations motivate monitoring via approximate techniques such as

those employed in the context of spatial prediction [141], and these form the basis of the present

work.

1.2 Thesis Outline and Contributions

The first part of this thesis proposes network coding protocols for ad hoc and sensor networks.

In order to systematically design wireless protocols that can harness the full potential of net-

work coding, a cross-layer design approach is pursued. Within this framework, protocols at

different layers are allowed to interact with each other, in hopes of obtaining an improvement

in network throughput and QoS. Subsections 1.2.1-1.2.4 describe the different scenarios under

which protocol design is considered.

The second part of this thesis proposes a dynamic network delay cartography framework,

which is described in Subsection 1.2.5.
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1.2.1 Multicast in Fading Channels

As seen in Figure 1.1, even simple linear mixing operations can be powerful enough to en-

hance the network throughput, minimize delay, and decrease the overall power consump-

tion [175], [28]. For the special case of single-source multicast, which does not even admit

a polynomial-time solution within the routing framework [14], linear network coding achieves

the full network capacity [1]. In fact, the network flow description of multicast with random

network coding adheres to only linear inequality constraints reminiscent of the corresponding

description in unicast routing [97].

This encourages the use of network coding to extend several popular results in unicast rout-

ing framework to multicast without appreciable increase in complexity. Of particular interest

is the resource allocation and cross-layer optimization task in wireless networks [93], [65].

The objective here is to maximize a network utility function subject to flow, rate, capacity

and power constraints. This popular approach not only offers the flexibility of capturing di-

verse performance objectives, but also admits a layering interpretation, arising from different

decompositions of the optimization problem [26].

Chapter 2 deals with cross-layer optimization of wirelessmulticastnetworks that use net-

work coding and operate overfading links. The aim is to maximize a total network utility

objective, and entails finding end-to-end rates, network code design variables, broadcast link

flows, link capacities, average power consumption, and instantaneous power allocations.

Network utility maximization was first brought into coded networks in [97], where the aim

was to minimize a generic cost function subject only to flow and rate constraints. The optimal

flow and rate variables may then be converted to a practical random network coding imple-

mentation using methods from [95] and [27]. Subsequent works extended this framework to

include power, capacity, and scheduling constraints [3,38,159,170]. The interaction of network

coding with the network and transport layers has also been explored in [23, 89, 91, 168, 169];

in these works, networks with fixed link capacities are studied, and different decomposition

techniques result in different types of layered architectures.

There are however caveats associated with the utility maximization problem in wireless

networks. First, the power control and scheduling subproblems are usually non-convex. This
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implies that the dual decomposition of the overall problem, though insightful, is not necessarily

optimal and does not directly result in a feasible primal solution. Second, for continuous fading

channels, determining the power control policy is an infinite dimensional problem. Existing

approaches in network coding consider either deterministic channels [3, 170], or, links with a

finite number of fading states [38,74,173].

On the other hand, a recent result in unicast routing shows that albeit thenon-convexity, the

overall utility optimization problem has no duality gap for wireless networks with continuous

fading channels [139]. As this is indeed the case in all real-life fading environments, the result

promises the optimality of layer separation. In particular, it renders a dual subgradient descent

algorithm for network design optimal [64].

Chapter 2 begins with a formulation that jointly optimizes end-to-end rates, virtual flows,

broadcast link flows, link capacities, average power consumption, and instantaneous power

allocations in wireless fading multicast networks that use intra-session network coding. The

first contribution of this chapter is to introduce arealistic physical layer modelformulation

accounting for the capacity of broadcast links. The cross-layer problem is generally non-

convex, yet it is shown to have zero duality gap. This result considerably broadens [139] to

coded multicastnetworks with broadcast links. The zero duality gap is then leveraged in order

to develop a subgradient descent algorithm that minimizes the dual function.The algorithm

admits a natural layering interpretation, allowing optimal integration of network coding into

the protocol stack.

Next, the subgradient algorithm is modified so that the component of the subgradient that

results from the physical layer power allocation may be delayed with respect to operations

in other layers. This provably convergent asynchronous subgradient method and itsonline

implementation constitute the second major contribution. Unlike the algorithm in [64],which

is used for offline network optimization, the algorithm developed here is suitable for online

network control. Convergence of asynchronous subgradient methods for dual minimization

is known under diminishing stepsize [83]; this chapter proves results for constant stepsize.

Near-optimal primal variables are also recovered by forming running averages of the primal

iterates. This technique has also been used in synchronous subgradient methods for convex
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Figure 1.2: A tactical network

optimization; see e.g., [113] and references therein. Here, ergodic convergence results are

established for the asynchronous scheme and the non-convex problemat hand.

1.2.2 Multicast in Random Access Networks

Tactical wireless ad hoc networks play a crucial role when it comes to communication dom-

inance in the battlefield. Important requirements for such networks include resilience and

efficiency. In order to accommodate units such as soldiers, military vehicles,or a field hospi-

tal, tactical networks are typically multi-hop; see e.g., Figure 1.2. Thus, it becomes important

to deploy decentralized protocols, so that no single node exposes vulnerability of the network.

Aloha is a simple, yet widely deployed medium access control (MAC) protocol, whose opera-

tion is distributed and resilient to both random, and jamming-induced link failures.

Chapter 3 focuses on multicasting applications for tactical networks, whereinformation

needs to be multicast from a single source to multiple target nodes. Efficient multicasting is

realized using network coding whereby nodes perform encoding functions on packets traveling

in the network. Although the multicast capacity region of wireless networks is not known, the

rate region achievable with linear network coding has been characterized[97, 159]. This rate
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region can be practically achieved by fully distributed random linear network coding strate-

gies [27, 72, 96]. Random network coding also results in each packet getting distributed spa-

tially, thus providing some inherent protection against eavesdropping. Moreover, wedding of

network coding with Aloha is particularly attractive for military networks because the network

operation becomes extremely simple. Specifically, given the access probabilities, each node

simply transmits random linear combinations of the packets in its buffer at a pre-specified

rate [27, 72, 96]. The protocol does not require ACKs (nor retransmissions) at the MAC or

network layers.

This chapter considers joint design of wirelessmulti-hopnetworks employing random net-

work coding and slotted Aloha. A cross-layer optimization problem is formulated, where net-

work coding rates (also called subgraphs) and transmission probabilities are jointly determined

to maximize a network-wide objective. In contrast to simple protocol operation, the joint de-

sign itself is notoriously difficult. This is because the Aloha capacity region, even for three

nodes with fully backlogged queues is described by non-convex signomialconstraints [138].

Joint design of network coding and Aloha MAC has been undertaken forsingle-hopnet-

work topologies. The performance of slotted Aloha for star networks wasanalyzed in [88].

A game theoretic approach for throughput maximization in a single-hop setting was proposed

in [75]. The performance for two-hop (relay) networks with bi-directional traffic was reported

in [161]. These works underline the significance of the cross-layer approach for coded Aloha

networks.

Joint design of coded Aloha multi-hop networks has been attempted. A branch-and-bound

method was employed in [140] to obtain globally optimal transmission probabilities andsub-

graphs. While offering a benchmark for comparison, the resultant protocol may be too complex

for use in large networks. A heuristic algorithm was proposed in [160], where the access prob-

abilities and network coding rates were optimized separately. Albeit practical,the approach

in [160] is suboptimal, and does not provide performance guarantees.

In this chapter, a successive convex approximation approach is adopted to obtain solutions

that are guaranteed to be locally optimal. Convex surrogate problems are constructed in such a

way to guarantee convergence of the overall algorithm to a Karush-Kuhn-Tucker (KKT) point
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of the original non-convex problem, and thus enable a tractable, locally optimal solution, even

for large networks. This requires an efficient re-formulation of the MACconstraints, which

constitutes our first contribution.

The constructed surrogate problems are not amenable to distributed solution. To this end,

a separable structure is created by further approximating the problem, whilestill preserving

KKT optimality of the overall algorithm. This forms our second contribution, which involves

approximating even convex terms in order to make the overall problem separable. The dual

subgradient method is employed for the resulting convex problems, where the primal and dual

updates can be performed in a parallel and distributed fashion. A primal solution yielding near-

optimal access probabilities and network coding rates, is recovered by primal averaging. An

online network control protocol is also introduced to perform the optimizationtask.

The coded Aloha scheme enjoys features attractive for tactical networks. Specifically, the

resulting protocol is simple and decentralized, whereby every node transmits random linear

combinations with its access probability. Moreover, the optimal designs of this work take into

account the packet loss probability due to the wireless medium (erasures); this feature can be

leveraged to ensure jamming-resilience by preemptively setting higher erasure probabilities

for any part of the network that is likely to be jammed. Furthermore, the subgradient-based

online optimization and control uses a constant stepsize, which enables adaptation to slowly

time-varying environments, for instance, due to mobility of branch units, or non-stationary

jamming. The proposed scheme can also be used in low-end systems which do not implement

any scheduling and power-allocation schemes.

1.2.3 Muticast under Delay Constraints

An important, but often overlooked, aspect of several wireless applications is the sensitivity of

packets to delays. Streaming media and real-time sensor data, for example, are associated with

strict deadlines, failing which, packets become useless. However, many wireless network cod-

ing implementations, such as [27], operate under the assumption of large block-lengths. This

requires the sinks to accumulate a large number of packets before commencing the decoding

process, thereby incurring prohibitively large delays.
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Chapter 4 develops a joint scheduling and network coding (JS-NC) algorithm for wire-

less networks with packet delay constraints. A single source multicast scenario is considered

where packets must be decoded at each sink within a specified number of time-slots since their

first transmission by the source node. Delay constraints significantly complicate the JS-NC

design since the optimal codes may have infinite block-lengths; see [50] andother references

in Section 4.

Since infinite block-length codes are difficult to design as well as implement, a simpler

periodic version of this joint design problem is proposed that operates ona time-unwrapped

graph, thus allowing for finite block-length network codes. Theperiodic formulationis em-

ployed to derive a constant-factor approximate, augmenting-path design algorithm that is both

scalable and distributed. The resultant network coding protocol does not require any end-to-

end feedback or asymptotically large field size, and needs only a brief set-up time.

For networks with primary interference constraints, the JS-NC design problem is also ana-

lyzed from an integer programming perspective. A set of valid inequalities isdeveloped which

is subsequently used to derive a linear programming upper bound on the achievable through-

put. Finally, simulations are used to corroborate the performance of the approximate JS-NC

algorithm, and the quality of the associated bounds.

1.2.4 Network-Compressive Coding in Wireless Sensor Networks

Wireless sensor networks (WSNs) have become ubiquitous for cost-effective, distributed environment-

monitoring and surveillance applications [156]. Deployed over large areas, WSNs are comprise

of low-cost autonomous sensing devices with limited processing capabilities and battery life.

In large-scale WSN deployments, however, relaying information over several hops becomes

increasingly energy inefficient. On the other hand, observations from nearby sensors may be

highly correlated; for instance, in temperature monitoring or intrusion-detection systems. For

such applications, spatial correlation can be exploited to perform in-network compression of

data, and achieve significant energy savings and prolonged network lifetime [119].

Chapter 5 develops network-compression algorithms that uselinear network coding(LNC)

to compress and communicate sensor observations. Compression via LNC features simple op-
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erations per sensor and reduced transmission energy. In general, thetask of jointly designing

data collection and compression protocols falls under the broad area of distributed source cod-

ing (DSC) [123, 146, 171]. However, in contrast to most DSC schemes,typically involving

Slepian-Wolf coding, the LNC-based network-compression does not require the intermediate

nodes to have knowledge of the correlation between sensor observations.

The use of network coding for in-network compression has been considered before in the

context of network multicast; see [101] and references therein. Since optimal source-network

decoding generally requires a search over an exponentially-large structured set of hypothe-

ses, most results focus on characterizing the achievable rate region. Aspointed out in [101],

it is possible to perform approximate decoding by modeling the probabilistic relationships

among observations using a factor graph [86], thereby allowing the use of low-complexity

message-passing algorithms. The caveat though is that construction and analysis of “good”

factor graphs, promising low decoding complexity, or reliably decoded symbol estimates, is

not straightforward, and was not dealt with in [101].

This chapter considers the design and analysis of network-compressive coding and decod-

ing algorithms. Using the sum-product algorithm for decoding, specific scenarios are iden-

tified, which yield factor graphs that admit practical protocols and low decoding error. Two

novel factor graph constructions are proposed, offering complementary strengths in modeling

and inference accuracy. Performance of the proposed approach isalso analyzed by deriving er-

ror exponents of the probability that the distortion at the sink surpasses a given tolerable level.

These error exponents expose the interplay between correlation level, compression ratio and

alphabet size. The proposed algorithm is tested both on synthetic as well asreal data sets, thus

verifying its efficacy.

It is worth noting that the problem of efficiently collecting distributed data has also been

explored in the context of decentralized detection, see e.g., [156] and references therein. How-

ever, most of these approaches are for scalar random variables [145], and assume that all sen-

sors receive observations from the same variable [180]. Some approaches assume the observa-

tions to be real-valued and exploit compressive-sensing [69], or Gaussian belief propagation [7]

for recovery. However, these algorithms entail mixing and transmission of analog-amplitude
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messages, which may be impractical in low-cost sensing devices. Moreover, none of the exist-

ing approaches considers the design of mixing matrices (tailored to minimize communication

cost), or analyze the impact of quantization errors.

1.2.5 Dynamic Network Cartography

The explosive growth in network size has necessitated the development ofavant-garde moni-

toring tools to endow network operators with a real-time view of the global network behavior.

As pointed out earlier, acquisition and processing of network-wide performance metrics for

large networks is no easy task. Focus has thus shifted towards statistical means of predicting

network-wide performance metrics using measurements on only a subset ofnodes [124, 153].

A promising approach in this context has been the application ofkriging, a tool for spatial

prediction popular in geostatistics and environmental sciences [36, 141].A network kriging

approach was developed in [29], where network-wide path delays were predicted using mea-

surements on a chosen subset of paths. The class of linear predictors introduced leverages

network topology information to model the covariance among path delays. Thisis accom-

plished in [29] by assigning higher correlation between two paths if they share several links, as

in this case, they are expected to incur similar delay variations.

Chapter 6 puts forth adynamicnetwork kriging approach capable of real-time spatio-

temporal delay predictions. Specifically, a kriged Kalman filter (KKF) is employed to ex-

plicitly capture variations due to queuing delays, while retaining the topology-based kriging

predictor. The resulting dynamic network kriging approach not only yieldslower prediction

error, but is also more flexible, allowing delay measurements to be taken on random subsets

of paths. In this context, the problem of choosing the optimal paths for delaymeasurements is

also considered. Since the KKF runs in real-time, the paths are also selectedin an online fash-

ion by minimizing the prediction error per time slot. Interestingly, the resulting combinatorial

optimization problem is shown to be submodular, and is therefore solved approximately via a

greedy routine.

Recently, a compressive sampling-based approach has also been reported for predicting

network-wide performance metrics [30, 172]. For instance, diffusion wavelets were utilized
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in [30] to obtain a compressible representation of the delays, and accountfor spatial and tem-

poral correlations. Although this allows for enhanced prediction accuracy over [29], it requires

batch processing of measurements which does not scale well to large networks for real-time

operation. In contrast, both the KKF and the greedy path selection algorithmsentail sequential

operations, and are therefore significantly faster.

Imputation of end-to-end delays has also been considered in the context of Internet ge-

olocation. Treating end-to-end delays as distances between nodes, all-pair node distances are

estimated using Euclidean embedding [40], or, matrix factorization [92]. However, these ap-

proaches do not exploit the temporal or topological information, since theirfocus is not on

monitoring or extrapolation (that is, prediction) of delays.

1.3 Publications

The present Ph.D. work on network optimization and monitoring has resulted inpublication of

three journal papers (in the IEEE/ACM Transactions on Networking [130], IEEE Transactions

on Signal Processing [134], and IEEE Journal on Selected Areas in Communications [131]).

It has also led to two journal submissions, currently under consideration for publication (in the

IEEE Transactions of Wireless Communications [126] and IEEE Transactions of Information

Theory [129]), and one journal paper in preparation [56] for submission to the Journal of

Machine Learning Research. In addition to these 6 journal papers, results in this thesis have

also been disseminated at pertinent conferences, where a total of 7 conference articles has been

accepted for publication [57,127,128,132,133,135,136].
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Chapter 2

Cross-Layer Design of Coded

Multicast in Fading

This chapter deals with cross-layer designs in wireless fading networks.An optimal resource

allocation framework is formulated, where the nodes are allowed to performnetwork coding.

The aim is to jointly optimize end-to-end transport layer rates, network code design variables,

broadcast link flows, link capacities, average power consumption, and short-term power alloca-

tion policies. As in the routing paradigm where nodes simply forward packets, the cross-layer

optimization problem with network coding is non-convex in general. It is proved however,

that with network coding, dual decomposition for multicast is optimal so long as the fading at

each wireless link is a continuous random variable. This lends itself to provably convergent

subgradient algorithms, which not only admit a layered-architecture interpretation but also op-

timally integrate network coding in the protocol stack. The dual algorithm is alsopaired with a

scheme that yields near-optimal network design variables, namely multicast end-to-end rates,

network code design quantities, flows over the broadcast links, link capacities, and average

power consumption. Finally, an asynchronous subgradient method is developed, whereby the

dual updates at the physical layer can be affordably performed with a certain delay with re-

spect to the resource allocation tasks in upper layers. This attractive feature is motivated by the

complexity of the physical layer subproblem, and is an adaptation of the subgradient method

suitable for network control.
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The organization of this chapter is as follows. Section 2.1 presents the problem formula-

tion that jointly optimizes end-to-end rates, virtual flows, broadcast link flows, link capacities,

average power consumption, and instantaneous power allocations in wireless fading multicast

networks that use intra-session network coding. The cross-layer problem is generally non-

convex, yet it is shown to have zero duality gap (Section 2.2.1). The zeroduality gap is then

leveraged in order to develop a subgradient descent algorithm that minimizes the dual function

(Section 2.2.2), and is provably convergent (Section 2.2.3). In Section 2.3, the subgradient

algorithm is modified so that the component of the subgradient that results from the physi-

cal layer power allocation may be delayed with respect to operations in otherlayers. Finally,

numerical results are presented in Section 2.4, and Section 2.5 concludes the chapter.

2.1 Problem Formulation

Consider a wireless network consisting of a set of terminals (nodes) denoted byN . The broad-

cast property of the wireless interface is modeled by using the concept ofhyperarcs. Ahyperarc

is a pair(i, J) that represents a broadcast link from a nodei to a chosen set of nodesJ ⊂ N .

The entire network can therefore be represented as a hypergraphH = (N ,A), whereA is the

set of hyperarcs. The complexity of the model is determined by the choice ofthe setA. Let

the neighbor-setN(i) denote the set of nodes that nodei reaches. An exhaustive model might

include all possible2|N(i)| − 1 hyperarcs from nodei. On the other hand, a simpler model

might include only a smaller number of hyperarcs per node. A point-to-pointmodel is also a

special case when nodei has|N(i)| hyperarcs each containing just one receiver.

The present chapter considers a physical layer whereby the channels undergo random mul-

tipath fading. This model allows for opportunistically best schedules per channel realization.

This is different from the link-level network models in [38, 74, 97, 159],where the hyperarcs

are modeled as erasure channels. The next subsection discusses the physical layer model in

detail.
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2.1.1 Physical Layer

In the current setting, terminals are assumed to have a set of tonesF available for transmission.

Let hfij denote the power gain between nodesi andj over a tonef ∈ F , assumed random,

capturing fading effects. Leth represent the vector formed by stacking all the channel gains.

The network operates in a time slotted fashion; the channelh remains constant for the duration

of a slot, but is allowed to change from slot to slot. A slowly fading channel isassumed so that

a large number of packets may be transmitted per time slot. The fading process ismodeled to

be stationary and ergodic.

Since the channel changes randomly per time slot, the optimization variables at the physical

layer are the channel realization-specific power allocationspfij(h) for all hyperarcs(i, J) ∈ A,

and tonesf ∈ F . For convenience, these power allocations are stacked in a vectorp(h).

Instantaneous power allocations may adhere to several scheduling and mask constraints, and

these will be generically denoted by a bounded setΠ such thatp(h) ∈ Π. The long-term

average power consumption by a nodei is given by

pi = E


∑

f

∑

J :(i,J)∈A

pfiJ(h)


 (2.1)

whereE[.] denotes expectation over the stationary channel distribution.

For slow fading channels, the information-theoretic capacity of a hyperarc (i, J) is defined

as the maximum rate at whichall nodes inJ receive data fromi with vanishing probability

of error in a given time slot. This capacity depends on the instantaneous power allocations

p(h) and channelsh. A generic bounded functionCf
iJ(p(h),h) will be used to describe this

mapping. Next we give two examples of the functional forms ofCf
iJ(·) andΠ.

Example 2.1. Conflict graph model: The power allocationspfij adhere to the spectral mask

constraints

0 ≤ pfij ≤ p
f
max. (2.2)

However, only conflict-free hyperarc are allowed to be scheduled fora givenh. Specifically,

power may be allocated to hyperarcs(i1, J1) and(i2, J2) if and only if [159]

i) i1 6= i2;
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ii) i1 /∈ J2 andi2 /∈ J1 (half-duplex operation); and

iii-a) J1 ∩ J2 = ∅ (primary interference), or additionally,

iii-b) J1 ∩N(i2) = J2 ∩N(i1) = ∅ (secondary interference).

The setΠ therefore consists of all possible power allocations that satisfy the previous proper-

ties.

Due to hyperarc scheduling, all transmissions in the network are interference free. The

signal-to-noise ratio (SNR) at a nodej ∈ J is given by

Γf
iJj(p(h),h) =

pfij(h)h
f
ij

Nj
(2.3)

whereNj is the noise power atj. In a broadcast setting, the maximum rate of information

transfer fromi to eachnode inJ is

Cf
iJ(p(h),h) = min

j∈J
log(1 + Γf

iJj(p(h),h)). (2.4)

A similar expression can be written for the special case of point-to-point linksby substituting

hyperarcs(i, J) by arcs(i, j) in the expression forΓf
iJj(p(h),h).

For slow-fading channels, Gaussian codebooks with sufficiently large block lengths achieve

this capacity in every time slot. More realistically, an SNR penalty termρ can be included to

account for finite-length practical codes and adaptive modulation schemes, so that

Cf
iJ(p(h),h) = min

j∈J
log
(
1 + Γf

iJj(p(h),h)/ρ
)
. (2.5)

The penalty term is in general a function of the target bit error rate.

Example 2.2. Signal-to-interference-plus-noise-ratio (SINR) model: Here, the constraint set

Π is simply a box setBp,

Π = Bp := {pfij |0 ≤ p
f
ij ≤ p

f
max ∀ (i, J) ∈ A andf ∈ F }. (2.6)

The setBp could also include (instantaneous) sum-power constraints per node. Thecapacity

is expressed as in (2.4) or (2.5), but now the SNR is replaced by the SINR, given by

Γf
iJj(p(h),h) = pfij(h)h

f
ij

/(
Nj + I intij,f + Iselfj,f + IbroadiJj,f

)
. (2.7)

The denominator consists of the following terms:
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• Interference from other nodes’ transmissions to nodej

I intij,f =
∑

(k,M)∈A:j∈M,
k 6=j,k 6=i

pfkM (h)hfkj . (2.8a)

• “Self-interference” due to transmissions of nodej

Iselfj,f = hjj
∑

M :(j,M)∈A

pfjM (h). (2.8b)

This term is introduced to encourage half-duplex operation by settinghjj to a large value.

• “Broadcast-interference” from transmissions of nodei to other hyperarcs

IbroadiJj,f = βhfij
∑

M :(i,M)∈A
M 6=J

pfiM (h). (2.8c)

This term is introduced to force nodei to transmit at most over a single hyperarc, by

settingβ to a large value.

The previous definitions ignore interference from non-neighboring nodes. However, they can

be readily extended to include more general interference models.

The link layer capacity is defined as the long-term average of the total instantaneous ca-

pacity, namely,

ciJ := E


∑

f

Cf
iJ(p(h),h)


 . (2.9)

This is also called ergodic capacity and represents the maximum average datarate available to

the link layer.

2.1.2 Link Layer and Above

The network supports multiple multicast sessions indexed bym, namelySm := (sm, Tm, am),

each associated with a source nodesm, sink nodesTm ⊂ N , and an average flow rateam from

sm to eacht ∈ Tm. The valueam is the average rate at which the network layer of source

terminalsm admits packets from the transport layer. Traffic is considered elastic, sothat the

packets do not have any short-term delay constraints.
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Network coding is a generalization of routing since the nodes are allowed to code packets

together rather than simply forward them. This chapter considers intra-session network coding,

where only the traffic belonging to the same multicast session is allowed to mix. Although bet-

ter than routing in general, this approach is still suboptimal in terms of achievingthe network

capacity. However, general (inter-session) network coding is difficult to characterize or imple-

ment since neither the capacity region nor efficient network code designsare known [175, Part

II]. On the other hand, a simple linear coding strategy achieves the full capacity region of

intra-session network coding [1].

The network layer consists of endogenous flows of coded packets over hyperarcs. Recall

that the maximum average rate of transmission over a single hyperarc cannot exceedciJ . Let

the coded packet-rate of a multicast sessionm over hyperarc(i, J) bezmiJ (also referred to as

the subgraph or broadcast link flow). The link capacity constraints thus translate to

∑

m

zmiJ ≤ ciJ ∀(i, J) ∈ A. (2.10)

To describe the intra-session network coding capacity region, it is commonplace to use

the concept ofvirtual flow between terminalsi and j corresponding to each sessionm and

sink t ∈ Tm with average ratexmt
ij . These virtual flows are defined only for neighboring

pairs of nodes i.e.,(i, j) ∈ G := {(i, j)|(i, J) ∈ A, j ∈ J}. The virtual flows satisfy the

flow-conservation constraints, namely,

∑

j:(i,j)∈G

xmt
ij −

∑

j:(j,i)∈G

xmt
ji = σmi :=





am if i = sm,

−am if i = t,

0 otherwise

(2.11)

for all m, t ∈ Tm, andi ∈ N . Hereafter, the set of equations fori = t will be omitted because

they are implied by the remaining equations.

The broadcast flowszmiJ and the virtual flowsxmt
ij can be related using results from the

lossy-hyperarc model of [97, 159]. Specifically, [159, eq. (9)] relates the virtual flows and

subgraphs, using the fractionbiJK ∈ [0, 1] of packets injected into the hyperarc(i, J) that reach

the set of nodesK ⊂ N(i). Recall from Section 2.1.1, that here the instantaneous capacity
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functionCf
iJ(·) is defined such that all packets injected into the hyperarc(i, J) are received by

every node inJ . Thus in our case,biJK = 1 wheneverK ∩ J 6= ∅ and consequently,

∑

j∈K

xmt
ij ≤

∑

J :(i,J)∈A
J∩K 6=∅

zmiJ , K ⊂ N(i), i ∈ N ,m, t ∈ Tm. (2.12)

Note the difference with [159] where at every time slot, packets are injectedinto a fixed

set of hyperarcs at the same rate. The problem in [159] is therefore to find a schedule of

hyperarcs that do not interfere (the non-conflicting hyperarcs). The same schedule is used at

every time slot; however, only a random subset of nodes receive the injected packets in a given

slot. Instead here, the hyperarc selection is part of the power allocation problem at the physical

layer, and is done for every time slot. The transmission rate (or equivalently, the channel coding

redundancy) is however appropriately adjusted so that all the nodes in the selected hyperarc

receive the data.

In general, for any feasible solution to the set of equations (2.10)–(2.12), a network code

exists that supports the corresponding exogenous ratesam [97]. This is because for each mul-

ticast sessionm, the maximum flow betweensm andt ∈ Tm is am, and is therefore achiev-

able [1, Th. 1]. Given a feasible solution, various network coding schemes can be used to

achieve the exogenous rates. Random network coding based implementations such as those

proposed in [95] and [27], are particularly attractive since they are fully distributed and require

little overhead. These schemes also handle any residual errors or erasures that remain due to

the physical layer.

The system model also allows for a set of “box constraints” that limit the long-term powers,

transport layer rates, broadcast link flow rates, virtual flow rates as well as the maximum link

capacities. Combined with the setΠ, these constraints can be compactly expressed as

B := {y,p(h)| p(h) ∈ Π, 0 ≤ pi ≤ p
max
i , ammin ≤ a

m ≤ ammax, 0 ≤ ciJ ≤ c
max
iJ ,

0 ≤ zmiJ ≤ z
max
iJ , 0 ≤ xmt

ij ≤ x
max
ij }. (2.13)

Herey is a super-vector formed by stacking all the average rate and power variables, that is,am,

zmiJ , xmt
ij , ciJ , andpi. Parameters with min/max subscripts or superscripts denote prescribed

lower/upper bounds on the corresponding variables.
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2.1.3 Optimal Resource Allocation

A common objective of the network optimization problem is maximization of the exogenous

ratesam and minimization of the power consumptionpi. Towards this end, consider increasing

and concave utility functionsUm(am) and convex cost functionsVi(pi) so that the overall

objective functionf(y) =
∑

m Um(am) −
∑

i V (pi) is concave. For example, the utility

function can be the logarithm of session rates and the cost function can bethe squared average

power consumption. The network utility maximization problem can be written as

P = max
(y,p(h))∈B

∑

m

Um(am)−
∑

i

Vi(pi) (2.14a)

s. t. σmi ≤
∑

(i,j)∈G

xmt
ij −

∑

(j,i)∈G

xmt
ji ∀m, i 6= t, t ∈ Tm (2.14b)

∑

j∈K

xmt
ij ≤

∑

J :(i,J)∈A
J∩K 6=∅

zmiJ ∀K ⊂ N(i),m, t ∈ Tm (2.14c)

∑

m

zmiJ ≤ ciJ ∀ (i, J) ∈ A (2.14d)

ciJ ≤ E


∑

f

Cf
iJ(p(h),h)


 ∀ (i, J) ∈ A (2.14e)

E


∑

f

∑

J :(i,J)∈A

pfiJ(h)


 ≤ pi (2.14f)

wherei ∈ N . Note that constraints (2.1), (2.9) and (2.11) have been relaxed withoutincreasing

the objective function. For instance, the relaxation of (2.11) is equivalent to allowing each node

to send at a higher rate than received, which amounts to adding virtual sources at all nodes

i 6= t. However, adding virtual sources does not result in an increase in theobjective function

because the utilitiesUm depend only on the multicast rateam.

The solution of the optimization problem (2.14) gives the throughputam that is achievable

using optimal virtual flow ratesxmt
ij and power allocation policiesp(h). These virtual flow

rates are used for network code design. When implementing coded networks in practice, the

traffic is generated in packets and stored at nodes in queues (and virtual queues for virtual

flows) [27]. The constraints in (2.14) guarantee that all queues are stable.

Optimization problem (2.14) is non-convex in general, and thus difficult to solve. For
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example, in the conflict graph model, the constraint setΠ is discrete and non-convex, while in

the SINR-model, the capacity functionCf
iJ(p(h),h) is a non-concave function ofp(h); see

e.g., [98], [93]. The next section analyzes the Lagrangian dual of (2.14).

2.2 Optimality of Layering

This section shows that (2.14) has zero duality gap, and solves the dual problem via subgra-

dient descent iterations. The purpose here is two-fold:i) to describe a layered architecture

in which linear network coding is optimally integrated; andii) to set the basis for a network

implementation of the subgradient method, which will be developed in Section 2.3.

2.2.1 Duality Properties

Associate Lagrange multipliersνmt
i , ηmt

iK , ξiJ , λiJ andµi with the flow constraints (2.14b), the

union of flow constraints (2.14c), the link rate constraints (2.14d), the capacity constraints (2.14e),

and the power constraints (2.14f), respectively. Also, letζ be the vector formed by stacking

these Lagrange multipliers in the aforementioned order. Similarly, if inequalities (2.14b)–

(2.14f) are rewritten with zeros on the right-hand side, the vectorq(y,p(h)) collects all the

terms on the left-hand side of the constraints. The Lagrangian can therefore be written as

L(y,p(h), ζ) =
∑

m

Um(am)−
∑

i∈N

Vi(pi)− ζTq(y,p(h)). (2.15)

The dual function and the dual problem are, respectively,

̺(ζ) := max
(y,p(h))∈B

L(y,p(h), ζ) (2.16)

D = min
ζ≥0

̺(ζ). (2.17)

Since (2.14e) may be a non-convex constraint, the duality gap is in general,non-zero; i.e.,

D ≥ P. Thus, solving (2.17) yields an upper bound on the optimal valueP of (2.14). In the

present formulation however, we have the following interesting result.

Proposition 2.1. If the fading is continuous, then the duality gap is exactly zero, i.e.,

P = D. (2.18)



2.2 Optimality of Layering 23

A generalized version of Proposition 2.1, including a formal definition of continuous fad-

ing, is provided in Appendix 2.A and connections to relevant results are made. The essential

reason behind this strong duality is that the set of ergodic capacities resulting from all feasible

power allocations is convex.

The requirement of continuous fading channels is not limiting since it holds for all practi-

cal fading models, such as Rayleigh, Rice, or Nakagami-m. Recall though that the dual prob-

lem is always convex. The subgradient method has traditionally been usedto approximately

solve (2.17), and also provide an intuitive layering interpretation of the network optimization

problem [26]. The zero duality gap result is remarkable in the sense that itrenders this layering

optimal.

A corresponding result for unicast routing in uncoded networks has been proved in [139].

The fact that it holds for coded networks with broadcast links, allows optimal integration of the

network coding operations in the wireless protocol stack. The next subsection deals with this

subject.

2.2.2 Subgradient Algorithm and Layer Separability

The dual problem (2.17) can in general be solved using the subgradient iterations [12, Sec-

tion 8.2] indexed byℓ

(y(ℓ),p(h; ℓ)) ∈ arg max
(y,p(h))∈B

L(y,p(h), ζ(ℓ)) (2.19a)

ζ(ℓ+ 1) = [ζ(ℓ) + ǫq(y(ℓ),p(h; ℓ))]+ (2.19b)

whereǫ is a positive constant stepsize, and[.]+ denotes projection onto the nonnegative orthant.

The inclusion symbol (∈) allows for potentially multiple maxima. In (2.19b),q(y(ℓ),p(h; ℓ))

is a subgradient of the dual function̺(ζ) in (2.16) atζ(ℓ). Next, we discuss the operations

in (2.19) in detail.

For the Lagrangian obtained from (2.15), the maximization in (2.19a) can be separated into
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the following subproblems

ami (ℓ) ∈ arg max
ammin≤am≤ammax

[
Um(am)−

∑

t∈Tm

νmt
sm (ℓ)am

]
(2.20a)

zmiJ(ℓ) ∈ arg max
0≤zm

iJ
≤zmax

iJ



∑

K⊂N(i)
K∩J 6=∅

∑

t∈Tm

ηmt
iK (ℓ)− ξiJ(ℓ)


 z

m
iJ (2.20b)

xmt
ij (ℓ) ∈ arg max

0≤xmt
ij ≤xmax

ij


ν

mt
i (ℓ)11i 6=t − ν

mt
j (ℓ)11j 6=t −

∑

K⊂N(i)
j∈K

ηmt
iK (ℓ)


x

mt
ij (2.20c)

ciJ(ℓ) ∈ arg max
0≤ciJ≤cmax

iJ

[ξiJ(ℓ)− λiJ(ℓ)] ciJ (2.20d)

pi(ℓ) ∈ arg max
0≤pi≤pmax

i

[µi(ℓ)pi − Vi(pi)] (2.20e)

p(h; ℓ) ∈ arg max
p(h)∈Π

∑

f,(i,J)∈A

γfiJ(p(h),h, ζ) (2.20f)

where

γfiJ(p(h),h, ζ) := λiJC
f
iJ(p(h),h)− µip

f
ij(h) (2.20g)

and11X is the indicator function, which equals one if the expressionX is true, and zero other-

wise.

The physical layer subproblem (2.20f) implies per-fading state separability. Specifically,

instead of optimizing over the class of power control policies, (2.20f) allowssolving for the

optimal power allocation for each fading state; that is,

P(p(h)) = max
p(h)∈Π

E


 ∑

f,(i,J)∈A

γfiJ(p(h),h, ζ)




= E


 max
p(h)∈Π

∑

f,(i,J)∈A

γfiJ(p(h),h, ζ)


 . (2.21)

Note that problems (2.20a)–(2.20e) are convex and admit efficient solutions. The per-

fading state power allocation subproblem (2.20f) however, may not necessarily be convex. For

example, under the conflict graph model (cf. Example 1), the number of feasible power allo-

cations may be exponential in the number of nodes. Finding an allocation that maximizes the
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objective function in (2.21) is equivalent to the NP-hard maximum weighted hyperarc match-

ing problem [159]. Similarly, the capacity function and hence the objective function for the

SINR model (cf. Example 2) is non-convex in general, and may be difficultto optimize.

This separable structure allows a useful layered interpretation of the problem. In particular,

the transport layer sub-problem (2.20a) gives the optimal exogenous rates allowed into the net-

work; the network flow sub-problem (2.20b) yields the endogenous flowrates of coded packets

on the hyperarcs; and the virtual flow sub-problem (2.20c) is responsible for determining the

virtual flow rates between nodes and therefore the network code design. Likewise, the capacity

sub-problem (2.20d) yields the link capacities and the power sub-problem(2.20e) provides the

power control at the data link layer.

The layered architecture described so far also allows for optimal integration of network

coding into the protocol stack. Specifically, the broadcast and virtual flows optimized respec-

tively in (2.20b) and (2.20c), allow performing the combined routing-plus-network coding task

at network layer. An implementation such as the one in [27] typically requires queues for both

broadcast as well as virtual flows to be maintained here.

Next, the subgradient updates of (2.19b) become

νmt
i (ℓ+ 1) =

[
νmt
i (ℓ) + ǫq̌imt

ν (ℓ)
]+

(2.22a)

ηmt
iK (ℓ+ 1) =

[
ηmt
iK (ℓ) + ǫq̌iKmt

η (ℓ)
]+

(2.22b)

ξiJ(ℓ+ 1) =
[
ξiJ(ℓ) + ǫq̌iJξ (ℓ)

]+
(2.22c)

λiJ(ℓ+ 1) =
[
λiJ(ℓ) + ǫq̌iJλ (ℓ)

]+
(2.22d)

µi(ℓ+ 1) =
[
µi(ℓ) + ǫq̌iµ(ℓ)

]+
(2.22e)
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whereq̌(ℓ) are the subgradients at indexℓ given by

q̌imt
ν (ℓ) = σmi (ℓ) +

∑

(i,j)∈G

xmt
ji (ℓ)−

∑

(j,i)∈G

xmt
ij (ℓ) (2.23a)

q̌iKmt
η (ℓ) =

∑

j∈K

xmt
ij (ℓ)−

∑

J :(i,J)∈A
J∩K 6=∅

zmiJ(ℓ) (2.23b)

q̌iJξ (ℓ) =
∑

m

zmiJ(ℓ)− ciJ(ℓ) (2.23c)

q̌iJλ (ℓ) = ciJ(ℓ)− E


∑

f

Cf
iJ(p(h; ℓ),h)


 (2.23d)

q̌iµ(ℓ) = E


∑

f

∑

J :(i,J)∈A

pfiJ(h; ℓ)


− pi(ℓ). (2.23e)

The physical layer updates (2.22d) and (2.22e) are again complicated since they involve the

E[.] operations of (2.23d) and (2.23e). These expectations can be acquired via Monte Carlo

simulations by solving (2.20f) for realizations ofh and averaging over them. These realiza-

tions can be independently drawn from the distribution ofh, or they can be actual channel

measurements. In fact, the latter is implemented in Section 2.3 on the fly during network

operation.

2.2.3 Convergence Results

This subsection provides convergence results for the subgradient iterations (2.19). Since the

primal variables(y,p(h)) and the capacity functionCf
iJ(.) are bounded, it is possible to define

an upper boundG on the subgradient norm; i.e.,‖q(y(ℓ),p(h; ℓ))‖ ≤ G for all ℓ ≥ 1.

Proposition 2.2. For the subgradient iterations in(2.20)and (2.22), the best dual value con-

verges toD upto a constant; i.e.,

lim
s→∞

min
1≤ℓ≤s

̺(ζ(ℓ)) ≤ D+
ǫG2

2
. (2.24)

This result is well known for dual (hence, convex) problems [12, Prop. 8.2.3]. However,

the presence of an infinite-dimensional variablep(h) is a subtlety here. A similar case is dealt

with in [139] and Proposition 2.2 follows from the results there.
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Note that in the subgradient method (2.19), the sequence of primal iterates{y(ℓ)} does

not necessarily converge. However, a primal running average scheme can be used for finding

the optimal primal variablesy∗ as summarized next. Recall thatf(y) denotes the objective

function
∑

m Um(am)−
∑

i Vi(pi).

Proposition 2.3. For the running average of primal iterates

ȳ(s) :=
1

s

s∑

ℓ=1

y(ℓ). (2.25)

the following results hold:

a) There exists a sequence{p̊(h; s)} such that(ȳ(s), p̊(h; s)) ∈ B, and also

lim
s→∞

∥∥[q(ȳ(s), p̊(h; s))]+
∥∥ = 0. (2.26)

b) The sequencef(ȳ(s)) converges in the sense that

lim inf
s→∞

f(ȳ(s)) ≥ P−
ǫG2

2
(2.27a)

and lim sup
s→∞

f(ȳ(s)) ≤ P. (2.27b)

Equation (2.26) asserts that the sequence{ȳ(ℓ)} together with an associated{p̊(h; ℓ)}

becomes asymptotically feasible. Moreover, (2.27) explicates the asymptotic suboptimality as

a function of the stepsize, and the bound on the subgradient norm. Proposition 2.3 however,

does not provide a way to actually find{p̊(h; ℓ)}.

Averaging of the primal iterates is a well-appreciated method to obtain optimal primal

solutions from dual subgradient methods in convex optimization [113]. Notethough that the

primal problem at hand is non-convex in general. Results related to Proposition 2.3 are shown

in [64]. Proposition 2.3 follows in this chapter as a special case result fora more general

algorithm allowing for asynchronous subgradients and suitable for onlinenetwork control,

elaborated next.

2.3 Subgradient Algorithm for Network Control

The algorithm in Section 2.2.2 finds the optimal operating point of (2.14) in an offline fashion.

In the present section, the subgradient method is adapted so that it can beused for resource
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allocation during network operation.

The algorithm is motivated by Proposition 2.3 as follows. The exogenous arrival rates

am(ℓ) generated by the subgradient method [cf. (2.20a)] can be used as the instantaneous rate

of the traffic admitted at the transport layer at timeℓ. Then, Proposition 2.3 guarantees that the

long-term average transport layer rates will be optimal. Similar observationscan be made for

other rates in the network.

More generally, an online algorithm with the following characteristics is desirable.

• Time is divided in slots and each subgradient iteration takes one time slot. The channel

is assumed to remain invariant per slot but is allowed to vary across slots.

• Each layer maintains its set of dual variables, which are updated according to (2.22) with

a constant stepsizeǫ.

• The instantaneous transmission and reception rates at the various layers are set equal to

the primal iterates at that time slot, found using (2.20).

• Proposition 2.3 ensures that the long-term average rates are optimal.

For network resource allocation problems such as those described in [97], the subgradi-

ent method naturally lends itself to an online algorithm with the aforementioned properties.

This approach however cannot be directly extended to the present case because the dual up-

dates (2.22d)–(2.22e) require an expectation operation, which needs prior knowledge of the

exact channel distribution function for generation of independent realizations ofh per time

slot. Furthermore, although Proposition 2.3 guarantees the existence of a sequence of feasible

power variables̊p(h; s), it is not clear if one could find them since the corresponding running

averages do not necessarily converge.

Towards adapting the subgradient method for network control, recall that the subgradients

q̌iJλ andq̌iµ involve the following summands that require the expectation operations [cf. (2.23d)
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and (2.23e)]

C̃iJ(ℓ) := E


∑

f

Cf
iJ(p(h; ℓ),h)


 (2.28)

P̃i(ℓ) := E


 ∑

f,J :(i,J)∈A

pfij(h; ℓ)


 . (2.29)

These expectations can however be approximated by averaging over actual channel realiza-

tions. To do this, the power allocation subproblem (2.20f) must be solved repeatedly for a pre-

scribed number of time slots, sayS, while using the same Lagrange multipliers. This would

then allow approximation of theE operations in (2.28) and (2.29) with averaging operations,

performed over channel realizations at these time slots.

It is evident however, that the averaging operation not only consumesS time slots but also

that the resulting subgradient is always outdated. Specifically, if the current time slot is of the

form ℓ = KS+1 withK = 0, 1, 2, . . ., the most recent approximations ofC̃iJ andP̃i available

are

ĈiJ(ℓ− S) =
1

S

ℓ−1∑

κ=ℓ−S

∑

f

Cf
iJ(p(hκ; ℓ− S),hκ) (2.30a)

P̂i(ℓ− S) =
1

S

ℓ−1∑

κ=ℓ−S

∑

f,J :(i,J)∈A

pfij(hκ; ℓ− S). (2.30b)

Here, the power allocations are calculated using (2.20f) with theold multipliersλiJ(ℓ − S)

andµi(ℓ− S). The presence of outdated subgradient summands motivates the use of anasyn-

chronous subgradient method such as the one in [83].

Specifically, the dual updates still occur at every time slot but are allowed touse subgra-

dients with outdated summands. Thus,ĈiJ(ℓ − S) and P̂i(ℓ − S) are used instead of the

correspondingE[.] terms in (2.23d) and (2.23e) at the current timeℓ. Further, since the averag-

ing operation consumes anotherS time slots, the same summands are also used for timesℓ+1,

ℓ+ 2, . . ., ℓ+ S − 1. At time ℓ+ S, power allocations from the time slotsℓ, ℓ+ 1, ℓ+ S − 1

become available, and are used for calculatingĈiJ(ℓ) andP̂i(ℓ), which then serve as the more

recent subgradient summands. Note that a subgradient summand such asĈiJ is at leastS and

at most2S − 1 slots old.
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Algorithm 2.1: Asynchronous subgradient algorithm

1 Initialize ζ(1) = 0 andĈiJ(1) = P̂i(1) = 0. LetN be the maximum

number of subgradient iterations.

2 for ℓ = 1, 2, . . . ,N , do

3 Calculate primal iteratesam(ℓ), xmt
ij (ℓ), zmiJ(ℓ), ciJ(ℓ), andpi(ℓ)

[cf. (2.20a)–(2.20e)].

4 Calculate the optimal power allocationp(hℓ; τ(ℓ)) by solving (2.20f) usinghℓ and

ζ(τ(ℓ)).

5 Update dual iteratesνmt
i (ℓ+ 1), ηmt

ik (ℓ+ 1) andξij(ℓ+ 1) from the current primal

iterates evaluated in Line 3 [cf. (2.22a)–(2.22c)].

6 if ℓ− τ(ℓ) = S, then

7 CalculateĈiJ(τ(ℓ)) andP̂i(τ(ℓ)) as in (2.30).

8 end

9 Update the dual iteratesλiJ(ℓ+ 1) andµi(ℓ+ 1):

λiJ(ℓ+ 1) =
[
λiJ(ℓ) + ǫ(ciJ(ℓ)− ĈiJ(τ(ℓ)))

]+

µi(ℓ+ 1) =
[
µi(ℓ) + ǫ(P̂i(τ(ℓ))− pi(ℓ))

]+
.

10 Network Control: Use the current iteratesam(ℓ) for flow control;xmt
ij (ℓ) andzmiJ(ℓ)

for routing and network coding;ciJ(ℓ) for link rate control; andp(hℓ; τ(ℓ)) for

instantaneous power allocation.

11 end
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The asynchronous subgradient method is summarized as Algorithm 1. The algorithm uses

the functionτ(ℓ) which outputs the time of most recent averaging operation, that is,

τ(ℓ) = max
{
S⌊(ℓ− S − 1)/S⌋+ 1, 1

}
∀ ℓ ≥ 1. (2.32)

Note thatS ≤ ℓ− τ(ℓ) ≤ 2S − 1. Recall also that the subgradient componentsĈiJ andP̂i are

evaluated only at timesτ(ℓ).

The following proposition gives the dual convergence result on this algorithm. DefineḠ as

the bound
∥∥∥[ĈT P̂T ]T

∥∥∥ ≤ ḠwhereĈ andP̂ are formed by stacking the termsE
[∑

f C
f
iJ(p(h),h)

]

andE
[∑

f,J p
f
ij(h)

]
, respectively.

Proposition 2.4. If the maximum delay of the asynchronous counterparts of physical layer

updates(2.22d)and (2.22e)isD, then:

a) The sequence of dual iterates{ζ(ℓ)} is bounded; and

b) The best dual value converges toD up to a constant:

lim
s→∞

min
1≤ℓ≤s

̺(ζ(ℓ)) ≤ D+
ǫG2

2
+ 2ǫDḠG. (2.33)

Thus, the suboptimality in the asynchronous subgradient over the synchronous version is

bounded by a constant proportional toD = 2S − 1. Consequently, the asynchronous subgra-

dient might need a smaller stepsize (and hence, more iterations) to reach a given distance from

the optimal.

The convergence of asynchronous subgradient methods for convex problems such as (2.17)

has been studied in [83, Section 6] for a diminishing stepsize. Proposition 2.4provides a

complementary result for constant stepsizes.

Again, as with the synchronous version, the primal running averages also converge to

within a constant from the optimal value of (2.14). This is stated formally in the next proposi-

tion.

Proposition 2.5. If the maximum delay of the asynchronous counterparts of physical layer

updates(2.22d)and (2.22e)isD, then:



2.3 Subgradient Algorithm for Network Control 32

a) There exists a sequence̊p(h; s) such that(ȳ(s), p̊(h; s)) ∈ B and

lim
s→∞

∥∥[q(ȳ(s), p̊(h; s))]+
∥∥ = 0. (2.34)

b) The sequencef(ȳ(s)) converges in the following sense:

lim inf
s→∞

f(ȳ(s)) ≥ P−
ǫG2

2
− 2ǫDḠG (2.35a)

and lim sup
s→∞

f(ȳ(s)) ≤ P. (2.35b)

Note that as with the synchronous subgradient, the primal running averages are still asymp-

totically feasible, but the bound on their suboptimality increases by a term proportional to the

delayD in the physical layer updates. Of course, all the results in Propositions 2.4and 2.5

reduce to the corresponding results in Propositions 2.2 and 2.3 on settingD = 0. Interestingly,

there is no similar result for primal convergence in asynchronous subgradient methods even for

convex problems.

Finally, the following remarks on the online nature of the algorithm and the implementation

of the Lagrangian maximizations in (2.20) are in order.

Remark 2.1. Algorithm 1 has several characteristics of an online adaptive algorithm. Inpar-

ticular, prior knowledge of the channel distribution is not needed in orderto run the algorithm

since the expectation operations are replaced by averaging over channel realizations on the

fly. Likewise, running averages need not be evaluated; Proposition 2.5ensures that the cor-

responding long-term averages will be near-optimal. Further, if at some timethe network

topology changes and the algorithm keeps running, it would be equivalent to restarting the

entire algorithm with the current state as initialization. The algorithm is adaptive inthis sense.

Remark 2.2. Each of the maximization operations (2.20a)–(2.20e) is easy, because it involves

a single variable, concave objective, box constraints, and locally available Lagrange multipli-

ers. The power control subproblem (2.20f) however may be hard andrequire centralized com-

putation in order to obtain a (near-) optimal solution. For the conflict graph model, see [71,159]

and references therein for a list of approximate algorithms. For the SINR model, solutions

of (2.20f) could be based on approximation techniques in power control for digital subscriber

lines (DSL)—see e.g., [64] and references therein—and efficient message passing protocols as

in [170].
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Figure 2.1: The wireless network used in the simulations. The edges indicate the neighborhood

of each node. The thickness of the edges is proportional to the mean of thecorresponding

channel.

2.4 Numerical Tests

The asynchronous algorithm developed in Section 2.3 is simulated on the wireless network

shown in Figure 2.1. The network has 8 nodes placed on a 300m× 300m area. Hyperarcs

originating from nodei are denoted by(i, J) ∈ A whereJ ∈ 2N(i) \ ∅ i.e., the power set of

the neighbors ofi excluding the empty set. For instance, hyperarcs originating from node 1

are(1, {2}), (1, {8}) and(1, {2, 8}). The network supports the two multicast sessionsS1 =

{1, {4, 6}} andS2 = {4, {1, 7}}. Table 2.4 lists the parameter values used in the simulation.

The conflict graph model of Example 1 with secondary interference constraints is used. In

order to solve the power control subproblem (2.20f), we need to enumerate all possible sets of

conflict free hyperarcs (cf. Example 1); these sets are called matchings. At each time slot, the

aim is to find the matching that maximizes the objective function
∑

f,(i,J) γ
f
iJ . Note that since

γfiJ is a positive quantity, only maximal matchings, i.e., matchings with maximum possible

cardinality, need to be considered. At each time slot, the following two steps are carried out.

S1) Find the optimal power allocation for each maximal matching. Note that the capacity of
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F 2

hfij Exponential with mean̄hfij = 0.1(dij/d0)
−2 for all (i, j) ∈ G

andf , whered0 = 20m anddij is the distance between the nodes

i andj; links are reciprocal, i.e.,hfij = hfji.

Nj

Noise power, evaluated usingdij = 100m in the

expression for̄hfij above

pfmax 5 W/Hz for all f

pmax
i 5 W/Hz for all i ∈ N

ammax 5 bps/Hz for allm

ammin 10−4 bps/Hz for allm

cmax
iJ interference-free capacity obtained for eachj ∈ J via waterfilling

underE
[∑

f p
f (hfij)

]
≤ pmax

i for all i ∈ N

zmax
iJ cmax

iJ /2 for all (i, J) ∈ A

xmax
ij zmax

iJ /2 for j ∈ J andi ∈ N

Um(am) ln(am) for all m

Vi(pi) 10p2i for all i ∈ N

Table 2.1: Simulation parameters

an active hyperarc is a function of the power allocation over that hyperarc alone [cf. (2.3)

and (2.4)]. Thus, the maximization in (2.20f) can be solved separately for each hyperarc

and tone. The resulting objective [cf. (2.20g)] is a concave function in asingle variable,

admitting an easy waterfilling-type solution.

S2) Evaluate the objective function (2.20f) for each maximal matching and for powers found

in Step 2, and choose the matching with the highest resulting objective value.

It is well known that the enumeration of hyperarc matchings requires exponential complex-

ity [159]. Since the problem at hand is small, full enumeration is used.

Figure 2.2 shows the evolution of the utility functionf(ȳ(s)) and the best dual value up to

the current iteration. The utility function is evaluated using the running average of the primal

iterates [cf. (2.25)]. It can be seen that after a certain number of iterations, the primal and dual
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Figure 2.2: Evolution of the utility functionf(ȳ(s)) and best dual valueρbest(s) =

minℓ≤s ̺(ζ(ℓ)) for ǫ = 0.15 andS = 50.

values remain very close corroborating the vanishing duality gap.

Figure 2.3 shows the evolution of the utility function for different values ofS. Again the

utility function converges to a near-optimal value after sufficient number ofiterations. Note

however that the gap from the optimal dual value increases for large values ofS, such as

S = 60 (cf. Proposition 2.5).

Finally, Figure 2.4 shows the optimal values of certain optimization variables. Specifically

the two subplots show all the virtual flows to given sinks for each of the multicast sessions,

namely,{s1 = 1, t = 6} and{s2 = 4, t = 7}, respectively. The thickness and the gray level

of the edges is proportional to the magnitude of the virtual flows. It can be observed that most

virtual flows are concentrated along the shorter paths between the source and the sink. Also,

the radius of the circles representing the nodes is proportional to the optimalaverage power

consumption. It can be seen that the inner nodes 2, 4, 6, and 8 consume more power than the

outer ones, 1, 3, 5, and 7. This is because the inner nodes have more neighbors, and thus more

opportunities to transmit. Moreover, the outer nodes are all close to their neighbors.
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Figure 2.3: Evolution of the utility functionf(ȳ(s)) for different values ofS with stepsize

ǫ = 0.15.

2.5 Conclusions

This chapter formulates a cross-layer optimization problem for multicast networks where nodes

perform intra-session network coding, and operate over fading broadcast links. Zero duality

gap is established, rendering layered architectures optimal.

Leveraging this result, an adaptation of the subgradient method suitable fornetwork con-

trol is also developed. The method is asynchronous, because the physical layer returns its

contribution to the subgradient vector with delay. Using the subgradient vector, primal iterates

in turn dictate routing, network coding, and resource allocation. It is established that network

variables, such as the long-term average rates admitted into the network layer, converge to

near-optimal values, and the suboptimality bound is provided explicitly as a function of the

delay in the subgradient evaluation.

2.A Strong Duality for the Networking Problem (2.14)

This appendix formulates a general version of problem (2.14), and gives results about its duality

gap. Leth be the random channel vector inΩ := R
dh
+ , whereR+ denotes the nonnegative

reals, anddh the dimensionality ofh. Let D be theσ-field of Borel sets inΩ, andPh the
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Figure 2.4: Some of the optimal primal values after 5000 iterations withǫ = 0.15 andS = 40.

The gray level of the edges corresponds to values of virtual flows according to the color bar on

the right, with units bps/Hz.
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distribution ofh, which is a probability measure onD.

As in (2.14), consider two optimization variables: the vectory constrained to a subset

By of the Euclidean spaceRdy ; and the functionp : Ω → R
dp belonging to an appropriate

set of functionsP. In the networking problem, the aforementioned function is the power

allocationp(h), and setP consists of the power allocation functions satisfying instantaneous

constraints, such as spectral mask or hyperarc scheduling constraints(cf. also Examples 1 and

2). Henceforth, the function variable will be denoted byp instead ofp(h), for brevity. LetΠ

be a subset ofRdp . ThenP is defined as the set of functions taking values inΠ.

P := {p measurable|p(h) ∈ Π for almost allh ∈ Ω}. (2.36)

The network optimization problem (2.14) can be written in the general form

P = max f(y) (2.37a)

s. t. g(y) + E[v(p(h),h)] ≤ 0 (2.37b)

y ∈ By, p ∈ P (2.37c)

whereg andv areRd-valued functions describingd constraints. The formulation also sub-

sumes similar problems in the unicast routing framework such as those in [64,139].

Evidently, problem (2.14) is a special case of (2.37). If inequalities (2.14b)–(2.14f) are

rearranged to have zeros on the right hand side, functionv(p(h),h) will simply have zeros

in the entries that correspond to constraints (2.14b)–(2.14d). The function q(y,p(h)) defined

before (2.15) equalsg(y) + E[v(p(h),h)].

The following assumptions regarding (2.37) are made:

AS1. Constraint setBy is convex, closed, bounded, and in the interior of the domains of func-

tionsf(y) andg(y). SetΠ is closed, bounded, and in the interior of the domain of function

v(.,h) for all h.

AS2. Functionf(·) is concave,g(·) is convex, andv(p(h),h) is integrable wheneverp is

measurable. Furthermore, there is aḠ > 0 such that‖E[v(p(h),h)]‖ ≤ Ḡ, wheneverp ∈ P.
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AS3. Random vectorh is continuous;1 and

AS4. There existy′ ∈ By andp′ ∈ P such that (2.37b) holds as strict inequality (Slater

constraint qualification).

Note that these assumptions are natural for the network optimization problem (2.14). Specif-

ically, By are the box constraints for variablesam, xmt
ij , zmiJ , ciJ , andpi; andΠ gives the in-

stantaneous power allocation constraints. The functionf(y) is selected concave andg(y) is

linear. Moreover, the entries ofv(p(h),h) corresponding to (2.14f) are bounded because the

setΠ is bounded. For the same reason, the ergodic capacitiesE[Cf
iJ(p(h),h)] are bounded.

While (2.37) is not convex in general, it is separable [11, Section 5.1.6]. The Lagrangian

(keeping constraints (2.37c) implicit) and the dual function are, respectively [cf. also (2.15)

and (2.16)]

L(y,p, ζ) = f(y)− ζT
(
g(y) + E[v(p(h),h)]

)
(2.38)

̺(ζ) := max
y∈By,p∈P

L(y,p, ζ) = ψ(ζ) + φ(ζ). (2.39)

whereζ denotes the vector of Lagrange multipliers and

ψ(ζ) := max
y∈By

{
f(y)− ζTg(y)

}
(2.40a)

φ(ζ) := max
p∈P

ζTE[v(p(h),h). (2.40b)

The additive form of the dual function is a consequence of the separable structure of the La-

grangian. Further, AS1 and AS2 ensure that the domain of̺(ζ) is R
d. Finally, the dual

problem becomes [cf. also (2.17)]

D = min
ζ≥0

̺(ζ). (2.41)

As p varies inP, define the range ofE[v(p(h),h)] as

R :=
{
w ∈ R

d |w = E[v(p(h),h)] for somep ∈ P
}
. (2.42)

The following lemma demonstrating the convexity ofR plays a central role in establishing the

zero duality gap of (2.37), and in the recovery of primal variables from the subgradient method.

1Formally, this is equivalent to saying thatPh is absolutely continuous with respect to the Lebesgue measure

onRdh
+ . In more practical terms, it means thath has a probability density function without deltas.
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Lemma 2.1. If AS1-AS3 hold, then the setR is convex.

The proof relies on Lyapunov’s convexity theorem [16]. Recently, anextension of Lya-

punov’s theorem [16, Extension 1] has been applied to show zero dualitygap of power control

problems in DSL [98]. This extension however does not apply here, as indicated in the ensuing

proof. In a related contribution [139], it is shown that the perturbation function of a problem

similar to (2.37) is convex; the claim of Lemma 2.1 though is quite different.

Proof of Lemma 2.1.Let r1 andr2 denote arbitrary points inR, and letα ∈ (0, 1) be arbitrary.

By the definition ofR, there are functionsp1 andp2 in P such that

r1 =

∫
v(p1(h),h)dPh andr2 =

∫
v(p2(h),h)dPh. (2.43)

Now define

u(E) :=




∫

E
v(p1(h),h)dPh

∫

E
v(p2(h),h)dPh


 , E ∈ D. (2.44)

The set functionu(E) is a nonatomic vector measure onD, becausePh is nonatomic (cf.

AS3) and the functionsv(p1(h),h) andv(p2(h),h) are integrable (cf. AS2); see [46] for

definitions. Hence, Lyapunov’s theorem applies tou(E); see also [16, Extension 1] and [139,

Lemma 1].

Specifically, consider a null setΦ in D, i.e., a set withPh(Φ) = 0, and the whole space

Ω ∈ D. It holds thatu(Φ) = 0 andu(Ω) = [rT1 , r
T
2 ]

T . For the chosenα, Lyapunov’s theorem

asserts that there exists a setEα ∈ D such that (Ec
α denotes the complement ofEα)

u(Eα) = αu(Ω) + (1− α)u(Φ) = α

[
r1

r2

]
(2.45a)

u(Ec
α) = u(Ω)− u(Eα) = (1− α)

[
r1

r2

]
. (2.45b)

Now using theseEα andEc
α, define

pα(h) =





p1(h), h ∈ Eα

p2(h), h ∈ Ec
α.

(2.46)
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It is easy to show thatpα(h) ∈ P. In particular, the functionpα(h) can written aspα(h) =

p1(h)11Eα + p2(h)11Ec
α
, where11E is the indicator function of a setE ∈ D. Hence it is

measurable, as sum of measurable functions. Moreover, we have thatpα(h) ∈ Π for almost

all h, becausep1(h) andp2(h) satisfy this property. The need to showpα(h) ∈ P makes [16,

Extension 1] not directly applicable here.

Thus,pα(h) ∈ P and satisfies [cf. (2.45)]

∫
v(pα(h),h)dPh =

∫

Eα

v(p1(h),h)dPh+

∫

Ec
α

v(p2(h),h)dPh = αr1+(1−α)r2.

(2.47)

Therefore,αr1 + (1− α)r2 ∈ R.

Finally, the zero duality gap result follows from Lemma 2.1 and is stated in the following

proposition.

Proposition 2.6. If AS1-AS4 hold, then problem(2.37)has zero duality gap, i.e.,

P = D. (2.48)

Furthermore, the valuesP andD are finite, the dual problem(2.41)has an optimal solution,

and the set of optimal solutions of(2.41)is bounded.

Proof. Functionf(y) is continuous onBy since it is convex (cf. AS1 and AS2) [12, Prop. 1.4.6].

This, combined with the compactness ofBy, shows that the optimal primal valueP is finite.

Consider the set

W :=
{
(w1, . . . , wd, u) ∈ R

d+1
∣∣∣

f(y) ≤ u,g(y) + E[v(p(h),h)] ≤ w for somey ∈ By, p ∈ P
}
. (2.49)

Using Lemma 2.1, it is easy to verify that setW is convex. The rest of the proof follows

that of [11, Prop. 5.3.1 and 5.1.4], using the finiteness ofP and Slater constraint qualification

(cf. AS4).

The boundedness of the optimal dual set is a standard result for convex problems under

Slater constraint qualification and finiteness of optimal primal value; see e.g.,[12, Prop. 6.4.3]
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and [113, p. 1762]. The proof holds also in the present setup sinceP is finite,P = D, and AS4

holds.

2.B Dual and Primal Convergence Results

This appendix formulates the synchronous and asynchronous subgradient methods for the

generic problem (2.37); and establishes the convergence claims in Propositions 2.2–2.5. Note

that Propositions 2.2 and 2.3 follow from Propositions 2.4 and 2.5, respectively, upon setting

the delayD = 0.

Starting from an arbitraryζ(1) ≥ 0, the subgradient iterations for (2.41) indexed byℓ ∈ N

are [cf. also (2.19)]

y(ℓ) ∈ arg max
y∈By

{
f(y)− ζT (ℓ)g(y)

}
(2.50a)

p(.; ℓ) ∈ arg max
p∈P

ζT (ℓ)E[v(p(h),h)] (2.50b)

and ζ(ℓ+ 1) = [ζ(ℓ) + ǫ (ǧ(ℓ) + v̌(ℓ))]+ (2.50c)

whereǧ(ℓ) andv̌(ℓ) are the subgradients of functionsψ(ζ) andφ(ζ), defined as [cf. also (2.23)]

ǧ(ℓ) := g(y(ℓ)) (2.51a)

v̌(ℓ) := E[v(p(h; ℓ),h)]. (2.51b)

The iteration in (2.50c) is synchronous, because at everyℓ, both maximizations (2.50a) and (2.50b)

are performed using the current Lagrange multiplierζ(ℓ). An asynchronousmethod is also of

interest and operates as follows. Here, the componentv̌ of the overall subgradient used atℓ

does not necessarily correspond to the Lagrange multiplierζ(ℓ), but to the Lagrange multiplier

at a timeτ(ℓ) ≤ ℓ. Noting that the maximizer in (2.50b) isp(.; τ(ℓ))) and the corresponding

subgradient component used atℓ is v̌(τ(ℓ)), the iteration takes the form

ζ(ℓ+ 1) = [ζ(ℓ) + ǫ (ǧ(ℓ) + v̌(τ(ℓ)))]+ , ℓ ∈ N. (2.52)

The differenceℓ−τ(ℓ) is the delay with which the subgradient componentv̌ becomes available.

In Algorithm 1 for example, the delayed components areĈiJ(τ(ℓ)) andP̂i(τ(ℓ)).
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Next, we proceed to analyze the convergence of (2.52). Functiong(y) is continuous onBy

because it is convex [12, Prop. 1.4.6]. Then AS1 and AS2 imply that thereexists a boundG

such that for ally ∈ By andp ∈ P,

‖g(y) + E[v(p(h),h)]‖ ≤ G. (2.53)

Due to this bound on the subgradient norm, algorithm (2.52) can be viewed as a special

case of an approximate subgradient method [112]. We do not follow this lineof analysis here

though, because it does not take advantage of the source of the errorin the subgradient—

namely, that an old maximizer of the Lagrangian is used. Moreover, algorithm(2.52) can be

viewed as a particular case of anε-subgradient method (see [11, Section 6.3.2] for definitions).

This connection is made in [83] which only deals with diminishing stepsizes; hereresults are

proved for constant stepsizes. The following assumption is adopted for the delayℓ− τ(ℓ).

AS5. There exists a finiteD ∈ N such thatℓ− τ(ℓ) ≤ D for all ℓ ∈ N.

AS5 holds for Algorithm 1 since the maximum delay there isD = 2S − 1. The following

lemma collects the results needed for Propositions 2.2 and 2.4. Specifically, it characterizes

the error term in the subgradient definition when−v̌(τ(ℓ)) is used; and also relates successive

iteratesζ(ℓ) andζ(ℓ+ 1). The quantityḠ in the ensuing statement was defined in AS2.

Lemma 2.2. Under AS1-AS5, the following hold for the sequence{ζ(ℓ)} generated by(2.52)

for all θ ≥ 0

a) − v̌T (τ(ℓ)) (θ − ζ(ℓ)) ≤ φ(θ)− φ(ζ(ℓ)) + 2ǫDGḠ (2.54a)

b) − (ǧ(ℓ) + v̌(τ(ℓ)))T (θ − ζ(ℓ)) ≤ ̺(θ)− ̺(ζ(ℓ)) + 2ǫDGḠ (2.54b)

c) ‖ζ(ℓ+ 1)− θ‖2 − ‖ζ(ℓ)− θ‖2 ≤ 2ǫ [̺(θ)− ̺(ζ(ℓ))] + ǫ2G2 + 4ǫ2DGḠ (2.54c)

Parts (a) and (b) of Lemma 2.2 assert that the vectors−v̌(τ(ℓ)) and−ǧ(ℓ) − v̌(τ(ℓ)) are

respectivelyε-subgradients ofφ(ζ) and the dual function̺ (ζ) at ζ(ℓ), with ε = 2ǫDGḠ.

Note thatε is a constant proportional to the delayD.

Proof of Lemma 2.2.a) Rewrite the left-hand side of (2.54a) as

−v̌T (τ(ℓ)) (θ − ζ(ℓ)) = −v̌T (τ(ℓ)) [θ − ζ(τ(ℓ))]− v̌T (τ(ℓ)) [ζ(τ(ℓ))− ζ(ℓ)] . (2.55)



2.B Dual and Primal Convergence Results 44

Applying the definition of the subgradient forφ(ζ) atζ(τ(ℓ)) to (2.55), it follows that

−v̌T (τ(ℓ)) (θ − ζ(ℓ)) ≤ φ(θ)− φ(ζ(τ(ℓ)))− v̌T (τ(ℓ)) [ζ(τ(ℓ))− ζ(ℓ)] . (2.56)

Now, adding and subtracting the same terms in the right-hand side of (2.56), we obtain

−v̌T (τ(ℓ)) (θ − ζ(ℓ)) ≤ φ(θ)− φ(ζ(ℓ)) +

ℓ−τ(ℓ)∑

κ=1

[
φ
(
ζ(τ(ℓ) + κ)

)
− φ

(
ζ(τ(ℓ) + κ− 1)

)]

−

ℓ−τ(ℓ)∑

κ=1

v̌T (τ(ℓ)) [ζ(τ(ℓ) + κ− 1)− ζ(τ(ℓ) + κ)] . (2.57)

Applying the definition of the subgradient forφ(ζ) atζ(τ(ℓ) + κ) to (2.57), it follows that

−v̌T (τ(ℓ)) (θ − ζ(ℓ)) ≤ φ(θ)− φ(ζ(ℓ)) +

ℓ−τ(ℓ)∑

κ=1

v̌T (τ(ℓ) + κ) [ζ(τ(ℓ) + κ− 1)− ζ(τ(ℓ) + κ)]

−

ℓ−τ(ℓ)∑

κ=1

v̌T (τ(ℓ)) [ζ(τ(ℓ) + κ− 1)− ζ(τ(ℓ) + κ)] . (2.58)

Using the Cauchy-Schwartz inqeuality, (2.58) becomes

− v̌T (τ(ℓ)) (θ − ζ(ℓ)) ≤ φ(θ)− φ(ζ(ℓ))

+

ℓ−τ(ℓ)∑

κ=1

(‖v̌(τ(ℓ) + κ)‖+ ‖v̌(τ(ℓ))‖) ‖ζ(τ(ℓ) + κ− 1)− ζ(τ(ℓ) + κ)‖ . (2.59)

Now, write the subgradient iteration [cf. (2.52)] atτ(ℓ) + κ− 1:

ζ(τ(ℓ) + κ) =
[
ζ(τ(ℓ) + κ− 1) + ǫ

(
ǧ(τ(ℓ) + κ− 1) + v̌(τ(τ(ℓ) + κ− 1))

)]+
. (2.60)

Subtractingζ(τ(ℓ) + κ− 1) from both sides of the latter and using the nonexpansive property

of the projection [12, Prop. 2.2.1] followed by (2.53), one finds from (2.60) that

||ζ(τ(ℓ) + κ)− ζ(τ(ℓ) + κ− 1)|| ≤ ǫ ‖ǧ(τ(ℓ) + κ− 1) + v̌(τ(τ(ℓ) + κ− 1))‖ ≤ ǫG.

(2.61)

Finally, recall that‖v̌(ℓ)‖ ≤ Ḡ for all ℓ ∈ N (cf. AS2), andℓ− τ(ℓ) ≤ D for all ℓ ∈ N (cf.

AS5). Applying the two aforementioned assumptions and (2.61) to (2.59), weobtain (2.54a).

b) This part follows readily from part a), using (2.39) and the definition of the subgradient

for ψ(ζ) atζ(ℓ) [cf. (2.51a)].
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c) We have from (2.52) for allθ ≥ 0 that

‖ζ(ℓ+ 1)− θ‖2=
∥∥[ζ(ℓ) + ǫ (ǧ(ℓ) + v̌(τ(ℓ)))]+ − θ

∥∥2 . (2.62)

Due to the nonexpansive property of the projection, it follows that

‖ζ(ℓ+ 1)− θ‖2 ≤ ‖ζ(ℓ) + ǫ (ǧ(ℓ) + v̌(τ(ℓ)))− θ‖2

= ‖ζ(ℓ)− θ‖2 + ǫ2 ‖ǧ(ℓ) + v̌(τ(ℓ))‖2

+ 2ǫ (ǧ(ℓ) + v̌(τ(ℓ)))T (ζ(ℓ)− θ) . (2.63)

Introducing (2.54b) and (2.53) into (2.63), (2.54c) follows.

The main convergence results for the synchronous and asynchronous subgradient methods

are given by Propositions 2.2 and 2.4, respectively. Using Lemma 2.2, Proposition 2.4 is proved

next.

Proof of Proposition 2.4.a) Letζ∗ be an arbitrary dual solution. Withgi andvi denoting the

i-th entries ofg andv, respectively, define

δ := min
1≤i≤d

{
−gi(y

′)− E[vi(p
′(h),h)]

}
(2.64)

wherey′ andp′ are the strictly feasible variables in AS4. Note thatδ > 0 due to AS4.

We show that the following relation holds for allℓ ≥ 1:

‖ζ(ℓ)− ζ∗‖ ≤ max
{
‖ζ(1)− ζ∗‖ ,

1

δ
(D− f(y′)) +

ǫG2

2δ
+

2ǫDGḠ

δ
+ ‖ζ∗‖+ ǫG

}
.

(2.65)

Eq. (2.65) implies that the sequence of Lagrange multipliers{ζ(ℓ)} is bounded, because

the optimal dual set is bounded (cf. Proposition 2.6). Next, (2.65) is shown by induction. It

obviously holds forℓ = 1. Assume it holds for someℓ ∈ N. It is proved next that it holds for

ℓ+ 1. Two cases are considered, depending on the value of̺(ζ(ℓ)).

Case 1:̺(ζ(ℓ)) > D + ǫG2/2 + 2ǫDGḠ. Then eq. (2.54c) withθ = ζ∗ and̺(ζ∗) = D

becomes

‖ζ(ℓ+ 1)− ζ∗‖2 ≤ ‖ζ(ℓ)− ζ∗‖2 − 2ǫ
[
̺(ζ(ℓ)− D− ǫḠ2/2− 2ǫDGḠ

]
. (2.66)
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The square-bracketed quantity in (2.66) is positive due to the assumption ofCase 1. Then (2.66)

implies that||ζ(ℓ+ 1)− ζ∗||2 < ||ζ(ℓ)− ζ∗||2, and the desired relation holds forℓ+ 1.

Case 2:̺ (ζ(ℓ)) ≤ D+ǫG2/2+2ǫDGḠ. It follows from (2.52), the nonexpansive property

of the projection, the triangle inequality, and the bound (2.53) that

‖ζ(ℓ+ 1)− ζ∗‖ ≤
∥∥ζ(ℓ) + ǫ

(
ǧ(t) + v̌(τ(ℓ))

)
− ζ∗

∥∥ (2.67a)

≤ ‖ζ(ℓ)‖+ ‖ζ∗‖+ ǫG (2.67b)

Next, a bound on||ζ(ℓ)|| is developed. Specifically, it holds due to the definition of the

dual function [cf. (2.39)] that

̺(ζ(ℓ)) = max
y∈By,p∈P

{
f(y)− ζT (ℓ)

(
g(y) + E[v(p(h),h)]

)}

≥ f(y′)− ζT (ℓ)
(
g(y′) + E[v(p′(h),h)]

)
. (2.68)

Rewriting the inner product in (2.68) using the entries of the correspondingvectors and substi-

tuting (2.64) into (2.68) usingζ ≥ 0, it follows that

δ
d∑

i=1

ζi(ℓ) ≤ −
d∑

i=1

ζTi (ℓ)
(
gi(y

′) + E[vi(p
′(h),h)]

)

≤ ̺(ζ(ℓ))− f(y′). (2.69)

Using‖ζ(ℓ)‖ ≤
∑d

i=1 ζi(ℓ) into (2.69), the following bound is obtained:

‖ζ(ℓ)‖ ≤
1

δ
(̺(ζ(ℓ))− f(y′)). (2.70)

Introducing (2.70) into (2.67b) and using the assumption of Case 2, the desired rela-

tion (2.65) holds forℓ+ 1.

b) Setθ = ζ∗ and̺(θ) = ̺(ζ∗) = D in (2.54c):

‖ζ(ℓ+ 1)− ζ∗‖2 ≤ ‖ζ(ℓ)− ζ∗‖2 + ǫ2G2 + 4ǫ2DGḠ+ 2ǫ [D− ̺(ζ(ℓ))] . (2.71)

Summing the latter forℓ = 1, . . . , s, and introducing the quantitymin1≤ℓ≤s ̺(ζ(ℓ)), it follows

that

‖ζ(ℓ+ 1)− ζ∗‖2 ≤ ‖ζ(1)− ζ∗‖2 + sǫ2G2 + 4sǫ2DGḠ+ 2sǫD− 2ǫ

s∑

ℓ=1

̺(ζ(ℓ))

≤ ‖ζ(1)− ζ∗‖2 + sǫ2G2 + 4sǫ2DGḠ+ 2sǫD− 2sǫ min
1≤ℓ≤s

̺(ζ(ℓ)). (2.72)
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Substituting the left-hand side of (2.72) with 0, rearranging the resulting inequality, we obtain

0 ≤ ‖ζ(1)− ζ∗‖2 + sǫ2G2 + 4sǫ2DGḠ+ 2sǫD− 2sǫ min
1≤ℓ≤s

̺(ζ(ℓ))

and thus,

min
1≤ℓ≤s

̺(ζ(ℓ))≤D+
ǫG2

2
+ 2ǫDGḠ+

‖ζ(1)− ζ∗‖2

2ǫs
. (2.73)

Now, note thatlims→∞min1≤ℓ≤s ̺(ζ(ℓ)) exists, becausemin1≤ℓ≤s ̺(ζ(ℓ)) is monotone

decreasing ins and lower-bounded byD, which is finite. Moreover,lims→∞ ‖ζ(1)− ζ∗‖2/(2ǫs) =

0, becauseζ∗ is bounded. Thus, taking the limit ass→∞ in (2.73), yields (2.33).

Note that the sequence of Lagrange multipliers in the synchronous algorithm(2.50c) is

bounded. This was shown for convex primal problems in [113, Lemma 3]. Interestingly,

the proof also applies in the present case since AS1-AS4 hold and imply finiteoptimalP =

D. (cf. Proposition 2.6) Furthermore, Proposition 2.2 for the synchronous method follows

from [12, Prop. 8.2.3], [139].

Next, the convergence of primal variables through running averages isconsidered. The fol-

lowing lemma collects the intermediate results for the averaged sequence{ȳ(s)} [cf. (2.25)],

and is used to establish convergence for the generic problem (2.37) with asynchronous subgra-

dient updates as in (2.52). Note thatȳ(s) ∈ By, s ≥ 1, because (2.25) represents a convex

combination of the points{y(1), . . . ,y(s)}.

Lemma 2.3. Under AS1-AS5 withζ∗ denoting an optimal Lagrange multiplier vector, there

exists a sequence{p̊(.; s)} in P such that for anys ∈ N, it holds that

a)
∥∥[g(ȳ(s)) + E [v(p̊(h; s),h)]]+

∥∥ ≤ ‖ζ(s+ 1)‖

ǫs
(2.74a)

b) f(ȳ(s)) ≥ D−
‖ζ(1)‖2

2ǫs
−
ǫG2

2
− 2ǫDGḠ (2.74b)

c) f(ȳ(s)) ≤ D+ ‖ζ∗‖
∥∥[g(ȳ(s)) + E[v(p̊(h; s),h)]]+

∥∥ . (2.74c)

Eq. (2.74a) is an upper bound on the constraint violation, while (2.74b) and (2.74c) provide

lower and upper bounds on the objective function atȳ(s). Lemma 2.3 relies on Lemma 2.1

and the fact that the averaged sequence{ȳ(s)} is generated from maximizers of the Lagrangian

{y(ℓ)} that arenot outdated.
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Proof of Lemma 2.3.a) It follows from (2.52) that

ζ(ℓ+ 1) ≥ ζ(ℓ) + ǫ (ǧ(ℓ) + v̌(τ(ℓ))) . (2.75)

Summing (2.75) overℓ = 1, . . . , s, usingζ(1) ≥ 0, it follows that

ǫ
s∑

ℓ=1

ǧ(ℓ) + ǫ
s∑

ℓ=1

v̌(τ(ℓ)) ≤ ζ(s+ 1)

and thus,

1

s

s∑

ℓ=1

ǧ(ℓ) +
1

s

s∑

ℓ=1

v̌(τ(ℓ)) ≤
ζ(s+ 1)

ǫs
. (2.76)

Now, recall the definitions of the subgradientsǧ(ℓ) and v̌(τ(ℓ)) in (2.51). Due to the

convexity ofg(·), it holds that

g(ȳ(s)) ≤
1

s

s∑

ℓ=1

g(y(ℓ)) =
1

s

s∑

ℓ=1

ǧ(ℓ). (2.77)

Due to Lemma 2.1, there exists̊p(h; s) in P such that

E[v(p̊(h; s),h)]=
1

s

s∑

ℓ=1

E[v(p(h; τ(ℓ)),h)]=
1

s

s∑

ℓ=1

v̌(τ(ℓ)). (2.78)

Combining (2.76), (2.77), and (2.78), it follows that

g(ȳ(s)) + E[v(p̊(h; s),h)] ≤
ζ(s+ 1)

ǫs
. (2.79)

Sinceζ(s+ 1) ≥ 0, (2.79) yields

[g(ȳ(s)) + E[v(p̊(h; s),h)]]+ ≤
ζ(s+ 1)

ǫs

and thus,
∥∥[g(ȳ(s)) + E[v(p̊(h; s),h)]]+

∥∥ ≤ ‖ζ(s+ 1)‖

ǫs
. (2.80)

b) Due to the concavity off(·), it holds thatf(ȳ(s)) ≥ 1
s

∑s
ℓ=1 f(y(ℓ)). Adding and

subtracting the same terms to the right-hand side of the latter, we have that

f(ȳ(s)) ≥
1

s

s∑

ℓ=1

[
f(y(ℓ))− ζT (ℓ)g(y(ℓ))

]
−

1

s

s∑

ℓ=1

ζT (ℓ)E[v(p(h; τ(ℓ)),h)]

+
1

s

s∑

ℓ=1

ζT (ℓ)
(
g(y(ℓ)) + E[v(p(h; τ(ℓ)),h)]

)
. (2.81)
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It holds thatf(y(ℓ)) − ζT (ℓ)g(y(ℓ)) = ψ(ζ(ℓ)) due to (2.50a) and (2.39). Using the latter

into (2.81),

f(ȳ(s)) ≥
1

s

s∑

ℓ=1

[
ψ(ζ(ℓ))− ζT (ℓ)E[v(p(h; τ(ℓ)),h)]

]

+
1

s

s∑

ℓ=1

ζT (ℓ)
(
g(y(ℓ)) + E[v(p(h; τ(ℓ)),h)]

)
. (2.82)

Now recall thatE[v(p(h; τ(ℓ)),h)] = v̌(τ(ℓ)) [cf. (2.51b)]. Thus, it holds that

−ζT (ℓ)E[v(p(h; τ(ℓ)),h)] = −ζT (τ(ℓ))v̌(τ(ℓ)) + v̌T (τ(ℓ))
[
ζ(τ(ℓ))− ζ(ℓ)

]
. (2.83)

The first term in the right-hand side of (2.83) isφ
(
ζ(τ(ℓ))

)
([cf. (2.50b) and (2.39)]. The

second term can be lower-bounded using Lemma 2.2(a) withθ = ζ(τ(ℓ)). Then, (2.83)

becomes

−ζT (ℓ)E[v(p(h; τ(ℓ)),h)] ≥ φ(ζ(ℓ))− 2ǫDGḠ (2.84)

Using (2.84) into (2.82) andψ(ζ(ℓ)) + φ(ζ(ℓ)) = ̺(ζ(ℓ)) ≥ D, it follows that

f(ȳ(s)) ≥ D− 2ǫDGḠ+
1

s

s∑

ℓ=1

ζT (ℓ)
(
g(y(ℓ)) + E[v(p(h; τ(ℓ)),h)]

)
. (2.85)

Moreover, it follows from (2.52) and the nonexpansive property of the projection that

‖ζ(ℓ+ 1)‖2 ≤
∥∥ζ(ℓ) + ǫ

(
g(y(ℓ)) + E[v(p(h; τ(ℓ)),h)]

)∥∥2

and thus,

‖ζ(ℓ+ 1)‖2 ≤ ‖ζ(ℓ)‖2 + 2ǫζT (ℓ) (g(y(ℓ)) + E[v(p(h; τ(ℓ)),h)])

+ ǫ2 ‖g(y(ℓ)) + E[v(p(h; ℓ),h)]‖2 . (2.86)

Summing (2.86) forℓ = 1, . . . , s, dividing by 2ǫs, and introducing the bound (2.53) on the

subgradient norm yield

1

s

s∑

ℓ=1

ζT (ℓ)
(
g(y(ℓ)) + E[v(p(h; ℓ),h)]

)
≥ −

ǫG2

2
+
‖ζ(s+ 1)‖2 − ‖ζ(1)‖2

2ǫs
. (2.87)

Using (2.87) into (2.85) together with‖ζ(s+ 1)‖2 ≥ 0, one arrives readily at (2.74b).

c) Letζ∗ be an optimal dual solution. It holds that

f(ȳ(s)) = f(ȳ(s))− ζ∗
T (

g(ȳ(s)) + E[v(p̊(h; s),h)]
)

+ ζ∗
T (

g(ȳ(s)) + E[v(p̊(h; s),h]
)

(2.88)



2.B Dual and Primal Convergence Results 50

where̊p(h; s) was defined in part (a) [cf. (2.78)].

By the definitions ofD andζ∗ [cf. (2.41)], and the dual function [cf. (2.39)], it holds that

D = ̺(ζ∗) = max
y∈By,p∈P

L(y,p, ζ∗) ≥ L(ȳ, p̊, ζ∗). (2.89)

Substituting the latter into (2.88), it follows that

f(ȳ(s)) ≤ D+ ζ∗
T (

g(ȳ(s)) + E[v(p̊(h; s),h)]
)
. (2.90)

Becauseζ∗ ≥ 0 andθ ≤ [θ]+ for all θ, (2.90) implies that

f(ȳ(s)) ≤ D+ ζ∗
T [

g(ȳ(s)) + E[v(p̊(h; s),h)]
]+
. (2.91)

Applying the Cauchy-Schwartz inequality to the latter, (2.74c) follows readily.

Using Lemma 2.3, the main convergence results for the synchronous and asynchronous

subgradient methods are given correspondingly by Propositions 2.3 and 2.5, after substituting

q(ȳ(s), p̊(h; s)) = g(ȳ(s)) + E[v(p̊(h; s)]. (2.92)

Proof of Proposition 2.5.a) Take limits on both sides of (2.74a) ass→∞, and use the bound-

edness of{ζ(s)}.

b) UsingP = D and taking thelim inf in (2.74b), we obtain (2.35a). Moreover, using

P = D, (2.74a), the boundedness of‖ζ∗‖, and takinglim sup in (2.74c), (2.35b) follows.
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Chapter 3

Cross-Layer Design of Coded

Multicast with Random Access

This chapter considers joint optimization of network coding and Aloha-based medium ac-

cess control (MAC) for multi-hop wireless networks. The multicast throughput with a power

consumption-related penalty is maximized subject to flow conservation and MACachievable

rate constraints to obtain the optimal transmission probabilities. The relevant optimization

problem is inherently non-convex and hence difficult to solve even in a centralized manner.

A successive convex approximation technique is employed to obtain a Karush-Kuhn-Tucker

(KKT) solution. A separable problem structure is obtained and the dual decomposition tech-

nique is adopted to develop a distributed solution. The algorithm is thus applicable to large

networks, and amenable to online implementation. Numerical tests verify performance and

complexity advantages of the proposed approach over existing designs.A network simulation

with implementation of random linear network coding shows performance veryclose to the

one theoretically designed.

This chapter is organized as follows. The system model and the problem statement are

given in Section 3.1. The successive convex approximation algorithm is described in Sec-

tion 3.2. A distributed solution and its online implementation are provided in Section 3.3.

Numerical tests as well as a network simulation with suitable implementation of randomlinear

network coding are presented in Section 3.4, followed by the conclusions inSection 3.5.
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3.1 System Model and Problem Statement

3.1.1 System Model

Consider a wireless network represented by a hypergraph(N ,A) with the set of nodesN

and the set of hyperarcsA. A hyperarc(i, J) ∈ A models the broadcast channel between

nodei, and the set of receiversJ ⊂ N . The super-setJi collects all such sets of receivers

{J |(i, J) ∈ A} for nodei ∈ N . The one-hop neighborhood of nodei is denoted byN(i) and

includes all nodes belonging to at least one setJ ∈ Ji. The hyperarc model is very general and

allows nodes to transmit at different rates and powers on each hyperarc; see e.g., [96,97,159].

It also subsumes point-to-point, and broadcast-only scenarios, as detailed later in Section 3.1.3.

Consider further a multicast session involving a source nodes ∈ N , and a set of sink nodes

T ⊂ N . The aim is to maximize the multicast rateR at which nodes can transmit the same

information to all the sink nodest ∈ T . The network operates in a time-slotted fashion. The

unit ofR and of all other rates that will be described here is packets per slot.

For networks modeled by graphs with error-free edges, random linearnetwork coding

achieves the full multicast capacity [72]. Wireless networks, however, are error-prone and have

broadcast channels that are better modeled by hyperarcs. The multicastrate region with random

linear network coding for such networks is also known [97,159] and represents the achievable

rate region which can be realized by practical network coding schemes such as [27, 72, 96].

Leveraging on this characterization, the present section formulates a cross-layer optimization

problem to maximize the multicast rates supported by a slotted Aloha network. To this end, a

set of auxiliary variables{r(t)ij } is introduced, withr(t)ij ≥ 0 representing the virtual transmis-

sion rate (also called virtual flow) from nodei to a neighboring nodej ∈ N(i) for sink t ∈ T .

Virtual flows abide by the flow conservation constraints [97]

∑

j∈N(i)

r
(t)
ij −

∑

j:i∈N(j)

r
(t)
ji = R11{i=s} −R11{i=t}, i ∈ N , t ∈ T (3.1)

where11{.} is the indicator function that takes the value one when the expression inside the

curly brackets is true, and zero otherwise.

Optimization solvers usually require all constraints to be expressed as inequalities. There-
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fore, the following relaxed version of virtual flow constraints (3.1) is used here

∑

j∈N(i)

r
(t)
ij −

∑

j:i∈N(j)

r
(t)
ji ≥ R11{i=s}, t ∈ T , i ∈ N \ {t}. (3.2)

To obtain (3.2), note that in (3.1), the set of equations fori = t can be omitted since they are

implied by the other equations. Relaxation of the flow constraints fori 6= t is then equivalent to

allowing each nodei to transmit at higher rate than received, which amounts to adding virtual

sources at all nodes. Note, however, that sending nonzero flow from these virtual sources to

the sinks can never increaseR, which is the flow froms to t ∈ T . Thus, even if the optimal

solution has some nodes injecting extra flows, they can all be set to zero without impedingR.

3.1.2 Characterization of MAC Constraints

The MAC layer employs the slotted Aloha protocol. At every time slot, each nodei ∈ N

transmits on hyperarc(i, J) with probabilitypiJ and (instantaneous) physical layer (PHY) rate

ciJ . The transmissions of different nodes are independent. Not all nodesin J can decode the

packets received fromi, because of collisions or erasures. LetI(m) denote the set of nodes

whose transmissions interfere with the reception at nodem. Reception at nodem may fail (a)

due to collisions—when a nodej ∈ I(m) or m itself (half-duplex contraint) is transmitting

at the same time slot—or (b) due to erasures caused by impairments of the wireless medium

or jamming. Erasure means that although the link may be collision-free, the receiving end

cannot decode the transmitted packets with some probability due to, e.g., fading. Occurrence

of erasures is independent of collisions. To summarize, a transmission from i tom is successful

when (a) no nodej ∈ (I(m) ∪ {m})\{i} transmits, and (b) there is no erasure on link(i,m).

LetSm
iJ denote the event that a packet transmitted on hyperarc(i, J) is correctly decoded by

nodem ∈ J , and defineqi := 1−
∑

J∈Ji
piJ , the probability thati remains silent. Assume that

erasures happen independently across links and time slots, and let1−siJm be the probability of

erasure on the link(i,m) of a packet transmitted at PHY rateciJ . Assuming fully backlogged

queues at the link layer, so that all nodes have packets to transmit at every time slot, one can
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write the probability ofSm
iJ as

Pr(Sm
iJ) = siJm

∏

j∈(I(m)∪{m})\{i}

qj m ∈ J, (i, J) ∈ A. (3.3)

Next, introduce for eachK ⊂ N(i) the probabilitybiJK that at least one node inK receives

the packets injected on the hyperarc(i, J) correctly; i.e,

biJK := Pr

(
⋃

m∈K

Sm
iJ

)
, K ⊂ N(i), (i, J) ∈ A. (3.4)

It is clear from this definition thatbiJK = 0 if J ∩ K = ∅. From the inclusion-exclusion

principle [142, p. 6], the probability of the union of events in (3.4) can be expanded as

Pr

(
⋃

m∈K

Sm
iJ

)
=

|J∩K|∑

k=1

∑

M⊂J∩K
|M |=k

(−1)k−1Pr

(
⋂

m∈M

Sm
iJ

)
, K ⊂ N(i), (i, J) ∈ A. (3.5)

DefineI(M), for a set of nodesM ⊂ N , as the set of nodes whose transmissions interfere

with at least one node inM ; i.e., I(M) =
⋃

m∈M I(m). The probability that all nodes inM

decode the packet is

Pr

(
⋂

m∈M

Sm
iJ

)
=

(
∏

m∈M

siJm

)(
∏

j∈(I(M)∪M)\{i}

qj

)
, M ⊂ J, i ∈ N . (3.6)

The average rate at which packets are injected in the hyperarc(i, J) is given byziJ := ciJpiJ .

The virtual flow rate for each sinkt ∈ T can be related to{ziJ}(i,J)∈A through the following

set of inequalities [159]

∑

j∈K

r
(t)
ij ≤

∑

J∈Ji

ziJbiJK , K ⊂ N(i), i ∈ N , t ∈ T . (3.7)

The right-hand side represents the rate at which packets transmitted by node i reach at least

one node inK, through various hyperarcs(i, J). Combining (3.4)–(3.6), the virtual flow

constraints (3.7) become

∑

j∈K

r
(t)
ij ≤

∑

J∈Ji

ciJpiJ

|J∩K|∑

k=1

∑

M⊂J∩K
|M |=k

(−1)k−1
∏

m∈M

siJm, K ⊂ N(i), i ∈ N , t ∈ T . (3.8)
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3.1.3 Problem Formulation

The problem of interest is to maximize the multicast throughputR while minimizing energy

consumption, subject to network coding and random access constraints.Since higher values of

qi should translate to lower energy consumption at nodei ∈ N , a convex, decreasing function

vi(qi) is used as a cost to penalize the energy consumption.

First, the following definition is introduced, in order to streamline the notations in (3.8)

CiK := {(J,M, k)|J ∈ Ji,M ⊂ J ∩K, k = |M |} . (3.9)

Also defineIiM := (I(M) ∪M) \ {i} andsiJM :=
∏

m∈M siJm. The overall optimization

problem is formulated as follows:

(P0) min
R≥0,{r

(t)
ij ≥0}

∑

i∈N

vi(qi)−R (3.10a)

s. t.
∑

j:i∈N(j)

r
(t)
ji +R11{i=s} −

∑

j∈N(i)

r
(t)
ij ≤ 0, t ∈ T , i ∈ N \ {t} (3.10b)

∑

j∈K

r
(t)
ij +

∑

(J,M,k)∈CiK

(−1)kciJpiJsiJM
∏

j∈IiM

qj ≤ 0, K ⊂ N(i), i ∈ N , t ∈ T (3.10c)

∑

J∈Ji

piJ + qi − 1 ≤ 0, i ∈ N . (3.10d)

Note that (3.10d) is a relaxed version of the original equality constraint
∑

J∈Ji
piJ + qi = 1.

If the optimal solution is such that strict inequality holds in (3.10d) for a nodei ∈ N , then the

value ofqi can be increased without changing anypiJ . This will likely decrease the probability

of collisions due to nodei for other nodes, thus allowing at least as much throughput as before.

Problem(P0) is non-convex, because constraint (3.10c) is non-convex. A logarithmic

change of variables as in [25, Section 2] does not convexify the problem either, as (3.10b)

and (3.10c) both become signomial constraints. For this reason, a successive convex approxi-

mation approach is pursued in the next section to obtain a KKT optimal solution efficiently.

Remark 3.1. The problem formulation (3.10) can also be used when there are no erasures—

also referred to as lossless network—by settingsiJm = 1 for all links. This is the case when,

e.g., sufficiently strong error correction codes are employed at the link layer, possibly combined

with appropriately reduced ratesciJ . Erasures correlated over space, e.g., due to jamming, can
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also be incorporated in the formulation by directly plugging in the appropriate values ofsiJM

for each setM in (3.10c).

Before concluding this section, it is worth mentioning that the proposed modelsubsumes

wireless networks with point-to-point, and broadcast-only transmissions. The problem formu-

lation also becomes simpler under these special cases and is briefly outlined next.

Point-to-point Transmissions

When only point-to-point transmissions are allowed, the network can be modeled by a regular

graph with edgesE instead of hyperarcsA. Using the setJi = {j|(i, j) ∈ E} in (3.10c), the

new constraints become

r
(t)
ik − cikpiksik

∏

j∈I(k)∪{k}\{i}

qj ≤ 0, k ∈ N(i), i ∈ N , t ∈ T . (3.11)

where1 − sik is the erasure probability on link(i, k) ∈ E . The sum-of-probabilities con-

straint (3.10d) also simplifies to
∑

j∈N(i) pij + qi ≤ 1.

Broadcast-only Transmissions

In networks with broadcast-only transmissions, nodei transmits all its packets on the hyperarc

(i, N(i)). Such a scenario arises when each nodei ∈ N can only transmit at the same PHY

rateci to all its neighbors. In this case, transmitting on a hyperarc(i, J) such thatJ ( N(i)

does not yield any rate advantage. Under this assumption, the Aloha protocol is also simplified

and at each time slot, nodei only transmits on(i, N(i)) with probabilitypiN(i) = 1− qi. The

setCiK is replaced here by the set

C̄iK = {(M,k)|M ⊂ K, k = |M |}. (3.12)

DefiningI1iM := (I(M) ∪M) \ {i} andI2iM := I(M) ∪M , constraint (3.10c) becomes

∑

j∈K

r
(t)
ij ≤ ci

∑

(M,k)∈C̄iK

(−1)k+1(1− qi)siM
∏

j∈IiM

qj

= ci

2∑

p=1

∑

(M,k)∈C̄iK

(−1)k+psiM
∏

j∈Ip
iM

qj , K ⊂ N(i), i ∈ N , t ∈ T (3.13)
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wheresiM := siN(i)M . Note that problem (3.10) remains non-convex even under both special

cases.

The broadcast-only case was also considered in [140], where a centralized algorithm was

developed for small-size networks. In addition to focusing here on distributed optimization

that is scalable for larger networks, characterization of the MAC constraints in (3.13) (as well

as in (3.10c)) is more efficient. Specifically, the MAC constraints in [140] are captured through

the variablesziJ , which, in turn, are described using a sum with the number of terms growing

exponentially in|N |, whereas in (3.13), the number of terms is exponential only in|N(i)|.

3.2 Successive Convex Approximation

Optimization over general non-convex constraints is well known to be difficult. However, de-

pending on the problem structure, several approximation methods are available. An option is

offered by successive convex approximation, which, under certain regularity conditions, guar-

antees first order KKT optimality [105]. In this section, the successive convex approximation

approach is applied to(P0). First, the general method is reviewed. Then, it is explained how

to obtain a convex approximation for the cross-layer optimization problem at hand.

3.2.1 Successive Convex Approximation Procedure

Suppose that the objective function to be minimized is convex, and the constraint set is the in-

tersection of a setH := {y|hi(y) ≤ 0, i = 1, 2, . . . , I}with a convex setC. Functions{hi(y)}

are differentiable but may be non-convex in general. The setC captures convex constraints, if

any. The idea is to solve a sequence of surrogate problems, indexed byℓ ∈ {1, 2, . . .}, where

H is substituted per iterationℓ by a convex setHℓ. Since the intersection of convex sets is a

convex set [18, Section 2.3.1], the resulting optimization problems are convex. SetHℓ+1 is

constructed asHℓ+1 := {y|h̃i(y;y
ℓ) ≤ 0, i = 1, 2, . . . , I}, whereyℓ is the solution of the

convex approximation at theℓ-th iteration, and̃hi(y;yℓ) for eachi is a differentiable convex

function satisfying the following three conditions:

(c1) hi(y) ≤ h̃i(y;yℓ) for all y ∈ Hℓ+1 ∩ C
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(c2) hi(yℓ) = h̃i(y
ℓ;yℓ); and

(c3) ∇hi(yℓ) = ∇h̃i(y
ℓ;yℓ).

The procedure is initialized at an arbitrary feasible pointy0 ∈ H ∩ C. As shown in [105], the

limit of the sequence{yℓ} is precisely a KKT point of the original (non-convex) problem. If

there are more than one non-convex functionsh(y)—so there is an intersection of sets of the

form H—a convex approximating function is needed for each of them, satisfying conditions

(C1)–(C3).

3.2.2 Centralized Solution

In order to apply the successive convex approximation method to(P0), consider first the

change of variables̃piJ := log piJ and q̃i := log qi. The objective in (3.10a) remains con-

vex provided that the cost functionvi(qi) = vi(e
q̃i) for eachi is chosen to be convex iñqi.

Such a requirement is not too restrictive, as it is satisfied by a large class of useful cost func-

tions including, e.g.,vi(qi) = − ln qi andvi(qi) = q−α
i , α > 0. Such cost functions do not

allow qi = 0, or, equivalently each node remains silent with nonzero probability, whichhas

desirable effects on fairness as well as power savings. Constraints (3.10b) are not affected by

the change of variables, and hence remain convex (linear). Constraints(3.10d) become

∑

J∈Ji

exp(p̃iJ) + exp(q̃i)− 1 ≤ 0, i ∈ N (3.14)

which are convex.

Constraints (3.10c) become

∑

j∈K

r
(t)
ij −

∑

(J,M,k)∈C1
iK

ciJsiJM exp

(
p̃iJ+

∑

j∈IiM

q̃j

)
+

∑

(J,M,k)∈C2
iK

ciJsiJM exp

(
p̃iJ+

∑

j∈IiM

q̃j

)

≤ 0, K ⊂ N(i), i ∈ N , t ∈ T (3.15)

where the odd-k and even-k subsets ofCiK are defined as

C1iK := {(J,M, k)|(J,M, k) ∈ CiK , k odd} (3.16)

C2iK := {(J,M, k)|(J,M, k) ∈ CiK , k even} . (3.17)



3.2 Successive Convex Approximation 59

It is noted that the second summand (with its sign) in (3.15) is concave in the optimization

variables, while the rest are convex. However, it is possible to upper-bound the concave terms

by an affine function [18, p. 69]. Specifically, given the solutionp̃
(ℓ)
iJ andq̃(ℓ)j of theℓ-th convex

approximation, (3.15) can be replaced with the following convex constraintat the(ℓ + 1)-th

approximation:

∑

j∈K

r
(t)
ij −

∑

(J,M,k)∈C1
iK

ciJsiJMα
(ℓ)
iJM

(
1 + p̃iJ − p̃

(ℓ)
iJ +

∑

j∈IiM

(q̃j − q̃
(ℓ)
j )

)

+
∑

(J,M,k)∈C2
iK

ciJsiJM exp

(
p̃iJ +

∑

j∈IiM

q̃j

)
≤ 0, K ⊂ N(i), i ∈ N , t ∈ T (3.18)

where for(J,M, k) ∈ C1iK ,K ⊂ N(i), andi ∈ N , it holds thatα(ℓ)
iJM := exp

(
p̃
(ℓ)
iJ +

∑
j∈IiM

q̃
(ℓ)
j

)
.

It is easily verified that the approximation introduced in (3.18) satisfies conditions (c1)–(c3).

The resulting convex optimization problem for the(ℓ+ 1)-th iteration is given by

(P1
ℓ ) min

R≥0,{r
(t)
ij ≥0},{p̃iJ≤0},{q̃i≤0}

∑

i∈N

vi(e
q̃i)−R (3.19a)

s. t. (3.10b), (3.14), and (3.18) (3.19b)

and can be solved by generic algorithms for convex programs such as interior-point methods;

see e.g., [11], [18]. Note that in the first iteration,{p̃(0)iJ , q̃
(0)
i } must be initialized to a feasible

point of the original non-convex problem(P0). This can be done by selecting arbitrary values

for piJ such that
∑

J∈Ji
piJ < 1, settingqi = 1−

∑
J piJ , andR as well as{r(t)ij } to zero.

3.2.3 Implementation

The successive convex approximation procedure outlined in Section 3.2.2can be used to solve

(P0) to KKT-optimality. The algorithm must be executed offline in a centralized fashion to

obtain the transmission probabilities{piJ , qi}. Using the scheme of [96], at each time slot,

nodei simply transmits random linear combinations of packets in its buffer on hyperarc (i, J)

with rateciJ and probabilitypiJ . However, a centralized solver may require a long time to

solve each surrogate problem(P1
ℓ ) and need several successive approximations to converge.

Algorithm 3.1 describes an online variation of previously described algorithm, which uses

the probabilities{exp(p̃(ℓ)iJ ), exp(q̃
(ℓ)
i )} for transmission, as and when they become available.
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This is allowed since in the limit, the variables{p̃(ℓ)iJ , q̃
(ℓ)
i } become KKT-optimal. The random

network coding scheme, adopted from [27], ensures that the asymptotic throughput achieved

is also KKT-optimal. Interestingly, the scheme does not require MAC/network-layer acknowl-

edgments or retransmissions; only the sinks need to signal the end of each generation.

As the size of the network scales, it is of prime interest to solve(P0) in a distributed

manner. Moreover, it is desired that the iterative optimization is performed online so that

(slow) variations in the network topology and parameters can be tracked. Towards these ends,

a distributed algorithm is developed next, which also lends itself to an online implementation.

3.3 Distributed Algorithm

Solving convex network optimization problems in a distributed fashion usually involves appli-

cation of problem-specific decomposition techniques. The aim is to decomposethe original

problem into smaller sub-problems, which can be solved by distributed processors coordinated

through local message passing. A popular method is the dual decomposition technique based

on Lagrangian duality, which is well-motivated when the primal problem has a separable struc-

ture [11, Section 5.1.6], [93].

Unfortunately, the convex approximation(P1
ℓ ) is not separable. In particular, the sum-

mands in (3.18) with evenk involve exponentials of the sum of the transmission probabilities

of neighboring nodes. Therefore, they do not take the form of a sum of terms that depend on

individual node variables. To cope with this hurdle, additional approximation is introduced first

to effect a separable structure. Moreover, a set of auxiliary variables {R(t)}t∈T is introduced

to allow decomposition of the problem to the individual sinks inT . For simplicity, the algo-

rithm development hereafter specializes to the broadcast-only case. However, the methodology

extends straightforwardly.

3.3.1 Creating Separable Structure

As noted earlier, the distributed solution is developed here for networks withbroadcast-only

transmissions. Changing the variablesq̃i := log qi, and definingC̄1iK andC̄2iK as the odd-k and
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Algorithm 3.1: Online implementation of the centralized algorithm

1 initialize

2 Convex approximation indexℓ = 0

3 Current generation indexg = 1

4 {p̃
(0)
iJ , q̃

(0)
i } to arbitrary values satisfying (3.14)

5 foreach time slotdo

// Protocol operation

6 foreachnodei do

7 if nodei has packets of generationg then

8 Transmit a random linear combination of packets from generationg on the

hyperarc(i, J) with probabilityexp(p̃(ℓ)iJ )

9 end

10 if packet is received at nodei then

11 Store packet if it is linearly independent of the packets already stored at

nodei.

12 end

13 end

14 if each sinkt ∈ T can decode all packets of generationg then

15 Flush all packets of generationg from all nodes in the network

16 updateg ← g + 1

17 end

// Update the transmission probabilities

18 if solution{p̃∗iJ , q̃
∗
i } to (P1

ℓ ) availablethen

19 update

20 p̃
(ℓ+1)
iJ ← p̃∗iJ , q̃(ℓ+1)

i ← q̃∗i for i ∈ N , (i, J) ∈ A

21 ℓ← ℓ+ 1

22 end

23 end
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even-k subsets of̄CiK [cf. (3.12)], (3.13) becomes

∑

j∈K

r
(t)
ij − ci

∑

(M,k)∈C̄1
iK

siM exp

(
∑

j∈I1
iM

q̃j

)
+ ci

∑

(M,k)∈C̄2
iK

siM exp

(
∑

j∈I1
iM

q̃j

)

+ ci
∑

(M,k)∈C̄1
iK

siM exp

(
∑

j∈I2
iM

q̃j

)
− ci

∑

(M,k)∈C̄2
iK

siM exp

(
∑

j∈I2
iM

q̃j

)
≤ 0 (3.20)

which can be expressed compactly as

∑

j∈K

r
(t)
ij − ci

2∑

x=1

2∑

p=1

∑

(M,k)∈C̄x
iK

(−1)x+psiM exp

(
∑

j∈Ip
iM

q̃j

)
≤ 0. (3.21)

Of the five terms in (3.20), the second and fifth terms (those correspondingto evenx + p

in (3.21)) are non-convex and can be upper-bounded using affine functions as in the centralized

solution. Thus, giveñq(ℓ)j at theℓ-th iteration, the following approximations are used forx =

p ∈ {1, 2}:

exp

(
∑

j∈Ip
iM

q̃j

)
≥ α

(ℓ)
iMp

(
1 +

∑

j∈Ip
iM

(q̃j − q̃
(ℓ)
j )

)
(3.22)

where, similar to before,α(ℓ)
iMp := exp

(∑
j∈Ip

iM
q̃
(ℓ)
j

)
.

Note that the resultant affine terms are already separable. To make the remaining terms

separable, another layer of approximation is applied to (3.20). The idea is touse the arithmetic-

geometric inequality to upper-bound each term in the third and the fourth summations in (3.20).

Specifically, it is noted that [25, p. 32]

∏

j∈Ip
iM

exp(q̃j) ≤
∑

j∈Ip
iM

β
(ℓ)
iMjp exp


 q̃j

β
(ℓ)
iMjp


 (3.23)

is satisfied for terms corresponding tox = 3 − p ∈ {1, 2}, provided thatβ(ℓ)iMjp > 0 and
∑

j∈IiM
β
(ℓ)
iMjp = 1 hold. Moreover, it can be verified that conditions (c1)–(c3) are satisfied at

q̃j = q̃
(ℓ)
j , j ∈ IpiM , if the approximation parameters{β(ℓ)iMjp} are chosen for(M,k) ∈ C̄iK ,
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K ⊂ N(i), j ∈ IpiM , andi ∈ N asβ(ℓ)iMjp =
q̃
(ℓ)
j

∑
j′∈I

p
iM

q̃
(ℓ)

j′

. Thus, (3.20) can be surrogated by

∑

j∈K

r
(t)
ij − ci

∑

x=p∈{1,2}
(M,k)∈C̄x

iK

siMα
(ℓ)
iMp

(
1 +

∑

j∈Ip
iM

(q̃j − q̃
(ℓ)
j )

)

+ ci
∑

x=3−p∈{1,2}
(M,k)∈C̄x

iK

siM
∑

j∈Ip
iM

β
(ℓ)
iMjp exp

(
q̃j

β
(ℓ)
iMjp

)
≤ 0, K ⊂ N(i), i ∈ N , t ∈ T (3.24)

which is now separable in the per-node optimization variables{r
(t)
ij } andq̃i for eachi ∈ N .

To induce per-sink decomposability of constraint (3.10b), a set of auxiliary variables{R(t)}t∈T

is introduced, which represents the multicast rates for the individual sinkst ∈ T , and additional

constraints are imposed to ensure that the sinks can support the optimalR. Specifically, (3.10b)

is substituted with

∑

j:i∈N(j)

r
(t)
ji +R(t)11{i=s} −

∑

j∈N(i)

r
(t)
ij ≤ 0, t ∈ T , i ∈ N \ {t} (3.25)

R−R(t) ≤ 0, t ∈ T . (3.26)

The resulting problem

(P2
ℓ ) min

R≥0,{R(t)≥0},{r
(t)
ij ≥0},{q̃i≤0}

∑

i∈N

vi(e
q̃i)−R (3.27a)

s. t. (3.24), (3.25), and (3.26) (3.27b)

is amenable to a distributed solution, as detailed next.

3.3.2 Distributed Solution via Dual Subgradient Method

The convex optimization problem (3.27) is solved here in a distributed fashionvia the dual

decomposition technique. Since the objective function in (3.27a) is notstrictly convex with

respect to all primal variables, the dual function may not be differentiable. Thus, the subgra-

dient method is employed to solve the dual problem [12, Ch. 8]. The subgradient method is

widely used in cross-layer optimization; see e.g., [23, 26, 93, 97] and references therein. Also,

to ensure feasibility of the primal solution recovered from the dual optimal variables, primal

averaging is employed [113].
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Upon introducing the Lagrange multipliers{λiKt ≥ 0} and {µt ≥ 0} to relax con-

straints (3.24) and (3.26), respectively, the partial Lagrangian for (3.27) is written as

L(R, {R(t)}, {r
(t)
ij }, {q̃i}) =

∑

i∈N

vi
(
eq̃i
)
−R+

∑

t∈T

µt

(
R−R(t)

)

+
∑

K⊂N(i),
i∈N ,t∈T

λiKt

{
∑

j∈K

r
(t)
ij − ci

∑

x=p∈{1,2}
(M,k)∈C̄x

iK

siMα
(ℓ)
iMp

(
1 +

∑

j∈Ip
iM

(q̃j − q̃
(ℓ)
j )

)

+ ci
∑

x=3−p∈{1,2}
(M,k)∈C̄x

iK

siM
∑

j∈Ip
iM

β
(ℓ)
iMjp exp

(
q̃j

β
(ℓ)
iMjp

)}
. (3.28)

Thus, the dual function is given by

D({λiKt}, {µt}) = min
R≥0,{R(t)≥0},

{r
(t)
ij ≥0},{q̃i≤0}

L(R, {R(t)}, {r
(t)
ij }, {q̃i}),

s. t. (3.25) (3.29)

and the dual problem by

max
{λiKt≥0},{µt≥0}

D({λiKt}, {µt}). (3.30)

In particular, the dual problem is solved using the subgradient method. This is approach

is popular for network optimization problems; see e.g., [93], [26] and references therein for

uncoded networks, and [97] for coded networks. The separable structure is leveraged in order

to decompose the problem in smaller, easier to solve tasks which map to various network

control functions, such as flow control.

First, a general description of the subgradient algorithm for the dual ofa convex optmiza-

tion problem is given [12, Section 8.2]. Consider the standard problem ofminimizing the

convex functionf0(y). Suppose the (convex) constraints are partitioned into sets of explicit

constraintsf1(y) ≤ 0 and implicit constraintsf2(y) ≤ 0, while there may be an additional

convex set constrainty ∈ Y. Associate Lagrange multipliersζ with the explicit constraints.

Then, the associated Lagrangian function is

L(y, ζ) := f(y) + ζT f1(y) (3.31)
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The subgradient iterations indexed byτ = 0, 1, 2, . . . proceed as

y(τ) ∈ arg min
y:f2(y)≤0,y∈Y

L(y, ζ(τ)) (3.32a)

ζ(τ + 1) = [ζ(τ) + ǫf1(y(τ))]
+ (3.32b)

where[.]+ denotes the nonnegative orthant. The iterations are initialized with arbitraryζ(0) ≥

0.

Remark 3.2. The choice of which constraints to explicitly relax via dual variables and which

to keep implicit may affect complexity of the minimization step in (3.3.2), as well as the con-

vergence speed of the algorithm. Specifically, if only few constraints are kept implicit, the

primal solution step (3.3.2) may be simple, but the subgradient method to solve (3.30) may

take long time to converge. On the other hand, keeping many constraints implicit may hinder

distributed implementation of (3.3.2), as it becomes hard to exploit the separablestructure.

Here, inspired by [97] and [169], the virtual flow constraints (3.25) are kept implicit, which

leads to a favorable trade-off between decomposability and convergence speed.

The separable structure of (3.27) allows terms in the Lagrangian function tobe re-grouped

according to the corresponding layers in the networking protocol. Thus,minimization of La-

grangian decomposes to per-layer sub-problems in the link layer (involvingthe log probabili-

ties{q̃i}); the network layer (involving the network coding parameters{R(t)} and{r(t)ij }); and

the transport layer (involving the multicast rateR), each of which can be solved individually

given the Lagrange multipliers. In the sequel, distributed solutions to the sub-problems are

developed.

Link layer sub-problem

The link layer sub-problem can be further decomposed to the node level. Upon defining the set

I−p
i of nodes that are interfered by nodei’s transmission as

I−p
i := {m ∈ N|i ∈ ∪M⊂N(m)I

p
mM} (3.33)

the link layer sub-problem for nodei ∈ N is obtained by collecting inL(·) of (3.3.2) the

terms containing̃qi (henceforth,τ denotes the iteration index of the subgradient updates to be
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discussed later):

q̃i(τ) ∈ arg min
q̃i≤0

vi
(
eq̃i
)
− ciq̃i

(
2∑

x=1
p=x

∑

m∈I−p
i

∑

K⊂N(m)
t∈T

∑

(M,k)∈Cx
mK

smMα
(ℓ)
mMpλmKt(τ)

)

+ ci

(
2∑

x=1
p=3−x

∑

m∈I−p
i

∑

K⊂N(m)
t∈T

∑

(M,k)∈Cx
mK

smMβ
(ℓ)
mMipλmKt(τ) exp

(
q̃i

β
(ℓ)
mMip

))
.(3.34)

Network layer sub-problem

The network layer sub-problem can be further decomposed to the sink level. Thus,R(t) and

{r
(t)
ij }j∈N(i),i∈N can be updated by solving the per-sink problem for eacht ∈ T given by

(Rt(τ), {r
(t)
ij (τ)}) ∈ arg min

R(t)≥0,{r
(t)
ij ≥0}

∑

j∈N(i),i∈N

r
(t)
ij

∑

K⊂N(i)
K∋j

λiKt(τ)− µt(τ)R
(t)

s. t.
∑

j∈N(i)

r
(t)
ji +R(t)11{i=s} −

∑

i∈N(j)

r
(t)
ij ≤ 0, i ∈ N\{t} (3.35a)

r
(t)
ij ≤ ci, j ∈ N(i), i ∈ N .(3.35b)

Problem (3.35) can be reduced to the standard minimum-cost flow problem byadding a virtual

link from nodet to nodes with infinite capacity and cost−µt [10]. The minimum-cost flow

on this graph then yields the solution to the original problem withR(t) given by the flow on

the virtualt-s link.

The minimum-cost flow problem is a well-studied problem; see e.g., [10] for a detailed

survey. Many of the algorithms available are amenable to distributed implementation, and

terminate in a number of steps polynomially bounded by the number of nodes. Inour case, the

iterative primal updates only involve changes in the link costs. Therefore,it would be useful

to choose a method that can soft-start from an available feasible solution from the previous

iteration. One such method is theǫ-relaxation method; see e.g., [10, Ch. 7], [13, Ch. 6], [63].

Transport layer sub-problem

In order to obtain the update equation forR, note first that the optimalR is necessarily upper-

bounded because the per node maximum transmission ratesci are bounded. In particular,
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from (3.10b) withi = s and (3.10c) withK = N(i), it holds that

R ≤
∑

j∈N(s)

r
(t)
sj ≤ cs|CsN(s)| =: Rmax. (3.36)

Using (3.36) as an additional constraint, the multicast rateR is updated as

R(τ) ∈ arg min
0≤R≤Rmax

(∑

t

µt(τ)− 1
)
R (3.37)

which can be solved straightforwardly.

Dual update and primal recovery

Once the primal iteratesy(τ) := [{q̃i(τ)}, {R
(t)(τ)}, {r(t)ij (τ)}, R(τ)] have been obtained,

the dual variables are updated to solve (3.30). The subgradient projection method is employed,

which amounts to updating the dual iterates through

λiKt(τ + 1) =

[
λiKt(τ) + σ

{
∑

j∈K

r
(t)
ij (τ)− ci

∑

x=p∈{1,2}
(M,k)∈C̄x

iK

siMα
(ℓ)
iMp

(
1 +

∑

j∈Ip
iM

(q̃j(τ)− q̃
(ℓ)
j )

)

+ ci
∑

x=3−p∈{1,2}
(M,k)∈C̄x

iK

siM
∑

j∈Ip
iM

β
(ℓ)
iMjp exp

(
q̃j(τ)

β
(ℓ)
iMjp

)}]+
,

K ⊂ N(i), i ∈ N , t ∈ T (3.38)

µt(τ + 1) =
[
µt(τ) + σ

(
R(τ)−R(t)(τ)

)]+
, t ∈ T (3.39)

where[·]+ :≡ max{0, ·}, andσ > 0 is the step size. The dual iterates can be initialized to

arbitrary non-negative values. The subgradient method with a constantstep size converges

into a ball of the optimal dual variables, whose radius is proportional to the step size; see

e.g., [12, Prop. 8.2.2] for the exact claim and the convergence rates.

Due to the lack of strict convexity, the primal iteratesy(τ) recovered from the dual iterates

may not converge in general. Nevertheless, their running averageȳ(τ) := 1
τ

∑τ−1
ρ=0 y(ρ) is

asymptotically feasible, and converges to the optimum solution of(P2
ℓ ) [113]. The running

averages are then used to update{q̃(ℓ+1)
i } (to evaluate{α(ℓ+1)

iMp , β
(ℓ+1)
iMjp }) for the next approxi-

mation(P2
ℓ+1) and the subgradient iterations restarted.
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It is also possible to combine the subgradient and convex approximation iterations bynot

reinitializing the dual iterates when updating the values of{q̃(ℓ)j }. If the surrogate problems

(P2
ℓ ) and(P2

ℓ+1) are not too different, the final dual iterates of(P2
ℓ ) will also be near-optimal

for (P2
ℓ+1). Retaining the dual iterates is therefore equivalent to “soft-starting” the dual sub-

gradient method with near-optimal initial values. The next section builds uponthis combined

algorithm, and describes its distributed and online implementation.

3.3.3 Distributed and Online Protocol

The present section describes a distributed, parallel, and online implementation of the succes-

sive convex approximation algorithm. Recall from the centralized Algorithm 3.1, that it is pos-

sible to operate the network using a sequence of transmission probabilities{1−exp(q̃
(ℓ)
i )}, con-

verging to KKT-optimal values. In the present case, these values are provided by the combined

subgradient and convex approximation algorithm outlined in Section 3.3.2. Algorithm 3.2 de-

scribes the message passing and variable updates required by the algorithm at each nodei ∈ N .

Each subgradient iteration in Algorithm 3.2 takes up several time slots; cf. Algorithm 3.1.

Observe that the message passing required at each iteration is moderate. Specifically, node

i collects primal variables̃qj(τ) from all nodesj ∈ (∪M,pI
p
iM ) \ {i} = I1iN(i), and dual

variables{λmKt} from all nodesm ∈ I−p
i for p = 1, 2. Roughly speaking, these quantities

pertain to the two-hop neighborhood of nodei. Further, the source needs to solve (3.35) at

each iteration and for each sink (in parallel), using an asynchronous, distributed method such

asǫ-relaxation. Finally, the convex approximation parameters{α(ℓ)
iJM , β

(ℓ)
iM} at nodei depend

on q̃(ℓ)j for j ∈ I1iN(i). These variables are anyway made known to nodei for the purpose

of dual updates. Overall, if each node has at mostd neighbors, it exchangesO(2d) variables

with each of itsO(d2) two-hop neighbors, per subgradient iteration. Each node also exchanges

O(d) variables perǫ-relaxation iterations. Finally, the storage requirement for each node is

O(2dd2) variables.

In general, the subgradient method does not specify a stopping criterion, and it is customary

to use a fixed number of iterations. Alternatively, the subgradient algorithmcan stop when the

primal averages converge and remain unchanged for several iterations. In the present case, a
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Algorithm 3.2: Distributed and online algorithm for nodei

1 maintain variables

2 α
(ℓ)
iMp andβ(ℓ)iMjp for M ⊂ N(i), j ∈ IpiM , p = 1, 2

3 q̃i(τ), r
(t)
ij (τ) for j ∈ N(i), andλiKt(τ) for K ⊂ N(i), t ∈ T , i 6= t

4 if nodei is sourcethenR(τ),R(t)(τ), µt(τ) for t ∈ T

5 initialize

6 probabilitiesq̃(0)i and evaluateα(0)
iMp, β

(0)
iMjp, λiKt(1) = 0 for K ⊂ N(i), t ∈ T , i 6= t

7 successive convex approximation indexℓ = 0, running averages̃̄qi(0) = 0, and

τ0 = 0

8 if nodei is sourcethen µt(1) = 0, for t ∈ T

9 foreach τ = 1, 2, . . . do

10 collect{λmKt(τ)} from nodesm ∈ I−p
i , p = 1, 2 and{q̃j(τ)} from nodes

j ∈ I1iN(i)

11 update

12 primal iterates̃qi(τ) andr(t)ij (τ) [cf. (3.34) and (3.35)]

13 dual iteratesλiKt(τ + 1) [cf. (3.38)]

14 running averagē̃qi(τ)←
τ−τℓ−1
τ−τℓ

¯̃qi(τ − 1) + 1
τ−τℓ

q̃i(τ)

15 if nodei is the sourcethen

16 primal iteratesR(τ) andR(t)(τ) [cf. (3.37) and (3.35)]

17 dual iteratesµt(τ + 1) [cf. (3.39)]

18 end

19 if subgradient iterations have converged or maximum iterations reachedthen

20 update q̃
(ℓ+1)
i ← ¯̃qi(τ) and evaluateα(ℓ+1)

iMp andβ(ℓ+1)
iMjp

21 update ℓ← ℓ+ 1

22 reinitialize running averagē̃qi(τ)← 0, and setτℓ = τ

23 end

24 end
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more sophisticated stopping criterion can also be employed. After a fixed number of iterations,

each node can use the current values of¯̃qi to calculate the maximum achievable throughput

of the original problem(P0) (specialized to broadcast case). Recall that given the probabili-

ties, this is a linear program. If this throughput turns out to be better than the throughput of

the previous convex approximation, convergence is declared and{q̃
(ℓ)
j } values are updated.

Otherwise, the iterations continue till a prespecified maximum number.

The use of subgradient algorithm offers some flexibility in the choice of the time-scale of

iterations. It is not necessary to wait for convergence of the subgradient method for updating

the transmission probabilities. Indeed, the running averages{1− exp(¯̃qi(τ))} can also be used

as transmission probabilities at intermediate iterations, since these converge to{1−exp(q̃
(ℓ)
j )},

which in turn converge to the KKT-optimal probabilities. Before concluding,a remark about

alternative distributed solutions is due.

Remark 3.3. The convex problem formulated in Section 3.3.1 can also be solved by the aug-

mented Langrangian method [143, Section 6.4.3], as an alternative to the dual subgradient

approach. Note that application of this method typically makes the problem non-separable,

making the dual decomposition not readily applicable. Nevertheless, it is possible to have a

distributed implementation of the method, using the techniques in [13, Section 3.4].

3.4 Numerical Results

Numerical tests are performed for the centralized and distributed algorithms proposed in Sec-

tion 3.2 and 3.3. Related algorithms from [140] and [160] are compared as benchmarks.

3.4.1 Simulation Set-up

Random networks are generated using the MAX-DPA algorithm [117], which generates graphs

by placing nodes one by one, while respecting certain maximum-degree and node proximity

constraints so as to simulate a realistic ad hoc network. The algorithm parameters are chosen

to bed = 3, dmax = 6, andd0 = 0.2 (see [117]), and the nodes are placed in a square area

with the average node density 1. The erasure probability for a pair of neighboring nodesi
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# of nodes Heurist. Central. B. & B. Orth. Schedul.

7 0.1883 0.3103 0.3138 0.3144

8 0.1762 0.2736 0.2782 0.2667

9 0.1664 0.2584 0.2647 0.2498

10 0.1632 0.2354 0.2426 0.2214

20 0.1242 0.1890 – 0.1263

40 0.1110 0.1615 – 0.0776

Table 3.1: Average optimized throughput.

andj separated by distancedij is given by1 − exp(−d2ij/4), assuming Rayleigh fading. The

transmission rateci is assumed to be unity for all nodesi ∈ N . The multicast session is

chosen so that the leftmost node is the source and the two rightmost nodes are the sink nodes.

To compare with the existing algorithms on an equal footing, the broadcast-only scenario is

considered and only the throughput is maximized while{vi(qi)} are set to zero.

3.4.2 Centralized Algorithm

Table 3.4.2 gives the maximum throughput achieved with different schemes,averaged over

100 random network realizations. Four different methods are compared: the heuristic method

from [160], the proposed method (centralized version), the branch-and-bound method from [140],

and the orthogonal scheduling from [97] with only one transmitting node pertime slot. The

proposed centralized algorithm is initialized by considering a set of 20 randomly chosen prob-

abilities qi, and picking the one that yields the maximum value ofR (which can be easily

obtained by solving a linear program). It can be seen that for small-size networks, where the

branch-and-bound algorithm runs in a reasonable time, the average throughput of the proposed

centralized algorithm is close to the global optimum. The suboptimality is due to possible

convergence of the algorithm to a KKT point.
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Figure 3.1: Evolution of the end-to-end throughputR in the subgradient method with step size

σ = 0.5 for the first surrogate problem (ℓ = 0) andσ = 0.1 thereafter. The vertical lines

result from the fact that the primal averages are refreshed whenever the value ofℓ is advanced.

Therefore the solution obtained from the next few subgradient iterationsis of poor quality

and gives low values ofR. However, the network throughput depends only on the access

probabilities at the instants when the subgradient iterations converge.

3.4.3 Distributed Algorithm

Evolution of the Subgradient Method

Algorithm 3.2 is simulated on a randomly generated network with 40 nodes. The initial point

was chosen again as in Section 3.4.2. Figure 3.1 shows the evolution of the throughput achieved

with the running average{¯̃qi} (which is close but not exactly equal to the running average

R̄) across the subgradient iterations and successive convex approximations. Recall that the

running averages are refreshed when the convex approximation is updated. Interestingly, the

throughput converges to a near-optimal value in very few convex approximation iterations.

Online Implementation

Algorithm 3.2 is implemented with the random network coding scheme of [27] on a simple

dynamic network. The network is shown in Figure 3.2 and initially consists of allnodes except



3.4 Numerical Results 73

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1

2

3

4

5

6

7

8

x coordinate

y 
co

or
di

na
te

Figure 3.2: Dynamic network used for simulation. Node 4 joins the network at timeslot

4× 104.

node 4. The aim is to multicast packets from source node 1 to sink nodes 7 and 8. The network

is simulated for7× 104 time slots, and node 4 joins the network at time slot3× 104 and starts

transmitting with arbitrary probability.

The network coding scheme is implemented using a generation size of 100 packets, and

field size28. The source is infinitely backlogged, i.e., there are generations waiting to be

transmitted at all time slots. It is assumed that an end-to-end network error-correction code

is employed; see e.g., [8] and references therein. Consequently, the sinks are required to col-

lect only 90 linearly independent packets for each generation. This impliesthat the uncoded

throughput is 90% of the value obtained from the centralized solution. The subgradient al-

gorithm runs in parallel with the network protocol, and updates the transmission probabilities

every103 time slots.

Figure 3.3 shows the evolution of the per-generation throughput of the system, represented

by dots. The per-generation throughput isRg := 90/Tg, whereTg is the time-difference (mea-

sured in time slots) between transmission of the first packet of generationg and the reception

of 90 linearly independent packets of generationg at all sinks. The solid curveRavg represents

the moving average ofRg for 10 previously received generations. Finally, the dotted line (Ropt)

shows the 90% of the KKT-optimal value ofR obtained by running the centralized algorithm.
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Figure 3.3: Evolution of the R values. A dot at a given time slot represents the throughput

of the generation that is received at that time slot. Since generations are transmitted serially,

the moving average of the per-generation throughput represents the throughput achieved over

several generations.

It can be observed that the per-generation throughput is low in the beginning as all nodes

start transmitting at suboptimal access probabilities. The throughput improves as the subgra-

dient iterations evolve, but decreases again when node 4 joins the network. This is because

when node 4 enters, it also starts transmitting at an arbitrary probability, andinterferes with

reception at other nodes. Eventually though, the subgradient iterations evolve to a new opti-

mum, and the throughput increases again. Intuitively, node 4 helps by providing more paths for

packets being multicast to nodes 7 and 8, and therefore the overall throughput is higher than be-

fore. The remaining gap between the centralized solution and achieved throughput is because

of the overhead inherent to the network coding scheme. This gap can be reduced by using a

larger generation size or more sophisticated schemes (such as generation-interleaving [27]) at

the expense of increased end-to-end packet delay.
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3.5 Conclusion

The problem of joint optimization of network coding and Aloha-based MAC for multi-hop

wireless networks was considered. The multicast throughput with a powerconsumption-related

penalty was maximized subject to flow conservation and MAC achievable rate constraints to

obtain the optimal transmission probabilities. The relevant optimization problem turns out to

be non-convex and hence difficult to solve even in a centralized manner.A successive convex

approximation technique was employed to obtain a Karush-Kuhn-Tucker solution. The idea

was also extended to create a separable structure in the problem, and the dual decomposition

technique is applied to derive a distributed solution. The algorithm is thus applicable for large

networks, and amenable to online implementation. The numerical tests verify performance and

complexity advantages of the proposed approach over existing designs.A network simulation

with implementation of random linear network coding shows performance veryclose to the

theoretical.
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Chapter 4

Cross-Layer Design of Coded

Multicast under Delay Constraints

This chapter deals with network-coded multicast for real-time and streaming-media applica-

tions where packets have explicit expiration deadlines. Most of the popular network coding

approaches require asymptotically large block-lengths, thereby incurring long decoding de-

lays. The present chapter introduces a joint scheduling and network coding design that aims to

maximize the average throughput while respecting the packet deadlines. The novel approach

relies on a time-unwrapped graph expansion in order to construct the network codes. The resul-

tant algorithm draws from the well-known augmenting-path algorithm, and is both distributed

as well as scalable. For networks with primary interference, a lower-bound on the worst-case

performance of the algorithm is provided. The associated optimization problem is also ana-

lyzed from an integer programming perspective, and a set of valid inequalities is derived to

obtain an upper bound.

Related Work

The design of joint-scheduling and network coding (JS-NC) schemes with delay constraints has

not been addressed in literature. Several works though, have analyzed the delay performance

gains of network coding in single-hop scenarios [51,76,90]. Extension to multi-hop networks is

non-trivial since the presence of scheduling constraints significantly complicates the solution.
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A related problem in the context of wired networks has been analyzed in [50]. One major

difference however is that [50] considers bit-by-bit transmission and network coding. This

results in a problem similar to that of determining the minimum finite field size for the given

network. In packet networks though, field size is usually not the bottleneck.

Several heuristic network coding schemes in media streaming applications arealso avail-

able; see [34, 118, 149] and references therein. These do not design network coding jointly

with scheduling constraints, and focus primarily on implementation issues. Instead, the focus

here is on joint designs and performance guarantees.

Recently, there has been an attempt to reduce queuing delays in back-pressure methods

by modifying the Lyapunov function [19]. This may also result in reducing queuing delay

in network coding schemes that employ back-pressure. However, most ofthese methods also

require large block-lengths, thereby rendering decoding delay a challenging bottleneck.

The organization of this chapter is as follows. Section 4.1 proposes a periodic version of

the JS-NC problem, which is then used in Section 4.3 to derive a constant-factor approximate,

augmenting-path algorithm. For networks with primary interference constraints, Section 4.4

analyzes the JS-NC design problem from an integer programming perspective. Finally, Sec-

tion 4.5 presents simulated tests and Section 4.6 concludes the chapter.

4.1 System Model

Consider a wireless network represented by a directed acyclic graphG = (V,E), with V

denoting the set of nodes andE the set of edges. The setE consists of tuples(u, v) denoting

the two nodes that the edge connects. The network supports a multicast session consisting of a

source nodes ∈ V that intends to transmit a packet-stream to each of the sink nodesT ⊂ V .

Linear network coding is performed at intermediate nodes, which allows themto linearly

combine and forward received packets. A block-network coding modelis assumed, wherein the

packet stream is parsed into blocks before transmission. Subsequently,only packets belonging

to the same block are allowed to be mixed. The sinks also decode the packets in ablock-wise

fashion; that is, upon receiving linear combinations of the packets belonging to each block.

The network operates in a time-slotted fashion, where one time slot carries one packet.
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Figure 4.1: The key difference between PI and SI constraints. Under the PI constraint, nodes 2

and 4 can simultaneously receive from transmitters 1 and 3. Under SI constraints however, the

two transmitters interfere with reception at nodes 2 and 4, and should not bescheduled at the

same time. Node 5 can receive from node 3 in both cases.

Thedeadline constraintdictates that the sinks must be able to decode a block withinD time

slots of the transmission of thefirst packet from that block by the source. Further, the wireless

interface imposes the followingscheduling constraints:

SC1. The nodes adhere to a half-duplex operational mode; and

SC2. The nodes experience interference of either (a) primary; or, (b) secondary nature.

The half-duplex constraint SC1 prevents a node from transmitting and receiving in the

same time-slot. The primary interference (PI) constraint SC2(a), holds for orthogonal (i.e.,

channelized) access, e.g., via spreading codes or frequency divisionmultiplexing. SC2(a)

allows each node to receive from at most one neighboring node per time slot; see e.g., [39].

The secondary interference (SI) constraint SC2(b) imposes additional restrictions: two links

(u1, v1) ∈ E and(u2, v2) ∈ E cannot be used for transmission in the same time slot if either

(u1, v2) ∈ E or (u2, v1) ∈ E; see e.g., [71]. Clearly, broadcast is allowed for both PI and SI

types of constraints. Figure 4.1 shows the key difference between the PIand SI constraints.

The aim is to find the maximum multicast throughput, given here by the rate (packets per

time slot) at which the source transmits packets that reach all the sinks within the stipulated

deadline. In this JS-NC framework, both the time slots at which each node transmits as well as

the linear combinations it uses to code must be designed.
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Throughput optimization with JS-NC design is well-known to be difficult even without

deadline constraint [144, 159]. Some approximate JS-NC designs are described in [71], [39]

but cannot be extended to the deadlined case as they rely on using network codes with large

block lengths, and consequently incur long decoding delays. This consideration motivates the

following operational assumption.

AS6. The source begins transmitting the next block of packets only after the previous block

has been decoded at all sinks.

Together with the deadline constraints, AS1 implies that each block of packetsstays in the

network for at mostD time slots. As a result, the goal reduces to that of finding the JS-NC

design maximizing the number of packets that can be multicast to the sinks within the firstD

slots. The schedule and network code can both be reused for subsequent blocks, which also

makes the transmission and reception patterns of the nodes periodic with finite periodD. The

next section describes a time-unwrapping technique used for solving this simplified problem.

Before concluding this section, a few remarks on the assumptions are due.

Remark 4.1. The block-decoding assumption at the sink nodes is not necessarily throughput

optimal. This is because the sinks begin decoding only upon receiving the linear combinations

corresponding to the entire block, resulting in long waiting-times for the first few packets of

the block (i.e., decoding delay). An alternative is to use infinite block-length convolutional

network code designs that allow for sequential decoding at the sinks [49]. However, designing

infinite block-length codes that satisfy the deadline constraints is known to bedifficult even in

wired networks [50].

The use of only a single block per period, as implied by AS1, incurs an overhead. This is

because the source is not allowed to transmit the next block until the last packet of the current

block has been received at each sink. However, as shown in Section 4.3, a solution obtained

with this assumption, can be converted into a pipelined solution, that significantlyreduces this

overhead.

Remark 4.2. Compared to a back-pressure approach, the JS-NC design is not dynamic, i.e., the

scheduling and network coding decisions are not made on a per-packetbasis and do not depend
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on the instantaneous channel conditions. Back-pressure schemes however, are well-known to

exhibit poor delay performance [19]. Further, most dynamic JS-NC algorithms require large

block-lengths, resulting in prohibitive decoding delays [74]. On the otherhand, the static

JS-NC design proposed here offers flexibility to operate with a specified deadlineD. The

channel-oblivious nature of the design also makes it simpler, and easier to distribute relative to

the dynamic designs.

Varying channel conditions always result in packets getting dropped orerased even in the

absence of collisions. In delay-critical applications, it may not be possibleto recover the lost

packets at all, due to the extra time required for the sink to send feedback, and the source to re-

transmit. To a certain extent, erasures can be handled through classical forward error correction

codes that are applied at the source node. Alternatively, specialized random network codes are

available to correct packet-erasures; see e.g., [178], [85] and references therein. In cases when

the number of erasures becomes too large, partial recovery may be acceptable, and can be pro-

vided through the use of priority-encoding and transmission (PET) [27].Several practical PET

designs have been proposed in the context of network coding for videoapplications [137,152].

4.2 Time-Unwrapping and Network Code Design

Under AS1, the goal is to find the JS-NC design allowing the source to multicastthe maximum

number of packets to each sink withinD slots. This section introduces the idea of “time-

unwrapping” of a graph as a tool for JS-NC design. Time-unwrapping has been employed by

time-slotted networks, e.g., to solve the quickest-flow problem [20], and in thecontext of net-

work code designs over wired networks [1,50]. As the name suggests,a time-unwrapped graph

can be used to represent the entire transmission and coding schedule fora given number of time

slots on a single graph. The proposed construction is similar but here it mustadhere also to the

scheduling constraints SC1–SC2. Specifically, each node is first split intoseveral functional

subnodes, namely receiver-, combiner- and transmitter-subnodes, before being replicated. The

entire procedure proceeds in these steps.

(U1) Each nodev is split into receiver-, combiner- and transmitter-subnodes, and replicated
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D times. The subnodes corresponding to thek-th time slot are denoted byvr(k), vc(k)

andvt(k), respectively.

(U2) A directed edge(u, v) in the original graph is replaced byD directed edges(ut(1), vr(1)),

(ut(2), vr(2)), and so on.

(U3) Since packets received in the current time slot are only available fortransmission in the

subsequent time slots, a subnodevr(k) is only connected to subnodesvc(k + 1), . . .,

vc(D).

(U4) Each combiner-subnodevc(k) is connected to its corresponding transmitter-subnode

vt(k).

(U5) Finally, the source nodes is modeled as a “wired” source-subnodesν connected to

D transmitter-subnodesst(1), st(2), . . ., st(D), i.e., s has no receiver- and combiner-

subnodes.

(U6) Similarly, the set of sink nodesT is modeled by a corresponding set of “wired” sink-

subnodesT . Each wired sink-subnodetνi ∈ T , for i = 1, 2, . . . , |T |, receives fromD

receiver-subnodestri (1), t
r
i (2), . . ., t

r
i (D).

Figure 4.2 shows a time-unwrapped node. The overall time-unwrapped graph is denoted

by G = (V , E), with V denoting the set of nodes andE the set of edges. Further, transmission

on an edge of the form(ut(ℓ), vr(ℓ)) ∈ E corresponds to transmission on the edge(u, v) ∈ E

at time slotℓ. Similarly, two transmissions onG, that violate SC1–SC2, give rise to a set of

so-termedconflictingedges inG. Thus, the entire operation (i.e., reception, combination, and

transmission of packets) of the wireless networkG overD time slots can be described using

the time-invariant graphG.

Given a generic time-invariant graph, any network code design algorithmtakes as input the

sets of edge-disjoint paths from the source to each of the sinks. The additional constraint in the

present case is that the edges on these paths must not conflict with each other. Given a set of

µ edge-disjoint, non-conflicting,sν − tν paths inG for each sinktν ∈ T , an network code can

be designed using one of the methods in [78]. These algorithms return the coefficients used
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Figure 4.2: A time-unwrapped node. Note that the first combiner- and transmitter-subnodes,

and theD-th receiver-subnode are redundant.

at each edgee ∈ E for linearly combining theµ packets. Formally, the vector of coefficients

for edgee, referred to as the global encoding kernel, is given byf(e) ∈ F
µ
q , whereFq is the

finite field of alphabet sizeq [175]. These global encoding kernels can be obtained using

deterministic or randomized algorithms as those described in [78] and [73]. Indeed, if the field

sizeq ≥ |T |, randomly drawn kernels{fe} suffice with high probability, and will be used

henceforth.

The linear combination provided for an edge(ut(ℓ), vr(ℓ)) may then be used on the edge

(u, v) ∈ E at time slotℓ. All other edges are internal to the nodes and are only used to deter-

mine which packets need to be combined per time slot. The overall network codeis therefore

a list of global encoding kernels of the formf ′(e, ℓ) for eache ∈ E andℓ = 1, 2, . . . , D. For

convenience, the schedule at theℓ-th time slot will be denoted using a graphGℓ = (V,Eℓ),

where(u, v) ∈ Eℓ if and only if the edge(ut(ℓ), vr(ℓ)) ∈ E carries a non-zero encoding vec-

tor. The overall network coding operation can therefore be viewed as the sequence of graphs

namely,G1, G2, . . . GD; G1, G2 . . . , GD;G1, . . ..

It should now be clear that the multicast throughput can be maximized by finding the largest

possible value ofµ such that there are as many non-conflicting, edge-disjoint, augmenting

paths from the sourcesν to each sinktνi ∈ T , and this is the focus of the next section. But
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before pursuing this direction, a few remarks pertaining to the time-unwrapping procedure are

in order.

Remark 4.3. It can be seen that the proposed time-unwrapped graph itself takes careof the

scheduling constraints partially. For instance, the graph does not allow any path from traversing

through bothvr(ℓ) and vt(ℓ). A packet received at time slotℓ can only be sent at a later

time-slot. Similarly, the combiner-subnodes allow only one packet to be transmitted/broadcast

per-time slot.

Remark 4.4. Since each packet traverses at most a single hop per-time slot, some transmitter

and receiver-subnodes may be redundant. Examples include the first transmitter and combiner,

and the last receiver-subnodes since only the source transmits in the first time slot, and only

the sink receives in the last slot. These nodes can be removed to reduce algorithm complexity.

4.3 An Augmenting Path Approach

This section develops a greedy augmenting path (GAP) algorithm for maximizingthe value

of µ, the number of edge-disjoint, non-conflicting, augmenting paths from sourcesν to each

sink tν ∈ T . A worst-case performance bound on the performance of GAP algorithmfor PI

networks is also established. The proposed algorithm can be viewed as anextension of the

well-known Edmond-Karp algorithm [32, Ch. 26] for the wireless setting considered here.

In order to describe the GAP algorithm in detail, some graph-theoretic notionsare intro-

duced. Aflow is an assignment ofF2 (i.e., 0-1) values to the edges of the graph. Avalid

flow is one satisfying the flow conservation constraints; i.e., the total flow on the incoming and

outgoing edges of a node should be the same. Aunit valid flowis the assignment of 1s along

anaugmenting path, defined as any directed source-sink path. Given a flow, theresidual graph

is obtained by reversing the direction of all edges with unit values.

Finding the maximum number of edge-disjoint augmenting paths, is equivalent tofinding

the maximum number of unit valid flows (the max-flow problem). The Edmond-Karp(EK)

max-flow algorithm proceeds as follows:

(EK0) Initialize flow values on all edges of graphG to zero;
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(EK1) Find the shortest augmenting (source-sink) path using e.g., Dijkstra’s algorithm [32, Ch.

24];

(EK2) Increment the flow values along the path found in EK1;

(EK3) SetG equal to the residual graph; and go back to EK1.

The idea of finding edge-disjoint augmenting paths via (EK0)–(EK3) can also be extended

to the wireless setting, albeit with a modification. Specifically, after obtaining an augmenting

pathP in EK1, all other edges that conflict with any of the edgese ∈ P must be deleted

from the residual graph obtained in EK3. This ensures that the augmentingpaths found across

iterations do not conflict with each other. Since edges are only being removed, any set of

non-conflicting augmenting paths is also a feasible solution to the wired case.

In a nutshell, while repeating EK1–EK3, constraints SC1–SC2 can be respected by deleting

conflicting edges till no more augmenting paths can be found. The modified EK algorithm

however may not always find all the edge-disjoint augmenting paths because [32, Lemma 26.2]

no longer applies. Intuitively, once an edge is deleted to obey SC1–SC2, those augmenting

paths that could contain it are not present in the output of the modified EK algorithm. On the

other hand, the fact that EK1 exploresshortestaugmenting paths helps to reduce the number

of conflicting edges deleted.

Further modifications of the EK algorithm are needed for extension to the casewith multi-

ple sinks; see Algorithm 4.1. In this case, the algorithm maintains|T | copiesG1, G2, . . ., G|T |

of the graphG, one per sink. The modified EK algorithm is run perGt, except that conflicting

edges are deleted fromall copies{Gt}
|T |
t=1. The set of edge-disjoint augmenting paths for each

sink t consist of edges with unit flow values inGt. Theoverall flow onG can be obtained by

assigning unit flows to those edges inG which have unit flows on one of the graph copiesGt.

The list of conflicting edges to be deleted depends on the interference model used. Let,Iv

(Ov) denote the set of incoming (outgoing) edges to the nodev ∈ V . For the PI model, the set

of edges deleted at each inner iteration of Algorithm 4.1 is as follows.

(P1) For every receiver-subnodevr(j) ∈ P(t),

(a) delete edge(vc(j), vt(j)); and
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Algorithm 4.1: Greedy augmenting path (GAP) algorithm

1 Initialization: Create copies{Gt}
|T |
t=1 of the time-unwrapped graphG. Initialize flow

values on all edges for each graphGt to zero. Set the number of edge-disjoint

augmenting pathsµ = 0.

2 repeat

3 for t = 1, 2,. . ., |T | do

4 Find the shortest augmentingsν − tν pathP(t) on the graphGt.

5 Remove edges conflicting with edges inP(t) from all graphsG1, . . ., G|T |.

6 end

7 Increment a unit valid flow and reverse the edges along the augmenting pathsP(t)

for each graphGt. Incrementµ by one.

8 until ansν − tν path can be found

(b) delete edgee ∈ Ivr(j) if e /∈ P(t).

(P2) For every transmitter-subnodevt(k) ∈ P(t), delete all edgese ∈ Ivr(k).

Edges are deleted in P1(a) and P2 to prevent violation of the half-duplex constraint SC1; while

those deleted in P1(b) prevent violation of SC2(a).

The list of edges to be deleted in the SI constraint SC2(b) is slightly more extensive.

(S1) For every receiver-subnodevr(j) ∈ P(t),

(a) delete edge(vc(j), vt(j));

(b) delete edgee ∈ Ou, where(u, vr(j)) ∈ E andu /∈ P(t); and

(c) delete edgee ∈ Out(j) where(v, u) ∈ E.

(S2) For every transmitter-subnodevt(k) ∈ P(t),

(a) delete all edgese ∈ Ivr(k);

(b) delete all edgese ∈ Ow, wherew /∈ P(t) such that(w, u) ∈ E and(vt(k), u) ∈ E

for some nodeu ande 6= (vt(k), u); and
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(c) delete edgee ∈ Iur(k), where(u, v) ∈ E.

As with the PI model, S1(a) and S2(a) take care of the half-duplex constraints. However,

unlike the PI model, correct reception at a nodev under SI is only ensured if all its neighboring

nodes are silent. The edges corresponding to these cases are listed in S1(b), S1(c), S2(b), and

S2(c). Note that Algorithm 4.1 can be extended to include more general interference models

by appropriately modifying these steps.

It is worth stressing that only the original graphG, and not the residual graph copies, are

used while determining the edges to be deleted. Thus, Algorithm 4.1 outputs edge-disjoint

augmenting paths for each sink as argued. Likewise, Algorithm 4.1 does not eliminate the pos-

sibility of choosing augmenting paths that delete a large number of edges. Theuse of shortest

augmenting paths however reduces this possibility. The next subsection provides further im-

provements by appropriately modifying the shortest-path finder employed byAlgorithm 4.1.

4.3.1 GAP Enhancements

The first part of this subsection describes apipelinedapproach to multicast that reduces the

overhead caused due to AS1 [cf. Remark 4.1]. Pipelining alters AS1 by allowing the source

to multicast more than one block of packets perD time slots. The second part describes an

earliest-shortest path (ESP) algorithm, for use in Algorithm 4.1 which improves throughput by

reducing the number of deleted edges. In addition, the ESP algorithm enables development of

worst-case bounds for the performance of Algorithm 4.1.

Pipelined Multicast

As observed in Remark 4.1, AS1 results in an overhead by allowing only oneblock of packets

perD time slots. This yields an overall throughput ofµ/D. The throughput can be improved

if consecutive blocks are allowed to overlap while ensuring that they do not interfere with each

other. This is effected through pipelining, which allows the source to begin transmitting the

next block of packets as soon as all its neighbors have finished transmittingthe current one.

The idea can be formalized using the notation from Section 4.2. Letdt denote the length

of the shortest path between the sources and a sinkt ∈ T in the graphG. Without loss of
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generality, lett1 be the sink that is nearest tos, and letd1 := dt1 = mint dt. Since the source

begins transmitting at the first time slot, the sinks start receiving on thed1-st time slot at the

earliest. Similarly, the source stops sending at the(D − d1 + 1)-st time slot since all packets

must arrive by theD-th time slot. Depending on the interference model used, it is now possible

to calculate the exact time slot on which the source can start sending the nextblock of packets

without mixing it with the current block.

For PI networks, one-hop neighbors of the source are no longer transmitting at the(D −

d1+3)-rd time slot. Thus, if the source transmits the next block of packets at the(D−d1+3)-

rd time slot, its one-hop neighbors can receive them without interference.This is equivalent to

saying that the schedulesG1 andGD−d1+3 are conflict free. Similar deductions can be made

aboutG2 andGD−d1+4, and so on. Define the union operation for two conflict-free schedules

Gℓ1 andGℓ2 as

Gℓ1 ∪Gℓ2 = (V,Eℓ1 ∪ Eℓ2). (4.1)

The overall pipelined network schedule can thus be expressed as the sequence of graphs

G1, G2, . . . , GD−d1+3 ∪ G1, GD−d1+4 ∪ G2, . . .. Further, the asymptotic throughput, given

that Algorithm 4.1 returnsµ edge-disjoint paths, becomesµ/(D − d1 + 2).

The argument for SI networks is similar, except that the one-hop neighbors of the source

can only receive whentheir next-hop neighbors stop transmitting. This happens at the(D −

d1 + 4)-th time slot, which yields an effective throughput ofµ/(D − d1 + 3).

In the analysis so far, it is assumed that in the worst case, the source may transmit the last

packet to the sinkt1 at the(D − d1 + 1)-st time slot. However, all other sinks are farther than

d1 hops and the number of packets reaching every sink is the same. Therefore, a more efficient

choice of augmenting paths may make the source send its last packets at the(D − d2 + 1)-st

time slot whered2 = maxt dt. This observation can be used to derive an upper bound on the

achievable throughput. Specifically, if the source were to transmit one packet per-time slot, it is

possible to transmit at mostD− d2 + 1 packets. If the augmenting paths are chosen carefully,

transmission of the next block of packets may start immediately at time slotD − d2 + 2,

resulting in the maximum achievable throughput of 1. This is also the maximum achievable

throughput for any JS-NC scheme, including those which do not consider delay constraints,
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since the source can only transmit at most one packet per-time slot.

The Earliest-Shortest Path (ESP) Algorithm

Recall that unlike the EK algorithm, it is possible to choose augmenting paths thatmay cause

deletion of a large number of edges, thus yielding a small final value ofµ. The choice of

shortest augmenting paths is therefore a justifiable heuristic since shorter paths are expected to

conflict with fewer edges. Another factor influencing the throughput returned by Algorithm 4.1

is the number of time slots for which each packet stays in the network. Intuitively, any packet

that is transmitted within the first few time slots should be received by the sinks assoon as

possible; or else, it may (unnecessarily) cause congestion to packets transmitted later. One

way to ensure this is to always choose the shortest pathP(t) whose ending time slot (i.e., the

time slotℓ for which tr(ℓ) ∈ P(t)) is the least among all shortest paths.

This strategy can be implemented by using Dijkstra’s algorithm to find the shortest path,

but with a simple modification. Recall that Dijkstra’s algorithm visits nodes startingatsν , and

maintains an upper bound on the minimum distance fromsν to each node. This upper bound

is updated if a shorter distance is found, and the algorithm terminates when theentire graph

has been visited. However, when all edges are of unit-length (as in the present case), if the

nodes are visited in a breadth-first manner (i.e., the algorithm first visits all one-hop neighbors,

then two-hop neighbors, and so on), the algorithm can terminate as soon asthe destination is

encountered.

The modified algorithm does not terminate on reaching the destinationtν for the first time.

Instead, a new variableSmax is initialized to store the time slot of the last visited receiver-

subnode oftν . The next timetν is visited, the value ofSmax is updated to the minimum of

Smax, and the time slot of the last-visited receiver-subnode. The algorithm terminates when all

nodes as far from the source astν have been visited. The earliest-shortest path can be recovered

by backtracking along the receiver-subnode with time slot equal to the final value ofSmax. In

other words, the ESP algorithm is similar to Dijkstra’s, except that the time slot ofthe last

visited receiver-subnode is used to break ties while choosing the shortest path at the sink node.

The full ESP scheme is listed as Algorithm 4.2.
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Algorithm 4.2: Earliest-shortest path (ESP) algorithm

1 InitializeQ← {sν}

2 Initialize variablesdmax ← 0, dsν ← 0, anddv ←∞ for all v ∈ V \ {sν}

3 Initialize Smax ←∞, andSv ← time slot associated with nodev, for all

v ∈ V \ {sν , T }

4 repeat

5 u← argminw∈Q dw

6 Q← Q \ {u}

7 dmax ← du

8 foreachnodev in set{v|(u, v) ∈ E} do

9 if v = tν then

10 Smax ← min(Su, Smax)

11 end

12 dv ← min(dv, du + 1)

13 Q← {Q ∪ {v}}

14 end

15 until dmax = dtν

16 Backtrack path starting fromtr(Smax) to sν .

Note that Algorithm 4.2 visits nodes in a breadth-first manner starting atsν . This is ac-

complished by maintaining a setQ of all nodes which have themselves been visited but whose

neighbors have not been visited. At each iteration, the neighbors of a node closest to the source

is visited and the distance metrics are updated. Interestingly, Algorithm 4.2 canbe used to

claim certain approximation guarantees for the PI model. This is established in the ensuing

subsection.

4.3.2 Performance Bounds

Performance bounds are developed in this section for Algorithm 4.1 appliedto PI networks.

The following theorem gives a bound on the achievable throughput.
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Theorem 4.1. The throughputρ obtained through Algorithm 4.1 using the ESP and pipelining

enhancements can be bounded as follows:
⌊
D−d2+2

2

⌋

D − d1 + 2
≤ ρ ≤ 1. (4.2)

As a corollary, it can be seen that asD → ∞, the bound reduces to1/2 ≤ ρ ≤ 1. Next,

the proof of Theorem 4.1 is provided.

Proof. The upper bound has already been derived in Section 4.3.1. The proofof the lower

bound relies on the special structure of the time-unwrapped graphG. In particular, notice that

the shortestsν − tν path inG corresponds to the set of wireless nodes that lie on the shortest

s-t path inG. Thus, for each sinkt, there exist several shortest paths inG each of which has

the following form

P(t)(ℓ) =
(
sν , st(ℓ1), v

r
1(ℓ1), v

c
1(ℓ2), v

t
1(ℓ2),

. . . , vrdt−1(ℓdt−1), v
c
dt−1(ℓdt), v

t
dt−1(ℓdt), t

r(ℓdt), t
ν
)

(4.3)

whereℓ := (ℓ1, ℓ2, . . . , ℓdt) and1 ≤ ℓ1 ≤ ℓ2 ≤ . . . ≤ ℓdt ≤ D. The length of the shortest

sν − tν path is therefore3dt + 1. This is also the minimum length of the shortest augmenting

path on any residual graphs that arise in Algorithm 4.1. In other words, the length of the short-

est augmenting path always increases as iterations of Algorithm 4.1 go on. Such a behavior

of increasing path-lengths is well known for the EK algorithm. It also holds here since any

augmenting path found in Algorithm 4.1 is a feasible EK augmenting path.

For each sinkt ∈ T , define the quickest-shortest (QS) path starting at time slotℓ as

Q(t)(ℓ) := P(t)(ℓ), whereℓ = (ℓ, ℓ + 1, ℓ + 2, . . . , ℓ + dt − 1). Note that given any graph

G, such a path exists for every sinkt ∈ T and every time slot1 ≤ ℓ ≤ D − dt + 1. Further,

starting at time slotℓ, Q(t)(ℓ) is a shortest path that reaches the sinktν ∈ T at the earliest

possible time slotℓ + dt − 1. Thus, for a given sinkt ∈ T Algorithm 4.2 will return the QS

pathQ(t)(ℓ) for someℓ, as long as such a path exists in the residual graph. Note that the QS

paths{Q(t)(ℓ)}t∈T do not conflict with each other, and thus form a shortest path tree (SPT).

Next, define a partial order on all shortest augmenting paths returned byAlgorithm 4.2 with

starting time slotℓ1 and ending time slotℓdt . Specifically, given two augmenting pathsP(t1)(i)
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andP(t2)(j), ending at two, possibly different sinkst1 andt2, defineP(t1)(i) ≤ P(t2)(j) if

and only if i1 ≤ j1 and idt1 ≤ jdt2 . The partial ordering can now be used to understand

Algorithm 4.2 better. For instance, if at some iteration in Algorithm 4.1, it is knownthat a path

P
(t)
1 exists in the residual graph, then Algorithm 4.2 will always return a pathP

(t)
2 ≤ P

(t)
1 of

length less than or equal to the length ofP(t)
1 .

The following lemma states another useful aspect of the QS paths.

Lemma 4.1. If ta andtb be two (possibly different) sinks, andℓ denotes any time slot such that

the pathsQ(ta)(ℓ) andQ(tb)(ℓ + 2) exist on the graphG, then the pathQ(tb)(ℓ + 2) does not

conflict with any pathP ≤ Q(ta)(ℓ).

The proof of Lemma 4.1 is provided in Appendix 4.A. The result is interesting inthe sense

that the entire SPT formed by QS paths starting at a given time slotℓ does not conflict with any

path in the SPT starting at time slotℓ+2. This observation can now be used to prove the main

result of Theorem 4.1 as follows.

(L1) In the first iteration, the pathsQ(t)(1) for each sinkt ∈ T exist and are therefore returned

by Algorithm 4.2. At the end of the first iteration, all edges that lie on any of the paths

Q(t)(1) are reversed and assigned unit flow values.

(L2) At the second iteration, any ESP starts at or after the second time slot. While the paths

Q(t)(2) may not necessarily exist, Lemma 4.1 ensures that the QS pathsQ(t)(3) still ex-

ist; that is, they are not deleted from the residual graph in the first iteration. As observed

earlier, an ESP returned at the second iteration is such thatP(t) ≤ Q(t)(3).

(L3) Generically, thei-th iteration returns a pathP(t) ≤ Q(t)(2i + 1). Since the farthest

sink allows the source to transmit up to the(D − d2 + 1)-th time slot, there are at least
⌊
D−d2+2

2

⌋
iterations, and as many augmenting paths.

(L4) As observed earlier, transmission of the next block can begin at time slot (D − d1 + 3).

This yields the asymptotic throughput of⌊(D−d2+2)/2⌋
D−d1+2 .
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Note that for the SI model, it is not possible to provide similar guarantees as theQS paths

for different sinkst ∈ T starting at the same time slotQ(t)(ℓ) may conflict with each other.

Thus, the existence of the SPT itself is not guaranteed. However, the proof of Theorem 4.1

provides some justification for the ESP heuristic even when the algorithm is applied to generic

interference models.

4.3.3 Distributed Implementation

Algorithm 4.1 readily lends itself to a distributed implementation. Assume that each wireless

node is aware of its two-hop neighbors, the source and sink nodes, andthe graph parametersD

anddt for eacht ∈ T . The following observations may then be used to distribute the algorithm.

(D1) Construction of the time-unwrapped graphG only involves creation of several subnodes

per node, which can be done locally, without requiring any communication among the

nodes.

(D2) The source must calculate the ESP for every iteration and every sink. Distributed and

asynchronous versions of Dijkstra’s algorithm are available [121, Chap. 5], and can be

readily adapted for Algorithm 4.2 here. A speed improvement can be obtained by always

visiting the nodes with an earlier time slot first.

(D3) Finally, the source sends a packet along the shortest augmenting path, found in D2,

informing the nodes of its choice. The participating nodes may then obtain the residual

graph, update flow values along their edges, and delete conflicting edgesby informing

their neighbors.

Before ending this section, a few remarks are in order.

Remark 4.5. During the operation, each node in Algorithm 4.1 transmits and receives on

predetermined time slots with a fixed schedule. This allows most nodes to sleep for most

of the time slots, except when operating or performing maintenance tasks. This aspect of

Algorithm 4.1 makes it attractive for sensor and ad hoc networks.

Remark 4.6. Most deterministic network code designs, such as those in [78], result in rela-

tively small finite field sizes, typicallyO(|T |). Randomized schemes such as the one in [73]
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only require a field sizeq that is a prime power greater than|T |. This is in contrast with most

random network coding schemes that assume asymptotically large field sizes (usually28 or

216). Smaller field sizes translate to lower overhead since the coding coefficients are usually

carried in the packet headers [27].

Remark 4.7. The distributed version of the algorithm works in a feed-forward way. Thus, nei-

ther link-by-link nor end-to-end acknowledgments are required. Such an ACK-free operation

makes sense in networks with hard deadlines since nodes do not have time for re-transmissions

anyway. This is appealing for video streaming applications, where feed-forward operation is

commonly used; see e.g. [137].

4.4 Linear Programming Bounds

This section examines the maximization ofµ from an integer programming perspective. Sec-

tion 4.4.1 describes an integer programming formulation for PI networks. Whileit may be

impossible to efficiently solve the resultant integer program for large networks, the formula-

tion provides ways of obtaining upper bounds. For example, a linear programming (LP) bound

is obtained in Section 4.4.1 by relaxing the integrality constraints in the integer program. Sec-

tion 4.4.2 further improves this bound by adding a class ofvalid inequalities.

4.4.1 Integer Programming Formulation

Following the notation of Section 4.2, the problem of finding the maximum number ofedge-

disjoint paths from the sourcesν to each of the sinkstν ∈ T , can be expressed as the following
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integer program:

µ∗ = arg maxµ (4.4a)

s. t.
∑

e∈Iv

x(t)e =
∑

e∈Ov

x(t)e , t ∈ T, v ∈ G \ (sν , tν) (4.4b)

∑

e∈Os

x(t)e = µ, t ∈ T (4.4c)

∑

e∈It

x(t)e = µ, t ∈ T (4.4d)

ze ≥ x
(t)
e , t ∈ T, e ∈ E (4.4e)

x(t)e , ze ∈ {0, 1}, t ∈ T, e ∈ E (4.4f)

where variablesx(t)e andze represent the virtual and real flows, respectively, on the edgee ∈ E

[97]. The flow variables are related to the flows defined in Section 4.3. Thevirtual flow x
(t)
e

corresponds to the flow values assigned to edges onGt, while the real flowze corresponds to

the overall flow onG.

In the wireless setting, the scheduling constraints SC1-SC2(a) must also beadded. For a

nodev and time slotk, these constraints can be represented by the inequality

∑

e∈Ivr(k)

ze + z(vc(k),vt(k)) ≤ 1 ∀v ∈ V , 1 ≤ k ≤ D (4.4g)

where the first summand in (4.4g) represents the total flow on edges incomingto the receiver-

subnodevr(k), and the second term is the flow leaving the combiner/transmitter-subnode at

the same time slot. The inequality ensures that in a single time slotk, at most a single packet

is either received (from a single node) or transmitted (broadcast to possibly multiple nodes).

The LP bound for the problem (4.4a)–(4.4g) can be obtained by relaxing(4.4f) with,

x(t)e , ze ∈ [0, 1]. (4.4h)

This bound can be further improved by adding “tightening” inequalities that are valid only

for the original integer programming constraints. In other words, these valid inequalities may

“cut-off” regions of the polyhedron defined by the linear inequality constraints (4.4b)–(4.4e)

and (4.4g)–(4.4h). Valid inequalities can also be used to exactly solve the integer program

using methods such as branch-and-cut [167, Chap. 8], although the worst-case complexity
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of these integer programming solvers is still not polynomial. The next subsection focuses on

developing a set of such valid inequalities.

4.4.2 A Class of Valid Inequalities

Before describing the valid inequalities, some simplifications and related notationis intro-

duced. First note that it is straightforward to eliminate the variableµ from the set of equa-

tions (4.4b)–(4.4d). Next, letw be then × 1 super-vector that contains all remaining opti-

mization variables{x(t)e , ze}. After eliminatingµ, the constraints (4.4b)–(4.4e) and (4.4g) can

be generically denoted by the set of inequalitiesAw ≤ b, where each equality constraint is

simply expressed as two opposing inequalities. The set of all feasible integer programming

solutions is then given by{w ∈ {0, 1}n|Aw ≤ b}, while the corresponding LP relaxation

lies in the polyhedron represented as the set{w ∈ [0, 1]n|Aw ≤ b}. A set of inequalities

Cw ≤ d is said to be valid if

{w ∈ {0, 1}n|Aw ≤ b} = {w ∈ {0, 1}n|Aw ≤ b,Cw ≤ d} (4.5)

while

{w ∈ [0, 1]n|Aw ≤ b} ⊇ {w ∈ [0, 1]n|Aw ≤ b,Cw ≤ d}. (4.6)

It is well known that the optimum solution of an LP always lies on an extreme point of the

polyhedron defined by its linear inequalities [167, Chap. 2]. For an integer program however,

its LP-relaxation polyhedron may not necessarily have integral extreme points. The optimum

solution of the LP may therefore be fractional, and its optimum value may lie far from the

optimum of the integer program. Valid inequalities can be used in such cases to cut-off some

or all of the fractional extreme points of the LP relaxation polyhedron.

In principle, a finite number of “necessary” valid inequalities is sufficient toensure that all

extreme points of{w ∈ [0, 1]n|Aw ≤ b,Cw ≤ d} are integral. A well-known method of

generating valid inequalities is the Chvatal-Gomory (CG) procedure, which can generate all

necessary valid inequalities in a finite number of steps [167, Chap. 8]. Given a system ofm

linear inequalities,Aw ≤ b, and a vectorg ∈ [0, 1)m, the CG procedure generates the valid
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Figure 4.3: An example of wireless network and its time-expanded version.

inequality (also called a CG-cut) denoted as

⌊
gTA

⌋
w ≤

⌊
gTb

⌋
(4.7)

where⌊α⌋ stands for the elementwise floor operation of the vectorα.

The caveat however is that the CG-procedure generates an exponentially large set of in-

equalities, which cannot be handled efficiently by any LP solver. The remainder of this section

describes a method to generate a smaller class of valid inequalities that can be efficiently sep-

arated, and thus accommodated by LP solvers.

Figure 4.3 depicts a simple example network and its time-expanded graph forD = 3,

with redundant nodes and edges removed. The solution obtained for this network using the

LP relaxation is,xe = ze = 1 for e = (sν , st(1)), (st(1), vr(1)), (vt(3), tr(3)), (tr(3), tν),

andxe = ze = 0.5 for all othere ∈ E . This gives a total flow of 1.5 that also satisfies the

constraints (4.4g). The integral solution, on the other hand, achieves only one unit of end-to-

end flow, i.e., a single packet is transmitted froms to v in the first time slot, and fromv to t in

the second time slot.
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An observation that follows from this example is that in three time slots, only one packet

goes “through”v. Interestingly, this also holds for larger values ofD and for any three, pos-

sibly non-contiguous, time slots. For instance there can be at most three packets, each either

transmitted or received by a node in three time slotsk1, k2 andk3. However, there can be at

most one packet which is both transmittedand received in these three time slots. In contrast,

the constraint (4.4g) allows 1.5 packets to be transmitted and received.

In order to enforce this condition, note that the flow passing through a node v in time

slots k1, k2 and k3, is given by the total flow through the edges inC := {(n1, n2)|n1 ∈

{vr(k1), v
r(k2)}, n2 ∈ {v

c(k2), v
c(k3)}}. Thus, an extra inequality can be introduced, limit-

ing the total flow on these edges to one. Note that for the case of multiple sinks,the virtual

flow corresponding to each sink requires a separate inequality. The ideacan be generalized to

any odd number of time slots as asserted by the following theorem.

Theorem 4.2. For the time slots1 ≤ k1, k2, . . . , kℓ ≤ D, and a nodev, define the set of edges,

C := {(n1, n2)|n1 ∈ {v
r(k1), v

r(k2), . . . , v
r(kℓ−1)},

n2 ∈ {v
c(k2), v

c(k3), . . . , v
c(kℓ)}}. (4.8)

Then, the following is a valid inequality for allt ∈ T

∑

e∈C

x(t)e ≤

⌊
ℓ

2

⌋
. (4.9)

Proof. The cuts can be generated by applying{0, 12}-CG cuts to some of the constraints

in (4.4b)–(4.4e) and (4.4g). Note that for any slotk, the following holds

∑

e∈Ivr(k)

ze + z(vc(k),vt(k)) ≤ 1

[cf. (4.4e)]
⇒

∑

e∈Ivr(k)

x(t)e + x
(t)
(vc(k),vt(k)) ≤ 1

[cf. (4.4b)]
⇒

∑

e∈Ovr(k)

x(t)e +
∑

e∈Ivc(k)

x(t)e ≤ 1 (4.10)

Adding up the last set of equations for slotsk = k1, k2, . . . , kℓ, we obtain

∑

k∈{k1,...,kℓ}

∑

e∈Ovr(k)

x(t)e +
∑

k∈{k1,...,kℓ}

∑

e∈Ivc(k)

x(t)e ≤ ℓ. (4.11)
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Note that in (4.11), the termsx(t)e for all e ∈ C occur twice, while all other terms occur only

once. Thus, dividing (4.11) by 2 and rounding towards zero, we arrive at (4.9).

The generated set of inequalities (4.9) is much smaller than the full set of all possible

valid inequalities, and is therefore not necessarily optimal. Further, even this set contains

exponentially many constraints. Interestingly however, the set admits an efficient separation

oracle which identifies a possibly violated inequality given any feasible solution of the relaxed

LP problem. The solution to the entire LP can also be found efficiently using theellipsoid

method [148, Chap. 5], whose calls to the separation oracle can be bounded polynomially. For

the set of inequalities generated by (4.9), the following result holds.

Lemma 4.2. The worst-case complexity of the separation oracle isO(nD|T |).

Proof. Given a candidate solution(x(t)e , ze), the problem of verifying its feasibility can be

stated as follows:

For every nodev and sinkt,

(F1) Find the set of time slotsk1, . . ., kℓ such that a constraint in (4.9) is violated; or,

(F2) Output that there is no such set.

It will be argued next that this problem is equivalent to finding a separation oracle for the

matchingproblem on a derived graph. Given a graphGv = (Uv, Ev), associate variablesyve

with each edgee ∈ Ev. LetCu denote the set of edges connected to a nodeu ∈ Uv. A matching

is a set of edges, such that no two edges of the set connect to the same node. Equivalently, a

matching is an assignment of binary values to variablesyve such that

∑

e∈Cu

yve ≤ 1, yve ∈ {0, 1}. (4.12a)

Interestingly, it is possible to replace the integrality constraints in (4.12a) with simple non-

negativity constraints, by adding the following set of valid inequalities

∑

{e=(u1,u2)|u1,u2∈S}

yve ≤

⌊
|S|

2

⌋
∀ sets of nodesS. (4.12b)



4.5 Numerical Comparisons 99

Although the number of valid inequalities in (4.12b) is also exponential, it is possible to design

a separation oracle that returns the violated inequality inO(|Uv|) [148, Chap. 25].

In the present case, for a nodev, construct graphGv with nodes 1, 2,. . ., D, and connect

pairs of nodes(i, j) for all i > j. The edge(i, j) in Gv represents the edge(vr(i), vc(j)) in

the original graphG. Similarly, set the variablesyvij equal to the corresponding edge variables

x
(t)
(vr(i),vc(j)). A related set of constraints foryvij can be derived based on (4.4g) and (4.9) as

follows.

(M1) All flow variables are positive, thus implyingyve ≥ 0 for all e = (i, j).

(M2) The set of edges connecting to a nodek ∈ {1, . . . , D} in Gv correspond to all the edges

e ∈ Ovr(k) ∪ Ivc(k). Thus, (4.10) implies that

∑

e∈Ck

yve ≤ 1. (4.13a)

(M3) Since any set of time slots{k1, . . . , kℓ} corresponds to an equivalent set of nodes in

Gv, (4.9) translates to

∑

{e=(ki,kj)|1≤i,j≤ℓ}

yve ≤

⌊
ℓ

2

⌋
∀ 1 ≤ ℓ ≤ D. (4.13b)

It can be seen that the constraints (4.13a)–(4.13b) resemble the matching constraints (4.12a)–

(4.12b). Thus, given a candidate solutionx(t)e , an assignment to variablesyve can be calculated

for each nodev. Invoking the matching separation oracle then results in a possibly violated

inequality in terms ofyve , which can finally be translated to a corresponding inequality in terms

of x(t)e . Since the separation oracle runs in timeO(D) and must be invoked for every node and

every virtual flow, the total time complexity isO(nD|T |).

4.5 Numerical Comparisons

This section presents simulations on the performance of Algorithm 4.1. For comparison, the

throughput obtained using a delay-agnostic, conflict-graph method from[71] along with the

bounds derived in Sections 4.3.2 and 4.4, are also plotted.
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Figure 4.4: Performance and bounds on a PI network.

Random networks are generated using the MAX-DPA algorithm outlined in [117]. The

algorithm generates graphs by placing nodes one-by-one, while respecting certain maximum-

degree and proximity constraints so as to simulate a realistic ad hoc network. The algorithm

parameters are chosen to bed = 5, dmax = 8, andd0 = 0.2, which denote respectively the

average and maximum node degrees, and the minimum distance between neighbors. The nodes

are placed in a square area chosen such that the average node densityis one. Next, the leftmost

node is chosen to be the source and all edges are chosen to be directed away from the source.

Finally, all nodes without any outgoing edges are chosen to be sinks.

Figure 4.4 shows the performance of Algorithm 4.1 for small PI networks. The throughput

is averaged over 2,000 different networks with 20 nodes each, and is plotted for a range of

values of the deadlineD. The length of the bars equals half the standard deviation over the

network instances. Pipelining in Algorithm 4.1 is implemented such that the sourcedoes not

necessarily wait till the(D−d1+3)-rd time slot, but may begin transmission earlier if possible.

For comparison, the lower bound stated in Theorem 4.1 and the LP upper bounds are also

plotted. In the absence of any deadlines, it is possible to evaluate the maximum achievable

throughput using one of the approximation algorithms outlined in [71]. The dashed line in
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D 15 20 25 30 35 Random approach [71]

Network 1 0.33 0.36 0.37 0.38 0.38 0.50

Network 2 0.20 0.20 0.24 0.25 0.27 0.39

Network 3 0.25 0.21 0.29 0.30 0.28 0.39

Table 4.1: Performance of Algorithm 4.1 on large networks

the figure shows this value, calculated using the random approach of [71] with 500 random

maximal-independent sets, assuming no erasures on links.

As expected, Algorithm 4.1 exhibits graceful degradation in performance as the deadline is

reduced. Interestingly, the trend is also visible in the curves showing upper and lower bounds

on the throughput. Further, it can be seen that the bounds become tighter as the value of

D increases, reaffirming their usefulness. Finally, note that the variation apparent from the

standard deviation bars is largely because of the variation among random networks. Thus,

the overlap between the bars for lower and upper bound doesnot mean that the bounds are

incorrect for some network instances.

Next, the performance is analyzed on a large network with 100 nodes and SI constraints.

Three random networks are generated, and Algorithm 4.1 is run for different values ofD.

While the lower and upper bounds do not apply to this case, the random approach from [71]

is again used here as a benchmark. Note that for large networks, the number of hyperarcs, and

consequently the size of the resulting LP used in [71] becomes prohibitive.Towards this end,

the interference model used in [71] is simplified by considering only broadcast transmissions,

i.e., each node either broadcasts its packets to all its receivers or stays silent. This translates to

the simple rule, used in several MAC protocols: a node transmits only when its two-hop neigh-

borhood is silent. Further, only 200 maximal-independent sets are generated. Table 4.1 lists the

throughput achieved for all three realizations. As with the PI model, the throughput-delay trade

off is again apparent here. In this case however, the difference between the deadline-free case

and the GAP throughput with largeD is not as pronounced. Further, the quality of approxima-

tion in Algorithm 4.1 also depends on the topology of the network. Thus for some networks,

such as Network 3 in Table 4.1, the throughput does not always decrease monotonically with
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Figure 4.5: Degradation of throughput with packet erasures for different values ofD.

D.

Finally, the performance of the resulting network protocol is studied for different erasure

probabilities. Towards this end, a random network with 100 nodes is generated, and Algo-

rithm 4.1 is run to obtain the network operation schedules. Next, the protocolis simulated using

Monte-Carlo runs, assuming that the links fail independently with specified erasure probabil-

ities. Figure 4.5 depicts the average throughput, given by the average number of linear com-

binations received by the sinks, per time slot. It can be seen that the throughput performance

degrades only gradually with erasures.

4.6 Conclusion

This chapter considered network-coded multicast with deadline constraints. Since popular

generation-based approaches do not handle delay constraints, a jointscheduling and network

coding approach is introduced to maximize the average throughput while respecting the wire-

less constraints and packet-deadlines. The novel algorithm relies on a time-unwrapped graph
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expansion in order to construct linear-periodic time-varying network codes. The approach

draws from the well-known augmenting-path algorithm, and is therefore bothdistributed and

scalable. For networks with primary interference constraints, the algorithmwas shown to have

a constant-factor bounded worst-case performance. The setup was also analyzed from an inte-

ger programming perspective, and a set of valid inequalities was developed and used to obtain

a linear programming based upper bound on the throughput.

4.A Proof of Lemma 4.1

First, using contradiction, we show that pathsQ(ta)(ℓ) andQ(tb)(ℓ + 2) do not conflict. If

the two said paths indeed conflict, it would imply that there existea ∈ Q(ta)(ℓ) and eb ∈

Q(tb)(ℓ+ 2) such that one of the following holds:

(C1) Edgesea andeb violate the half-duplex constraint. This means that there exists a node

v ∈ V and a time slotℓ ≤ k ≤ min(dta , dtb) such that either (a)eb ∈ Ivr(k) and

ea ∈ Ovt(k); or, (b)ea ∈ Ivr(k) andeb ∈ Ovt(k).

(C2) There exists a nodev ∈ V and time slotk such thatea ∈ Ivr(k) andeb ∈ Ivr(k).

(C3) The two edges are the same, i.e.,ea = eb.

We begin by assuming that (C1-a) holds for some time slotk and nodev. Since node

vr(k + 1) lies on the QS pathQ(ta)(ℓ + 2), it implies that a subnode in the wireless nodev

can be reached ink − ℓ − 1 time slots if the path alongQ(ta)(ℓ + 2) is taken. Note however

thatvr(k) also lies onQ(tb)(ℓ), which would imply that it must take at leastk − ℓ time slots

if a path alongQ(tb)(ℓ) is taken. Therefore, the pathQ(ta)(ℓ) reaches nodev earlier than the

pathQ(tb)(ℓ) starting at the same slot. This is a contradiction since both paths were already

assumed to be QS paths. The intuition is that starting at time slotsℓ andℓ+2, the time slots at

which two QS paths reach a node differ by at least two.

The complementary case (C1-b) yields an even stronger contradiction as itimplies that the

QS path starting at a later time slot reaches a node at an earlier one. Similarly, the other cases

C2 and C3 also follow from the aforementioned argument. Specifically, both C2 and C3 imply
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that two QS paths, starting at different time slotsℓ andℓ+2, reach a node at the same time slot

k, which is not possible. It can be seen that the argument holds if the pathQ(ta)(ℓ) is replaced

by a shortest pathP ≤ Q(ta)(ℓ) since that would again imply a stronger contradiction.

Note that it is not possible to provide similar guarantees for the SI model since, unlike the

PI model, two QS paths starting at the same time slot may conflict with each other.
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Chapter 5

Network-Compressive Coding for

Wireless Sensors Networks

A network-compressive transmission protocol is developed in which correlated sensor obser-

vations belonging to a finite alphabet are linearly combined as they traverse the network on

their way to a sink node. Statistical dependencies are modeled using factor graphs. The sum-

product algorithm is run under different modeling assumptions to estimate the maximum a

posteriori set of observations given the compressed measurements at the sink node. Error ex-

ponents are derived for cyclic and acyclic factor graphs using the method of types, showing

that observations can be recovered with arbitrarily low probability of error as the network size

grows. Simulated tests corroborate the theoretical claims.

This chapter is organized as follows. Section 5.1 describes the model, and Section 5.2

describes the sum-product variants for cyclic and acyclic factor graphs. Section 5.3 derives

the error exponents when exact MAP decoding is possible. Section 5.4 gives simulation results

with synthetic and real datasets for both cyclic and acyclic cases. Finally, Section 5.5 concludes

the chapter.



5.1 System Model and Problem Formulation 106

5.1 System Model and Problem Formulation

Consider a sensor network with a set of nodesN , deployed to observe an environmental phe-

nomenon. The environmental state, at the location of a sensorn ∈ N , is represented by a

discrete random variableΘn, taking valuesθn ∈ FQ, whereFQ denotes the finite field of al-

phabet sizeQ. The state variables are assumed drawn from a known prior probability mass

function (pmf)p(θ), whereθ stacks the variables{θn}. Sensorn ∈ N does not directly

observeθn, but instead its noisy versionxn ∈ FQ, drawn independently from a known pmf

p(xn|θn). Next, theN := |N | sensor observations, henceforth denoted by theN × 1 vectorx,

are communicated to a sink node (fusion center)t. Linear network coding is used to combine

entries inx as they traverse the network on their way to the sink, which receives theM × 1

vectory = Ax, where entries ofA are also drawn fromFQ and are known at the sink node.

Givenp(θ), p(xn|θn), A, andy, the sink wishes to estimateθ.

In order to motivate the system model, consider sensor networks deployedin tracking

applications, where the environmental state takes only two possible values, corresponding to

the presence or absence of a target. Moreover, since only a few sensors may detect the target at

a given instant, the state variables are clearly correlated among nearby sensors. The observation

noise is also binary in this case, arising from false positives or false negatives in the detectors

of the individual sensor nodes.

In environment-monitoring systems, while many natural phenomena are continuous-valued,

one may be interested only in monitoring them coarsely. For instance in monitoringlevels of a

chemical contaminant or temperature, the quantity of interest may only be the quantized value,

say in whole degrees centigrade. In this case, the environmental state canbe modeled again as

a discrete random variable, representing the quantized version of the analog-amplitude quan-

tity. Moreover, since continuous values at nearby sensor nodes are correlated, their quantized

components will also be correlated. Finally, observations, which are the quantized and noisy

versions of the true analog-amplitude quantity, can be modeled as the noisy version of the

quantized values.
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Giveny at the sink node, thea posterioriprobability is given by

p(θ|y) ∝ p(θ,y) (5.1a)

=
∑

x∈FN
Q

p(θ,x,y) (5.1b)

=
∑

x∈FN
Q

p(y|x)p(x|θ)p(θ) (5.1c)

=
∑

x∈FN
Q

p(y|x)
N∏

n=1

p(xn|θn)p(θ) (5.1d)

where (5.1c) follows from the fact thatx(t) andy are conditionally independent givenx. Here

p(y|x) is simply the indicator function11y=Ax, and (5.1d) follows independence assumption

on the observation noise, which impliesp(x|θ) =
∏N

n=1 p(xn|θn). The sink node wishes to

obtain the block maximum a posteriori (MAP) estimate ofθ, that is

θ̂ = arg max
θ∈FN

Q

p(θ|y). (5.2)

Alternatively, the sink seeks the a posteriori probability (APP) of eachθn, namely

pn(θn|y) =
∑

θ∈FN
Q
\θn

p(θ|y) (5.3)

where the notation\θn is used to indicate that the sum is carried over allθ ∈ FN
Q with fixed

θn. From (5.3), the per-entry MAP estimate can be found asθ̂n = argmaxθn∈FQ
pn(θn|y).

In general, finding (5.2) or (5.3) involves searching or summing over an exponentially large

space. Similar problems involving maximization (or marginalization) of a pmf over a discrete

domain are encountered in several areas, most notably in channel decoding, image processing,

and statistical physics [100]. To cope with this prohibitive complexity, factorgraph represen-

tations ofp(θ|y) are often used to perform such maximization (or marginalization) at least

approximately. In the present chapter, the sum-product algorithm is employed to efficiently

evaluate the per-entry MAP. The sum-product algorithm has also been proposed for a related

problem considered in [101]. In general however, the performanceof message-passing algo-

rithms may not necessarily be reliable, and the sum-product algorithm may noteven converge.
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The focus here is therefore on identifying scenarios where the prior pmfp(θ) and the coding

matrixA have enough structure so as to guarantee convergence and asymptotic optimality.

Note that unlike traditional network coding schemes, matrixA need not be square since

the correlation ofx andθ can be utilized to solve (5.2) or (5.3) even whenM < N . Clearly

in this case compression is achieved, with ratioη = M/N . Before concluding this section, a

remark about the practical implementation aspects of the algorithm is due.

Remark 5.1. In low-cost sensor networks, MAC protocols (such as S-MAC [174])often use

packetized transmissions instead of transmitting individual observations. A packet may ag-

gregate multiple observations collected over time, of the same or multiple physical quantities.

Packetization is achieved in the proposed algorithm by assigninglog2Q bits per observation in

each packet. The entries of theA matrix are chosen by the intermediate nodes, and the same

linear combination is used for all observations within a packet. These entriesare then stored in

the packet headers, so that they can be used by the sink for decoding without significant over-

head; see e.g. [27,76]. Finally, note that packets may be lost due to communication errors, and

this may result in the sink receiving fewer thanM linear combinations. The proposed algo-

rithm is still applicable for this case, since the matrixA, constructed from the received packet

headers, will only contain rows corresponding to the correctly received ym. Sensor failures can

also be handled similarly, by setting the entries of the corresponding column inA to zeros.

5.2 Factor Graph Representation and Message-Passing Algorithm

The per-sensor posterior probabilitypn(θn|y) can be expressed as

pn(θn|y) =
∑

θ∈FN
Q
\θn

∑

x∈FN
Q

p(θ,x|y) (5.4)

∝
∑

θ∈FN
Q
\θn

∑

x∈FN
Q

p(y|x)
N∏

n=1

p(xn|θn)p(θ). (5.5)

Efficient evaluation of the summation in (5.5) may be possible if the multiplicands canbe

further factored into several terms, each depending on only a subset of variables inθ, x, and

y. Towards this end, the following modeling assumptions are made.
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(A1) The pmfp(θ), describing the hidden random variables, can be factored as

p(θ) =
1

Z

J∏

j=1

fCj
(θCj

) (5.6)

whereC1, . . . , CJ ⊂ N are generally overlapping clusters (orcliques) of nodes, and

Z :=
∑

θ∈FN
Q

∏
j fCj

(θCj
) ensuresp(θ) sums up to one. The factorsfCj

have local

domainsθCj
:= {θk|k ∈ Cj}, and are referred to as factor potentials [15, Section 8.3].

(A2) The network coding protocol is designed so that eachym is a linear combination of only

a subsetSm ∈ N of the observationsx, i.e.,

ym =
∑

i∈Sm

Am,ixi (5.7)

where linear coefficientsAm,i ∈ FQ are drawn randomly from a uniform distribution.

The other entriesAm,j = 0 for all j /∈ Sm, which renders the matrixA sparse if

|Sm| ≪ N for all m.

Assumption (A1) subsumes the case when each clusterCj is simply a pair of neighboring

nodes. DefiningE as the set of all pairs(n, n′) of nodes wheren andn′ are neighbors inN ,

the pmfp(θ) for the pairwise case factorizes as

p(θ) =
1

Z

∏

(n,n′)∈E

fnn′(θn, θn′) (5.8)

whereZ is again the normalization constant. The choice of the subsetsSm in (A2) dictates the

communication protocol used and the cost incurred. In order to save cost, individual sensors

do not route their observations to the sink directly. Instead, data from all nodes inSm are

linearly combined intoym, and then routed to the sink. This can be done efficiently by using a

collection tree spanning all nodes inSm, and rooted at a nodei ∈ Sm that is closest to the sink.

Then, as explained in Appendix A, the collection procedure incurs only|Sm|−1 transmissions.

Let the hop-distance of nodek ∈ N from the sink be denoted byhk. Since the node inSm

that is nearest to the sink is responsible for collectingym from other nodes inSm, the total

communication cost of this scheme is given by
∑

m|Sm| − 1 + mink∈Sm
hk. In comparison,

routing each observation without coding incurs a cost of
∑

k∈N hk.
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Figure 5.1: Factor graph representation of the posterior density in (5.9).

Using (A1)-(A2), it is possible to rewrite (5.5) as

pℓ(θℓ|y) ∝
∑

θ∈FN
Q
\θℓ

∑

x∈FN
Q

M∏

m=1

p(ym|xSm)
N∏

n=1

p(xn|θn)
J∏

j=1

fj(θCj
) (5.9)

wherep(ym|xSm) = 1 if ym =
∑

i∈Sm
Am,ixi, and 0 otherwise. The overall factor graph

is depicted in Figure 5.1. The hollow circular nodes are the variable nodes,and denote the

observed and hidden variables. The square, factor nodes correspond to the functions that appear

within the summation in (5.9), and represent the relationship between the connecting variable

nodes. The variable nodes representingym are shaded, because they are already known and

need not be inferred.

The factor graph in Figure 5.1 contains cycles or loops, which generally prevents one from

performing exact inference. Observe from Figure 5.1, that any cycles that may occur in the

factor graph may span: (a) only the setsCj ; or (b) only the setsSm; or (c) bothCj andSm.

Of these, cycles due to (a) are unavoidable if the priorp(θ) already has cycles and is precisely

known. In principle, one could discard dependencies among some of the neighboring nodes,

albeit at the expense of some model mismatch. The resulting modeling error may be justified

if the performance of the sum-product algorithm improves such that overall estimation error

decreases; see e.g., [162] and references therein. In practice however, only the topology of the
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network is specified, and a model forp(θ) must be postulated by choosing the clusters{Cj}

appropriately.

5.2.1 Cyclic Factor Graphs

If the specified topology does not admit an acyclic factor graph representation, the sum-product

algorithm may still be used to find the marginal (5.9)approximately. The loopy version of the

sum-product algorithm consists of two steps: (a) passing messages fromall variable to all

factor nodes, and (b) passing messages from all factor nodes to variable nodes. Denoting the

variable nodesθn andxn by indicesν andn, and likewise the factor nodesCj andSm by j

andm, the expressions for messages take the following form.

µν→j(θn) = µn→ν(θn)
∏

j′ 6=j

µj′→ν(θn) (5.10a)

µj→ν(θn) =
∑

∼{θn}

fCj
(θCj

)
∏

n′ 6=n

µν′→j(θn′) (5.10b)

µν→n(xn) =
∑

θn∈FQ

p(xn|θn)
∏

j′

µj′→ν(θn) (5.10c)

µn→ν(θn) =
∑

xn∈FQ

p(xn|θn)
∏

m′

µm′→n(xn) (5.10d)

µn→m(xn) = µν→n(xn)
∏

m′ 6=m

µm′→n(xn) (5.10e)

µm→n(xn) =
∑

∼{xn}

p(ym|xSm)
∏

n′ 6=n

µn′→m(xn′). (5.10f)

Here the summations in (5.10b) and (5.10f) are over the vector domainsθCj
∈ F

|Cj |
Q \ θn and

xSm ∈ F
|Sm|
Q \ xn respectively. The messagesµν→j(θn) andµj→ν(θn) are those exchanged

betweenCj andθn, and messagesµn→m(xn) andµm→n(xn) are those exchanged between

Sm andxn. For simplicity, the messages betweenxn, θn andp(xn|θn) are compacted into

messagesµn→ν(θn) andµν→n(xn) (the messages to and from factorsp(xn|θn) are bypassed).

The algorithm starts by settingµn→m(xn) = µν→j(θn) = 1 (for all 1 ≤ m ≤ M ,

1 ≤ ν ≤ N , 1 ≤ j ≤ J , andxn, θn ∈ FQ), and runs for several iterations. At each

iteration, the first step consists of evaluating (5.10b) followed by (5.10c),and (5.10f) followed

by (5.10d), while the second step consists of evaluating (5.10a) and (5.10e). The algorithm
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is terminated either upon convergence, or after a fixed number of iterationsand yields the

approximate marginal distributionp(θn|y) ∝ µn→ν(θn)
∏

j′ µj′→ν(θn). The complexity of

this algorithm is exponential in the number of nodes inCj andSm (denoted respectively by

|Cj | and|Sm|), because (5.10b) and (5.10f) haveQ|Cj |−1 andQ|Sm|−1 summands respectively.

However, the number of summations and multiplications in (5.10a)–(5.10f) required at each

iteration are only linear inN .

With loopy factor graphs, the sum-product algorithm does not—in general—provide any

guarantees on the quality of the approximation. Related results from the coding literature

suggest that short cycles typically result in poor approximations [100].Cycles of length four

may occur for instance if two setsS1 andS2 (or clustersC1 andC2) overlap in two or more

nodes. Four-cycles between the clustersCj can be avoided by using a pairwise factorization

for p(θ) as in (5.8). An approximate algorithm to choose the sets{Sm} so as to minimize

the communication cost and allow no cycles among themselves is provided in Appendix 5.A.

However, cycles of length eight may still occur as clusterCj and a setSm may share two

or more nodes. The next subsection describes a scheme that allows cycles to be completely

eliminated from the factor graph.

5.2.2 Acyclic Factor Graphs

As discussed earlier, for acyclic factor graphs, the sum-product algorithm is guaranteed to

converge in a finite number of iterations, and finds the exact per-entry marginalsp(xn|y) [15].

Further, some network topologies may be well-suited to an acyclic factorizationof p(θ). For

instance, the graph of a chain of sensors{1, 2, 3, . . . , N} admits a cycle-free factor graph

representation with clusters of the formC1 = {1, 2, 3}, C2 = {3, 4, 5}, and so on.

Once the clustersCj can be chosen to avoid cycles within themselves, other cycles can be

eliminated as follows. First, letM = J , and setSj = Cj for all 1 ≤ j ≤ M . Next, observe

that the factor graph can be “folded” along the factor nodesp(xn|θn) [cf. Fig. 5.1]. More

precisely, it is always possible to combine the two variablesxn andθn into a single variable



5.2 Factor Graph Representation and Message-Passing Algorithm 113

g(wn)

h(wCm)

wn

Figure 5.2: Acyclic factor graph for Section 5.2.2.

wn ∈ F2
Q and express the marginal pmf as

p(θn|y) ∝
∑

x∈FN
Q

θ∈FN
Q\θn

N∏

n′=1

g(wn′)
M∏

m=1

h(wCm) (5.11)

wherewCm := {wi|i ∈ Cm}, g(wn′) := p(xn′ |θn′), andh(wCm) := p(ym|xCm)fCm(θCm).

The resulting factor graph is now acyclic, and an example is shown in Fig. 5.2.

The sum-product algorithm is also simpler to describe in this case, and involves passing

messagesµn→m(wn) from variable noden to factor nodem, andµm→n(wn) from the factor

nodem to variable noden. These messages take the form

µn→m(wn) = g(wn)
∏

m′ 6=m

µm′→n(wn) (5.12a)

µm→n(wn) =
∑

{wj∈F2
Q
|j∈Cm\n}

h(wCm)
∏

n′ 6=n

µn′→m(wn′). (5.12b)

The algorithm starts by settingµn→m(wn) = 1 (for all 1 ≤ m ≤ M , 1 ≤ n ≤ N , andwn ∈

F2
Q), runs until convergence, and yields the approximate marginal distributionp(wn|y) ∝

g(wn)
∏

m µm→n(wn). The variablesxn andθn may then be recovered by maximizing the

individual marginals as described earlier. Before concluding the section, a remark is due

Remark 5.2. It is also possible for eachSm to sendL(m) > 1 linear combinations to the sink.

The availability of more than
∑

m L(m) > M linear combinations at the sink can provide a

better MAP estimate, though at the cost of higher communication requirement of
∑

m|Sm| −

1+L(m)mink∈Sm
hk. Further in the factor graph, only the expression forp(ym|xSm) changes,

while the structure of (5.9), and consequently the complexity of the sum-product algorithm
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remains the same. Varying the values ofL(m) across clusters thus provides a low-complexity

method of exploring the cost-performance tradeoff.

5.3 Error Exponents

In this section, bounds on the probability of error are evaluated for the block MAP estima-

tor (5.2). For simplicity, bounds are first derived in Section 5.3.1 for the factor graph repre-

sentation of 5.2.2 in which the resulting factor graph is acyclic and thus easierto handle. The

bounds in Section 5.3.2 on the other hand, require a pairwise correlation model, but are valid

even if the resulting factor graph is cyclic. Both subsections assume that theobservation noise

is zero, i.e.,p(x|θ) = 11x=θ.

5.3.1 Acyclic Factor Graphs with General Correlation Model

As discussed in Section 5.2.2, nodes are divided into overlapping clusters{Cm}
M
m=1. Cor-

related observations of each cluster are sent to the sink after being linearly combined into a

single symbol inFQ. The clusters are constructed in such a way that the resulting factor graph

is acyclic.

The sink node can tolerate a limited amount of distortion in the reconstructedx̂ (:= θ̂).

Define the cluster-Hamming distortion metricDH(x,x′) between two vectorsx andx′ as the

fraction of clusters over which the two vectors differ, i.e.,

DH(x,x′) =
|{m|xCm 6= x′

Cm
}|

M
. (5.13)

The probability of errorPe is the average probability that the distortion between the observed

vectorx and the decoded vectorx̂ is greater than a tolerable leveld, i.e.,

Pe =
∑

x∈FN
Q

Pr(DH(x̂,x) ≥ d|x)p(x). (5.14)

The conditional error probability Pr(DH(x̂,x) ≥ d|x) can be bounded as shown in the follow-

ing lemma; see Appendix 5.B for the proof.
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Lemma 5.1. The conditional probability that the distortionDH(x̂,x) exceeds a tolerable

thresholdd, can be bounded as

Pr(DH(x̂,x) ≥ d|x) ≤
∑

z∈FN
Q ,DH(z,x)≥d

p(z)≥p(x)

Q−dM . (5.15)

The intuition behind Lemma 5.1 comes from the observation that if two vectorsx andz

differ over a single cluster, the probability that a randomA satisfiesAx = Az is exactly

1/Q. Thus, when the two vectors differ overdM clusters (corresponding to a distortiond), A

satisfiesAx = Az with probabilityQ−dM .

Interestingly, it is possible to obtain a compact form of the bound in (5.15) when p(x)

has an acyclic factor graph representation. Define the cluster graphGC = (VC , EC) as the

undirected graph formed by the set ofM nodesVC , representing the clusters{Cm}
M
m=1, and

the set of edgesEC , connecting pairs of overlapping clusters. For the pmfp(x) to be an acyclic

factor graph, it is necessary that the cluster graph is also acyclic, or equivalently tree-shaped.

In this case, it is always possible to factorp(x) in terms of the individual and pairwise cluster

pmfs as follows [163]

p(x) =
∏

m∈VC

pm(xm)
∏

(m,m′)∈EC

pm,m′(xm,xm′)

pm(xm)pm′(xm′)
(5.16)

where nodem represents clusterCm,xm represents setxCm , andpm(xm) andpm,m′(xm,xm′)

represent, respectively, the joint pmfs overxCm andxCm∪Cm′ . Supposing identical clusters,

the subscriptsm andm′ can be removed from the pmfs. SinceGC is a tree, it is possible to

choose any clusterC1 as its root, reorder pairs(m,m′) appropriately, and express (5.16) as

p(x) = p(x1)
∏

(m,m′)∈EC

p(xm|xm′). (5.17)

Because of the Markov property, the variablesxm depend on the variablesxm′ only through

the variables common to bothCm andCm′ , i.e., p(xm|xm′) = p(xm|xCm∩Cm′ ). Further,

as discussed in Section 5.2.1, for the factor graph to be acyclic, two clusters can overlap

in at most one variable, meaning that|Cm ∩ Cm′ | = 1. With x1 ∈ C1, and p(x1) =

p(x1)p(xC1\{1}|x1), (5.17) can be rearranged as

p(x) = p(x1)
∏

m∈VC

p(xCm\jm |xjm) (5.18)
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wherejm is some node in the setCm.

With these assumptions, it is possible to manipulatep(x) using the method of types [37],

as detailed next. If each cluster has exactlyK nodes, the pmfp(xCm\jm |xjm) takes at most

QK values, also referred to as types. Definingpq,i := p(xCm\jm = i|xjm = q), andℓq,i :=

|{m ∈ VC |xCm\jm = i, xjm = q}|, the prior pmf in (5.18) can be expressed as

p(x) =
1

Q

Q∏

q=1

∏

i∈Iq

p
ℓq,i(x)
q,i (5.19)

where the setIq := {i|pq,i 6= 0}, and|Iq| ≤ Q. Pmfp(x) now depends onx through its type

{ℓq,i(x)}q,i, compactly denoted by theQK−1 ×Q type matrixL(x), with entries

[L(x)]q,i :=





ℓq,i(x) pq,i 6= 0

0 otherwise
. (5.20)

Conversely, given a type matrixΛ, defineT (Λ) := {x|L(x) = Λ} as the set of vectorsx

that have the same type. In order to state the next result, a few definitions are needed. Let

pq be the pmf induced bypq,i for fixed q, andϕq(x) be the pmf induced byℓq,i(x)/ℓq(x),

whereℓq(x) :=
∑

i ℓq,i(x). Also defineH (ϕq(x)) as the entropy of the pmfϕq(x), and

D(ϕq(x)‖pq) as the Kullback-Leibler (KL) divergence between pmfsϕq(x) andpq [35]. Then

the following lemma holds; see Appendix 5.B for the proof.

Lemma 5.2. The pmfp(x) in (5.18)can be written as

p(x) =
1

Q
2−M(HL(x)+DL(x),p) (5.21)

whereHL(x) :=
∑Q

q=1
ℓq(x)
M H (ϕq(x)) andDL(x),p :=

∑Q
q=1

ℓq(x)
M D(ϕq(x)‖pq) are the av-

erage entropy and divergence operators.

Let L denote the set of all possible types. Then, summing over all possible valuesof x is

equivalent to summing over all typesΛ ∈ L, and summing over all vectorsx ∈ Λ [37]. Using
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Lemma 5.2 in (5.14), it can be seen that

Pe =
1

Q

∑

Λ∈L

∑

x∈T (Λ)

Pe|Λ2
−M(HΛ+DΛ,p) (5.22a)

=
1

Q

∑

Λ∈L

Pe|Λ|T (Λ)|2−M(HΛ+DΛ,p) (5.22b)

≤
1

Q

∑

Λ∈L

Pe|Λ2
−MDΛ,p (5.22c)

≤
1

Q
(M + 1)Q

K

Pe|Λ2
−MDΛ,p (5.22d)

wherePe|Λ := Pr(DH(x̂,x) ≥ d|x ∈ T (Λ)); the inequality in (5.22c) makes use of the bound

|T (Λ)| ≤ Q2MHΛ (see Appendix 5.B); and (5.22d) considers the fact that the total numberof

types can be bounded as|L| ≤ (M + 1)Q
K

.

The bound in (5.22d) thus depends on whether or notDΛ,p is zero. Indeed, if[Λ]q,i = pq,i

for all q andi, it holds thatDΛ,p = 0. Such a type will be henceforth denoted asΛ∗, and any

x ∈ T (Λ∗) will be referred to astypical. It can be seen that except for typical vectorsx, Pe

goes to zero asM increases because the first term in (5.22d) grows only polynomially inM .

The following proposition summarizes this result.

Proposition 5.1. For largeM , the error probabilityPe in (5.22d)goes to zero for non-typical

x, i.e.,x /∈ T (Λ∗), and goes to1Q(M + 1)Q
K
Pe|Λ∗ for typicalx, i.e.,x ∈ T (Λ∗).

In other words, the exponent of the conditional probabilityPe|Λ∗ for the typicalx dom-

inates the overall error probability. In order to derive bounds onPe|Λ∗ , note again that the

summation in Lemma 5.1 (overz) can be expressed as summation over typesΩ ∈ L and

vectors in each typez ∈ T (Ω), yielding

Pr(DH(x̂,x) ≥ d|x ∈ T (Λ∗)) ≤
∑

Ω∈L
p(z)≥p(x)

∑

z∈T (Ω)

Q−dM . (5.23)

Given thatx ∈ T (Λ∗), the conditionp(z) ≥ p(x) can simply be expressed asHΩ +DΩ,p ≤

HΛ∗ + DΛ∗,p = HΛ∗ . Replacing the summation overz ∈ T (Ω) by the bound|T (Ω)| ≤
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Q2MHΩ [cf. (5.22b) and (5.22c)] it follows that

Pr(DH(x̂,x) ≥ d|x ∈ T (Λ∗)) ≤ Q2
∑

Ω∈L
HΩ+DΩ,p≤HΛ∗

2−M(d logQ−HΩ)

≤ Q
∑

Ω∈L

2−M(d logQ−HΛ∗ )

≤ Q|L|2−M(d logQ−HΛ∗ ). (5.24)

As observed earlier, since|L| is only polynomial inM , so that the overallPe is dominated

only by the exponential term. Finally, the conditional probability is always lessthan or equal

to one, so the exponent should always be negative. The following proposition summarizes the

result.

Proposition 5.2. For sufficiently largeM , the error exponent of the probability of errorPe is

bounded asE ≥ [d logQ−HΛ∗ ]+, where[Λ∗]q,i = pq,i for all i ∈ Iq, 1 ≤ q ≤ Q.

It can thus be observed that larger values ofQ yield smaller probabilities of error. In-

tuitively, logQ is the number of observed bits at each sensor,d logQ is the number of bits

per-sensor that need to be reconstructed correctly at the sink, andHΛ∗ represents the total

number of (uncorrelated) information bits observed by the sensor network as a whole. If the

entropyHΛ∗ is small, it means that sensor observations are highly correlated. This happens for

instance, when the transition probabilitypq,i is close to 1 if all entries ofi are equal toq. In this

case, a smallerQ can also be used to recover information with smaller allowable distortion.

5.3.2 Cyclic Factor Graphs with Pairwise Correlation Model

This subsection derives bounds on the probability of error for cyclic graphs assuming the pair-

wise correlation model in (5.8). Define the graphG = (N , E) with the set of nodesN repre-

senting the sensors, and the edgesE connecting neighboring nodes. In this case, the pmf ofx

can be expressed as a product of factors along a spanning treeET , and the rest of the edges̄ET

[cf. (5.16)]

p(x) =
1

W

∏

v

pv(xv)
∏

(v,w)∈ET

pv,w(xv, xw)

pv(xv)pw(xw)

∏

(v,w)∈ĒT

pv,w(xv, xw)

pv(xv)pw(xw)
(5.25)
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whereW :=
∑

x

∏
v pv(xv)

∏
(v,w)∈E

pv,w(xv ,xw)
pv(xv)pw(xw) andE = ET ∪ ĒT , with ET ∩ ĒT = ∅ is

the set of all edges representing the graphical model. Notice that ifĒT = ∅ thenW = 1 and

the model in (5.25) boils down to the one in (5.16). Assuming identical joint probabilities so

thatp(xv, xw) := pv,w(xv, xw), and uniform prior probabilitiespv(xv) = 1/Q, p(x) can be

compactly written in terms of conditional edge transition probabilities

p(x) =
1

Z

∏

(v,w)∈ET

p(xv|xw)
∏

(v,w)∈ĒT

p(xv|xw) (5.26)

where nowZ :=
∏

(v,w)∈E p(xv|xw)
∏

(v,w)∈ĒT
p(xv|xw) replacesW in (5.25). Note that in

this modelp(x1) is not explicitly shown since the normalization constantZ is needed anyway.

The types can now be defined as theQ2 values the conditional pmfp(xv|xw) takes. Defining

pq,i andℓq,i(x) in a similar manner as in Section 5.3.1, it holds that

ℓq,i(x) = ℓTq,i(x) + ℓ̄Tq,i(x) (5.27)

whereℓTq,i(x) counts the number of transitions of(q, i)-th type for edges inET , whereas̄ℓTq,i(x)

counts the transitions for edges in̄ET . Proceeding as in Lemma 5.2,p(x) in (5.26) can be

written as

p(x) =
1

Z
2−|ET |(HLT (x)+DLT (x),p)2−|ĒT |(HL̄T (x)+DL̄T (x),p) (5.28)

whereHLT (x), DLT (x),p, HL̄T (x) andDL̄T (x),p are defined as in Lemma 5.2, normalizing

counts over|ET | and|ĒT |. Using this representation forp(x), the next proposition connects the

conditional error probability of cyclic graphs with respect to acyclic ones; see Appendix 5.B

for the proof.

Proposition 5.3. For large |ET |, the error probabilityPe in (5.22d)with the prior p(x) as

in (5.28)goes to zero for non-typicalx, i.e.,x /∈ T (Λ∗
T ), and goes toPe|Λ∗

T
for the typical

x ∈ T (Λ∗
T ).

The consequence of this proposition is that the error probability of cyclicp(x) is governed

by the error probability of any underlying tree. In fact, it will next be shown that for anyx

(typical or not) the conditional error probability with acyclicp(x) can be bounded by the same

bound benchmarking the performance of any underlying tree in the graph. This is possible by
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appropriately bounding the conditional error probability Pr(DH(x̂,x) ≥ d|x) as shown next

Pr(DH(x̂,x) ≥ d|x) ≤
∑

ΩT∈L
HΩT

+DΩT ,p≤HΛ∗
T

∑

z∈T (ΩT )
HΩ̄T

+DΩ̄T ,p≤HΛ̄T
+DΛ̄T ,p

Q−dN

≤
∑

ΩT∈L
HΩT

+DΩT ,p≤HΛ∗
T

|T (ΩT )|Q
−dN (5.29)

where the first inequality holds because the constraintp(z) ≥ p(x), which as per (5.28) is

equivalent to|ET |(HΩT
+DΩT ,p)+ |ĒT |(HΩ̄T

+DΩ̄T ,p) ≤ |ET |HΛ∗
T
+ |ĒT |(HΛ̄T

+DΛ̄T ,p),

can be split into two constraints, one for the tree-typesΩT andΛ∗
T and another for the non-tree

typesΩ̄T andΛ̄T . Using again the bound|T (ΩT )| ≤ Q2|ET |HΩT , (5.29) can be bounded as

Pr(DH(x̂,x) ≥ d|x) ≤ Q
∑

ΩT∈L
HΩT

+DΩT ,p≤HΛ∗
T

2−|ET |(logQ−HΩT
) (5.30)

coincides with the bound obtained for acyclic graphs [cf. (5.24)]. One remark is now in order.

Remark 5.3. Although error probability bounds are identical for cyclic and acyclic cases, this

holds true only for the exact MAP estimation. As the sum-product algorithm applied to a

cyclic factor graphs yields approximate probabilities, its performance may beworse than that

of acyclic graphs.

Remark 5.4. The error probability bounds derived in this section provide a useful quanitative

description of the interplay between different parameters in a sensor network. However, care

should be taken when applying them to a real sensor network, especially with regards to the

following assumptions.

1. The bounds derived here are tight only ifM is sufficiently large. Their applicability for

predicting the performance of small or moderate-sized networks is therefore limited.

2. The present analysis ignores modeling error, which is otherwise a majorissue in dis-

tributed compression implementations. For example, a simple correlation model, such

as the one postulated in (5.6) may not be sufficient for a large network.
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5.4 Simulations

5.4.1 Sum-Product on Acyclic Factor Graphs

In order to test the performance of the MAP estimator, the network-compression protocol for

acyclic factor graphs, developed in Section 5.2.2, was tested on two different topologies. First

in order to test the error exponents derived in Section 5.3.1, consider a simple sensor network

consisting of a chain graph of the form{1, 2, 3, 4, . . . , N}. SetsCj andSm are both chosen

to be of the form{1, 2, 3}, {3, 4, 5}, {5, 6, 7} . . . , and the factor graph of Figure 5.2 is used.

Given the value ofQ (=4 in this case), sensors observe random integers between 1 andQ,

which are then mapped to theQ elements ofFQ. The integer label of an elementx ∈ FQ is

henceforth denoted byI(x), and likewise for a vectorx. Observation errors are ignored for

simplicity, and the sensor observations within each cluster are assumed to follow the pmf

p(xCj
) ∝ exp(−α(I(xjmax)− I(xjmin))) (5.31)

wherejmax := argmaxk∈Cj
I(xk) andjmin := argmink∈Cj

I(xk). Clearly this pmf encour-

ages observations within a cluster to be close to each other. Since the factorization of p(x)

includes no cycles, vectorsx can be sampled in a sequential manner; see e.g., [15, Chap. 8].

Figure 5.3 plots error probabilityPe [cf. (5.14)] as a function of the tolerable distortion

level d for α = 3 and different values ofM . According to the error exponent derived in

Proposition 2,Pe → 0 for M → ∞, for all values ofd > HΛ∗/log2Q. Observe that the

derived bound is loose, asPe becomes very small even for values ofd belowHΛ∗/log2Q

(depicted by the vertical line) and forM ≥ 50. Nevertheless, the exponent is a good indicator

of the distortion at which lowPe can be obtained at a moderate value ofM .

In the context of sensor networks, it is also interesting to quantify theℓ0- and ℓ1-norm

of the estimation error. In particular,e0 :=
∥∥∥I(θ)− I(θ̂)

∥∥∥
0
/N represents the fraction of

entries that are decoded incorrectly, and is upper bounded byDH(θ, θ̂0)MK/N [cf. Sec-

tion 5.3.1]. The per-entry difference between the observed and decoded vectors, given by

e1 :=
∥∥∥I(θ)− I(θ̂)

∥∥∥
1
/N is also important since the sensor observations are derived from

continuous valued data, and errors with small magnitudes may be tolerable. Towards this end,

consider the topology depicted in Figure 5.4 where the clusters used to partition the sensor
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Figure 5.3: Probability of error when a distortiond can be tolerated at the sink, for different

values ofM , andα = 3. The vertical line shows the distortion above whichPe → 0 whenever

M →∞.

nodes are also shown. Figure 5.5 shows the two measures of estimation error againstα, which

signifies the level of intra-cluster correlation, forQ = 16. As expected, both error norms

decrease asα increases. Interestingly, thee1 error is close to thee0 error, suggesting that all

decoding errors have small magnitudes. Note that withQ = 16, the per-entry errore1 ≈ 0.1 is

equivalent to having each entry ofθ̂ incur an error of about 0.63%.

Next, the impact of varying communication cost [cf. Section 5.2.2] on the performance

of the proposed algorithm is studied. This is achieved by varying the valuesof L(m), which

changes both the communication cost as well as the compression ratio. Figure5.6 shows this

compression-performance trade-off forQ = 16, andα = 2. The communication cost is

expressed as the percentage of the cost incurred when sending all observations through the

shortest path tree. Such graphs can be used by the network designer toefficiently find the

communication cost incurred for different levels of tolerable estimation errors.
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Figure 5.4: Sensors within the dotted circles are assumed correlated, with edges denoting

communication links. All nodes within each cluster collect data at one of the nodes, and send

it to the sink through the shortest path.

5.4.2 Performance Evaluation with the Sensorscope Dataset

The proposed network-compressive scheme is tested on the dataset available from the Sen-

sorscope LUCE Project [147]. The LUCE deployment consists of a sensor network, shown in

Figure 5.8, over a university campus measuring environmental quantities such as temperature,

humidity, wind speed, etc. Only a part of the deployed network is considered here, as not all

sensors were active at all times.

Temperature readings are quantized and mapped to integers between 1 andQ, and then to

elements ofFQ to form the vectorθ. The pmfp(xn|θn) modeling the observation error is

p(xn|θn) =





0.01 I(xn) = I(θn)± 1, I(θn) 6= 1, Q

0.02 I(xn) = 2, I(θn) = 1 or, I(xn) = Q− 1, I(θn) = Q

0.98 I(xn) = I(θn)

(5.32)

which roughly translates to a probability of error of0.01, except when the sensor observes

extreme values. The network is modeled using the factor graph of Figure 5.1, with hidden

variables following the pairwise correlation model (5.8). The factors are chosen asf(θk, θℓ) :=
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Figure 5.5: Estimation error for different levels of cluster correlation evaluated forQ = 16.

For each cluster,xmax = maxk∈Cj
I(xk) and xmin = mink∈Cj

I(xk), and the joint pmf

p(θCj
) ∝ e−α(xmax−xmin).

exp(−2|I(θk)− I(θℓ)|) for all the edges.

For this model, not all neighbors can be included in the edge setE , or it leads to a large

number of short cycles in the corresponding factor graph; see e.g., [22]. To avoid this situation,

thek-nearest neighbor (kNNG) graph is used. Cycles in the graph are minimized for smaller

values ofk, so the smallest possiblek that yields a connectedkNNG is employed.

The sum-product algorithm as described in Section 5.2 is used. Towards this end, the sets

Sm are chosen using the algorithm in Appendix 5.A, with at most three nodes percluster.

Node 1 is assumed to be the sink, and all setsSm that contain node 1 send their data as

is to node 1. Figure 5.8 shows the estimation error (as described in Section 5.4.1) against

the communication cost. The different levels of communication costs arise fromdifferent

number of linear combinations sent by the clusters. As expected, even in thecyclic case, the

estimation error goes down as the communication cost is allowed to increase. However, the

estimation error is higher here compared to that in the synthetic data, because: (a) the sum-

product algorithm does not always converge, or converges to incorrect estimates; and (b)p(θ)
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Figure 5.6: Estimation error for different levels of compression, plotted against the commu-

nication cost. As communication cost increases, more linear combinations can be sent to the

sink per cluster, yielding higher compression ratios but lower estimation errors.

andp(x|θ) are no longer the true probabilities representative of the real data. Nevertheless,

with 75% communication cost, while about 15% entries are incorrectly estimated, the per-

entry error is only about 1.25%1.

5.5 Conclusions

A network-compressive coding scheme for sensor networks was developed. Probabilistic rela-

tionships among sensor observations were exploited to formulate the MAP estimation problem

within the Bayesian inference framework. The sum-product algorithm wasthen utilized to per-

form (approximate) low-complexity decoding, with reduced communication overhead. Error

exponents and simulation results were provided to delineate, quantify, and test the interplay

between the estimation error, tolerable distortion, alphabet size, and communication cost.

1At Q = 16, the errore1 ≈ 0.2 is equivalent to a per-entry error of about 1.25%.
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Figure 5.7: Sensor network used for the simulations. Node IDs correspond to those in the

Sensorscope dataset.

5.A Choosing the Sets{Sm} and {Cj}

Consider first choosing the sets{Sm} such that the factor sub-graph formed by them is cycle-

free, and the total communication cost [cf. Section 5.2] is minimized. Given the communi-

cation graph of the sensor network, the problem is combinatorial, and only an approximate

algorithm is provided here. To ensure that the sum-product algorithm runs efficiently, it is

assumed that2 ≤ |S|m ≤ K.

Note first that the observations from all nodes inSm are collected at a nodei ∈ Sm and

then sent to the sink. This collection procedure requires all nodesk ∈ Sm \ {i} to at least

transmit once, and thus incur a total cost of at least|Sm| − 1. If the subgraph formed by nodes

in Sm is connected, it can be shown that the collection cost of|Sm| − 1 is also achievable.

Consider the collection tree rooted at nodei, and connected to other nodes inSm. As shown

in Figure, each node requires only one transmission. Specifically, the leafnodes transmit their

observations uncoded, while the intermediate nodes transmit the linear combination formed by
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Figure 5.8: Estimation error vs. the communication cost. More communication allowsmore

linear combinations to be sent to the sink per cluster, yielding lower estimation errors.

their own observation and the received symbol. Therefore, given setSm that forms a connected

subgraph, a graph traversal algorithm (such as breadth-first or depth-first search) can be used

to find a collection tree that is rooted at the node closest to the sink.

Having recognized that the subgraph formed by nodes in eachSm must be connected, the

following algorithm adds a newSm per iteration, while maintaining the acyclic nature of the

factor sub-graphF formed by{Sm}.

1. LetR be the set of nodes that have already been added, and initializeR ← ∅. Also

initialize factor graphF with variables nodesN .

2. UnlessR = N , repeat

(a) chooseSm as any connected subgraph with at mostK nodes, of which one is from

R and others fromN \R; and

(b) add the chosen factor node toF , and updateR ← R∪ Sm.

Clearly, the key step here is (2a), where the chosen setSm ensures that the resulting factor

graph is acyclic. This is because at any iteration, for the added factor node to form a cycle, it

must connect at least two nodes inR. However the added set always contains only one node
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R and all others fromN \ R. DefineN(i) as the set of neighboring nodes of nodei, i.e.,

N(i) = {j : (i, j) ∈ E}. In order to construct the connected subgraph of step (2a), it suffices

to start at any node in the set{k : k ∈
⋃

i∈RN(i), k /∈ R} and traverse the subgraphN \ R

forK−1 steps. Overall, at mostN possible graph-traversals may be required at each iteration,

so the overall algorithm runs in timeO(NM).

The clustersCj can also be constructed in a similar fashion, except that the nodesCj added

in step (2a) should be of the form{(i, Cji), i ∈ R, Cji ⊂ N(i)
⋂
(N \R)}.

5.B Proofs Required for Section 5.3

Proof of Lemma 5.1

Givenx, the estimatêx depends on the mixing matrixA, whose non-zero entries are chosen

in an i.i.d. manner fromFQ. The conditional probability of error can therefore be bounded as

follows,

Pr(DH(x̂,x) ≥ d|x) ≤ Pr
(
A ∈ {A : ∃z, DH(z,x) ≥ d,Ax = Az, p(z) ≥ p(x)}| x

)

(5.33a)

= Pr

(
A ∈

⋃

z∈FN
Q ,DH(z,x)≥d

p(z)≥p(x)

{A : Ax = Az}
∣∣ x
)

(5.33b)

≤
∑

z∈FN
Q ,DH(z,x)≥d

p(z)≥p(x)

Pr(A ∈ {A : Ax = Az}| x) (5.33c)

≤
∑

z∈FN
Q ,DH(z,x)≥d

p(z)≥p(x)

M∏

m=1

Pr(aTm ∈ {a
T
m : aTmx = aTmz}| x) (5.33d)

The first inequality arises since the set in right hand side of (5.33a) also counts the casep(z) =

p(x) (with DH(z,x) ≥ d) as an error. Such a situation may arise ifx̂ is not unique. The

inequality in (5.33c) is the union bound, while (5.33d) follows from the fact that the rows ofA

(denoted byaTm) are independent.
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Next recall that foraTm, only the entries corresponding to the nodes inCm are non-zero,

and are chosen i.i.d. fromFQ. Thus, given two vectorsx andz, it holds that [47],

Pr(aTm ∈ {a
T
m : aTmx = aTmz}| x) =





1 if xCm = zCm

1
Q if xCm 6= zCm

1 ≤ m ≤M. (5.34)

Since there areMDH(z,x) clusters such thatxCm 6= zCm ,

Pr(Ax = Az|x) = Q−MDH(z,x) ≤ Q−dM . (5.35)

where the last inequality follows from the fact thatDH(z,x) ≥ d.

Proof of Lemma 5.2

Observe that the pmfp(x) in (5.18) can be expressed as

p(x) =
1

Q
2
∑

q,i ℓq,i(x) log pq,i (5.36)

=
1

Q
2−MEL(x) . (5.37)

Here, the exponentEL(x) can be written as

EL(x) = −
1

M

Q∑

q=1

∑

i∈Iq

ℓq,i(x) log pq,i (5.38a)

= −

Q∑

q=1

ℓq(x)

M

∑

i∈Iq

ℓq,i(x)

ℓq(x)
log pq,i (5.38b)

=

Q∑

q=1

ℓq(x)

M
H(ϕq(x)) +

Q∑

q=1

ℓq(x)

M
D(ϕq(x)‖pq) (5.38c)

=: HL(x) +DL(x),p (5.38d)

which is the exponent in (5.21) sinceH(.) andD(.) are defined as

H(ϕ(q)) :=
∑

i∈Iq

ℓq,i(x)

ℓq(x)
log

(
ℓq(x)

ℓq,i(x)

)
, (5.39)

D(ϕ(q)‖pq) :=
∑

i∈Iq

ℓq,i(x)

ℓq(x)
log

(
ℓq,i(x)

ℓq(x)pq,i

)
. (5.40)
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Bound on |T (Λ)|

Given a typeΛ, considerpΛ(z) which also factors according to (5.18), but with transition

probabilities specified by[Λ]q,i. In this case,pΛ(z) = 1
Q2−MHΛ since the term involving the

KL-divergence in (5.21) vanishes. Drawing vectorsz from this pmf, it follows that

1 ≥
∑

z∈T (Λ)

pΛ(z) (5.41)

≥
1

Q

∑

z∈T (Λ)

2−MHΛ (5.42)

≥
1

Q
|T (Λ)|2−MHΛ

which yields the bound|T (Λ)| ≤ Q2MHΛ .

Proof of Proposition 5.3

Start from the error expression in (5.14) and enumeratex using all possibletree-basedtypes

as in (5.22)

Pe =
∑

ΛT∈LT

∑

x∈T (ΛT )

Pe|ΛT

1

Z
2−|ET |(HΛT

+DΛT ,p)2−|ĒT |(HΛ̄T
+DΛ̄T ,p). (5.43)

Emulating the steps in Appendix 5.B, it can be shown that the number of vectorsx of typeΛT

is bounded as|T (ΛT )| ≤ Q2|ET |HΛT . It can be likewise shown that the number of vectors of

the overall typeΛ := (ΛT , Λ̄T ) is bounded as

|T (Λ)| ≤ ZΛ2
|ET |HΛT 2|ĒT |HΛ̄T (5.44)

whereZΛ :=
∑

x 2
−|E|(HΩ(x)+DΩ(x),Λ). Since any set of edgesE containingET allows for

more vectorsx of the same type thanET , then|T (ΛT )| ≤ |T (Λ)|, and the following bound

holds

1

ZΛ

2−|ĒT |HΛ̄T ≤
1

|T (ΛT )|
2|ET |HΛT . (5.45)
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Substituting (5.45) into (5.43) yields

Pe ≤
∑

ΛT∈LT

1

|T (ΛT )|

∑

x∈T (ΛT )

Pe|ΛT

ZΛ

Z
2−(|ET |DΛT ,p+|ĒT |DΛ̄T ,p) (5.46)

≤
∑

ΛT∈LT

Pe|ΛT

ZΛ

Z
2−(|ET |DΛT ,p+|ĒT |DΛ̄T ,p). (5.47)

Clearly, ZΛ

Z 2−(|ET |DΛT ,p+|ĒT |DΛT ,p) equals one whenΛ = p, and decays exponentially when

Λ 6= p.
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Chapter 6

Dynamic Network Delay Cartography

Path delays in IP networks are important metrics, required by network operators for assess-

ment, planning, and fault diagnosis. Monitoring delays of all source-destination pairs in a

large network is however challenging and wasteful of resources. Thepresent chapter advo-

cates a spatio-temporal Kalman filtering approach to construct network-wide delay maps using

measurements on only a few paths. The proposed network cartography framework allows ef-

ficient tracking and prediction of delays by relying on both topological as well as historical

data. Optimal paths for delay measurement are selected in an online fashion by leveraging the

notion of submodularity. The resulting predictor is optimal in the class of linear predictors, and

outperforms competing alternatives on real-world datasets.

This chapter is organized as follows. Section 3.1 introduces the model and the problem

statement. Section 6.2 deals with the Kriged Kalman Filter (KKF) approach, while Sec-

tion 6.2.1 describes techniques for estimating the relevant parameters. Finally, empirical vali-

dation of KKF and comparisons with the Kriging approach of [29] are provided in Section 6.4.

Notation. Lower case symbols with indices, such asyp, represent scalar variables. These

variables, when stacked over their indices are denoted through their bold-faced versionsy.

Bold-faced upper case symbols (S) represent matrices. Regular upper case symbols (S) rep-

resent constant scalars, and typically stand for the cardinality of the setrepresented by corre-

sponding calligraphic upper case symbol (S). Identity matrix of sizeP × P is denoted byIP ,

, and its columns bye1, e2, . . ., eP . Matrix Cy denotes the covariance matrix of the vectory.
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6.1 Modeling and Problem Statement

Consider an IP network modeled by a connected digraphG = (V , E), with V denoting the set

of nodes (devices, servers, or routers), andE , the communication links. The issue is to monitor

path delays on a set of multi-hop pathsP that connect theP := |P| source-destination pairs.

Latency measured on pathp ∈ P at time t is denoted byyp(t), and all such network-wide

delays are collected in the vectory(t). At any timet however, delay can only be measured

on a subset of pathsS(t) ⊂ P, which is represented byys(t). Based on such partial current

and past measurementsH(t) := {ys(τ)}
t
τ=1, the goal is to predict the remaining path delays

ys̄(t) := {yp(t)}p∈P\S(t) for eacht.

The per-path end-to-end delayyp(t) comprises of several independent components corre-

sponding to contributions from each intermediate link and router. Of these, the queuing delay

χp(t) is the time spent by the packets waiting in the queues of intermediate buffers, and de-

pends on the traffic volumes in competing links. Network traffic is not only correlated spatio-

temporally, but also exhibits periodic behavior, random fluctuations, and occasional bursts [87].

These effects motivate the following random-walk model for the latent vectorof queuing de-

laysχ(t),

χ(t) = χ(t− 1) + η(t) (6.1)

whereη(t) denotes state noise with zero mean and covariance matrixCη := E
[
η(t)ηT (t)

]
.

Other components of the path delay, combined in the termνp(t), include the propagation,

processing and transmission delays, which are temporally uncorrelated (see e.g., [17] for de-

tails). The delaysνp(t) are still zero mean, spatially correlated across paths, and the covariance

matrix of the compacted vectorν(t) is given byCν . Finally, the measurement of path delays

using software tools such asping itself introduces errorsǫp(t), which are assumed zero mean,

uncorrelated over time and across paths, with covarianceσ2 := E
[
ǫp(t)ǫ

T
p (t)

]
.

The measured delays are expressed as

yp(t) = χp(t) + νp(t) + ǫp(t) p ∈ S(t).

LettingS(t) denote the|S(t)| × P selection matrix with 0-1 entries that contains thep-th row
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of IP if p ∈ S(t), the measurement equation can be compactly written as

ys(t) = S(t)χ(t) + νs(t) + ǫs(t) (6.2)

where the vectorǫs(t) collects the measurement errors on pathsp ∈ S(t), andνs(t) :=

S(t)ν(t).

The next section describes a KKF approach for tracking and predictingthe end-to-end

delaysys̄(t), by utilizing the state-space model described by (6.1) and (6.2).

6.2 Dynamic Network Kriging

The spatio-temporal model in (6.1)–(6.2) is widely employed in geostatistics andenvironmen-

tal science, whereχ(t) is generally referred to as trend, andν(t) captures random fluctuations

aroundχ(t); see e.g., [141, Ch. 4], [104, 166]. Recently, a similar modeling approach was

employed by [82] to describe the dynamics of wireless propagation channels, and in [33] for

spatio-temporal random field estimation. Given only first- and second-order moments ofη(t),

ǫs(t), andν(t), this section derives the best linear predictor forys̄(t).

Suppose first that the queuing delay vectorχ(t) is known, and let̄S(t) denote an|S̄(t)|×P

matrix containing thep-th row of IP if p ∈ S̄(t); that is,S̄(t) is a path selection matrix which

returns quantities pertaining to paths inS̄(t). Then, the linear minimum mean-square error

(LMMSE) estimator (denoted byE∗ [.]) for ν s̄(t) is given by (see, e.g. [4])

E∗ [ν s̄(t)|χ(t)] = S̄(t)CνS
T (t)

(
S(t)CνS

T (t) + σ2IS
)−1

[ys(t)− S(t)χ(t)] (6.3)

and is commonly referred to as kriging [36]. In practice however, the trend χ(t) has to be

estimated from the data. In the so-termed universal kriging predictor [141], χ(t) is estimated

using the generalized least-squares (GLS) criterion, whereνs(t) is treated as noise (lumped

together withǫs(t)). The prediction forν s̄(t) is then obtained by replacingχ(t) in (6.3) with

its estimate. This approach was proposed for network delay prediction in [29], and was referred

to as network kriging. However, since the trend is estimated independently using GLS per time

slot, its temporal dynamics present in (6.1) are not exploited.

From the spatio-temporal model set forth in Section 6.1, it is clear that estimatingthe trend

χ(t) can benefit from processing both present and past measurements jointly. Towards this end,
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the Kalman filtering (KF) machinery offers a viable option for tracking the evolution of χ(t)

from the set of historical dataH(t). At each timet, the KF finds the LMMSE estimatêχ(t) :=

E∗ [χ(t)|H(t)], and its error covariance matrixM(t) := E
[
(χ(t)− χ̂(t))(χ(t)− χ̂(t))T

]

using the following set of recursions (see e.g., [4, Ch. 3])

χ̂(t) = χ̂(t− 1) +K(t)(ys(t)− S(t)χ̂(t− 1)) (6.4a)

M(t) = (IP −K(t)S(t))(M(t− 1) +Cη) (6.4b)

where the so-termed Kalman gainK(t) is given by

K(t) := (M(t− 1) +Cη)S
T (t)

[
S(t)(Cν +Cη +M(t− 1))ST (t) + σ2IS

]−1
. (6.5)

Onceχ̂(t) has been estimated via KF,ν s̄(t) can be readily obtained via kriging as in (6.3),

yielding the predictor

ŷs̄(t) = χ̂(t) + S̄(t)CνS
T (t)

(
S(t)CνS

T (t) + σ2IS
)−1

× [ys(t)− S(t)χ̂(t)] . (6.6)

The predictor in (6.6) constitutes what is also referred to as the kriged Kalman filter [104,166].

The LMMSE framework employed here yields the best linear predictor evenfor non-Gaussian

distributed noise. The prediction error of the KKF is characterized in the following proposition,

whose proof is provided in Appendix 6.A.

Proposition 6.1. The prediction error covariance matrix at timet is given by

M
y
s̄ (t) := E{(ys̄(t)− ŷs̄(t))(ys̄(t)− ŷs̄(t))

T } (6.7a)

= σ2IS̄ + S̄(t)

[
(M(t− 1) +Cν +Cη)

−1 +
1

σ2
ST (t)S(t)

]−1

S̄T (t) . (6.7b)

Having a closed-form expression for the prediction error will come handy for selecting the

matrixS(t), as shown later in Section 6.3.

The KF step also allowsτ -step prediction forτ ≥ 1, which is given byŷ(t + τ) =

χ̂(t), since the kriging term is temporally white. In the present context, this can be useful

in preemptive routing and congestion control algorithms, as well as for extrapolating missing

measurements. In the latter case, the covariance matrix is updated simply asM(t) = M(t −

1) +Cη. Before concluding the description of the KKF, the following remarks are due.
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Remark 6.1. The random walk model adopted in (6.1) may result in an unstable filter. Opera-

tionally, if the KKF is unstable, an incorrect initialization ofM(0) or χ(0) may result in poor

prediction performance even ast → ∞. This can be remedied by adopting a damped model

χ(t) = κχ(t − 1) + η(t) with κ < 1. The results presented in this chapter also generalize to

the damped case. The random walk model is nevertheless used here sinceno instability issues

were observed in the two data sets considered in Section 6.4.

Remark 6.2. A distributed implementation of the KKF may be desirable for enhancing the

robustness and scalability of delay monitoring. In large-scale networks, adistributed algorithm

also mitigates the message passing overhead required to collect all measurements at a fusion

center. If the model covariancesCν andCη are globally known, and the selection matrixS(t)

is constant for allt, a distributed implementation of (6.4) can be derived along the lines of [42].

On the other hand, if each node of the network has partial knowledge ofCν , Cη andS(t), the

algorithm developed in [33] can be appropriately tailored to the problem at hand.

6.2.1 Estimating Model Parameters

The LMMSE-optimal dynamic kriging framework described in Section 6.2 requires knowledge

of model covariance matricesCν , σ2IS , andCη, to operate. Of these,σ2 depends on the

precision offered by the measurement software, and can be safely assumed known a priori.

The structure ofCν is motivated by the modeling assumptions and utilizes topological

information. Intuitively, propagation, transmission, and processing delays over pathsp, q ∈ P

should be highly correlated if these paths share many links. This relationshipcan be modeled

by utilizing the Gramian matrixG := RRT , whereR is theP × |E| path-link routing matrix;

that is, the(p, l)th element ofR is 1 if pathp ∈ P traverses linkl ∈ E , and 0 otherwise. Each

off-diagonal entry(p, q) of G represents the number of links common to the pathsp, q ∈ P.

On the other hand, the elements on the main diagonal ofG count the number of constituent

links per path. The covariance matrix ofν(t) can therefore be modeled asCν = γG. A

similar model forCν was adopted by [29], where it was motivated from the property that path

delays are sum of link delays, that is,ν(t) = Rx(t), where vectorx(t) collects the link delays.

Under this assumption, it holds thatCν = γG if the link delays are uncorrelated across links,
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and have covariance matrixγI|E|.

For the remaining parameters, namelyγ and Cη, an empirical approach is described

next. It entails a training phase, and a set of measurements{ys(t)}
tL
t=1 collected at time slots

t = 1, . . . , tL. During the KKF operation,tL − 1 time slots can be periodically devoted to up-

dating model covariances, while predicting the networks-wide delaysys̄(t) for t = 1, . . . , tL.

Let Ĉν(t) := γ̂(t)G andĈη(t) denote the estimates ofCν andCη, respectively, at timet.

Estimating the covariance matrix of the state noise is well-known to be a challengingtask,

primarily becauseχ(t) andχ(t − 1) are not directly observable. Furthermore, methods such

as those in [107] are not applicable in the present context, as they require the KF to be time-

invariant and stationary. As shown in [111], a viable means of estimatingCη from {ys(t)}
tL
t=1

relies on approximating the noiseη(t) asq(t) := χ̂(t) − χ̂(t − 1). Then, upon noticing that

the resultant process{q(τ)} is temporally-white, the sample mean and covariance ofq can be

obtained as

m̂q(tL) =
1

tL − 1

tL∑

t=2

q(t) (6.8)

Ĉq(tL) =
1

tL − 2

tL∑

t=2

(q(t)− m̂q(t))(q(t)− m̂q(t))
T . (6.9)

Using (6.9), and exploiting the equalityE{Ĉq} = (tL − 1)−1
∑

t(M(t − 1) −M(t)) +Cη,

it follows that an unbiased estimate ofCη can be obtained as

Ĉη(tL) = Ĉq(tL) +
1

tL − 1

tL∑

t=2

(
M(t)−M(t− 1)

)
. (6.10)

Finally, in order to obtain̂γ, consider the innovations at timet asιp(t) := yp(t)−χ̂p(t−1),

and notice that if the model covariances are correct, thenιp(t) is temporally white and zero-

mean [107]. Indeed, it is possible to show thatE [ιp(t)ιq(t)] = [M(t− 1) +Cη +Cν ]pq+σ
2

for anyp, q ∈ S(t) [111]. Further, letTpq := {t|1 ≤ t ≤ tL, p, q ∈ S(t)} be the set of time

slots for which pathsp andq are both measured. Then, the sample covariance betweenιp(t)

andιq(t) is given byĈpq := |Tpq|
−1
∑

t∈Tpq
ιp(t)ιq(t) for all pairsp, q ∈ P. GivenM(t− 1)

andσ2, this observation yields the following estimate
[
Ĉν(t)

]
pq

=
1

|Tpq|

∑

t∈Tpq

ιp(t)ιq(t)− σ
2 − [M(t− 1) + Ĉη(t)]pq. (6.11)
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Indeed, entries of̂Cν(t) can be updated recursively usinĝCν(t − 1) in (6.11). At each time,

only a few entries are updated, depending on which paths are observed.

Finally, γ̂(t) can be obtained by fittinĝCν(t) to γG in the least-squares sense, which

yields

γ̂(tL) =

∑
p,q∈P [G]pq[Ĉν(tL)]pq

‖G‖2F
. (6.12)

6.3 Online Experiment Design

This section considers the problem of optimally choosing the set of pathsS(t) (equivalently,

the matrixS(t)) so as to minimize the prediction error. To begin with, a simple case is con-

sidered where the setS(t) is allowed to contain anyS paths. Operational requirements may

however impose further constraints onS(t), and these are discussed later.

The prediction error can be characterized by using a scalar function ofM
y
s̄ (t); see e.g., [5].

To this end, the so called D-optimal design is considered, where the goal is tominimize the

functionf(S(t)) := log det(My
s̄ (t)). The paths selected at timet are therefore given by the

solution of the following optimization problem

S∗(t) = argmin
S∈P

f(S) (6.13)

s. t. |S| = S. (6.14)

Clearly, tackling (6.13) incurs combinatorial complexity and is challenging to solve exactly,

even for moderate-size networks. Indeed, (6.13) is an example of the socalled subset selection

problem, which is NP-complete in general; see e.g., [43] and references therein.

Interestingly, it is possible to solve (6.13) approximately by utilizing the notion ofsubmod-

ularity. Consider a functiong(S), which takes as input setsS ⊂ P. Given a setA ∈ P and an

elementp ∈ P\A, the increment function is defined asδgA(p) := g(A∪{p})−g(A). Function

g(·) is submodular if its increments are monotonically decreasing, meaningδgA(p) ≥ δ
g
B(p) for

all A ⊂ B ∈ P. Likewise,g(·) is supermodular iffδgA(p) ≤ δgB(p) for all A ⊂ B ∈ P. In the

present case, the following proposition holds.

Proposition 6.2. The functionf(S) is monotonic and supermodular inS.
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The proof of Proposition 6.2 is provided in Appendix 6.B, and relies on related results

from [5].

An important implication of Proposition 6.2 is that a greedy forward selection algorithm

can be developed to solve (6.13) approximately [114]. Upon defining the shifted function

h(S) := f(S)− log det(M(t− 1) +Cη +Cν + σ2IP ), a result from [114] ensures that the

solution of the greedy algorithmSg(t) satisfies the inequality

h(Sg(t)) ≤

(
1−

1

e

)
h(S∗(t)). (6.15)

While performance of the greedy algorithm is usually much better in practice, this bound en-

sures that it does not break down for pathological inputs.

The greedy algorithm involves repeatedly performing the updatesS ← S∪argminp/∈S δ
f
S(p)

until |S| = S. This is useful in the present case, since the increments can be evaluatedeffi-

ciently using determinant update rules. Specifically, the updates are givenby

δf∅ (p) = − log

(
1 +

[
M(t− 1) +Cη +Cν

]
p,p

)
∀p ∈ P (6.16)

δfS(p) = − log

(
1 +

[(
(M(t− 1) +Cη +Cν)

−1 + STS
)−1
]
p,p

)
∀p ∈ P \ S. (6.17)

Further, each iteration requires a rank-one update to the matrix inverse in (6.17), which can

also be performed efficiently. The full greedy approach is summarized in Algorithm 6.1, where

Φ := (M(t− 1)+Cη +Cν)/σ
2. Algorithm 6.1 involves only basic operations, and it is easy

to verify that its worst case complexity isO(PS3). Further, the final value of the matrixV

evaluated in the last iteration (Algorithm 6.1, line 11) is exactly the inverse term required for

evaluating the Kalman gain in (6.5). It is remarked that the operational complexity can be

further reduced using lazy updates [109].

Next, consider a more practical scenario, where the software installed ateach end-node

can measure delays on all paths originating at that node. At any timet however, delays are

measured from onlyN end-nodes. LetVe denote the set of all end-nodes, andPv, the set of

paths which have the nodev ∈ Ve as their origin (likewise,PN :=
⋃

v∈N Pv for N ⊂ Ve).

For any subsetN (and its complement̄N := V \ N ), define the selection matrixN (N̄)

consisting of canonical vectorseTp as rows, for allp ∈ PN (p ∈ PN̄ ). Defining the cost
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Algorithm 6.1: Greedy algorithm for solving (6.13)
Data: Φ, S

Result: S

1 s← arg max
1≤p≤P

[Φ]p,p

2 V←
[
1/ ([Φ]s,s + 1)

]

3 S ← {s}

4 for k = 2 to S do

5 wp ← ΦS,p for all p ∈ P \ S

6 s← argmax
p/∈S

[Φ]p,p −wT
p Vwp

7 S ← S ∪ {s}

8 d← [Φ]s,s −wT
s Vws + 1

9 u← −Vws

10 V←


V + uuT /d u/d

uT /d 1/d




11 end

functionfn(N ) := f(PN ), the online optimal design problem for this scenario is expressed as

N ∗(t) = arg min
N⊂Ve

fn(N ) (6.18a)

s. t. |N | = N. (6.18b)

It follows from the properties of submodular functions that the cost function fn(N ) is also

monotonic and supermodular inN . In particular, observe that the incrementsδnN (v) = fn(N∪

{v}) − fn(N ) = f(PN ∪ Pv) − f(PN ) for v /∈ N satisfy the non-increasing property, i.e.,

δnA(v) ≤ δnB(v) for all A ⊂ B ⊂ Ve andv /∈ B. A greedy algorithm similar to Algorithm 6.1

can therefore be developed to obtain an approximate solution with the same(1 − 1/e) guar-

antee as in (6.15). Complexity of the greedy algorithm in this case would be however higher,

since evaluatingδN (v) now requires rank-|Pv| updates in the determinant and inverses. Nev-

ertheless, the algorithm would still be efficient as long as|Pv| ≪ P for all v ∈ Ve. In the

special case when delay measurements are performed by only one node per time slot (N = 1),
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the solution of (6.18a) is simply given by

N ∗(t) = arg min
v∈Ve

log det
(
I|Pv | +

[
M(t− 1) +Cη +Cν

]
vv

)
(6.19)

where
[
M(t− 1) +Cη +Cν

]
vv

is the|Pv|×|Pv| submatrix containing the rows and columns

of M(t− 1) +Cη +Cν corresponding to the paths inPv.

In some networks, it may be relatively straightforward to install delay measurement soft-

ware on every end-node, while allowing each end-node to measure delayon only one path per

time slot. This amounts to replacing the budget-constraint (6.14) in (6.13) with

|S ∩ Pv| = 1 ∀ v ∈ Ve. (6.20)

Interestingly, constraints of this form can also be handled using the greedy approach by simply

imposing (6.20) while searching for the best increment at every iteration. Specifically, the

search space of pathp [cf. Algorithm 6.1, line 7] now becomesp ∈ P \ PN , whereN =

{v : S ∩ Pv 6= ∅}. More general constraints of the form|S ∩ Pv| ≤ Sv can similarly be

incorporated. Constraints of this form are referred to as partition matroid constraints, under

which the greedy algorithm provides an approximation ratio of1/2 [55].

6.4 Empirical Validation

Performance of the proposed network-wide latency prediction schemes isvalidated using two

different datasets, which include delays measured on:

(a) Internet2 backbone network1, a lightly loaded network that exhibits low delay variability;

and,

(b) New Zealand Active Measurement Project (NZ-AMP)2, a network deployed across several

universities and ISPs in New Zealand, characterized by comparatively higher variability

in delays.

1[Online] http://www.internet2.edu/network
2[Online] http://erg.cs.waikato.ac.nz/amp
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Using the aforementioned datasets, the performance of KKF is also compared against that of

competing alternatives in [29] and [30].

Before proceeding, a brief description of the nonlinear estimation technique in [30] is pro-

vided. The approach hinges on a sparse representation of the network-wide delays, and em-

ploys ℓ1-norm minimization to recover the sparse basis coefficient vector. Specifically, the

path delays adhere to the postulated linear modely(t) = Hβ(t), where‖β(t)‖0 ≪ P , and the

matrixH ∈ RP×P is constructed using diffusion wavelets [31]. The diffusion matrix used for

computing the wavelet basis is obtained by applying Sinkhorn balancing [154] to the matrix

W ∈ RP×P , whose(p, q)-th element is defined as

[W]p,q =
[G]pq

[G]pp + [G]qq − [G]pq
(6.21)

whereG is the Gramian defined in Section 6.2.1. The overall algorithm amounts to solving

the following minimization problem

β̂
′
(t) = argmin

β′
‖β′‖1 (6.22a)

s. t. ys(t) = S(t)HLβ′ (6.22b)

whereL is a diagonal matrix whose(n, n)-th entry is given by[L]n,n = 2k, with k ∈ N

denoting the scale corresponding to the diffusion wavelet coefficientβn [30]. Subsequently,

ys̄(t) is predicted aŝys̄(t) = S̄(t)HLβ̂
′
(t).

Under the premise that delays change slowly with time, the described algorithm can be used

to estimateys̄(t) over a sequence ofτ > 1 contiguous time-steps jointly. In this case, prob-

lem (6.22) is solved by replacingys(t)with ȳs(t) := [yT
s (t−τ+1),yT

s (t−τ+2), . . . ,yT
s (t)]

T ,

and by computing thePτ × Pτ diffusion wavelet matrix based onW and temporal correla-

tions as shown in [30]. Although this is a viable way to capture temporal correlations of delays,

observe that it requires solvingℓ1-norm minimization problems withPτ variables everyτ time

slots. This increase in complexity prohibits the use of a large value ofτ , and the simulations

here only report performance withτ = 5. It is also worth mentioning that such a batch solution

also does not compare favorably to a real-time implementation, such as that provided by the

KKF where delay predictions become available every time new measurements arrive.
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Figure 6.1: Internet2 IP backbone network.

6.4.1 Internet2 Delay Data

The One Way Active Measurement Project (OWAMP) collects one way delays on the Internet2

backbone network3. The network has 9 end-nodes and 26 directional links as depicted in

Figure 6.1. Delays are measured on the 72 paths among the end-nodes every minute. The data

{y(t)} is collected overtP = 4500 minutes (about three days) in July 2011.

The model KKF covariancesCν andCη are estimated using data from the initial 1,000

time slots. In this phase,50 paths are randomly selected per time slot. The KKF is initialized

by settingγ = 1, Cη = Cν , and run for 500 time slots. Next,̂γ(t) andĈη(t) are updated in

an online fashion, as outlined in Section 6.2.1. The final values are obtainedat the conclusion

of the training phase att = 1,000.

Pictorially, the performance of different algorithms can be assessed through delay maps

shown in 6.2. Such maps can succinctly represent the network health, andare especially useful

for networks which otherwise have low delay variability, such as the Internet2. The map in

Figure 6.2(a) corresponds to the true delays, where maps (b), (c), and (d) depict the predicted

values obtained from the network kriging, wavelet-based approach, and KKF respectively.

3[Online] http://ndb1.net.internet2.edu/cgi-bin/owamp.cgi
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(a) True map
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(b) Kriging
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(c) Wavelets
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(d) KKF

Figure 6.2: True and predicted delay map for62 paths in the Internet2 network over in interval

of 100 minutes.

Predictions are performed using measurements over an interval of100 minutes on10 random

paths (same paths are used throughout the considered interval), and thedelays are predicted

on the remaining 62 paths are reported. In these maps, paths are arranged in increasing order

according to the true delay at timet = 1. It can be seen that the map produced by the kriging

and compressive sensing approaches are very different from the true map. In contrast, the map

obtained when using the KKF is close to the true map. In particular, observe that the delays

of several paths change slightly aroundt = 80 in Figure 6.2(a). However, of the three maps,

this change is only discernible in the KKF map in 6.2(d). The delay predictions provided

by the KKF are thus sufficiently accurate for human inspection at control centers, even when

monitoring a few paths.

For a more detailed analysis of the different delay prediction approaches, the normalized
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Figure 6.3: NMSPE as a function ofS, Internet2 network with random path selection.

mean-square prediction error (NMSPE) is considered. It is defined as

NMSPE :=
1

(tP − tL)(P − S)

tP∑

t=tL+1

‖ŷs̄(t)− ys̄(t)‖
2
2 . (6.23)

The prediction performance of the three algorithms is first assessed by using delay measure-

ments on randomly selected paths for eacht. The (same) randomly selected paths are used

for all three approaches. Figure 6.3 depicts the NMSPE as a function ofS, the number of

paths on which delays are measured. Clearly, the KKF markedly outperforms the other two

approaches across the entire range ofS. As expected [30], the compressive sampling-based

approach provides a more accurate prediction than network kriging.

Next, the performance of the three algorithms is analyzed for the case whenpaths for

delay measurement are selected optimally. For the network kriging and the wavelet-based ap-

proaches, the optimal paths are obtained according to the selection procedures provided in [29]

and [30], respectively. As pointed out in [30], performance of the wavelet-based approach can

be improved by capitalizing on temporal correlations. This is done by solving (6.22) using

measurements fromτ = 5 consecutive time slots in a batch form. The temporal correlation is

set to0.5 and the optimal paths are obtained again using the selection strategy outlined in [30].

For the KKF, optimal paths are selected in an online fashion using Algorithm 1.Again, a sig-
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Figure 6.4: NMSPE as a function ofS, Internet2 network with optimal path selection.

nificantly more accurate prediction of the path delays for the entire range ofS is obtained via

the KKF.

6.4.2 NZ-AMP Delay Data

The KKF algorithm is tested here using delay data from NZ-AMP. The project continuously

runsICMP and scamper to determine the topology and delays between a set of nodes in New

Zealand. The data collected for this chapter consist of end-to-end delays measured every ten

minutes over the month of August 2011. The network has a total of 186 paths, whose delays

range from almost constant to highly variable, at times reaching up to 250ms.

In Figure 6.5, the NMSPE as a function ofS is reported, for the case where paths that

are to be measured are chosen randomly. Again, same paths are used forthe three considered

schemes. The KKF provides a markedly lower prediction error also for theNZ-AMP delay

data. On the other hand, Figure 6.6 shows the NMSPE on optimally selected paths for all

three schemes. The KKF performs relatively better than the competing schemes for this data

set as well. Observe though that the actual values of the NMSPE incurredfor this dataset is

at least an order of magnitude higher than those in the Internet2 dataset. Indeed, given the

high variability in the data, it is possible to improve upon the prediction accuracyof KKF
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Figure 6.5: NMSPE as a function ofS, NZ-AMP network with random path selection.

by training it better. This is showcased by the considerably lower predictionerror curve for

training intervaltL=2,000 shown in Figure 6.6.

While the NMSPE is useful for characterizing the average performance,network operators

are also interested in the prediction accuracy over the entire range of delay values. Towards

this end, Figure 6.7 shows the scatter plots ofŷs̄(t) versusys̄(t) for all t andS = 30 optimally

selected paths. The points cluster around the45-degree linêys̄(t) = ys̄(t), and the thinner the

“cloud” of points is, the more accurate the estimates are. Indeed, it can be seen that the points

generated from the KKF estimates are crammed in a very close area around the45-degree line,

and accurate estimates are produced for the entire range of experienced delays. Furthermore,

the scatter plots corroborate the unbiasedness of the KKF predictor.

6.5 Conclusion

The present chapter develops a spatio-temporal prediction approach totrack and predict network-

wide path delays using measurements on only a few paths. The proposed algorithm adapts a

kriged Kalman filter that exploits both topological as well as historical data. The framework

also allows for the use of submodular optimization in the selection of optimal delay measure-
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Figure 6.6: NMSPE as a function ofS, NZ-AMP network with optimal path selection.

ment locations. The problem of path selection is formulated for different types of constraints

on the set of selected paths, and solved in an online fashion to near-optimality. The resulting

predictor is validated on two datasets with different delay profiles, and is shown to substantially

outperform competing alternatives.

6.A Error Covariance Matrix

Towards deriving an expression forMy
s̄ (t), observe that the prediction error can be written as

ys̄(t)− ŷs̄(t) = S̄(t)χ(t) + S̄(t)ν(t) + ǫs̄(t)− S̄(t)χ̂(t)

− S̄(t)CνS
T (t)

(
S(t)CνS

T (t) + σ2IS
)−1

[ys(t)− S(t)χ̂(t)] (6.24)

= S̄(t)(χ(t)− χ̂(t) + ν(t)) + ǫs̄(t)

− S̄(t)CνS
T (t)

(
S(t)CνS

T (t) + σ2IS
)−1

[S(t)(χ(t)− χ̂(t) + ν(t)) + ǫs(t)] .

(6.25)



6.A Error Covariance Matrix 149

0 50 100 150 200 250 300
0

50

100

150

200

250

300

True delay (ms)

P
re

di
ct

ed
de

la
y

(m
s)

(a) Kriging

0 50 100 150 200 250 300
0

50

100

150

200

250

300

True delay (ms)

P
re

di
ct

ed
de

la
y

(m
s)

(b) Wavelets

0 50 100 150 200 250 300
0

50

100

150

200

250

300

True delay (ms)

P
re

di
ct

ed
de

la
y

(m
s)

(c) KKF

Figure 6.7: Scatter plot for the NZ-AMP network,S = 30 with optimal path selection.
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Using (6.4a), the termχ(t)− χ̂(t) can be written as

χ(t)− χ̂(t) = χ(t)− χ̂(t− 1)−K(t) [S(t)(χ(t) + ν(t)) + ǫs(t)− S(t)χ̂(t− 1)]

= χ(t)− χ̂(t− 1) +K(t)S(t)(χ(t)− χ̂(t− 1) + ν(t)) +K(t)ǫs(t)

= (IP −K(t)S(t))χ̃(t)−K(t)S(t)ν(t)−K(t)ǫs(t) (6.26)

whereχ̃(t) := χ(t)− χ̂(t− 1). Substituting (6.26) in (6.25), it follows that

ys̄(t)− ŷs̄(t) = S̄(t)(IP −K(t)S(t))(χ̃(t) + ν(t))− S̄(t)K(t)ǫs(t) + ǫs̄(t)

− S̄(t)CνS
T (t)

(
S(t)CνS

T (t) + σ2IS
)−1

× [S(t)(IP −K(t)S(t))(χ̃(t) + ν(t))− S(t)K(t)ǫs(t) + ǫs(t)]

(6.27)

= S̄(t)(IP −K(t)S(t))(χ̃(t) + ν(t))

− S̄(t)CνS
T (t)

(
S(t)CνS

T (t) + σ2IS
)−1

S(t)(IP −K(t)S(t))(χ̃(t) + ν(t))

− S̄(t)K(t)ǫs(t)− S̄(t)CνS
T (t)

(
S(t)CνS

T (t) + σ2IS
)−1

(IS − S(t)K(t))ǫs(t)

+ ǫs̄(t) (6.28)

which, after some manipulations, can be expressed as

ys̄(t)− ŷs̄(t) = S̄(t)(IP −Q(t)S(t))(χ̃(t) + ν(t)) +Q(t)ǫs(t) + ǫs̄(t) (6.29)

where

Q(t) := K(t) +CνS(t)(S(t)CνS
T (t) + σ2IS)

−1

−CνS(t)(S(t)CνS
T (t) + σ2IS)

−1S(t)K(t). (6.30)

Next, substituting forK(t) from (6.5), the expression forQ(t) simplifies to

Q(t) = (M(t− 1) +Cη)S
T (t)

[
S(t)(M(t− 1) +Cη +Cν)S

T (t) + σ2IS
]−1

+CνS
T (t)(S(t)CνS

T (t) + σ2IS)
−1

−CνS
T (t)(S(t)CνS

T (t) + σ2IS)
−1S(t)(M(t− 1) +Cη)S

T (t)

×
[
S(t)(M(t− 1) +Cη +Cν)S

T (t) + σ2IS
]−1

(6.31)

= (M(t− 1) +Cη +Cν)S
T (t)

[
S(t)(M(t− 1) +Cη +Cν)S

T (t) + σ2IS
]−1

.(6.32)
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Utilizing the fact that̃χ(t), ν(t), ǫs(t), andǫs̄(t) are mutually uncorrelated, withE
[
χ̃(t)χ̃T (t)

]
:=

M(t− 1) +Cη, the error covariance matrixMy
s̄ (t) becomes

M
y
s̄ (t) = E

[
(ys̄(t)− ŷs̄(t))(ys̄(t)− ŷs̄(t))

T
]

(6.33)

= S̄(t)(IP −Q(t)S(t))(M(t− 1) +Cν +Cη)(IP − ST (t)QT (t))S̄T (t)

+ σ2S̄(t)Q(t)QT (t)S̄T (t) + σ2IP−S (6.34)

= S̄(t)(M(t− 1) +Cν +Cη)S̄
T (t)− 2S̄(t)Q(t)S(t)(M(t− 1) +Cν +Cη)S̄

T (t)

+ S̄(t)Q(t)S(t)(M(t− 1) +Cη +Cν)S
T (t)QT (t)S̄T (t) + σ2S̄(t)Q(t)QT (t)S̄T (t)

+ σ2IP−S (6.35)

= S̄(t)(M(t− 1) +Cν +Cη)S̄
T (t)− S̄(t)Q(t)S(t)(M(t− 1) +Cν +Cη)S̄

T (t)

+ σ2IP−S . (6.36)

Substituting forQ(t) [cf. (6.32)] in (6.36), and using the Woodbury matrix identity [67], the

final expression forMy
s̄ (t) becomes

M
y
s̄ (t) = σ2IP−S + S̄(t)

[(
M(t− 1) +Cν +Cη

)−1
+

1

σ2
ST (t)S(t)

]−1

S̄T (t) . (6.37)

6.B Proof of Monotonicity and Supermodularity of f

LetΦ := 1
σ2 (M(t− 1) +Cη +Cν), and observe thatf can be written as

f(S) = log(σ2) + log det
[
IP−S + S̄(Φ−1 + STS)−1S̄T

]
(6.38a)

= log(σ2) + log det
[
IP + S̄T S̄(Φ−1 + STS)−1

]
(6.38b)

= log(σ2) + log det
[
Φ−1 + STS+ S̄T S̄

]
+ log det

[
(Φ−1 + STS)−1

]
(6.38c)

where (6.38b) follows from Sylvester’s theorem for determinants [67].

Observing that̄ST S̄+ STS = IP , it is possible to writef(S) as

f(S) = log(σ2) + log det(Φ−1 + IP )− log det
(
Φ−1 + STS

)
. (6.39)
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Next, consider the decompositionΦ = UUT , and define the shifted function

h(S) := f(S)− log(σ2)− log det (Φ+ IP ) (6.40a)

= − log det(IP + STSΦ) (6.40b)

= − log det
[
IS + (SU)(SU)T

]
(6.40c)

where Sylvester’s theorem has again been used in (6.40c). Finally, it is well known that a func-

tion of the formlog det(IP + (SU)T (SU)) is non-decreasing and submodular (see e.g., [5]),

which allows one to deduce thatf(S) is non-increasing and supermodular. Note further that

the greedy approach from [114] can be used onh(S) by definingh(∅) = 0.
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Chapter 7

Summary and Future Work

This thesis touched upon several key monitoring and resource allocation problems present in

communication networks. Chapters 2–5 leveraged the idea of network coding to design wire-

less network protocols for information collection and dissemination in resource-constrained ad

hoc networks. Towards achieving this goal, a cross-layer design approach was pursued, and

network codes were optimized jointly with protocols operating at application, medium access

control (MAC), and physical (PHY) layers.

Chapter 2 considered wireless fading networks, where network codingcan be optimally

integrated into the protocol stack using a dual decomposition method. Leveraging this result,

an adaptation of the subgradient method suitable for network control was also developed. The

method is asynchronous, because the physical layer is allowed to return itscontribution to the

subgradient vector with some delay.

In Chapter 3, network coding was introduced for use with Aloha-based MAC and PHY

layers, which are attractive in their simplicity. Although the overall optimization problem is

still non-convex, successive approximation is adopted to realize efficient network coding algo-

rithms. The idea was also extended to create a separable structure in the problem, enabling the

dual decomposition technique to yield a distributed solution. The algorithm is thusapplicable

for large networks, and amenable to online implementation.

Benefits of network coding also extend toQoS-constrainedscenarios, such as in real-time

and streaming media applications. Modeling constraints on packet deadlines isthe key chal-
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lenge here, and Chapter 4 puts forth constant-factor approximations to thisend. The setup was

also analyzed from an integer programming perspective, and a set of valid inequalities was

developed and used to obtain a linear programming based upper bound on thethroughput.

Chapter 5 dealt with sensor networks where the observed data is correlated across nodes,

and network coding can both compress and communicate the data to a collection agent. An ef-

ficient decoding scheme for this network-compressive coding scheme was developed, yielding

network-wide energy savings and increase in the network lifetime. Error exponents and simu-

lation results were provided to delineate, quantify, and test the interplay between the estimation

error, tolerable distortion, alphabet size, and communication cost.

The second part of this thesis advocated dynamic network cartography as tool for mon-

itoring and prediction of the evolving network state. Chapter 6 developed a spatio-temporal

prediction approach to track and predict network-wide path delays usingmeasurements on

only a few paths. The proposed framework not only exploits both topological and historical

data, but also allows for the use of submodular optimization in the selection of optimal delay

measurement locations.

Before concluding this thesis, the remainder of this chapter describes future research direc-

tions which build on the framework and tools developed hitherto.

7.1 Dictionary Learning for Traffic Maps with Missing Data

An interesting extension of the network cartography framework involves inference and predic-

tion of traffic volumes on links (also referred to as link counts) in IP networks. Link counts

are one of the primary indicators of instantaneous network health, and serve as the basic ingre-

dient for more complex management tasks such as intrusion detection, capacity provisioning,

and network planning. Information about link utilization is typically available to network op-

erators through off-the-shelf tools such as the SNMP. Missing entries in the link counts may

however skew the network operator’s perspective. Packets may be dropped in SNMP for in-

stance, if some links become congested, rendering link count information for those links more

important, as well as less available [99,155].

Let theL × 1 vectory(t) collect the link counts onL network links at a given timet.
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Typically, only anM × 1 sub-vectoryo(t) with M < L entries is observed at any time, and

the goal is to predict the unobserved(L −M) × 1 sub-vectoryu(t) using historical data and

topological information. In principle, missing link loads could be estimated if the matrix of

flow volumes between all origin-destination (OD) pairsX(t) were known. Upon defining the

F × 1 vectorx(t) := vec(X(t)) as the vectorized traffic matrix, it readily follows that

yu(t) = Rux(t) , t = 1, . . . , T (7.1)

where the routing matrix entry[Ru]ℓ,f equals one if flowf passes through linkℓ, and zero oth-

erwise, andL≪ F . However, measuring flow volumes is even more difficult, and in practice,

x(t) is itself estimated fromyo(t) andRo. Since traffic matrix estimation is anunderdeter-

minedproblem, most proposed approaches use specific priors or regularization techniques, and

tacitly rely on the stationarity ofx(t) ; see e.g., [155,176,177] and references therein.

As future work, a more direct approach to predicting link counts is feasibleby postulat-

ing the over-complete representationy = B s over a basis matrixB, with columns{bp}
P
p=1

constrained to have unit norm (which avoids scaling ambiguity), and a sparse coefficient vec-

tor s. GivenB and theM × 1 vector of observed link countsyo, contemporary compressive

sampling tools [6,69,157,158] can be adopted to estimate the missingL−M link countsyu.

Consider partitioning the basis matrix asB := [(Bo)′ (Bu)′]′, whereBo corresponds to rows of

measured link counts,Bu to rows of missing ones, and(·)′ stands for transposition. During the

operational phase, the sparse representation fory := [(yo)′ (yu)′]′ can be estimated using the

least-absolute shrinkage and selection operator (Lasso) [157], as

ŝ := argmin
s
‖yo − Bos‖22 + λ‖s‖1 (7.2)

where the tuning parameterλ > 0 controls the sparsity of̂s, and can be chosen using standard

cross-validation techniques [68]. Onceŝ is available, the missing link counts are predicted as

ŷu = Buŝ. It is evident that for a given sparsity level dictated byλ‖s‖1, the quality of the

predictedŷu depends onB. Bases comprising columns{bi} that explain well the link counts

across the network will lead to improved predictions ofyu. Thus, the selection ofB must be

data-driven thereby shaping the columns{bp}Pp=1 to the link-count prediction task at hand.



7.1 Dictionary Learning for Traffic Maps with Missing Data 156

Choosing an over-complete basis on which a signal admits a sparse representation has

led to exciting advancements in the area ofdictionary learning[102, 103, 116, 158]. In its

canonical form, dictionary learning seeks a basisB so that training dataT := {y(t)}Tt=1

is well approximated asy(t) ≈ Bs(t), ∀t = 1, . . . , T , wheres(t) is a sparsecoefficient

vector. Given historical link countsT , it is possible to apply results from dictionary learning

to constructB. However, this would requireT measurements of the link counts at all network

links. GatheringT quickly becomes infeasible as the network size grows, thereby rendering

canonical dictionary learning impractical. To circumvent this challenge, the idea is to capitalize

on semi-supervised learning and manifold regularization [9,125].

Consider the historical data setTM := {yo(t)}Tt=1 formed by observed link counts at

M < L links. EachM × 1 measurement vector isyo
t := Jty(t), whereJt is anM ×L binary

matrix choosing theM measured link counts for thet-th measurement. To enable learningB

from TM instead ofT , it is assumed that theL × Q network routing matrixR is available,

whereQ denotes the number of OD pairs in the network. Each column ofR contains the

routing path for a given OD pair of nodes. UsingR, it is possible to construct an auxiliary

weighted graphG with L nodes, one corresponding to each network link. The edge weights for

all links in the graph are subsumed by the off-diagonal entries of the GrammatrixG := RR′.

The data-driven basisB is obtained during atraining phaseas

({ŝ(t)}Tt=1,B) = argmin
{st}Tt=1,

B:‖bp‖2≤1

T∑

t=1

‖yo
t − JtBst‖

2
2 + λs

T∑

t=1

‖st‖1 + λg

T∑

t=1

s′tB
′LBst (7.3)

whereL is the Laplacian matrix ofG, andλs, λg > 0 are tuning parameters. The regularization

terms in (7.3) control both sparsity in the expansion coefficients through theℓ1-norm, but

also smoothness of the link-count predictions viaL. The optimization problem is nonconvex;

however, withB fixed, the problem is convex w.r.t.{st}, and vice versa, allowing one to

employ coordinate descent solvers. Future research directions includeconvergence analysis of

the coordinate descent algorithm, development of online prediction and learning approaches

along the lines of recursive least-squares, and incorporation of temporal correlations in the

formulation (7.3).
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7.2 Joint Rate and Power Control for Coded CR Networks

Cognitive radio (CR) has recently been recognized as an emerging disruptive technology that

holds great potential to enhance spectrum utilization [70,120]. A major component of the CR

technology has been dynamic spectrum access, in which network users opportunistically gain

wireless access to licensed frequency bands without causing harmful interference to incumbent

primary users (PUs) [52]. When designing CR networks however, pertinent approaches can

not rely on the accumulated knowledge in conventional ad hoc networks, but rather have to

account for the peculiarities of hierarchical access schemes [179], and autonomous interference

management.

This motivates the development of resource allocation schemes that rely on the sensing

result [165] and facilitate the inclusion of capacity achieving protocols such as network cod-

ing [97]. A fruitful direction to this end is a cross-layer design frameworkin order to jointly op-

timize power and rate allocations in coded CR networks in the presence of channel uncertainty

induced by both shadowing and small-scale fading. Channel uncertainty-aware CR-specific

constraints can be incorporated directly into the optimization formulation, so as toyield a re-

source allocation algorithm rooted at the PHY layer. Of particular interest isdelay-limited

CR traffic, where QoS requirements are severe, and channel outagesare common. The idea is

to formulate a joint coding/routing rate and power allocation problem, which maximizes the

network-wide utility while constraining the outage probabilities and average interference to the

PU networks.

The primary challenge encountered when designing systems with outage probability con-

straints is that the resulting problem formulations are too complex for realistic channel dis-

tributions [54]. Related work in this context includes [81], where only small-scale fading is

considered. Future work can also include examination of these outage probability distributions

with the aim of obtaining an approximate convex problem, amenable to efficient solution. The

research issue here is to properly utilize the result that allows approximatinga sum of log-

normal random variables with a single log-normal random variable; see e.g., [41, 53, 54, 108].

Such a scheme should then be able to adapt the network and PHY layer parameters to the

propagation environment.
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