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Abstract—Indoor localization is often challenging due to the
non-availability of GPS signals. Recently, various radio frequency
fingerprinting techniques have been proposed to identify indoor
locations using simply received signal strength (RSS) measure-
ments. In general however, RSS measurements are time-varying
and are difficult to model for complex environments. This paper
proposes the use of dictionary learning (DL) to generate high
quality fingerprints that depend also on the channel characteris-
tics for each location. An enhanced DL algorithm is proposed that
utilizes prior information about the channel distribution, and can
generate the fingerprints in an online fashion. Simulation results
demonstrate the efficacy of the proposed approach.

I. INTRODUCTION

Location information plays an important role in a number

of applications, such as environment monitoring, surveillance,

mining and healthcare based applications. A number of mobile

applications also rely on location information to provide

various services to the users. However, obtaining absolute or

even relative coordinates becomes challenging in indoor or

shadowed environments, where GPS signals cannot reach [1].

The recent trend is to utilize the already existing wifi and

cellular infrastructure for indoor localization and positioning

[1]–[5].

The problem is quite challenging and attracted lot of re-

searchers resulting in various methodologies. Commonly used

method are triangulation [6], [7], proximity based methods.

However these methods are complex and require line of sight

communication to find the location.

A commonly employed approach is the so-called finger-

printing, where each location is identified by some kind of

features. Fingerprinting is done in two steps: i) training phase,

where features corresponding to unknown area are collected

and stored in a database ii) mapping phase, current feature

is matched with the existing fingerprints and the one having

maximum similarity is the required location. Generally used

fingerprints are generated using the received signal strength

from various access points [8], [9]. The use of RSS for

fingerprinting provides various advantages such as simple to

model and works well with existing framework. The approach

works well for static environment i.e. same access points(AP)

are available all over the area, where a large number of APs

are installed at fixed locations, transmitting at fixed power.

The approach is however difficult to extend to environments

where access points are sparse or operate intermittently. More

generally, location fingerprinting must utilize the available

cellular signals as well, which have relatively denser cover-

age [10]. However, cellular signals are dynamic, subject to

path loss and fading impairments, and generally cannot be

demodulated and decoded. This motivates the use of training-

based fingerprinting techniques that can handle time-varying

transmitter activity using RSS measurements alone.

One of the popular approaches entail propagation modeling

and subsequent estimation of the relevant parameters. For

instance, the work in [10]–[12] models the RSS using a simple

path loss model, and learn all its parameters during the training

phase. Such a model-based approach however does not work

under channel impairments, such as shadowing and fading.

While channel variations can simply be averaged out over a

long duration, it amounts to discarding the location-specific

channel characteristics. Ideally, channel information must be

utilized to obtain better quality fingerprints; see e.g. [10] and

references therein.

This paper advocates a model-free approach to location

fingerprinting via DL [13], [15]. More precisely, the received

signal strengths at each location are expressed as sparse

linear combinations of several atoms or basis vectors, and the

dictionary of these atoms constitutes the unique fingerprint for

that location. The DL algorithm discards all the ”temporary”

features of RSS measurements, and can therefore be used in

time-varying scenarios. In the context of wireless communi-

cations, the dictionary can also be interpreted as the matrix of

channel characteristics, and the sparse coefficients as transmit

powers [16], [17]. Existing DL-based localization techniques

such as the one in [18] differs from the present work as it

utilized the sparse vectors for localization. In contrast, the DL

framework utilized here adopts a classification-based approach

[19], [20] that is fundamentally different. Localization via

classification has been considered before, where support vector

machines (SVM) [21], k-nearest neighbors(kNN) [22], and

neural networks classifiers [23] were utilized. It is remarked

that the present approach using DL is comparably more

flexible, and can not only handle missing information but can

also be implemented in an incremental or online fashion.

As a second contribution, this paper extends the interpre-

tation by modifying the DL algorithm to incorporate prior

information regarding the channel distribution. An online

algorithm is proposed that allows the dictionary to be learned
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as measurements arrive. Simulations are performed to demon-

strate the efficacy of the proposed framework.

This paper is organized as follows: Sec. II provides an

overview of system model and background of DL. In Sec. III

algorithm for DL based fingerprinting is presented. Simulation

Results have been discussed in Sec. IV followed by conclusion

in Sec. V.

Notation: Before proceeding to the system model and back-

ground, some common notations are introduced. Kronecker

product is denoted by ⊗, while transpose is denoted by T . Bold

upper (lower) case letters denote matrices (vectors), whose

sizes are not stated if they are clear from the context. The

(i, j)-th entry of a matrix X is denoted by [X]ij .

II. SYSTEM MODEL AND BACKGROUND

Consider a network with an unknown number of trans-

mitters, transmitting at a total of F frequencies, indexed by

{1, 2, . . . , F}. At time t, let yft be the RSS observed by a

particular receiver at frequency f . Given {yft}f,t, the goal is

to obtain a RSS-specific fingerprint for the receiver’s current

location.

Classically, location fingerprints are generated by observing

the RSS at each location, and utilizing the path-loss model [?],

[10]–[12]. The RSS at a given frequency and time is modeled

as

yft = pftLp(d0)

(
d

d0

)−α

+ eft (1)

where pft is the transmit power, α is the path-loss coefficient

that depends on the environment, Lp(d0) is pathloss at the

reference distance d0, and d is the distance between the

transmitter and the receiver. The error eft is generally assumed

to be normally distributed, with unknown variance. Within

the framework considered here, the parameters {pft}, Lp(d0),
d, and α are also unknown, and must be learned from the

RSS measurements. Since the some of these parameters may

be location or time-dependent, the path-loss model may not

provide good location-specific fingerprints.

This paper considers a blind, model-free, RF fingerprinting

technique that utilizes dictionary learning. The DL approach

postulates the following equation for the RSS at frequencies

{1, . . . , F}:

yt = Gpt + et t = 1, 2, . . . , T (2)

where yt collects {yft}Ff=1. Here, the dictionary G ∈ R
F×K

is overcomplete with K ≥ F , and the coefficients pt ∈ R
K×1

are sparse. Both, G and {pt}Tt=1 must be learned from the

measurements {yt}Tt=1 over T time slots. Several DL algo-

rithms have been proposed in the literature, such as those in

[24]–[27].

The DL framework has been used for RF cartography in the

context of cognitive radio networks [16], [17], [28]. When used

for modeling RSS, it is possible to interpret (2) as follows.

For the RSS at frequency f and time t, Gfk := [G]fk is the

channel gain between the k-th transmitter and the receiver,

while [pt]k is the transmit power at the k-th transmitter.

Further, pt is sparse since not all transmitters may be active at

a given time t, and K ≥ F since the number of transmitters is

unknown and presumably large. The transmitted power levels

are dependent on the distance between the transmitter receiver

pair. So, the power levels are considered to be randomly

varying due to the impact of the distance from receiver and

operating environment.

Taking the above interpretation further, modifications can be

made to improve the process of learning G. For instance, since

channel gains and powers are always, positive, it is important

to include the constraints Gfk ≥ 0 and pt ≥ 0. The following

optimization problem was proposed in [28], and will serve as

a starting point for the algorithms presented here.

min
G∈G,{pt≥0}

1

2

∥∥∥Y − GP − 1T ⊗ ννν
∥∥∥2
F
+ λ

T∑
t=1

‖pt‖1 (3)

where Y := [y1 . . . yT ], P := [p1 . . . pT ] and G :=
{[g1 . . . gK ] ≥ 0 | ‖gk‖2 ≤ 1, k = 1, . . . ,K} and ννν ∈ R

F×1
+

accounts for non zero mean of noise. Note that a scaling

ambiguity exists between the magnitude of entries in G and p.

In the present work, we resolve this ambiguity by making the

columns of G unit norm, while allowing p to take arbitrary

values. In practical settings, the values of p capture the path

loss component of the channels that would otherwise be

included within G.

The least squares framework in (3) arises from the lack of

prior knowledge about the noise characteristics. It is remarked

that eft incorporates not only the receiver noise but also

potentially unmodeled effects.

The optimization problem in (3) is non-convex since it

involves the product of two variables G and P. The problem

is generally solved using block coordinate descent (BCD)

method, which involves alternating minimization with respect

to G and P. Starting from an randomly initialized dictionary

G1, the iteration t, the coefficient vector pt is determined by

solving

p̂t = argmin
pt≥0

1

2
‖ yt − ννν − Gpt ‖22 +λ ‖ pt ‖1 (4)

where the �1 norm regularization is utilized to encourage

sparsity in the coefficient vector. The regularization parameter

λ generally depends on the environment, and must be tuned

using the available data. Next, the dictionary is obtained by

solving the following constrained quadratic problem

G = min
G∈G

1

2
‖ Y − GP − 1T ⊗ ννν ‖2F . (5)

Finally, the mean vector ννν is also obtained along the same

lines.

The iterations continue till convergence, which occurs when

the change in the values of P and G in successive iterations

falls below a preset threshold. The full DL algorithm is

summarized in Fig. 1.
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Fig. 1. Dictionary Learning Algorithm

III. DL BASED FINGERPRINTING

The fingerprint for each location is the dictionary learned

from the RSS measurements. From the interpretation presented

in Sec. II, the dictionary encodes the channel between the

transmitters and the receiver. The entire process process of

fingerprinting proceeds in two steps, namely training and

mapping phases.

1) Training phase: Within the training phase, the receiver

collects T vector observations at each location, and learns the

corresponding dictionary. The dictionary learning algorithm

used here is similar to that in [17], and is summarized in

Algorithm 1. As discussed in Sec. II, the BCD algorithm is

used to solve the problem in (3). Given an initial dictionary

guess, often taken to be random, the sparse coefficient matrix

P is learned and subsequently used to yield a better estimate

of the dictionary. The dictionary is learned columnwise and

projected on to the unit norm ball. These steps are repeated till

convergence is achieved or the maximum number of iterations

is reached. Convergence is achieved when the difference

between the dictionary matrices at consecutive iterations falls

below a preset threshold. Remark: The value of λ is data

dependent, so it is chosen in the training phase which is then

used in the mapping phase. To select the value of λ techniques

like cross validation is used.

2) Mapping phase: Once the training phase is over for all

locations of interest, the dictionaries are stored in a database.

Given the RSS measurements from an unknown location, aim

is to find the exact location using the stored dictionaries. In the

mapping phase, first the sparse coding is performed for each

dictionary and reconstruction error is calculated. The location

corresponding to the dictionary with minimum reconstruction

error is identified. The full algorithm is summarized in Algo-

rithm 2.

It is remarked that the accuracy in the mapping phase

depends on the number of samples used. Using one or two

samples is generally not enough, since the transmitter activity

over a short duration of time may simply resemble that at

another location. Best performance is obtained if five or more

samples of RSS measurements are used in mapping phase.

As in previous section estimation using DL is completely

blind. However if prior information about channel distribution

Algorithm 1 Dl based fingerprinting (Training)

1: Input:=Y, initial dictionary G, λ
2: Output:=P̂, Ĝ
3: Algo parameters: A=B=0, c=d=ννν=0.

4: repeat
5: Sparse Coding Step

6: for t=1:T do
7: solve for Pt using (4)

8: end for
9: Compute: A = P̂P̂

T
, B = YP̂

T
, c = Y1, d = P̂1

10: repeat
11: B̃ = B − νννdT

12: for k=1,..,K do
13: g̃k = 1

A(k,k)

(
b̃k − Gak

)
+ gk

14: ĝk =
[g̃k]

+

max{‖[g̃k]+‖2,1}
15: end for
16: ννν =

[
c − Ĝd

]+
17: until Convergence

18: until Convergence

Algorithm 2 Mapping Phase

1: Input: Ytest, learned dictionaries Ĝ1,. . . ,ĜM for M lo-

cations, Tm, λ
2: Output: location î
3: Sparse Coding Step

4: for i = 1 to M do
5: for t = 1 to Tm do
6: solve for {p̂i

t} using (4)

7: end for
8: Calculate for each receiver

9: ηi =
∑Tm

t=1

∥∥∥yt − Ĝip̂i
t

∥∥∥2
2

10: end for
11: Return î = argmin {η1, . . . , ηM}

is available, the DL algorithm can be appropriately modified.

To this end, the optimization step in (3) can be written as

G = argmax l(G|Y) (6)

where l(G|Y) is the log likelihood function and is given as

l(G|Y) = log f(G|Y) (7)

f(G|Y) = f(Y|G)f(G) (8)

l(G|Y) = log f(Y|G) + log f(G) (9)

Ĝ = argmin − l(G|Y) (10)

Ĝ = argmin − (log f(Y|G) + log f(G)) (11)

From (11), we observe that, incorporating prior information

results in addition of extra regularization term.

3) Algorithms for DL assuming prior information: For a

given channel distribution, channel gains can be obtained as

square of channel coefficients. Here we consider, channel to be

Rayleigh distributed therefore, channel gain comes out to be
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exponentially distributed. Let the probability density function

of each column gi be given by

f(gi) = γe
−γ

F∑

j=1
gij

. (12)

Therefore, the log likelihood of f(gi) is given by

log f(gi) = −γ − γ
F∑

j=1

gij . (13)

Ignoring constant terms, the form of the log-likelihood func-

tion suggests that overall optimization problem for DL should

be posed as

min
G∈G,P≥0,ννν≥0

1

2
‖ Y − GP − 1T ⊗ ννν ‖2F +λ

T∑
t=1

‖pt‖1

+γ
∑
i

∑
j

Gij (14)

In this section we present the algorithms for solving (14) in

batch and online fashion.

• Batch Implementation: The objective function for the

batch algorithm is given by equation (14). As before, G is

estimated columnwise, which results in objective function

given by

ĝi = min
gi∈G

1

2
‖ Y − GP − 1T ⊗ ννν ‖2F +γ

F∑
j=1

gij (15)

Batch implementation with prior information is similar to

one provided by Algorithm 1, except that step 13 must

be replaced with

g̃k =
1

A(k, k)

(
b̃k − Gak − γ1

)
+ gk (16)

• Online Implementation The batch algorithm requires the

observation matrix to be stored before any processing.

This can be tricky while handling the large amount of

data. So, the online algorithm is desirable so that the

raw measurements can be discarded over time. It uses

intermediate calculations which do not require storage

of previous observations. Another advantage of online

implementation is the learning process is more efficient

as these can well adapt to dynamic environments. Fur-

ther, the batch algorithm is also more computationally

complex, and the online algorithm yields near optimal

dictionaries if the number of samples collected is suffi-

ciently large. So instead of learning the features in batch

training it is advocated to use the online algorithm. To

this end, the optimization problem is modified as follows:

min
G∈G,P≥0,ννν≥0

T∑
t=1

1

2
‖ yt − Gpt − ννν ‖22 +λ ‖ pt ‖1

+γ
∑
i

∑
j

Gij (17)

The full online algorithm is summarized in Algorithm

3. The training data i.e. RSS measurements given at

a time instant are used to generate the sparse vector

followed by the dictionary modification. The learning

process in Algorithm 3 is different from Algorithm 1

as it does not require multiple convergence loops and

intermediate calculations require vector manipulations

instead of matrix.

Algorithm 3 Estimation of P and G using Exponential Prior

(online Implementation)

1: Input:=yt, initial dictionary G(0), λ, and γ
2: Output:=p̂t, Ĝt

3: Algo parameters: A(0)=B(0)=0, c(0)=d(0)=j(0)=ννν(0)=0.

4: for t=1:T do
5: Sparse Coding Step

6: p̂t = argmin
p≥0

1
2 ‖ yt − νννt−1 − Gt−1pt ‖22 +λ ‖ pt ‖1

7: Dictionary Learning Step

8: Compute:

9: At = At−1 + p̂tp̂
T
t ,

10: Bt = Bt−1 + ytp̂
T
t ,

11: ct = ct−1 + yt,
12: dt = dt−1 + p̂t

13: jt = jt−1 + γ1
14: repeat
15: B̃t = Bt − νννtdT

t

16: for k=1,..,K do
17: g̃k = 1

A(k,k)

(
b̃k − Gak − jt

)
+ gk

18: ĝk =
[g̃k]

+

max{‖[g̃k]+‖2,1}
19: end for
20: νννt =

[
ct − Ĝdt

]+
21: until Convergence

22: end for

IV. SIMULATION RESULTS

This section provides simulation results that demonstrate

the effectiveness of the proposed DL-based fingerprinting

technique. Existing fingerprinting techniques that utilize the

path loss model cannot cope with time-varying transmitter

activity, and are therefore not compared here. Within the

context of blind fingerprinting of time-varying RSS, another

possibility is that of using classification algorithms that can

learn to discriminate between locations. The performance of

the proposed algorithm is compared with standard classifica-

tion algorithms.

The simulation setup considers a total of ten transmitters,

spread over a unit area as shown Fig. 2, and transmitting

intermittently over five frequencies. The transmit powers are

assumed to be uniformly distributed between 0.9 and 1, and

the transmitters are active with probability 0.3. The figure also

shows the two receiver locations, and the channel between a

transmitter-receiver pair is modeled as
(

dmk

d0

)−α

|hfk|2 where

d0 = 0.1, α = 2, d is the distance between the transmitter and

the receiver, and |hfk|2 is the exponentially distributed random

variable modeling the small scale fading. The training phase
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Fig. 2. Transmitter and Receiver Locations

acquires 1000 samples to learn the overcomplete dictionary of

size 5 × 15. The subproblem in (4) is solved using interior

point method [29]. Finally, although λ must be chosen via

cross-validation, the algorithm was found to work well for

the range [0.1, 0.9]. For the present set of simulations, we set

λ = 0.5.
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Fig. 3. Percentage misclassification for four different algorithms

To begin with, Fig. 3 shows the misclassification error

incurred by the proposed error, calculated as the percentage of

Sample Size
5 10 15 20 25 30 35 40 45 50

%
ag

e 
m

is
cl

as
si

fic
at

io
n

0

5

10

15

20

25

30

ε=0
ε=8%
ε=24%

Fig. 4. Percentage misclassification vs sample size for DL

time the algorithm incorrectly identified each receiver location.

The misclassification error incurred by proposed method is

compared with classical classification algorithms, such as

support vector machines(SVM), linear discriminant analysis

(LDA), and nearest-neighbor classifier (NN). The performance

of the proposed DL-based fingerprinting algorithm is better

than the standard classifiers, especially if more than 3 samples

are available during the mapping phase. Note that, in theory,

it is possible to consider improved classifiers that utilize prior

information for differentiating between different locations.

However, construction of such multi-class discriminants would

still require batch processing of samples from all possible re-

ceiver locations. In contrast, the proposed algorithm generates

fingerprints for each set of samples separately, and is therefore

scalable to any number of receiver locations.

The performance of the DL-based algorithm is expected to

suffer in the presence of noisy RSS readings. Fig. 4 plots

the misclassification error with the number of samples. The

different curves are plotted for different ratios of standard

deviation of the RSS error to the average channel gain,

expressed as a percentage. As expected, the misclassification

error is high if the RSS measurements are too noisy, even for

large number of samples.

Next, the performance of the online DL algorithm is eval-

uated, and the effect of prior information is analyzed. To this

end, the reconstruction error in the training phase, given by

η = E

[∥∥∥yt − Ĝp̂t − ν̂
∥∥∥], is plotted with time in Fig. 5.

The reconstruction error improves with time, as the dictionary

becomes more representative of the RSS measurements at a

particular location. The use of prior information speeds up the

convergence of the algorithm, allowing shorter training times.

It is remarked that the online algorithm requires further tuning
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method

parameters to run correctly. In the present case, λ = 10−4,

tuned from measurements.

V. CONCLUSION

This paper considers the problem of radio frequency finger-

printing for localization and mapping in indoor environments.

To this end, dictionary learning (DL) has been proposed for

fingerprinting, based on the received signal strength at different

frequencies. Preliminary results show that DL is able to

classify different locations correctly, regardless of their time-

varying activity and random fading impairments. Prior infor-

mation regarding channel distribution has also been included

to improve the DL performance and an online algorithm is

proposed for allowing low complexity implementation. Future

research includes the analysis of spatial resolution afforded

by the proposed scheme, as well as implementation over a

testbed.
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