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1. Introduction 

The least squares method plays an important role in drawing inferences about the parameters in the 
non-linear regression model. Jennrich (1969) first rigorously proved the existence of the least squares 
estimator and showed its consistency of the following non-linear model: 

yt =f,(fI,) +EI, t = 1, 2 ).... (1.1) 

Jennrich proved the strong consistency of the least squares estimator i,, under the following assumption: 
F,<tl,, 0,) converges uniformly to a continuous function F(B,, 0,) for all 8, and 8, and F(f?,, 0,) = 0 if 
and only if 8, = O,, where 

F,(%7 %) = $ ?r (f,(4) -f,(Q)‘. (1.2) 

Under some stronger assumptions, asymptotic normality was proved in the same paper. Wu (1981) gave 
some sufficient conditions under which the least squares estimator converges to BO almost surely, when 
the growth rate requirement of F, is replaced by a Lipschitz type condition on the sequence fi. 

We consider the non-linear regression model 

yr = c0s(2deo) + E,, t = 1, 2,. . . , (l-3) 

where (~~1 are i.i.d. normal random variables with mean zero and finite positive variance u2. 8, is an 
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interior point of [O, OS]. In this situation F,(B,, 0,) doesn’t converge uniformly to a continuous function 
nor does it satisfy Wu’s Lipschitz type condition. This is an important, well studied model in time series 
analysis. See for example the recent work of Rice and Rosenblatt (1988) or Hannan (1973). However, the 
direct proof of the consistency of the least squares estimator has been established. The aim of this paper 
is to give a direct proof of the consistency of the least squares estimator of the model (1.3) and to show 
its asymptotic normality under the assumption of the Gaussian error. Some relaxation of the normality 
assumption of the error is possible. 

2. Consistency of the least squares estimator (LSE) 

Let t(, be a least square estimator of 0 obtained by minimizing 

Q,(e) = 2 (Y, - ~~42~4)~. 
t=1 

To prove & is a strongly consistent estimator of 8, it is enough to prove that 

lim inf ,,_i,lt;>, $Q,cs, -Qn&)}'o as. 

for all 6 > 0 (Wu, 1981). Now 

;(Q,(e, - Q,(e,)) = ; e1 ((Yt - w2~w)* - &:> 

Consider 

= i tgl (c0s(2deo) - cos(27rte))* 

+ f +(cos(2?if8,) - cos(2de)). 

4 5 (c0s(2-deo) - c0+2de))* 
t-1 

= 1$1 (ei2ntOo + e-i27rrOo _ ei2Tt0 _ e-i2rrrO)2 

= t (4 + ei4rrte o _ 2 ei2d(e+eo) + e-i47rte + ei47rre + e-i4de0 

r=1 

-2 ei257t(e-eo) _ 2 e-i2w(e+eo) _ 2 ,-i*w(e-e,)). 

Clearly 

lim inf ,e_8,, ,6 k ?i (cos(2Tte,) - cos(2~te))~ > 0 inf 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

for any fixed 6 > 0. Since (l/n)C;,i&, cos(27rMO) converges to zero almost surely, (2.2) follows if we can 
prove that sup,(l/n)Z;=,s, cos(2nte) converges to zero almost surely. 
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Let A, be a set which contains the points {l/K’, 2/K2,. . . , [$C2]/K2) for K = 2, 3,. . . . It is known 
that if 2 is distributed as normal random variable with mean zero and variance u2, then for large n and 
for any given E > 0, there exist a c > 0, such that 

P{ ) 2 I > in} G e-cn2/a2. 

Therefore given E > 0, there exist a c > 0, such that 

(2.6) 

and 

P (2.7) 

Since CEZ1n2 e + < 03, therefore it follows from the Bore&Cantelli lemma that 

sup 1 2 &t cos(2.rrt0) + 0 a.s. 
BEA, n t=l 

Now for any (Y in [0, 0.51 there exists a p in A, such that I a - p I d np2. Therefore 

;I ~~1E,(cos(2?ita) - cos(2q?)) 1 G $ tgI I EI I Icos(2Trtcu) - cos(2rtfl) I 

.‘z$ Is,1 It(a-p)I 
n t=1 

<24 5 lEtI -+ 0 a.s. 
t=1 

(2.9) 

(2.10) 

Therefore we can conclude that 

s;p i t$l~t cos(2~te) + 0 a.s. 

Finally we can state our result as a theorem. 

(2.11) 

Theorem 2.1. If in iv a least square estimator of the non-linear regression model (1.3) then it is a strongly 
consistent estimator of tIO. 0 

3. Asymptotic normality 

Since Q,(e) is defined as in (2.0, therefore 

Q#z) -Q,i(&,> = (e:, %)Q”(6z) 

where QL(&> = 0, implies that 

6, - 4, = -Q,&)/Q,“(&z). 

(3-l) 

(3.2) 

1.5 
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Since 6” converges to 8, almost surely, 6” also converges to 8,. Now 

Qc(in) = 8n2 
i 

5 t2(sin2(2nt&) - cos2(2nff?~) + st cos(2~t&) 
?=l 

It can be shown similarly as before that 

+cos(2?rt&J cos(2?Tt0,)) . 
I 

sup ,f;: a,t2 cos(2rte) + 0 a.s., 
t=1 

therefore 

Since 

Q;( 0,) = 4~ k + sin(2rrte,), 

we have 

t=1 

Var( n-3/2QL( 0,)) = u216a2$ 5 t2 sin2(2Tt0,). 
t-1 

Since 

Var(ne312(8:, - e,)) = 
[Var(~-3/2QXeo))] 

(Q@n))" ’ 

from (3.2), (3.5), (3.7) and (3.8) we can conclude that 

n312 ( 
1 

0, -u 2 

4k?r2 

where 

’ = Jiim $5 t2 sin2(2rte,). t=1 

4. Numerical experiments 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

We have performed a small simulation study to estimate the actual coverage probabilities of 95% 
confidence intervals. We take IZ = 50, c2 = 1 and 8, = 0.25 with 1000 simulation runs. a2 in each case is 
calculated by Q,<e^,>/n. The confidence interval of 0, is constructed from (3.9). It is observed that 91.5% 
of time it contains the true parameter 8 and the average confidence length comes out to be 0.0043. 
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5. Conclusions 

In this note we have proved directly the strong consistency of the least squares estimator of the model 
(1.3) under the assumption of the normal error. But we do not require the normal error assumption 
except (2.6) or (2.7). In fact any other distribution which satisfies (2.6) and (2.7) can be used as the error 
random variable. 
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