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Abstract

Two dimensional chirp signal has been used for modeling gray scale sym-
metric images in the statistical signal processing literature. In this paper we
propose a computationally efficient algorithm for estimating different param-
eters of a two dimensional chirp signal model in presence of stationary noise.
Starting from a suitable initial guess value, the proposed method produces esti-
mators which are asymptotically equivalent to the corresponding least squares
estimators. We also discuss how to obtain the initial estimates suitably. Some
simulation experiments have been performed to see the effectiveness of the pro-
posed method, and it is observed that the proposed estimators perform very
well.
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1 INTRODUCTION

Two dimensional chirp signal models can be used to model gray scale (black and
white) images. Mathematically the model looks like as follows,
y(m,n) = A cos(a®m + 'm? 4+ 1"n + 8°n?%) + B sin(a’m + °m? +~°n + 6°n?)]
+X(m,n);m=1,--- M,n=1,--- /N

(1)
where X (m,n) is the random additive error. A% and BY are distinct non zero ampli-
tudes and A%°+ B9 < M, for some constant M. The frequencies a°, v° and frequency
rates 3%, 0° respectively strictly lie between 0 and . It is assumed that X (m,n) has

the following form;

o0 [e.9]

X(m,n)= > > a(j,k)e(m—jn—k) (2)

Jj=—00 k=—00

with

Y D lali k)l < oo (3)

j=—00 k=—o00

Here £(m,n)’s are independent and identically distributed (i.i.d.) random variables
with zero mean, variance o2 and with finite fourth moments. Given a sample of size
N, the problem is to estimate the unknown amplitudes A%, B, the frequencies o, v"

and the frequency rates 3°, 4°.

Extensive work on similar two-dimensional models have been done by several au-
thors, see for example Peleg and Porat [10], Friedlander et al. [6], Francos et al. [4],
[5], Cao et al. [2|, Zhang and Liu [16], Zhang et al. [17] and the references cited
therein. Recently, it is observed by the authors, see Lahiri et al. [9], that the least
squares estimators (LSEs) of the parameters of this model (1) are consistent and
asymptotically normally distributed. It is further observed that the LSEs are asymp-
totically efficient. The convergence rates for the amplitudes are O, (M ~Y2N~1/2) for
the frequencies are O,(M*2N~"Y2) and O,(M~*N~3/2), for the frequency rates

these are O,(M~>?N~2) and O,(M~Y*N~%?). Here Z = O,(N~°) means N°Z
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is bounded in probability. But finding the LSEs is a computationally challenging
problem as the least squares surface has several local minima. So for any iterative
method the choice of the initial guess is extremely important, otherwise the method
will converge to a local minima instead of the global one. Even for ordinary sinusoidal
model it is a well known problem, interested readers may see the nice discussion in

Rice and Rosenblatt [12] in this respect.

The aim of this paper is to find efficient estimators of the amplitudes, frequencies
and frequency rates efficiently, which have the same rates of convergence as the corre-
sponding least squares estimators. It may be observed that the model (1) can be seen
as a non-linear regression model, with A°, BY as linear parameters, and o, 3°, +°
and ¢° as non-linear parameters. If we can find efficient estimators of the non-linear
parameters a’, 3°, 4% and §° then efficient estimators of the linear parameters can
be obtained by simple linear regression technique, see for example Richards [13]. Be-
cause of this reason, in this paper we mainly concentrate on estimating the non-linear

parameters efficiently.

Here we propose an iterative method (Newton- Raphson type) to find the es-
timators of non-linear parameters namely frequencies and frequency rates. It is
observed that if we start the initial guesses of o’ and ~° with convergence rates
O,(M~'N=12) and O,(N~*M~/2) respectively then after four iterations the algo-
rithm produces the estimates of a” and 7° with convergence rates Op(M 32 N~1/2)
and Op(M~Y/2N~3/2), Similarly, if we start the initial guessed of 3° and §° with con-
vergence rates O,(M~2N~2) and O,(N-2M~/2) respectively, then after four itera-
tions the algorithm converges with convergence rates Op(M~°/2N~-/2) and
Op(M~Y2N=5/2) Therefore, it is clear that the proposed algorithm produces es-
timates which have the same rate of convergence as the LSEs. Moreover, it is known

that the algorithm stops after finite number of steps only.

We study the effectiveness of the proposed iterative approach by some simulation



experiments. It is observed that the algorithm works very well in terms of mean
squares errors (MSEs). MSEs of the proposed estimators are very close to the corre-
sponding MSEs of the LSEs, and both are very close to the corresponding asymptotic
variance of the LSEs. Therefore, the proposed method can be used very effectively

instead of the LSEs.

The rest of the paper is organized as follows. We provide the properties of the
LSEs in Section 2. In Section 3, we present the proposed algorithm and provide the
theoretical justification of the algorithm. The simulation results and the analysis of
a simulated data have been presented in Section 4. Conclusions appear in Section 5.

All the proofs are presented in the Appendix.

2 LEAST SQUARES ESTIMATORS

In this section we present briefly the properties of the LSEs for ready reference. The
LSEs of the unknown parameters of the model (1) can be obtained by minimizing

S(A, B, «, 3,7, 0) with respect to A, B, «, 3, v and ¢, where

S(A7B7 a7ﬁ777 5) =

N M
Z Z (y(m,n) — Acos(am + Bm® + yn + dn*) — Bsin(am + Bm® +yn + 6n2))2 .

n=1 m=1
Note that, if a;, 4, v and § are known, the LSEs of A and B can be obtained as 2(9)

and E(G) respectively, where 6 = («, 3,7, 9),

(A0). B(0))" = (W' (0)W(9)) W' (0)Y, ()



Y = (y(1,1), -+ ,y(M,N))T, is the MN x 1 data vector and W(8) is the M N x 2

matrix of the following form;

cos(av+ B+ v +6)
cos(2a+ 48 + v +9)

cos(Ma + M?3% + v +6)

cos(a + 3+ Nv + N?§)
cos(2a + 403 + N~y + N?§)

sin(a+ G+ v+ 9)
sin(2cc + 46 + v+ 6)

sin(Ma + M23% + v + 6)

sin(a + 3 + Nvy + N?2§)
sin(2a 4+ 43 + Nvy + N?9)

|cos(Ma + M?3% + Ny + N?6) sin(Ma + M?3* + Ny + N%§)

Therefore, the LSEs of a, (3, v and § can be obtained first by maximizing Q(«, (3,7, )

with respect to «, 3,7 and §, where

Q(a, 5,7,8) = S(A(0), B(9),, 5,7,0) = YIW(0) (WT(9)W(6)) " WT(9)Y.

(6)

Once the LSEs of «, 3,v and 4, say a, a,/v\ and 0 are obtained the LSEs of A and B

can be easily obtained as E(&, @ ~, g) and B (@, E, ~, 3) respectively, see for example

Richards [13]. The properties of the LSEs is as follows. The LSEs of the unknown

parameters of model (1) are strongly consistent for the corresponding parameters and

they have the following asymptotic distribution

1 1

— s 1 1 1 1
where D = dzag<\/MN’ VMN’ M\VMN’ M2y/MN’ NvVMN’ N2\/MN>
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and ¢ = i i a(j,k)* and
j=—00 k=—00

A% 175”  _gAPB0 _18B" 15B° —18B" 158" |

—8A0BY ATSITEY g0 1540 184" —15A4°

s1_ 2 —18B°  184° 96  —90 0 0 (8)
A% 4 BO2 | 15B0 —15A0° —90  —90 0 0 '
—18RB° 18A4° 0 0 96 —90
15B° —15A0 0 0 90 90

In the next section we provide the algorithm which produces estimators of frequen-
cies a’, 7 and frequency rates 3°,3° which have the same asymptotic distributions

as the LSEs.

3 PROPOSED ALGORITHM

The aim of this algorithm is to find the estimates of the frequency and frequency
rate with the same rate of convergence as the LSEs. First we will show that starting
from any estimators of «, 3, v, and §, how they can be improved upon. Then we
will provide the exact algorithm how it can be implemented in practice. If a is an
estimator of a°, such that @ — a = O,(M =M1 N(X2)) - for some % > Ay > 0,
A2 > 0, and 3 is an estimator of 8, such that 3 — 8 = O, (M (727220 N(=A22)) - for

1
some 3 > Xo1 > 0, A\g2 > 0, then an improved estimator of a® can be obtained as

~ 48 Py
A=a+-—Im QjN) (9)
M? ( MN

with

N M M ~
« —i(&m+PBm?
Pi =30 Y sl (i = 5 ) entmsom (10)

n=1 m=1
N M
a, —i(G@m+Bm?2
Qv =D Y y(m,n)e@mtom), (11)
n=1 m=1

Here Im(-) denotes the imaginary part of the complex argument. Similarly, an im-

proved estimator of # can be obtained as

= <45 Py
5_5+W1m( ]gév>a (12)
MN



with

N M
M2 —i(Gm+Bm?2
Py =Y > u(m.n) (WZ—?)e () (13)

n=1m=1

and Q% is same as defined in (11).

The following two theorems provide the justification for the improved estimators,

whose proofs will be provided in the appendix.

Theorem 1. If @ — a° = O,(M I MO NG for Ny > 0 then
N 1
(a) @ —a = Op(M(_l_Q)‘“)N(_’\m)) if 0< A < 1

3 1 = 1
(b)) M3N3(a —a®) -5 N(0,07)  if A >,
4co? !
38
where 0} = WCGBOQ’ the asymptotic variance of the LSE of o®.

Theorem 2. If § — 3° = O,(M2"22)NX22)) for Xyy > 0 then
(a) B— ﬁo = OP(M(7272)‘21)N(*)‘22)) Zf 0< Ay < i

L= 1
(b)) MENZ(3— %) -5 N(0,03)  if Do >

4
360co?

where 03 = 01 57 the asymptotic variance of the LSE of 3°.

Similarly by interchanging the role of m and n we can get the estimators of
7%, and 4°. If 5 is an estimator of 4%, such that 5 — % = O, (N(1=r1) pf(=s12)) - for
some % > k11 > 0, and § is an estimator of 5, such that 5—00 = O, (N (727r2) pp(=ra2))
for some % > ko1 > 0, then an improved estimator of 4° can be obtained as

~ 48 P},
Y=7+—Im|2E (14)
N2 <Q’]y\74(5N

with

and an improved estimator of § can be obtained as

~ . d
5:5+4—i1m<P¥;V), (17)
N Qarn




with

N M N2 ~
Pl = 0 % st (= 5 ) e onen® (18)

n=1 m=1

and Q77 is same as defined in (16).

Theorem 3. If5 —+° = Op(N(_l_”“)M(_“”)) for k1o > 0 then
o~ 1
(0) 7 =1 = Op(NTI2m 2y gf 0 < iy <

1 =< ].
(b) N3M3(F —2°) =5 N(O.0]) i wu >,

Theorem 4. If § — ° = O, (N2 w20 M K22 for kyy > 0 then
= 1
(a) 6 — 60 = Op(N(_2_2”21)M(—"~22)) if  0< kg < 1
1

(b) N3Mz(5 — &%) - N(0,02)  if o > 7.

Now we will show that starting from initial guesses a, B, with convergence rates
a—a’ = Op(M’lel/Q) and B -3 = Op(M’QN’l/Q) respectively, how the above
procedure can be used to obtain efficient estimators. It may be noted that finding
initial guesses with the above convergence rates are not very difficult. It can be
obtained by finding the minimum of @, («, 3), where

M
m=1

Q1(a, B) = Z (Z y(m,n) — Acos(am + fm?) — Bsin(am + ﬁm2)> (19)

m) 7wk
N’ N2
by Rice and Rosenblatt [12] to find the initial guesses of the frequency in case of a

over the grids ( ), j=1,--- ,N,and k =1,--- ,N?, as it has been suggested

sinusoidal model.

The main idea is not to use the whole sample size at the beginning, as it was first
suggested by Bai et al. [1]. We will use part of the sample at the beginning and
gradually proceed towards the complete sample. The algorithm can be described as
follows. We will denote the estimates of a’ and 3° obtained at the i-th iteration as

a® and B3O respectively.



ALGORITHM:

Step 1: Choose M; = M®° N, = N. Therefore, @ — o’ = O,(M'N~?) =
O,(M; 7VENTY?) and 3O — 30 = O,(M2N"Y?) = 0,(M; > *N; /%), Perform

steps (9) and (12). Therefore, after the 1-st iteration we have
o _ o0 — Op(Ml—l—l/4N1—1/2) _ OP(M_IO/QN_1/2>

and

1
2-3

BY — 30 = 0, (M; > Ny = Op(M2PN-1/2),

Step 2: Choose M, = M3®/8! N, = N. Therefore, a") — o = Op(]\/_[2_1—1/8]\[2—1/2)7
and 1 — g% = Op(M;2_1/4N2_1/2). Perform steps (9) and (12). Therefore, after

the 2-nd iteration we have
a® _ 40 = OP(M2—1—1/4N2—1/2) _ Op(M*IOO/SlN’lm)
and

B’(z) N 50 _ OP<M2—2—1/2N2—1/2) _ OP(M_QOO/SIN_I/Z).

Step 3: Choose M3 = M, N3 = N. Therefore, a® — o° = OP(M?)—I—19/81N3—1/2)7
and % - = Op(]\/[?:%gg/gl]\f?:l/z). Perform steps (9) and (12). Therefore, after

the 3-rd iteration we have

&(3) b= Op(]\/[71738/81]\[71/2)7 and B(s) i 50 _ Op(Mf2f76/81N71/2).
Step 4: Choose My = M, Ny = N, and perform steps (9) and (12). Now we obtain
the required convergence rates, i.e.

aWw _ o0 — Op(M*B/QNfl/Q), and 5(4) — B30 = Op(M*5/2N*1/2).

Similarly interchanging the role of m and n we can get the algorithm correspond-

ing to 4" and ¢°.



4 SIMULATION AND DATA ANALYSIS

4.1 SIMULATION RESULTS

Table 1: Result for model with i.i.d. error

sample size=50x50
02=0.05 PARA 1.00 0.05 1.50 0.50
ASYV ( 0.6144001E-07) | ( 0.2304000E-10) | ( 0.6144001E-07) | ( 0.2304000E-10)
MEAN(Algo) 1.000093 0.049997 1.500015 0.500000
MSE(Algo) | ( 0.5010137E-06) | ( 0.2194539E-10) | ( 0.2086442E-06) | ( 0.7875175E-09)
MEAN(LSE) 0.999997 0.050000 1.500020 0.500000
MSE(LSE) ( 0.1124367E-06) | ( 0.3985947E-10) | ( 0.3852298E-06) | ( 0.1130815E-09)
02=0.5 PARA 1.00 0.05 1.50 0.50
ASYV ( 0.6144001E-06) | ( 0.2304000E-09) | ( 0.6144001E-06) | ( 0.2304000E-09)
MEAN (Algo) 1.000108 0.049992 1.499921 0.500004
MSE(Algo) | ( 0.8032256E-05) | ( 0.5519645E-08) | ( 0.6177288E-05) | ( 0.2731907E-08)
MEAN(LSE) 1.000072 0.049999 1.500018 0.499999
MSE(LSE) ( 0.1133311E-05) | ( 0.4220677E-09) | ( 0.5684647E-05) | ( 0.2187304E-08)
Table 2: Result for model with i.i.d. error
sample size=T7T5x 75
02=0.05 PARA 1.00 0.05 1.50 0.50
ASYV ( 0.1213630E-07) | ( 0.2022716E-11) | ( 0.1213630E-07) | ( 0.2022716E-11)
MEAN(Algo) 0.999798 0.050002 1.500087 0.499999
MSE(Algo) | ( 0.1951499E-06) | ( 0.3237120E-10) | ( 0.1740811E-06) | ( 0.2798037E-10)
MEAN(LSE) 1.000027 0.050000 1.499981 0.500000
MSE(LSE) ( 0.3739163E-07) | ( 0.6373457E-11) | ( 0.3754973E-07) | ( 0.6375678E-11)
o2=0.5 PARA 1.00 0.05 1.50 0.50
ASYV ( 0.1213630E-06) | ( 0.2022716E-10) | ( 0.1213630E-06) | ( 0.2022716E-10)
MEAN (Algo) 0.999679 0.050003 1.500144 0.499998
MSE(Algo) | ( 0.5891653E-06) | ( 0.1142206E-09) | ( 0.1408832E-05) | ( 0.2284886E-10)
MEAN(LSE) 1.000020 0.050000 1.500002 0.500000
MSE(LSE) ( 0.2757161E-06) | ( 0.4616362E-10) | ( 0.2735573E-06) | ( 0.4724625E-10)

In this section we present some simulation results for different sample sizes and

for different error variances to show how the proposed method behaves in practice.

We consider the following model

y(m,n) = 5.0 cos(1.0m+0.05m>+1.5n+0.5n%)+5.0 sin(1.0m+0.05m+1.5n+0.5n%)).

We have considered (i) X (m,n) = e(m,n) (i.i.d. errors) and (ii) X (m,n) = e(m,n)+
0.5¢(m — 1,n) 4+ 0.33¢(m,n — 1) (stationary error), where (m,n) ’s are i.i.d. normal
random variables with mean 0 and variance o2. We have taken M = N = 50, 75, 0% =

0.05 and 0.5. In each case we have obtained the initial guesses as has been suggested
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Table 3: Result for model with stationary error

sample size=50x50
2=0.05 PARA 1.00 0.05 1.50 0.50
ASYV ( 0.8349082E-07) | ( 0.3130906E-10) | ( 0.8349082E-07) | ( 0.3130906E-10)
MEAN (Algo) 1.000111 0.049998 1.500039 0.499999
MSE(Algo) | ( 0.6044609E-06) | ( 0.3092874E-10) | ( 0.3720176E-06) | ( 0.1503450E-09)
MEAN(LSE) 1.000016 0.050000 1.500002 0.500000
MSE(LSE) ( 0.1159275E-06) | ( 0.4430854E-10) | ( 0.1125116E-06) | ( 0.4000090E-10)
o2=0.5 PARA 1.00 0.05 1.50 0.50
ASYV ( 0.8349081E-06) | ( 0.3130906E-09) | ( 0.8349081E-06) | ( 0.3130906E-09)
MEAN(Algo) 1.000086 0.050000 1.499968 0.500003
MSE(Algo) | ( 0.8371484E-05) | ( 0.9488036E-09) | ( 0.7387891E-05) | ( 0.4147575E-09)
MEAN(LSE) 1.000068 0.049999 1.499953 0.500001
MSE(LSE) ( 0.1414497E-05) | ( 0.5333091E-09) | ( 0.1192405E-05) | ( 0.4391810E-09)
Table 4: Result for model with stationary error
sample size=T75XxT75
2=0.05 PARA 1.00 0.05 1.50 0.50
ASYV ( 0.1649201E-07) | ( 0.2748669E-11) | ( 0.1649201E-07) | ( 0.2748669E-11)
MEAN(Algo) 0.999800 0.050002 1.500034 0.500000
MSE(Algo) | ( 0.3097944E-06) | ( 0.4884151E-10) | ( 0.3867856E-07) | ( 0.6546732E-11)
MEAN(LSE) 1.000024 0.050000 1.499987 0.500000
MSE(LSE) ( 0.4411412E-07) | ( 0.7600867E-11) | ( 0.4548108E-07) | ( 0.7872438E-11)
o2=05 PARA 1.00 0.05 1.50 0.50
ASYV ( 0.1649201E-06) | ( 0.2748669E-10) | ( 0.1649201E-06) | ( 0.2748669E-10)
MEAN(Algo) 0.999669 0.050004 1.500081 0.499999
MSE(Algo) | ( 0.6820307E-06) | ( 0.1362305E-09) | ( 0.2642028E-06) | ( 0.4555038E-10)
MEAN(LSE) 1.000021 0.050000 1.499990 0.500000
MSE(LSE) ( 0.3979654E-06) | ( 0.6132625E-10) | ( 0.3148316E-06) | ( 0.5325718E-10)

in Section 3. For each M = N and o2, we compute the average estimates of o, 3,
7% and ¢° and the associated mean squared errors based on 1000 replications. The

results are reported in Tables 1 to 4. For comparison purposes we have also computed

the LSEs and the corresponding asymptotic variances.

From the results presented in the tables, it is clear that the performances of the
estimators obtained by the proposed algorithm are quite satisfactory in comparison
to the corresponding performances of the least square estimators. The MSEs of the
proposed estimators are very close to the asymptotic variance of the corresponding
least square estimators. The performances are quite good even with moderate sample

sizes. It is clear that even with the four steps of iteration, we are able to achieve the

same accuracy as of the least square estimators.
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4.2 DATA ANALYSIS

In this subsection we present the analysis of a simulated data set mainly for illustrative
purposes. We have generated a sample of size 75 x 75 from the chirp model with
following parameters, A° =5.0, B°=1.0, o®=1.55 B =0.05, 7 =1.25 ¢ =
0.075. X (n)s are as follows, X(m,n) = ¢(m,n) + 0.5e(m — 1,n) + 0.33¢(m,n — 1)
where £(m,n)’s are assumed to be i.i.d. Gaussian random variables with mean 0 and
variance 02 = 0.5. We have generated the data y(m,n) for M = N = 75. We get the
initial guess from the least squares surfaces of the row sum and column sum of the
data. We also present the two least squares surfaces in Figure 1 and 2 for column

sum and row sum of the data respectively.

Figure 1: Least squares surface for column sum

Using the algorithm, we obtained the estimates of A%, BY o 3° ~° and ¢° as
4.996596, 0.999698, 1.550000, 0.050000, 1.250000, 0.075000 respectively. We plot the
true image, noisy image and estimated image in Figure 3, 4 and 5 respectively. We

can see that the original and the estimated plots match quite well.
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Figure 2: Least square surface for row sum

5 (CONCLUSION

In this paper we propose an efficient algorithm to find the estimators of the param-
eters of a two dimensional chirp signal model which are asymptotically equivalent to
least squares estimators of the corresponding model parameters. To implement the
algorithm we need a good initial estimate. We have discussed how to get such an
initial guess in practice. Simulation results indicate that the proposed method works
quite well in terms of mean square errors, and it produces estimators which perform
like the LSEs. Since the proposed algorithm converges in four steps only, it can be

used very effectively for online implementation purposes.

APPENDIX

We need the following lemmas for proving the theorems. Using Vinogradov’s [14]

result one can prove it.
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Figure 3: Original texture

Lemma 1. If (w,0) € (0,7) x (0,7), then except for countable number of points

N M
Inln{]‘l/}r}vl}_’oo MN nz:lmz:lcos wim +0n ) mln{]\l/}r]IVl}eoo MN ;;Sln Wi +97’l ) - O
(21)
| Nom N
mm{]%[' Mmoo VN ;; cos? (wm 21 0n? )= mm{}\l}lj{}}ﬁw MN ;mzl sin? (wm 246n? ) =
(22)

Lemma 2. If (wy,ws,01,05) € (0,7)x(0,7)x(0,7)x(0,7), then except for countable

number of points

N M
1

mm{}%}rj{}}ﬁw AN E:l Z_] cos(wim + wom? + 0 + 0yn?) =
- m= (23)
| N
mm{}%}rj{fl}_)oo N ; mzl sin(wym + wom? + 01n + 6yn?) = 0.
1 st 2 2 2y _
mln{]\l}I}\fl}*}O@ W Zl Z_l m n CcoS (u)lm + woam” + an + 02” ) =
1 N M (24)
St i 2 2 2y _
m1n{]\l/}rfl\/}}~>oo m Zl Z_l mon-sm <w1m +wamn” + 01“ + 92” ) -

1
2(s + 1)(t+1)
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Figure 4: Noisy texture

PROOF OF THEOREM 1:

Note that,

N N
Z y(m,n) = A% cos(a’m + 3°m?) + By sin(a®m + 3"m?) + Z X(m,n) (25)

n=1
where A} = Zﬁ:}:] [A% cos(7°n + 6°n?) + B sin(7%n + 6°n?)] = (A° + BY)O(N) and
By = 32N [B%cos(7°n 4 0°n%) — A%sin(7%n + 6°n2)] = (B° — A°)O(N)

M N
—i(@m+pBm?2)
b — g E (m,n)

P, ) Mo ~
(AN ZBN )ez[(aof&)er(ﬁOfﬁ)mQ} + Z(AN + ZBN )efi[(a()«kd)m«k(ﬂ()«kﬁ)mﬂ
2 2

Plﬂiu

1 m=1

+ Z X(m,n) e~ i(Gm+Bm?)
m=1

n=1

3
I

(26)

To get 2nd term in equation (26) we use the lemma and get

M

m=1
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Figure 5: Estimated texture

Using lemma and bivariate Taylor series expansion the 1st term in equation (26)
becomes

M ~
3l -am (=5’

m=1

M
_ Z [ei[m(ataomﬁ(5"%“)] +i(a® —a)ym +i(p° — B)m2
m=1

iQ(OCO - 6&)27”2 ei[m(aofoc*)+m2(ﬁofﬁ*)] 4 i2<ﬁo — ﬁ)2m4 ei[nl(aofoz*)erQ(ﬁOfﬁ*)}
2! 2!

+2’52(@0 —a)(8° - g)m? pilm(a®—a*)+m?(5°—6")]
2!

= O(M) + Op(M™" M N")O(M?) + O, (M > N~*2)O(M?)

+

1 A 1
SOy (M 3PN, (M) + O, (M2 N-22) 0, (M)

+ Op(MTIN )0, (M2 N2)0, (M)
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— Op(M) + Op(le)\an)\u) i Op(le)\gle)\m)
1 1
—+ §OP(M172)‘11N72)‘12) + Op(le)\uf)\m N*)\u*)\zz) 4 §OP(M172/\21 N72)\22)
= Op(M) + Op(lemin()\u,)\Ql)N* min(Alz,Am)) + OP<M172 min()\11,)\21)N72 min()\127)\22))

— Op(M) (1 + Op(Mf min(A11,A21) \7— min(/\12,>\22)) + Op(MfQ min(A11,A21) \—2 mil’l()\lg,)\gg)))

where (a*, %) is a point on the line joining (a?, %) and (&, 3)

To calculate the 3rd term in equation (26) we need the following two observations.

(1)

and

M N
1
W Z Z m®[cos(a’m + 3'm*)| X (m, n)

m=1 n=1

satisfy conditions for Central Limit Theorem (CLT), see Fuller [3], when o, 3° are

the true value as in the model.

M N
1 .
i) sup |——— m*X (m,n)el @™l 0 g.s.. It can be proved along the
3 MS+1N
@ m=1 n=1

same line as Kundu and Nandi [§].

Now we choose L large such that 1 —Lmin(Aj1, Ag;) < 0 and 1—Lmin(Aj2, Agg) <

0. Then using again bivariate Taylor series expansion, the 3rd term in equation (26)

17



becomes

M N ~ voON
D2 37 X men I = 5757 X ) [t )
m=ln=1 m=1 n=1
L-1 1 . . -
LS (= = ) i
R — k)
=1 k=0
L ,., . o~
(i(@ = a)m)*(i(3 = B)m*) P e imr
i Z KL — k)! €
k=0
1
= Op((MN) 2 )
L—-1 1 1
1 1
+ mOp<M_k—k)\11 N—k)\ﬂ)OP(M_Q(l—k)_(l—k))\zl N_(l_k))\m)Op(Mk+2(l_k)+§N§)
=1 k=0 :

k=0 (L —k)!
L-1 1 ]
=0 ((MN)%) + —[O (M%—k)\u—(l—k))\zl N%_k)\m_(l_k))\m)]
8 ; ; K — k)P
& 1
F 3 G O M R
=0
L—1 .
= Op(MN)2) + Y O(MN)2) 3 (M AN TN Jy e N
=1 :
1
+ Op(MN)E(M—)\ll N—A12 + M_)\Ql N—)\QZ)L
L1 X
=O0,((MN)z) + Z Op((MN)§)ﬁ(M* min(Air Ag1) = min(hizAaz) )1
=1 :
+ Op<MN)i'(M_ min(/\ll,)\zl)N— min()\127)\22))L
L1 X
— Op((MN)E) + Z Op((MN)g)ﬁ(Mf mm()\u,)\zl)Nf mln()\lg,)\gz))l + OP(l)
=1 :
= O,((MN)?)

We note that

A* . B* AO BO AO—BO
N 22 N :( —12— L : )O(N)

and

Ay iy (A B0 A BN
2 2
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Then equation (26) becomes

Q?\ZL;V _ (A}kv ;ZB}kV)Op(M) [1 + OP<M— min()\ll,)\gl)N— mln()\12,>\22))]
A% + 1B 1
(%)OP(M> + Op((MN)2)
Ay — 1B A4+ B0 A RO
= (X200, (M) = (St + i )0, (M)
M N M B
Piiy = > ylm,n)(m — o) @mtim?)
m=1 n=1
M N M .
M o B2 AN — iB% M. o - 0__ 3,2
_ 2N —i(am4pm?) SN YN P i@ —a)m+ (80— B)m?]

3
[
o
3
[
-

M .

AN +1B% M —il(aO 4@ ) (39 B)m?2

+ E :(%)(m_j)e [(a®+a)m+(8°+8)m?]
m=1

(27)

For 3rd term in equation (27) we calculate

M M M
—i[(a®4+a)m 04 BYm?2
Z(m_?)e (a0 +@)m+(6°+F)m?] _ Z(m_

m=1 m=1
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Bivariate Taylor series gives 1st term in equation (27) as

M N M ~ M N Y
D 37 Xlmym)m = e I = 5757 X, — ) [enime e

3
[
H
S
I
H
[\
3
I
L
3
I
-

kIl —k)!

k
(i@ — a®ym)*(i(3 - 50>m2>L—’f€_i(m*+mzﬁ*>]

2 (L — )]

k=0
M N
M .
$5 i Syt
m=1 n=1
L—1 1 )
+ mOp<Mkk)\11Nk>\12)Op(M2(lk)(lk))\le(lk))\n)Op(MkJrQ(lk)JrgNé)
=1 k=0 !

L—1
—i(maP4-m?3° 3 a7l
5 )e (mef ™) 13" 0,(M2N?)

m=1 n=1 =1

_ (M—All N—>\12 + M—>\21 N—)\gz )L

| =

I
WE
] =
~
E
S
£

|

=<

(M—A11N—>\12 + M—A21N—>\22)l

o~

!

M N M L-1 1
—i(mal+m?2p° NG — min — min
=Y > X(m,n)(m — —)e T LY Op(M2NZ) (M (Ar121) = min(rrz Ao2) )

m=1 n=1 =1

. (M_ min()\lh)\gl)N— min()\lz,)\gz))L

M N
M. . ,
= Z Z X(m,n)(m — _)eﬂ(maoﬂn )

311 —min(A11,\21 —min(A12,A22
£ 3 Op(MAN) (M minnden) N minOuz )l O (1)

D=

M N M
; 2 3
= 3> X(mm)m — )e ) 1o, (MENE)

2
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Again using Taylor series we get 2nd term in equation (27) as

M
Z(m _ %) il(a”—&)m-+(5°—B)m?]
m=1 2

M M
Z 2 |: ifm(a®—a®)+m?(8°—3°)] + z(@ — Oz)m + Z(ﬁ B)mZ

m=1
L P2 = Q) nao—aryemeo gy | DY = B (a0t (0—p
2! 2!
L 28(0° = &)(B° = B ipm(a0—av)em(89—5°)
2!

= OM) i~ FO(ME) + (a7 — 80,3 N)0, (01
Fi(a? = G)0, (M2 N)0,(01°)
+ 0, (M2 N3 O(MY) + O, (M~ N=22)0 (1)

= 0,(M) +i(a’ — @)O(M?)[1 + Oy (M MN"22) 4 O, (M2 N~22)]
+ O (M) [O,(M 2 N7222) - O, (M~ N~2222))]

= 0,(M?) +i(a® — @)O(M®)[1 + Op( M~ 1 N™N2) 4 O, (M2 N7222))]

_ OP(MQ) + i(ao . d)O(M?’)[l + OP(M_ min()\n,)\zl)N— min()qz,)\zz)]

Then equation (27) becomes

A% — iBs . -
PJ?/CIN — (NTZN)Z(O[O o &)O(MS)[]_ + OP(M—mln()\n,)\gl)N—mm()\lg)\gg)] + Op(MQ)
A*N + 137\[ L& M —i(a®m+pm?)
+(T)O (M) + o,(M —|—mZ:1;X(m,n)(m—7)e
M
=SS X~ et
m=1 n=1 2
Ay —1Bj . :
+ ( . 1 N)i(OZO . ONZ)O(MS)[]_ + Op(M— mll’l(>\11,>\21)N— mm()\lg,)\m))]
M N
M., _. 2
= 22> X(mm)(m — e et
m=1 n=1
0 0 0
# (B2 + 5 ) ia? = GO+ 0,21 -t
~ 48 Py
then a=a+ —Im| fg]
M MN
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48 (ﬁ)i(aO . a)O(M3)[1 +0 ( —min(A11,he1) N - min(/\lg,)\gg)]

AN —iBY
M Op(M)(=5—)
M N
M )
Z Z X(m, n) (m _ 7)e—z(a0m+50m2)
m=1 n=1
+ A%, —iB;

+ 48 I m=1 n=1
“o4m 0 0 0
M? (A JQFB +44 5 JO,(MN)
M N
M
g E X(m,n)( m—7) e~ i(@"m+0m?)
Now the variance of M,3/§?V,1/2 Im | m=ln=t <A0+Bo+ 20 BO) us-
2 2

ing Lemma 1 and 2, is asymptotically same as variance of least square estimators

of a® . So & — a’ = O,(MTIAMINEN) where A;; € (0,3) then & — o =

Op(MI=2) NCX2)) i A < 1 M3(& — a®) — N(0,0?) if \ip > 1 by CLT of

stochastic process in Fuller [3] where 07 = A%%‘f;fﬂ is variance of least square estima-
tors of a® where ¢ = Z a(4)?.
Jj=—00
PROOF OF THEOREM 2:
, M N . M2
Pyy = Z Zy(m,n)(m T3 )eﬂ(amwm )
m=1 n=1
M N M .
M2 —i(ama-Bm2 AN — 1B} M2 il(a®—&)m, 0_ 32
=2 D X(mym)(m? — =)o@ 4§ (Fm—)(m? — el an A
m=1n=1 m=1

M .
AN +1B% M —il(aO 4@ (89 B)m2
+ E :(u)(m_ 7)6 [(a®+&)m~+(8°+5)m?]

To get 3rd term in equation (28) we calculate

- M2, s ame i e, 5 M? ,
D (m? — =) IO = § 7 (n? — S0, (1) = O,(M7)
m=1 m=1
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Expanding using bivariate Taylor series 1st term in equation (28) becomes

M N A2 i M N 2
SN X(myn)(m? — —=)e @I = NN X (m,n)(m? — =) [ﬂma%m%%

o 3 m=1 n=1
1y | -
+ L-1 Z (i(& — a”)m)F(i(5 — BO)mA) a0 im2s0)
kNI — k)
=1 k=0
L L L
(i(& — a®)m)* (B = B)m>) P e mzpr)
" Z K\(L —k)! e
k=0
M N ,
- Z Z X (m,n)(m* — %)e—i(maoﬂngﬂo)
3
m=1 n=1
L—1 1 )
5 1
: mOP(M?kimu N=+N2)0 (M 2R ==k N=(=k)Xo2) O (N h+20-k)+5 N2
=1 k=0 !

M N
M? .
= 33 X ) — Ayt

m=1 n=1 3
L—1 1 1
5 1
22 W[Op(M S—RAu=(=Ra 3 —kA—(I=k)a2 ]
=1 k=0 .
Lo
+ Z m[(}p(MZka)\uf(Lfk))\zl lek)\mf([,,k))\n)]
k=0 :
e M? L-1 ]
. .
— Z Z X(m7 n)(m2 — ?)6_1(771410—&-771260) —|— Z Op(M§N§>ﬁ(M—)\11N—)\12 + M—)\QlN—)\QQ)l
mete =1 :
1
+ Op(M?’N)E(M—)\uN—)\m + M—A21N_)\22)L
M N ' 2 L 1
) 5 . ' |
= Z Z X(m7 n)(m2 — —)G_Z(ma0+m £9) —+ Z Op(M§N§>ﬁ(M— m1n(>\11,>\21)N— mln(>\12,>\22)>l
1 . .
+ OP<M3N)E(M_ min(A11,A21) pr— mlﬂ(Alz,Azz))L
M N
M2 i
-5 3 Kt Mt
m=1 n=1 3
L—1 1
5 1 ) .
+ Z Op(MfNi)ﬁ(M* m1n(A11,/\21)N* mln()\12,)\22))l 4 OP(MQ)
=1 :
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Taylor series expansion gives 2nd term in equation (28) as

M 2 ~
S (m? — M im0~ Gym
3
m=1

= 5 = AL [ o0 — @y 45— G

m=1
n z’2<a0 _ &)2m2 pilm(a®—a*)4m2(30-5")] n @2(50 _ 5)2m4 (0= (P
2! 2!
L 22(0° = &) (B = DY a0 o) em (50 ~7)
2!

= O(M?) +i(8° — BO(M?) +i(8° — B)O, (M= N722)0,,(M°)
+i(3° = B)Op(M 2 N=2)0, (M)
+ O (M AN"M2)O(MY) 4+ O, (M2 N=2h2)O (M)

= 0,(M?) +i(3° — B)O(MP®)[1 + Op(M~ M N~M2) 4 O, (M 2 N~*22)]
+ O, (M?)[O,(M M N~Y2) 4 O, (M~ N=2h2))]

= 0,(M?) +i(3° — B)O(M®)[1 + O, (M N-22) 4 O, (M2 N2)]

= 0,(M°) + (5 = HO(M)[L + Oy (M im0 =itz )

Then equation (28) becomes

A% — B . . -
Piy = (B30 — BYO(ME)[1 + Oy(M~minuden) = miniz )] g, (11°)
A% +iBx g M2 )
(=)0 (M2) 4 0y (MENE) £ 3737 X (mym)(n? = =) s
m=1 n=1
M N
M? , 2
= Z X:X(m,n)(m2 — T)(;l(ﬁoerﬁOm )
m=1 n=1

Ay — 1B; ~ , ,
+ ( N 5 3 N)i(ﬁo - ﬁ)O(M5)[1 + Op(M_ min(A11,A21) 7= mln(Alg,AQZ))]
M N
M?
_ Z ZX(m,n)(m2 . T)e—z(,gom—f—ﬁwnz)
m=1 n=1
A4 B0 A0 po . , .
b (B )i = OO+ 0w i)
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45 [ (F5E0i( = HOM)[1 + Op(M—mnCnles) N —inuz )]

—1Im 4
AN —iBA
M N
M?
Z ZX(’ITL, TL) (m2 — ?) —i(a®m~+Bm?2)
+m:1 n=1

0

ﬁ _ 60 + (/80 . ﬁ)Op(M_ min()\n,)\gl)N— min(Ai2,A22)

M N
M? )
I

4 R
+ —5[77?, m=1 n=1

M (455 +i455)0,(MN)

MY M?

33 K (mm)(mt — 2ttt

m=1n=1

Now using Lemma 1 and 2 variance of Wﬁn (AO;BD = AOEBO)
is asymptotically same as variance of least square estimator of 3°. So 5’ - 30 =
O,(M2220) where Ay € (0,1) then § — 3% = O,(M222) if )y < 1 and
M5(§ — 3% — N(0,03) if Ay1 > 1 by CLT of stochastic process in Fuller [3] where

2 _ _3600%c
2 7 02 po2

is the variance of the least square estimator of 3°.

Q

PROOF OF THEOREM 3 AND 4: Theorems 3 and 4 can be proved along the same

line as that of theorem 1 and 2 by interchanging the role of m and n.
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